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Abstract

Generally, the more channels are used to acquire EEG signals, the better the performance of the brain–computer interface 

(BCI). However, from the user’s point of view, a BCI system comprising a large number of channels is not desirable because 

of the lower comfort and extended application time. Therefore, the current trend in BCI design is to use the smallest number 

of channels possible. The problem is, however, that usually when we decrease the number of channels, the interface accuracy 

also drops significantly. In the paper, we examined whether it is possible to maintain the high accuracy of a BCI based on 

steady-state visual evoked potentials (SSVEP-BCI) in a low-channel setup using a preprocessing procedure successfully 

used in a multichannel setting: independent component analysis (ICA). The influence of ICA on the BCI performance was 

measured in an off-line (24 subjects) mode and online (eight subjects) mode. In the off-line mode, we compared the number 

of correctly recognized different stimulation frequencies, and in the online mode, we compared the classification accuracy. 

In both experiments, we noted the predominance of signals that underwent ICA preprocessing. In the off-line mode, we 

detected 50% more stimulation frequencies after ICA preprocessing than before (in the case of four EEG channels), and in 

the online mode, we noted a classification accuracy increase of 8%. The most important results, however, were the results 

obtained for a very low luminance (350 lx), where we noted 71% gain in the off-line mode and 11% gain in the online mode.

Keywords SSVEP · ICA · Frequency detection · LED · Low luminance · Low-channel BCI

1 Introduction

A visual evoked potential (VEP) is an electrical potential 

that can be derived from the scalp after a visual stimulus 

such as a flashing light. If the stimulation frequency is high 

enough (higher than 3.5 Hz), VEPs are called “steady-state” 

VEPs (SSVEPs) because the individual responses overlap, 

resulting in quasi-sinusoidal oscillations of the same fre-

quency as the stimulus [1]. The borderline between the tran-

sient and steady-state VEPs is not strictly defined. Some 

authors report that the periodicity is observable when the 

stimulus frequency exceeds 3.5 Hz [1, 2] or 4 Hz [3, 4], 

while others state that SSVEP is a type of event-related 

potential modulated by a frequency of periodic stimuli 

higher than 5 Hz [5–8].

SSVEP is believed to have a stable amplitude (size) and 

phase (temporal shift) over time [9]. It is most prominent 

over occipital cortical areas [10] and presents strong immu-

nity to physiological artifacts, such as eye and body move-

ments [11–15]. Since SSVEP fundamental frequency is 

mainly the same as the frequency of the stimulus [4, 16], by 

providing stimuli of different frequencies, different SSVEPs 

can be evoked.

This idea has been widely adopted in brain–computer 

interfaces (BCIs)—technical systems that acquire and ana-

lyze brain activity patterns in real time to translate them 

into control commands for computers or external devices 

[17, 18]. An SSVEP-based BCI is composed of two separate 

modules (Fig. 1). The task of the first module is to deliver 

light stimuli produced by light sources flashing at different 

frequencies (f1, f2 … fn) to the user. The task of the second 

module is to record the EEG signal and then process it to 

detect the frequency of the light source currently observed 

by the user. Since each light source is bound to a specific 

control command (e.g., L1: move left; L2: stop; L3: move 
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right; and L4: go forward [19]), the source detection results 

in the execution of the corresponding command. For exam-

ple, if a user observes light source L3 and the system rec-

ognizes the frequency f3, the command “move right” will 

be executed. This loop, composed of EEG recording, EEG 

processing, and executing a command, is performed continu-

ously in real time.

SSVEP-based BCIs are popular among other BCI types 

due to their high signal-to-noise ratio (SNR) [20], reason-

ably low subject-to-subject differences [21], minimal user 

training [7, 22], and very high accuracy and communication 

rates [17, 23–25]. For example, Bin et al. [22] reported that 

83–100% accuracy (mean 95.3%) was obtained in a survey 

with 12 subjects, where each subject was provided with six 

objects that flickered with different frequencies (13, 14, 15, 

16, 17, and 18 Hz) on a computer screen. The EEG signal 

was recorded from nine parietal and occipital channels and 

was processed in a 2-s time window with canonical correla-

tion analysis (CCA) using fundamental stimulus frequency 

and the first harmonic. The accuracy was calculated over 30 

trials per each subject. Similar accuracy (81–100%, mean 

94.7%) was reported by Volosyak et al. in a survey with five 

choices provided by LED fields (stimulation frequencies: 

13, 14, 15, 16, and 17 Hz), 10 subjects, eight parietal and 

occipital electrodes, and a 2-s time window [26].

The accuracy obtained with SSVEP-BCI in laboratory 

conditions nowadays is more than satisfactory. In fact, if 

we ensure that conditions are appropriate and if the user is 

sufficiently focused, the accuracy of 80–100% for SSVEP-

BCI with 2-s time window is a quite standard result. The 

problem is, however, that conditions that are “appropriate” 

for a BCI are not at all “appropriate” for a user. While 

the highest SSVEPs are obtained when the EEG signal is 

recorded in controlled laboratory conditions from about 

8–10 electrodes and the EEG response is induced by low-

frequency stimuli of high power and contrast, users prefer 

few electrodes, outside-laboratory conditions, and stimuli 

of high frequency, low power, and low contrast.

Unfortunately, increasing user comfort usually leads to 

a decrease in the interface accuracy. For example, Wei 

et al., in an experiment with 12 subjects where EEG data 

were recorded from only four channels, obtained an accu-

racy of 75–83% [27], much smaller than those reported in 

wider channel settings, although they used a fairly simi-

lar set of frequencies (9, 10, 11, 12, and 13 Hz). Slightly 

better results were reported by Chen et al. who obtained 

an accuracy of about 85% (averaged over 20 subjects) 

in an experiment with only one channel (Oz) [12]. The 

more direct comparison of the SSVEP detection accuracy 

across different number of EEG sensors is provided in 

[28], where the accuracy averaged over 10 subjects was 

64%, 69%, 80%, 82%, and 84% for 1, 2, 3, 4, and 5 chan-

nels, respectively. (EEG sensors were located over parieto-

occipital cortex.)

