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Abstract

Independent component analysis (ICA) is increasing in popularity in the field of

biomedical signal processing. It is generally used when it is required to separate

measured multi-channel biomedical signals into their constituent underlying

components. The use of ICA has been facilitated in part by the free availability

of toolboxes that implement popular flavours of the techniques. Fundamentally

ICA in biomedicine involves the extraction and separation of statistically

independent sources underlying multiple measurements of biomedical signals.

Technical advances in algorithmic developments implementing ICA are

reviewed along with new directions in the field. These advances are specifically

summarized with applications to biomedical signals in mind. The basic

assumptions that are made when applying ICA are discussed, along with

their implications when applied particularly to biomedical signals. ICA as a

specific embodiment of blind source separation (BSS) is also discussed, and as a

consequence the criterion used for establishing independence between sources

is reviewed and this leads to the introduction of ICA/BSS techniques based on

time, frequency and joint time–frequency decomposition of the data. Finally,

advanced implementations of ICA are illustrated as applied to neurophysiologic

signals in the form of electro-magnetic brain signals data.

Keywords: independent component analysis, ICA, blind source separation,

BSS, biomedical signal and pattern processing

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the field of biomedical signal processing the ultimate aim is that of extracting information

underlying a set of biosignal measurements made over time. Generally the signals are
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electromagnetic (EM) measurements, although other physical and/or chemical quantities

can also be measured. Such a set of multi-channel measurements is usually recorded

using a known spatial distribution of the recording sensors with respect to the human

body, hence giving rise to a set of temporally and spatially correlated measurements.

The information inherent in the measurements depends on the specific application domain

(which of course influences the number and position of recording sensors or electrodes).

The signal(s) of interest is seldom recorded in isolation and is generally mixed with other

ongoing ‘background’ activity and sensor noise, and is almost certainly contaminated by

artifacts of either physiological or environmental origins; furthermore, the signal-to-noise

(SNR) ratio of the desired signal is generally quite poor. When a clinician views measured

biomedical signals, through training and experience he/she generally looks for distinct

patterns of activity with particular spatial distributions—exactly what the clinician is looking

for depends on the application domain. One viewpoint is that the recorded data contain

measurements of a finite set of separate, overlapping (both in space and in time) activities

which are either being generated by thebody or are artifactual in nature. So in essence

the recorded data contain mixtures of distinct sources of activity which are contaminated

by both artifacts and sensor noise, which are themselves sources in their own right. It

could then be said that a clinician attempts to unmix these sources visually using human

reasoning to be able to arrive at a conclusion or diagnosis. It would be of great benefit

to clinicians if it were possible to automate the analysis of biomedical signals to do the

following:

1. To be able to unmix and isolate a set of biomedical signal measurements into their

constituent components or sources.

2. To provide information as to the number of distinct sources underlying the measurements.

3. To provide the spatial distribution of each source along with the time series of the source

itself.

4. To be able to track changes in the number, spatial distribution and morphology of the

sources over time.

This automation may be a simple artifact extraction algorithm, e.g. automatic removal of

ocular artifacts from ongoing measurements of brain signals such as the electroencephalogram

(EEG) or magnetoencephalogram (MEG) (Jung et al 1998, James and Gibson 2003), or the

detection of event-related regions of activity in functional magnetic resonance imaging (fMRI)

experiments (McKeown et al 1998).

Within the above context, the technique of independent component analysis (ICA)

provides a tool which can go some way towards providing a solution to the requirements

listed above. ICA is a technique which essentially extracts a set of underlying sources or

components from a set of random variables, measurements or signals. The technique typically

uses a large set of observed multivariate data to define a generative model for the observed data.

The components are assumed to be mixed, either linearly or nonlinearly, and the components

themselves—along with the mixing system—are assumed to be unknown. Fundamentally,

it is assumed that the sources are mutually independent. ICA de-mixes or extracts these

sources by exploiting this independence of the sources underlying the measured data and

is a more powerful technique than classical methods such as principal component analysis

(PCA).

Algorithms that could successfully perform linear ICA appeared in the early to mid 1980s

(Herault and Jutten 1986) and in the 1990s (Comon 1994, Bell and Sejnowski 1995) there were

a large number of papers in the literature utilizing ICA for many applications. Application

fields of ICA include digital imaging, economic and financial markets and psychometric
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testing, along with analysis of biomedical signals such as neurophysiologic and cardiac signals

as well as analysis of biomedical images such as in fMRI (McKeown et al 1998). ICA is also

used in feature extraction, where underlying sources are used as a basis to represent the

measured data (James and D’Alimonte 2004). Most applications of ICA are to multi-channel

(or ensemble) time series measurements, in this case the term blind source separation (BSS)

can be used as a more generic identifier of the separation process and more will be said about

this relationship of ICA to BSS in later sections of this review. In practice, the observed

time series is generally a band-limited mixture of the actual signals corrupted by noise.