Fig. 1  SSVEP-BCI scheme
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Hence, the question arises of how to sustain high accu-

racy of an SSVEP-based BCI while increasing its usabil-

ity at the same time. The answer to this question is quite 

straightforward. We need efficient and effective algorithms 

for processing, analysis, and classification of the EEG signal 

[29, 30]. These algorithms must be able to extract SSVEP 

from the signal recorded in outside-laboratory conditions, 

from the smallest number of channels, and with stimuli that 

do not induce so much fatigue in the user. We believe that we 

are able to achieve at least some of these goals with a tech-

nique that at first glance is not at all suitable for low-channel 

processing, namely independent component analysis (ICA).

ICA is a method that is often used for artifacts reduction 

in EEG signal analysis [31–35]. A lot of research has been 

done so far to prove that ICA improves the quality of the raw 

EEG signal. Most of that research, however, was focused 

on multidimensional EEG, from 16 channels [36] through 

19–20 [22, 37] up to 71 [38] and even many more.

In the case of multidimensional EEG, the sources that 

are strong enough (usually artifacts) are returned by ICA 

algorithms as individual components. Therefore, on the 

basis of the spatial, temporal, and spectral features of each 

component, it is possible to decide which are artifacts that 

should be discarded from further analysis. Then, the input 

EEG channels can be reconstructed with only non-artifact 

components to enhance the signal quality. In the case of 

low-dimensional EEG, there is usually no justification for 

removing any components (all of them are just new mixtures 

of sources). However, instead of discarding the possible arti-

fact components, we can try to pick out the components that 

enhance the brain activity correlated with the task and use 

only those components in further processing. Of course, the 

question of how to choose the right components arises. The 

most obvious answer is by finding the components that are 

the best at solving the task at hand [39].

In this paper, we would like to show that ICA can bring 

significant improvements in SSVEP-BCI accuracy, even if 

only a few channels are used for EEG data recording. Two 

specific hypotheses verified in the paper are as follows:

1. The approach to control the SSVEP-BCI with ICA com-

ponents instead of raw EEG signals provides both: (a) 

a higher number of individual frequencies detected in a 

frequency scanning phase and (b) a higher accuracy in 

an online BCI session.

2. Preprocessing with ICA increases the online SSVEP-

BCI accuracy for low-luminance stimuli to a level that 

allows them to be used instead of the more tiring high-

luminance stimuli.

In order to verify the stated hypotheses, we performed 

two experiments. In both experiments, we used an Arduino-

based stimulator connected to a frame with four flickering 

LEDs (5 mm). In the first experiment, we focused only on a 

frequency scanning phase. We looked for frequencies pro-

viding prominent SSVEPs for individual subjects. Since we 

wanted to show that ICA components are better than raw 

EEG signals regardless of luminance level, we performed 

the experiment with two different luminance levels: 350 and 

2000 lx. In the first experiment, we collected data from 24 

subjects, who were exposed to a white LED flickering with 

several dozen different frequencies from a 5–35 Hz band. In 

the second experiment, performed with eight new subjects, 

we verified our approach for an online BCI session (also 

for two luminance levels). The experiment started with a 

frequency scanning phase, followed by the choice of the four 

frequencies providing the prominent SSVEPs. The chosen 

frequencies were passed to the online phase, where the user 

task was to control a Lego robot moving in four directions 

(left, right, forward, and stop). All the signal processing was 

carried out with Matlab 2015b.

The rest of the paper is structured as follows. Section 2 

describes the setup of the experiments and the method used 

for SSVEP detection in off-line and online sessions. Sec-

tions 3 and 4 present the results of the experiments and a 

discussion of these results. Section 5 concludes the paper.

2  Methods

Twenty-four subjects (22 men, 2 women; mean age: 

28.8 years; range 18–38 years) participated in the first 

experiment, and eight new subjects (6 men, 2 women; mean 

age: 25.7 years; range 22–31 years) participated in the sec-

ond. All subjects had normal or corrected-to-normal vision 

and were right handed. None of the subjects had previous 

experiences with SSVEP-BCI, and none reported any mental 

disorders. The experiments were conducted according to the 

Helsinki Declaration on proper treatment of human subjects. 

Written consent was obtained from all subjects.

2.1  O�-line session setup

During the off-line session, 61 flickering stimuli of different 

frequencies were delivered in a random order to the sub-

ject by a single white LED (5 mm DIP 20 mA, 6500 K, 

18,000 mcd). The set of stimulation frequencies covered 

the 5–35 Hz band with a resolution of 0.5 Hz (5, 5.5, 6,…, 

35 Hz). The LED was attached to the computer screen, 

which was located approximately 100 cm from the subject’s 

eyes. The succeeding stimulation frequencies were delivered 

through an Arduino board. The subjects were divided into 

two groups. The first was exposed to stimuli of low lumi-

nance (350 lx) and the second to stimuli of high luminance 

(2000 lx). Each group was composed of 12 subjects.
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The detailed scheme of the experiment with one subject 

was as follows (Fig. 2). The subject was placed in a comfort-

able chair, and EEG electrodes were applied on his or her 

head. In order to limit the number of artifacts, the participant 

was instructed to remain relaxed and not move. The start of 

the experiment was announced by a short sound signal, and 

5 s later, EEG recording was started. The stimuli were pre-

sented one by one with 2-s breaks between them. The length 

of the stimulus was fixed and was equal to 10 s. The timing 

of the experiment was controlled by the Arduino board. The 

whole experiment was performed in one 12-min session.

During the experiment, EEG data were recorded from 

four monopolar channels at a sampling frequency of 256 Hz. 

Six passive gold electrodes were used in the experiments. 

Four of them were attached to the subject’s scalp at the O1, 

O2, Oz, and POz positions according to the extended Inter-

national 10–20 system [40]. The reference and ground elec-

trodes were located at Pz and the right mastoid, respectively. 