A more common application of BSS is the separation of multiple speakers from a set of

parallel time series measurements made from across a number of microphones (the so-called

cocktail party problem). Due to the assumption of the independence of the sources, ICA

is greatly used in artifact rejection techniques. In general all ICA/BSS algorithms require

multi-channel data to inform the process and as a rule cannot be applied to single-channel

measurements—although techniques are available to extend ICA to the single channel case

(Hyvärinen et al 2001, pp 355–70, James and Lowe 2003). However, whilst more channels

generally imply more information for the algorithms to work with, this usually comes at a

cost of greater processing time and brings with it issues related to the assumed number of

underlying sources due to the square-mixing assumption that will be discussed in the next

section.

In general, approaches to solving the ICA/BSS problem have arisen from unsupervised

learning algorithms in the neural network field (Herault and Jutten 1986), as well as from the

advanced statistics and signal processing fields (Donoho 1981, Shalvi and Weinstein 1990). In

the context of biomedical signal processing we prefer to view the BSS process as a data-driven

approach to extracting information from multiple measurements of a number of underlying

sources. ICA generalizes the BSS problem to random variables (such that the ordering in time

of the variables is not relevant). In general, in order to use particular ICA/BSS algorithms

there are a few strong general assumptions that must be made about the sources themselves

and the source mixing conditions before these can be applied to the measured data and any

proper sense made of the results.

This review will concentrate on reviewing the ICA concept at a practical level and

in particular within a biomedical signal processing framework—rather than reviewing

applications of ICA to biomedicine. We will convey the assumptions made when applying

ICA to any data, and what are the limitations of this as a consequence. We overview the

different criteria used to drive the more popular algorithms for ICA in the literature and

then explore ICA within the wider BSS context and review techniques which make use

of additional characteristics of the data, such as the time and time-frequency structure of

the measured data inherent in the multi-channel time-series data, and the many advanced

capabilities this affords—especially in the biomedical field. We then look at advanced

innovations that can be applied to this BSS problem making ICA a much more powerful tool

in the biomedical signal-processing arena. In order to demonstrate the different capabilities

of ICA we target the neurophysiological field where we highlight a number of our different

applications of ICA/BSS to obtain a variety of information from the measured EM brain signals

data.

In the literature there are a number of informative texts and edited paper collections,

which provide a good basis of the underlying mathematics for ICA. These include, but are

not limited to: Lee (1998), Nandi (1999), Girolami (2000), Haykin (2000), Hyvärinen et al

(2001), Roberts and Everson (2001), Cichocki and Amari (2002). There have also been a

number of international workshops and conferences on ICA: Cardoso et al (1999), Pajunen

and Karhunen (2000), ICA (1999, 2000, 2001, 2003, 2004).
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Figure 1. The general ICA process is described pictorially where the measurements at the sensors,

x(t), are assumed to be composed of a linear mixture of the independent sources, s(t), i.e. that

x(t) = As(t). ICA produces an unmixing matrix W, which unmixes the measurements to give

estimates of the independent sources ŝ(t). Note that this oversimplification assumes: (a) linear

mixing of the sources, (b) a stationary mixing matrix and (c) noiseless mixing—this is in order to

make the BSS problem more tractable.

2. Independent component analysis fundamentals

Fundamentally, the basic BSS problem that ICA attempts to solve assumes a set of m measured

data points at time instant t, x(t) = [x1(t), x2(t), . . . , xm(t)]T to be a combination of n unknown

underlying sources s(t) = [s1(t), s2(t), . . . , sn(t)]
T. The mixing of the sources is generally

assumed to be linear, and the mixing matrix describing the linear combination of the s(t) is

given by the full rank n × m matrix A such that

x(t) = As(t); (1)

it is also generally assumed that the number of underlying sources is less than or equal to the

number of measurement channels (n � m).

The task of the ICA algorithms is to recover the original sources s(t) from just the

observations x(t) and this generally translates to that of finding a separating or de-mixing

matrix W such that

ŝ(t) = Wx(t), (2)

given the set of observed values in x(t) and where ŝ(t) are the resulting estimates of the

underlying sources. This idealistic representation of the ICA problem is described pictorially

in figure 1.