The impedance of the electrodes was kept below 5 kΩ. The 

EEG signal was acquired with a Discovery 20 amplifier 

(BrainMaster) and recorded with OpenViBE Software [41]. 

EEG data were filtered with a Butterworth band-pass filter of 

the fourth order in the 3–37 Hz band. Next, 61 10-s epochs, 

corresponding to the stimulus periods, were extracted from 

the continuous recording.

2.2  O�-line SSVEP detection method

Each of the epochs extracted from the EEG signal was pro-

cessed separately in order to determine whether SSVEP 

could be found at the stimulus frequency. The processing 

algorithm was composed of the following four steps.

1. At the beginning, the FastICA algorithm [42, 43] was 

executed over the chosen time window of the signal 

recorded from the chosen channels. The number of com-

ponents returned by the FastICA algorithm was equal to 

the number of channels used in the analysis.

2. At the next step, the power spectral density (PSD) was 

calculated separately for each ICA component with fast 

Fourier transform (FFT).

  

where x(n) is the signal, N the signal length, and k the 

frequency bin (k = 0, 1, …, N).

  In order to take into account not only the fundamental 

frequencies (F) but also their first harmonics (h1), the 

amplitude of the first harmonic was added to the PSD at 

each fundamental frequency.

  

where PSD
Fh1

 is the PSD modified by the first harmonic, 

PSD(F) is the PSD calculated for the fundamental fre-

quency, and PSD(h1) is the PSD calculated for the first 

harmonic.

3. Since the spectral power of the EEG signal decreases 

as the frequency increases, the whole spectrum should 

be normalized or divided into parts, where each part 

is analyzed separately. The normalization process of 

the frequency spectrum calculated for the components 

returned by FastICA would be difficult to perform (due 

to the lack of a clear transition between the independ-

ent components (ICs) and raw signals), and therefore, 

we took the second approach and analyzed the 10-Hz 

sub-bands surrounding the stimulation frequency in the 

modified PSD
Fh1

 . Hence, the final step of our procedure 

was to detect the frequency of the maximum amplitude 

in the 10-Hz sub-band surrounding the stimulation fre-

quency.

  

where F
max

 is the frequency of maximum PSD
Fh1

 from 

the 10-Hz buffer surrounding the stimulation frequency, 

and F
stim

 is the stimulation frequency.

  F
max

 was detected individually for each IC. The deci-

sion that SSVEP had been found was made if F
max

 was 

equal to the stimulation frequency ( F
stim

 ) for any of the 

components.

The FastICA algorithm that was applied for data trans-

formation in the online and off-line session is an iterative 

method to find local maxima of a defined cost function 

[42–44]. The purpose of this algorithm is to find the matrix 

of weights w such that the projection (wT
x) maximizes non-

Gaussianity [43, 44]. As a measure for non-Gaussianity, 

(1)PSD(k) =

|
|
|
|
|
|

N−1∑

n=0

x(n) ⋅ e
−

i2�kn

N

|
|
|||
|

2

,

(2)PSD
Fh1 = PSD(F) + PSD(h1),

(3)

Fmax = max
(

PSD
Fh1

(

− 5 Hz + Fstim ∶ Fstim + 5 Hz
))

,

Fig. 2  Detailed scheme of the off-line session
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simple estimation of negentropy based on the maximum 

entropy principle is used [43, 45]:

where y—standardized non-Gaussian random variable, v—

standardized random variable with Gaussian distribution, 

and G(.)—any non-quadratic function. There are two classes 

of FastICA algorithms, the deflation algorithms (called also 

one-unit algorithms) and the symmetric algorithms [42]. 

While in deflation approach the vectors of weights are cal-

culated one by one, in symmetric approach the estimation of 

all components (all weights vectors) proceeds in parallel. In 

the research presented in this paper, the symmetric FastICA 

approach was used.

2.3  O�-line data analysis

At the end of the off-line session, we obtained 24 EEG 

datasets, one per subject. Each dataset was composed of 

61 epochs (61 stimulation frequencies), each of which con-

tained 2560 samples (10 s) recorded from four channels. 

The final task of the signal-processing algorithm described 

in the previous subsection was to decide whether the EEG 

data recorded when the stimulation LED was flickering at a 

given frequency reflected that frequency. In other words, we 

looked for those epochs where synchronization of the brain 

waves with the stimulation frequency occurred. Hence, the 

output of the whole procedure was the number of epochs 

where SSVEP was detected.

In order to find out whether ICA preprocessing would 

provide any practical benefits, we compared the number of 

SSVEPs detected after applying FastICA with the number 

of SSVEPs detected without FastICA application. In both 

cases, we used exactly the same approach for SSVEP detec-

tion: the approach described in the previous subsection. 

The only difference was the input to Formula (1). When the 

EEG signals were preprocessed with the FastICA algorithm, 

the frequency spectrum was calculated over the individual 

components; in the other case, the frequency spectrum was 

calculated over raw EEG signals from individual channels.

We carried out the analysis across four combinations of 

channels. The first combination (S1) contained channels O1 

and O2, and each of the following combinations was cre-

ated by adding one or two of the remaining channels to the 

previous set of channels (S2: O1, O2, POz; S3: O1, O2, Oz; 

S4: O1, O2, Oz, POz). A full description of all combinations 

used in the analysis is provided in Table 1.

Since we wanted to compare not only the number of fre-

quencies found for different channel combinations (unpro-

cessed and processed with FastICA algorithm) but also the 

number of frequencies found with different signal lengths, 

each of the four-channel combinations was analyzed in two 

(4)J(v) ∝
[

E{G(y)} − E{G(y)}
]2

,

time settings. In the first setting, the 10-s signal was divided 

into 2-s time windows without overlapping, and SSVEPs 

were sought in each 2-s window. In the second setting, the 

analysis was performed over the first 2, 4, 6, 8, or 10 s of 

the signal. The statistical significance of each pair of results 

(ICA on/off) was tested with paired sample t test (p value 

= 0.05).