2.1. Basic assumptions

In reality the basic mixing model assumed in equation (1) is simplistic and assumed for the

ease of implementation. In fact, the more general mixing model which makes no assumptions

on the linearity of the mixing and allows additive noise, may be a more realistic model for a

system in general, i.e.

x(t) = f{s(t)} + n(t), (3)

where f can be any unknown function and n(t) is additive sensor noise corrupting the

measurements x(t) (generally assumed to be i.i.d. spatially and temporally white noise, or

possibly temporally colored noise).

As now in (3) the BSS problem is that of obtaining a demixing matrix (mapping) by

inverting f whilst not having information on the properties of either s or n (or f); it can be

appreciated that without making any assumptions about the nature of the data, noise or mixing
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process (or at the very least without some a priori knowledge about each) the BSS problem

will remain quite intractable. This is why basic assumptions are made when formulating ICA

algorithms in order to make the problem more tractable. It turns out that in a biomedical

signals context, most of these basic assumptions still make the technique attractive and viable.

Some of the more apparent assumptions made are listed next.

Linear mixing. The first traditional assumption for ICA algorithms is that of linear mixing

which reduces equation (3) to

x(t) = As(t) + n(t), (4)

where A is the linear mixing matrix described earlier. In a biomedical signals context,

linear mixing assumes (generally instantaneous) mixing of the sources using simple linear

superposition of the attenuated sources at the measurement channel—for the most part a

reasonable assumption to make. For the most part assuming instantaneous mixing is perfectly

legitimate as this assumes that transmission through the mixing medium is instantaneous—this

holds for such applications as fMRI and EM brain signals. Quantities such as sound signals

measured through microphones then do become an issue, however, as this assumes convolutive

mixing. Whilst the linear mixing assumption makes the BSS problem less intractable we are

still faced with the problem of having n × m unknown quantities to be estimated from just m

known measured signals.

Noiseless mixing. The next assumption that is generally made in the majority of the traditional

ICA models is that the observations x(t) are noiseless (or at least that the noise term n(t) is

negligible), i.e. equation (4) reduces to equation (1). Whilst this is probably less realistic in

practical terms (i.e. biosignals are measured with no sensor noise) it allows ICA algorithms to

separate sources of interest even if the separate sources themselves remain contaminated by

the measurement noise.

Square mixing. So far it has been assumed that the mixing matrix A may be non-square

(n × m); in fact, in the case of physiologic signal analysis it is likely that the number of

underlying sources n is less than the number of measurement channels m in use. However,

for most of the popular ICA algorithms if it is assumed that the number of sources underlying

the measurement signals is less than the number of measurement channels this brings with it

a model order selection problem in trying to establish the optimum value for n. In fact most

classic ICA algorithms assume a square-mixing matrix, i.e. m = n, this makes the BSS problem

more tractable. From a biomedical signal analysis perspective the square-mixing assumption

is sometimes less than desirable, particularly in situations where high-density measurements

are made over relatively short periods of time such as in most MEG recordings or fMRI. The

probability of there being as many sources as measurement channels in these situations is less

likely. For this reason most researchers apply data-reduction techniques to the data prior to

ICA (Hyvärinen et al 2001, pp 125–44) although this may be ill advised in certain situations.

Stationary mixing. Another common assumption is that the statistics of the mixing matrix A

do not change with time—i.e. the assumption of stationarity of the mixing matrix. In terms

of biomedical signals this means that the physics of the mixing of the sources as measured

by the sensors is not changing—this may not be the case in situations where, for example,

electrocardiogram (ECG) is recorded on chest electrodes and the electrodes move over time

due to breathing. However, in EM brain signal recordings the assumption of a stationary

mixing matrix can be interpreted as the fixed biophysical structure of the brain itself whilst the

sources distributed within this structure change their intensity over time, which is perfectly

plausible.
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Statistical independence of the sources. By far the most important assumption made in

applying ICA is that the sources are mutually independent. Statistical independence is a

stronger assumption than uncorrelatedness, and while statistically independent sources are

necessarily uncorrelated, the converse does not follow. Two random variables are statistically

independent if there is a joint distribution of functions of these variables. This means, for

example, that independent variables are uncorrelated and have no higher order correlations.

In the case of time-series data it is assumed that each source is generated by a random process

which is independent of the random processes generating the other sources.