2.4  Online session setup

The BCI system used in the online session was composed 

of four modules: control module, EEG recording module, 

signal processing module, and executive module (Fig. 3). 

The main part of the control module was a square frame 

(18 × 18 cm) with eight LEDs attached to four sites of the 

frame. There were two LED types: stimulation LEDs (5 mm 

DIP 20 mA, cold white (6500 K), 18,000 mcd), and control 

LEDs (5 mm DIP 20 mA, red (630 nm), 6000 mcd). The 

four stimulation LEDs were flickering all the time with the 

frequencies chosen at the end of the off-line session; each 

LED was flickering with another frequency. The four control 

LEDs were used to guide the user regarding which of the 

stimulation LEDs he or she should attend to at that moment. 

The control LEDs were used only in the testing mode. When 

the interface was used in the free user mode, the control 

Table 1  Combinations of 

channels used in the analysis
Combination Set of channels

S1 O1, O2

S2 O1, O2, POz

S3 O1, O2, Oz

S4 O1, O2, Oz, POz

Fig. 3  Online BCI system
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LEDs were simply switched off. Since we had to know the 

correct directions to calculate the classification accuracy, 

only the testing mode was used in the experiments reported 

in the paper.

The frame was controlled by the Arduino/Uno board. The 

main task of the board was to ensure that LEDs were flick-

ering with constant frequencies during the whole experi-

ment. The board’s second task was to send to the frame the 

sequence of signals that switched the control LEDs on and 

off.

While the stimulation LEDs were flickering, the EEG 

signal was recorded from a user scalp. The EEG record-

ing module had the same configuration as in the off-line 

session (Discovery 20 amplifier; OpenVIBE Software; four 

channels: O1, O2, Oz, and POz, referenced to Pz; sampling 

frequency = 256 Hz). The recorded EEG signal was submit-

ted to the signal-processing module, where it was processed 

with the algorithm described in the following subsection. 

The output of the signal-processing module was one of the 

four stimulation frequencies, namely the one recognized in 

the EEG signal. The four stimulation frequencies defined 

four classes of movement (left, right, forward, and stop). 

The classes were used in the executive module to control the 

Lego Mindstorms EV3 robot moving in the four directions. 

The connection with the robot was established via Bluetooth.

During the online session, the subject was sitting on a 

chair and was holding the frame with LEDs. The EEG elec-

trodes were attached to the subject’s head and connected to 

the EEG recording device. The robot stood on the floor in 

front of the subject’s face. The subject’s task was to focus 

his or her attention on the stimulation LED indicated by a 

control LED and simultaneously observe the robot’s move-

ments. The sequence of movements was the same for each 

subject and was composed of 60 movements, 15 per class. 

The classes in the sequence were set in a random order. The 

direction of movement changed every 2 s.

The choice of a 2-s time window was motivated by pre-

vious works in the field where different lengths of time 

window were analyzed. For example, Manyakov et al., who 

analyzed the classification accuracy for different numbers 

of targets, reported that the classification accuracy did not 

rise significantly after the first 2 s [46]. Similar results were 

obtained by Chen et al. [47], who reported that in the 3- and 

4-s time windows, the classification accuracy was slightly 

higher than that in a 2-s time window but that increase was 

not significant.

The online BCI mode was used in the second experi-

ment, performed with eight subjects. The experiment was 

composed of two stages, with white LEDs being used in 

both. At the first stage, an off-line session was performed 

(12 min) to detect the user-specific stimulation frequencies 

providing the prominent SSVEPs. Using the results from 

the off-line session, a set of four frequencies specific for 

the subject was established. In order to limit the subject’s 

fatigue, the highest frequencies from the set returned by the 

detection algorithm were passed to the online session. In 

the second stage, two online sessions were performed, one 

with the LEDs’ luminance set to 350 lx and the other with 

luminance set to 2000 lx. In order to reduce the influence 

of the order of sessions on the final results, four (randomly 

chosen) subjects started from the session with high LED 

luminance, and the other four started from the session with 

low LED luminance. Each session lasted 2 min. There were 

5-min breaks between both stages and both sessions of the 

online stage.

2.5  Online SSVEP detection method

The online signal-processing module was run for every 

512 EEG samples collected by OpenVIBE. Next, these 2-s 

signals were filtered with a Butterworth band-pass filter of 

the fourth order in the 3–37 Hz band. Finally, the FastICA 

algorithm was applied.

The online SSVEP detection algorithm was much quicker 

than its off-line version, since this time only the power for 

the four given frequencies had to be calculated. To deal with 

this task, we used Eq. (1) to calculate PSD(F) and PSD(h1) 

for each stimulation frequency. Next, we combined the sig-

nal power at the fundamental frequency and first harmonic 

(2).

We used Formula (2) four times for each stimulation fre-

quency (once for each of the four channels), obtaining 16 

power values. The final classification rule used for choosing 

the frequency that induced SSVEP was

where PSDmax is the maximum PSD value, and PSD
i
 is the 

value of the ith element of the 16-element vector contain-

ing the signal power calculated for each frequency and ICA 

components (four frequencies × four ICA components).

2.6  Online data analysis

While, in the case of off-line data analysis, the performance 

indicator was the number of stimulation frequencies cor-

rectly detected in the EEG signal, data from the online ses-

sion were compared with the classification accuracy ratio 

(Acc). The classification accuracy was measured as

where TP is the number of true positives (the trials when the 

correct stimulation frequency was recognized).

To facilitate the future comparison, we also calculated the 

information transfer rate (ITR) [48, 49]:

(5)PSDmax = max
1≤i≤16

(PSD
i
),

(6)Acc =
TP

60
∗ 100% ,



53Pattern Analysis and Applications (2019) 22:47–62 

1 3

where ITR is the information transfer rate in bits per minute, 

T is the command-processing time (2 s), and B is the ITR in 

bits per symbol, calculated as:

where N is the number of classes (four classes).

The data gathered in the online session were recorded for 

further analysis. We were particularly interested in whether 

the expected improvement after ICA application would be 

possible to observe not only when data from all four chan-

nels were processed but also when three or even two chan-

nels were submitted to the FastICA algorithm. Hence, in the 

online data analysis, we used the same four-channel com-

binations as for the off-line data. As in the off-line session, 

also here the statistical significance of the results was tested 

with paired sample t test (p value = 0.05).

3  Results

3.1  O�-line

Our first goal was to compare the number of stimulation fre-

quencies correctly detected with and without ICA applica-

tion. We carried out the whole analysis in regard to 2-s time 

windows. Because we planned to use only the first 2 s of the 

recording in the online BCI session, we were particularly 

interested in the first time window. However, in order to find 

out whether the effect of ICA application would be stable 

over time and over the length of time window, we carried 

out the comparison for the whole 10-s period.

First, we analyzed the efficiency of stimulation frequency 

detection (ESFD) before and after ICA application for each 

2 s of the recording (Fig. 4, Table 2). The comparison was 

done separately for each channel combination (four suc-

ceeding rows of plots) and for both luminance levels: 350 lx 

(left column) and 2000 lx (right column). The detection effi-

ciency for one subject was calculated as the ratio between 

the number of detected stimulation frequencies and the total 

number of frequencies provided for the subject:

where ESFD is the efficiency of stimulation frequency 

detection, FN is the number of stimulation frequencies, and 

FN
SSVEP

 is the number of stimulation frequencies providing 

detectable SSVEP.

To make the comparison more compact, the efficiency 

was averaged over subjects. Hence, Fig.  4 presents the 

(7)ITR =

60

T
⋅ B,

(8)B = log2N + Acclog2Acc + (1 − Acc)log2

1 − Acc

N − 1
,

(9)ESFD =

FNSSVEP

FN
∗ 100,

average ESFD (together with the standard deviation) in suc-

ceeding 2-s time windows.

The same results are presented in tabular form in Table 2. 

The table is divided into two groups corresponding to the 

two luminance levels. The most important part of the table 

is the last column from each group, which demonstrates the 

efficiency gain (EG) obtained when FastICA algorithm was 

applied in the preprocessing stage, calculated as:

where ESFDICA_on  is the ESFD averaged over subjects 

obtained for signals preprocessed with FastICA, and 

ESFDICA_off is the ESFD averaged over subjects obtained 

for raw signals.

In order to find out whether the predominance of the inde-

pendent components returned by ICA over the raw signals 

holds regardless of the length of the time window, we ana-

lyzed the ESFD in time windows of increasing length. We 

analyzed five time windows, containing data from the first 2, 

4, 6, 8, and 10 s of the recording. The results are presented 

in Fig. 5 in a similar fashion to those in Fig. 4: Rows corre-

spond to channel combinations; the columns correspond to 

luminance levels, with 350 lx on the left and 2000 lx on the 

right; and a single plot contains ESFD data averaged over 

subjects for raw EEG signals and signals preprocessed with 

the FastICA algorithm.

As can be noticed in the figure, in each single case the 

higher number of stimulation frequencies was detected after 

FastICA application in the preprocessing stage. The exact 

gain in ESFD for each channel combination, LED lumi-

nance, and time window length is presented in Table 3. The 

last row contains the grand mean over channel combinations.

The results presented so far clearly demonstrate that the 

average number of detected stimulation frequencies was 

higher across the whole recorded signals after applying the 

FastICA algorithm for signal preprocessing. This proves the 

usability of ICA for the low EEG channel setting. However, 

to design a successful BCI system, we do not need the infor-

mation about the ESDF of the whole 10-s signal but only 

the information about the ESDF of its first part, which will 

be used in the online mode. From Fig. 5, we can see that for 

both luminance levels and each combination of channels, the 

average efficiency calculated over the first 2 s was higher in 

the case of signals that had undergone ICA preprocessing. 

Figure 6 presents the same information but with respect to 

individual subjects.

Continuing the analysis of the first 2 s of the signal, we 

decided to examine the average efficiency of stimulation 

frequency detection in the individual frequency ranges. 

In other words, we wanted to find out whether the use of 

(10)EG =

(

ESFDICA_on − ESFDICA_off

)

ESFDICA_off

,
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ICA in the signal preprocessing stage increased the number 

of stimulation frequencies detected in different frequency 

ranges. Obviously, we were particularly interested in the fre-

quencies that are most comfortable for the user, that is, the 

frequencies from the highest frequency band. The analysis 

was performed for the full four-channel setup (combination 

S4, composed of channels O1, O2, Oz, and POz).

To perform the task at hand, the frequency band was 

divided into five sub-bands of 5  Hz each: 5–10  Hz, 

10–15 Hz, 15–20 Hz, 20–25 Hz, and 25–30 Hz. For each 

Fig. 4  Efficiency of the stimula-

tion frequency detection (aver-

aged over subjects) before and 

after FastICA application for 

each 2 s of the recording, each 

channel combination (four rows 

of plots), and both luminance 

levels: min. = 350 lx (left 

column); max. = 2000 lx (right 

column); stars denotes statisti-

cally significant results

Table 2  Increase in ESFD (averaged over subjects and time windows) after applying FastICA in the preprocessing stage for both luminance lev-

els (min. = 350 lx; max. = 2000 lx)

Channel combination Low LED luminance (350 lx) High LED luminance (2000 lx)

Raw EEG 

signals (%)

EEG signals preprocessed 

with FastICA (%)

Efficiency 

gain (%)

Raw EEG 

signals (%)

EEG signals preprocessed 

with FastICA (%)

Efficiency 

gain (%)

S1 20 25 26 42 44 5

S2 21 30 47 43 50 15

S3 24 38 63 49 62 27

S4 24 42 71 50 64 29

Grand mean 22 34 52 46 55 19
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subject and frequency sub-band, the ratio of the number 

of correctly detected stimulation frequencies from the 

given sub-band to the number of all stimulation frequen-

cies contained in that interval was calculated. The indi-

vidual ratios were then averaged over the subjects, and the 

average ESFD for each frequency sub-band was obtained. 

Figure 7 presents the average ESFD in the analyzed fre-

quency sub-bands for low (upper graph) and high (lower 

graph) LED luminance. The exact efficiency gain obtained 

after ICA application is presented in Table 4.

Fig. 5  Efficiency of stimulation 

frequency detection (averaged 

over subjects) before and after 

FastICA application for the 

extended time window; each 

channel combination (four rows 

of plots); and both luminance 

levels: min. = 350 lx (left 

column); max. = 2000 lx (right 

column); stars denotes statisti-

cally significant results

Table 3  Average increase in 

ESFD after applying FastICA 

in the preprocessing stage 

obtained for time windows 

of different lengths and both 

luminance levels (min. = 350 lx; 

max. = 2000 lx)

Signal length (s) ESFD gain (%)

Low LED luminance (350 lx) High LED luminance (2000 lx)

1–2 1–4 1–6 1–8 1–10 1–2 1–4 1–6 1–8 1–10

Channel combination

 S1 22 19 12 10 11 14 7 5 5 3

 S2 44 50 24 30 20 17 14 9 11 4

 S3 58 65 55 59 54 32 27 28 27 25

 S4 64 63 59 57 50 32 29 32 24 21

Grand mean 47 49 37 39 34 24 19 18 17 13
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3.2  Online

Since the proposed approach correctly detected the highest 

number of stimulation frequencies in the case of the four-

channel combination (S4), we started the analysis of the 

online session results from that combination. As in the off-

line session, here we also analyzed individually the results 

obtained when users were stimulated with LEDs of the low 

(350 lx) and high (2000 lx) luminance. Table 5 presents the 

improvement of the classification accuracy (Acc) obtained 

after FastICA application at the signal preprocessing stage. 

The results for the low and high LED luminance are pre-

sented in the top and bottom parts of the table, respectively. 

In each group, the results obtained for raw signals and sig-

nals preprocessed with FastICA are compared in terms of 

Acc and ITR. The Acc and ITR gains were calculated as 

follows:

where AG is the Acc gain, AccICA_on is the Acc averaged 

over subjects obtained for signals preprocessed with Fas-

tICA, and AccICA_off  is the Acc averaged over subjects 

obtained for raw signals.

(11)AG =

(

AccICA_on − AccICA_off

)

AccICA_off

,

Fig. 6  Efficiency of the stimula-

tion frequency detection before 

and after FastICA application 

for each subject, each channel 

combination, the first 2 s of the 

recording, and both luminance 

levels: min. = 350 lx (left 

column); max. = 2000 lx (right 

column)
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where ITRG is the ITR gain, ITRICA_on is the ITR aver-

aged over subjects obtained for signals preprocessed with 

FastICA, and ITRICA_off is the ITR averaged over subjects 

obtained for raw signals.

As can be noticed in Table 5, the classification accuracy 

achieved for the four-channel combination S4 was higher 

after FastICA application for both high and low LED lumi-

nance levels. Therefore, we decided to perform the analy-

sis across three other channel combinations to find out how 

the gain in the classification accuracy (induced by FastICA 

application) would be affected by the reduction of subse-

quent channels. The results are presented in Fig. 8 via the 

(12)ITRG =

(

ITRICA_on − ITRICA_off

)

ITRICA_off

,

classification accuracy averaged over subjects obtained with 

raw EEG signals (white bars) and after application of Fas-

tICA (black bars). As in the previous figures, the results 

are grouped according to low (top plot) and high (bottom 

plot) luminance levels. The exact gain in the classification 

accuracy obtained after applying the FastICA algorithm is 

presented in Table 6.

Given that for each combination of channels and both 

luminance levels, the average classification accuracy after 

FastICA application was higher than before (as shown in 

Fig. 8 and Table 6), it was decided to check whether that 

relationship would also hold for the individual subjects 

(Fig. 9).

4  Discussion

By analyzing the efficiency of stimulation frequency detec-

tion in succeeding 2-s time windows (Fig. 4), we can notice 

that regardless of the luminance level and channel combi-

nation, ICA preprocessing always improved the detection 

rate. Obviously, this domination of ICA-preprocessed sig-

nals increased with the number of channels, starting from an 

almost unnoticeable difference in ESFD for the two-channel 

combination and ending with a considerable ESFD gain for 

the four-channel combination.

In Table 2, which presents the efficiency gain (averaged 

over subjects) only in the first 2-s time window, we can 

observe that the gain averaged over channel combinations 

was much higher for low LED luminance (low: 52%, high: 

19%). In the case of combinations S3 and S4, the gain for 

low luminance was even equal to 63% (S3) and 71% (S4). 

Of course, comparing the ESFD across both LED luminance 

levels, it can be noticed that ESFD is much higher in the 

case of high luminance. However, the difference in ESFD is 

not so high when we compare the ESFD obtained for high 

LED luminance calculated for raw signals with the ESFD 

obtained for low LED luminance but calculated with ICA. 

That means that it might be possible to achieve comparable 

ESDF after stimulating a user with a much lower luminance 

purely thanks to the implementation of ICA. This is a very 

important benefit of applying ICA since low luminance is 

far less tiring for a user and therefore improves the comfort 

of SSVEP-BCI.

Fig. 7  Efficiency of stimulation frequency detection for each fre-

quency sub-band for the first 2 s of the signals recorded from chan-

nels contained in the S4 combination (O1, O2, Oz, and POz); the 

white boxes correspond to ESFD obtained with raw EEG signals, and 

the black ones correspond to ESDF obtained with signals preproc-

essed with the FastICA algorithm. The upper plot presents results 

obtained for low-luminance level and the lower plot—for high-lumi-

nance level; stars denotes statistically significant results

Table 4  Average ESFD gain after applying the FastICA algorithm in the preprocessing stage obtained for both luminance levels: (min. = 350 lx; 

max. = 2000 lx)

Low LED luminance (350 lx) High LED luminance (2000 lx)

Frequency sub-band (Hz) 5–10 10–15 15–20 20–25 25–30 5–10 10–15 15–20 20–25 25–30

ESFD gain (%) 49 99 55 65 77 16 56 35 43 32
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Another fact that can be observed in Table 2 and Fig. 4 is 

the high similarity of ESFD obtained for combinations S3 

and S4 across all analyzed conditions. The increase provided 

by the additional channel (POz) did not exceed 5%; it was 

equal to 0 and 4% for low luminance and 1 and 2% for high 

luminance. This suggests that it may therefore be possible to 

reduce the number of channels to three and hence to make 

the BCI application faster and even more user friendly.

Two general observations can be made by analyzing the 

results presented in Table 2 and Fig. 4. The first observation 

concerns the luminance level. As can be noticed, regard-

less of the channel combination and on/off ICA condition, 

the higher luminance provided higher detection efficiency. 

Although this result is in agreement with general brain 

theory [50]—a stronger stimulus induces a stronger brain 

response—it was not observed to such a high extent in the 

previous research. For example, Mouli et al. reported that the 

efficiency of SSVEP detection did not change significantly 

after reducing the luminance from high to low [51]. They 

analyzed four levels of luminance, from 357 lx (similar to 

that used in our study) to 1430 lx, and obtained similar effi-

ciency of SSVEP detection across all levels for five subjects, 

four stimulation frequencies, and one EEG channel (O2).

The second general observation concerns the time win-

dows used in the analysis and is independent from ICA 

Table 5  Acc and ITR averaged over the subject before and after FastICA application for channel combination S4 and both luminance levels: 

min. = 350 lx (upper part) and max. = 2000 lx (bottom part)

Subject no. Accuracy (%) ITR (bits/min)

Raw EEG signals EEG signals preproc-

essed with FastICA

AG Raw EEG signals EEG signals preproc-

essed with FastICA

ITRG 

Low LED luminance (350 lx)

 1 58.75 63.75 8.51 11.05 14.42 0.30

 2 70.00 90.00 28.57 19.30 41.18 1.13

 3 71.25 75.00 5.26 20.37 23.77 0.17

 4 67.50 71.25 5.56 17.25 20.37 0.18

 5 78.33 85.00 8.51 27.08 34.57 0.28

 6 72.50 82.50 13.79 21.47 31.61 0.47

 7 61.67 71.67 16.22 12.96 20.73 0.60

 8 71.67 75.00 4.65 20.73 23.77 0.15

 Mean 68.96 76.77 11.38 18.78 26.30 0.41

High LED luminance (2000 lx)

 1 88.75 93.75 5.63 39.43 46.91 0.19

 2 92.50 100.00 8.11 44.90 60.00 0.34

 3 91.25 95.00 4.11 43.00 49.03 0.14

 4 86.25 91.25 5.80 36.13 43.00 0.19

 5 81.25 87.50 7.69 30.20 37.75 0.25

 6 85.00 87.50 2.94 34.57 37.75 0.09

 7 82.50 86.25 4.55 31.61 36.13 0.14

 8 80.00 81.67 2.08 28.83 30.66 0.06

 Mean 85.94 90.36 5.11 36.08 42.65 0.18

Fig. 8  The classification accuracy averaged over subjects before 

(white bars) and after (black bars) FastICA application for each chan-

nel combination and both luminance levels: min. = 350 lx (upper plot) 

and max. = 2000 lx (lower plot); stars denotes statistically significant 

results
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preprocessing, channel combination, and luminance level. 

As can be seen, the averaged ESFD in all analyzed con-

ditions maintained a similar level in all time windows. Of 

course, it was slightly lower in the first time window (cover-

ing the first 2 s), which can be attributed to the time needed 

to fully focus the subject’s attention on the stimulus, but the 

difference was still not significant.

In Fig. 5, we can see that the predominance of signals 

that underwent ICA preprocessing is maintained regardless 

of the length of time window. The efficiency gain in all time 

Table 6  Average increase in 

the classification accuracy 

after applying FastICA in the 

preprocessing stage for both 

luminance levels (min. = 350 lx; 

max. = 2000 lx) and four 

combinations of channels

Channel 

combination

Low LED luminance (350 lx) High LED luminance (2000 lx)

Raw EEG 

signals (%)

EEG signals preproc-

essed with FastICA (%)

AG Raw EEG 

signals (%)

EEG signals preproc-

essed with FastICA (%)

AG

S1 70.10 70.68 1 86.35 89.06 3

S2 69.22 74.27 7 85.78 90.31 5

S3 68.75 76.72 12 86.30 88.59 3

S4 68.96 76.77 11 85.94 90.36 5

Fig. 9  Classification accuracy 

before and after FastICA appli-

cation for individual subjects, 

all channel combinations (four 

rows of plots), and both lumi-

nance levels: min. = 350 lx (left 

column); max. = 2000 lx (right 

column)
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windows is the highest in the case of channel combinations 

S3 and S4, much smaller for combination S2, and only minor 

for combination S1. These observations are confirmed by 

Table 3, which presents the exact values of efficiency gain 

obtained after ICA preprocessing. In the table, it can be 

observed that the gain obtained with combination S3 was not 

only similar to the gain obtained with combination S4, but 

for some signal lengths, combination S3 provided an even 

higher increase in ESFD than combination S4 (time win-

dows 1–4, 1–8, and 1–10 s for low luminance; time windows 

1–8, and 1–10 s for high luminance). Analyzing the results 

from Fig. 5 across luminance levels, we should underline 

that once again, the efficiency gain was much higher in the 

case of low luminance (a maximum of 49% for the first 4-s 

time window) compared to high luminance (a maximum of 

24% for the first 2-s time window).

The number of detected stimulation frequencies increases 

with the length of time window since the time needed for 

constituting the brain response for different frequencies is 

different; some frequencies immediately induce the brain 

response, while others need time to develop the prominent 

SSVEP [16, 52, 53]. Hence, the efficiency of frequency 

detection depends on the length of time window used in the 

off-line session: The longer the time window, the higher the 

ESFD. However, as shown in Fig. 5, regardless of the length 

of the time window, it was always profitable to use ICA to 

reorganize information contained in the raw EEG signals 

before starting the detection process.

Figure 6 presents the ESFD obtained for the first 2 s of 

the recorded signal with respect to the individual subjects. 

When we look more closely at this figure, we can see that 

not only the average detection efficiency but also the effi-

ciency calculated for each individual subject increased after 

the application of ICA. This tendency holds for almost all 

subjects across both luminance levels and all channel com-

binations. Obviously, as could be expected after the analy-

sis of the average ESFD, there are some discrepancies, five 

for combination S1, namely Sub2, Sub6, and Sub10 for low 

luminance and Sub2 and Sub6 for high luminance; three for 

combination S2, namely Sub10 for low luminance and Sub2 

and Sub6 for high luminance. However, in the case of the 

two last combinations of channels, there is only one excep-

tion to the rule of ICA predominance (for Sub11, combina-

tion S4, high luminance).

Analyzing the increase in the detection efficiency 

obtained after ICA application across different frequency 

bands (for combination S4 and the first 2-s time window), 

we can notice that the ESFD increased regardless of the 

frequency sub-bands for both luminance levels (Fig. 7 

and Table 4). We should underline here that once again, 

the efficiency gain obtained with signals preprocessed 

with ICA was much higher across all frequency ranges 

(Table 4) in the case of low luminance (a maximum of 99% 

for the 10–15 Hz sub-band) compared to high luminance 

(a maximum of 56% for the same sub-band).

One unexpected effect that we can observe in Fig. 7 

is a lack of monotonicity in succeeding frequency sub-

bands. In many previous papers, it was reported that the 

efficiency of the stimulation frequency detection decreased 

with increasing frequency [16, 54]. In Fig. 7, this ten-

dency holds only for the first three frequency sub-bands 

(5–10 Hz, 10–15 Hz, and 15–20 Hz) and for the fourth 

one for high luminance, but then the ESFD increases even 

above the level obtained for 15–20 Hz. This is true for 

both luminance levels and regardless of ICA application. 

If this tendency is confirmed by other research, it could 

be another step toward making SSVEP-BCI more user-

convenient, since the frequencies from the 25–30 Hz band 

are much less tiring for the user than lower frequencies.

For the analysis of the results from the second experi-

ment, where the subjects took part not only in the off-line 

session but also in the online one, we chose the combi-

nation of channels that allowed detection of the highest 

number of stimulation frequencies in the first experiment: 

combination S4.

Analyzing the classification accuracy (Acc) across indi-

vidual subjects (Table 5), we can notice that regardless of 

the luminance level, the classification accuracy for each 

subject was higher when ICA was applied in the preproc-

essing stage. Of course, individual results differed across 

subjects but this overall tendency was maintained. As in 

the off-line mode, here the accuracy gain obtained due to 

ICA application was also significantly higher in the low 

luminance condition (the accuracy gain for the S4 combi-

nation was 11%) compared to the high-luminance condi-

tion (5%).

Considering the different channel combinations, it can 

be noticed that although the average results (Table 6, Fig. 8) 

show the predominance of ICA components in the case of 

each combination, the individual results (Fig. 9) maintain 

this rule only for combinations S3 and S4. In the case of 

combination S2, there are two subjects for whom this ten-

dency does not hold (Sub7 for low and high luminance and 

Sub8 for high luminance) and in the case of the two-channel 

combination S1, there is no clear pattern at all. Hence, it 

can be deduced that two channels were too few for ICA to 

enhance the component associated with the stimulation fre-

quency provided.

Too small number of channels (in our case the two of 

them) is one of the barriers limiting the usefulness of the 

approach described in the paper. The two other factors that 

also can limit the benefits obtained after the application of 

the proposed approach are

• two short signals and

• the requirement for an instantaneous system reaction.



61Pattern Analysis and Applications (2019) 22:47–62 

1 3

All three issues mentioned above are inherent features 

of most ICA algorithms. Two small numbers of too short 

signals do not provide enough space to properly reorganize 

the signal matrix during the ICA transformation, and the 

transformation itself needs some time to be completed.

5  Conclusion

The research presented in the paper is a part of a wider study 

whose aim is to find SSVEP-BCI solutions that on the one 

hand are comfortable for users and on the other provide a 

high number of individual frequencies detected in the off-

line mode and high accuracy in the online mode. In this 

paper, we focused on showing that using ICA for signal 

preprocessing can bring significant benefits in the case of 

a low-channel EEG setup and stimuli that induce relatively 

little user fatigue, namely stimuli of high frequency and low 

luminance.

Both hypotheses stated in the Introduction have been suc-

cessfully verified via two experiments covering off-line (24 

subjects) and online (eight subjects) BCI sessions. In the first 

experiment, we detected 50% more stimulation frequencies 

after ICA application for four EEG channels when compared 

to the results obtained without ICA preprocessing. In the 

second experiment, we obtained an 8% increase in classi-

fication accuracy after the application of ICA. Both results 

are the averages calculated over two analyzed conditions: 

low (350 lx) and high (2000 lx) LED luminance levels. Of 

course, more important for us were the results obtained for 

low luminance only. These were even more promising: 71% 

gain in the off-line mode and 11% gain in the online mode 

after the application of the proposed approach.

The final accuracy of 90% (range 82–100%) in the case of 

high luminance and 77% (range 64–90%) in the case of low 

luminance is perhaps not very impressive since it is compa-

rable with that of other studies [22, 26]. However, we have 

to bear in mind that these results were obtained with a setup 

that is more convenient for the user than for the process-

ing system, namely one with high frequencies and a small 

number of electrodes. In this regard, especially the results 

obtained for low LED luminance should be highlighted. The 

average accuracy of 77% is not high for an SSVEP-BCI but 

is sufficient to use the system successfully. Moreover, with 

such a low luminance, the BCI system will be not so tiring 

for the user, and hence it should be possible to use it for long 

time periods.
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