Thus, the BSS problem can be made further tractable by allowing the introduction of a

set of algorithms that can take advantage of this independence of the sources. The assumption

of independence of the sources can be quite obvious in some situations , for example, when

used in artifact rejection separating brain signals from, say, 50 Hz line noise or ocular artifact,

and similarly when separating fetal electrocardiogram (FECG) from maternal ECG (MECG)

through trans-abdominal recordings (De Lathauwer et al 2000).

Figure 2 depicts an example of four sources consisting of ‘dummy’ waveforms

(figure 2(a)). Figure 2(b) depicts the measurement signals after the sources are linearly

mixed using a square random mixing matrix. As the mixing matrix is square there are as

many measurement channels as there are sources. The channels of figure 2(b) alone were then

used to extract the recovered sources of figure 2(c) through an appropriate ICA algorithm.

The assumptions in this case were that there were as many sources as measurement channels,

that the mixing was linear and noiseless, and that the sources were statistically independent of

each other.

When placed in a physiologic analysis setting the utility of ICA in light of the above

assumptions should be assessed on an individual application basis. However, for the most

part, ICA can still be a very useful technique simplifying assumptions notwithstanding.

2.2. Higher-order statistics based methods

Some of the original and most commonly cited ICA algorithms performing a BSS of

statistically independent sources are based on techniques involving higher-order statistics

(HOS), several such implementations can be found in the literature (Makeig et al 1997,

Comon 1994, Bell and Sejnowski 1995, Hyvärinen and Oja 1997, James and Lowe 2001).

In this implementation the measurements x(t) of equation (1) are assumed to be observations

of random variables, where temporal ordering is irrelevant and which are generated as a linear

mixture of statistically independent sources.

When seeking statistical independence in sources, it is not enough to obtain

uncorrelatedness between the sources, which is what PCA does; statistical independence

is based on HOS—although decorrelating the measured data is generally a useful first step. It

turns out that it is possible to obtain an estimate ŝ(t) of the sources s(t) iff the sources s(t) are

non-Guassian. In practice it is enough to try and make the estimates ŝ(t) as non-Gaussian as

possible as, according to the central limit theorem, sums of non-Gaussian random variables

are closer to Gaussian than the originals. In this way looking for independent sources is

equivalent to looking for non-Gaussian sources. This also highlights a potential limitation of

the method when used in a biomedical signal processing setting as ICA using this technique

can only resolve independent sources which have non-Gaussian distributions (or at most only

one source with a Gaussian distribution).

We list next three of the most popular and widely referenced techniques for implementing

ICA using a HOS approach.
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(a)

(b)

(c)

Figure 2. (a) Four underlying sources of a synthetic dataset. (b) The ‘measurement signals’

generated by linearly mixing the sources of (a). (c) Each of the recovered sources using the ICA

process (the ordering of the sources was manually performed and is purely cosmetic).
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Non-Gaussianity through kurtosis: FastICA. FastICA is one of the more referenced ICA

techniques in the literature (Hyvärinen and Oja 1997) and it is distributed as a freely

downloadable set of Matlab◦R functions from the internet (FastICA). FastICA attempts to

separate underlying sources from the given measurement set based on their ‘non-Gaussianity’.

The simple premise behind FastICA is that the fast fixed-point iterative algorithm undertakes

to find projections that maximize the non-Gaussianity of components by their kurtosis (the

fourth-order cumulant given to a random variable). In other words, as kurtosis is identically

zero for Gaussian distributed signals, the aim is to maximize the magnitude of the kurtosis to

make the estimated sources as non-Gaussian (and hence as independent) as possible. Here,

the ICA problem is posed as an optimization problem with the sources as its solution. The

kurtosis that is used to describe the peakedness of a distribution is defined as

kurt(x) = E{x4} − 3(E{x2})2, (5)

for a zero-mean random variable x. Further details about the FastICA algorithm can be found

in Hyvärinen and Oja (1997).

Non-Gaussianity through negentropy: infomax. Another common algorithm that implements

ICA through attempting to discover non-Gaussianity of the sources is the Bell–Sejnowski

algorithm (Bell and Sejnowski 1995, EEGLAB), where non-Gaussianity is measured using

negentropy, which is based on the information-theoretic quantity of differential entropy. For

random variables with equal variance but different distributions, Gaussian random variables

have the largest entropy, i.e. contain the least information. Thus, negentropy (or differential

entropy) is defined as the difference between the entropy of a Gaussian random variable with

the same variance as the observed random variable, and the entropy of the observed variable.

Negentropy is zero when the observed random variable is also Gaussian, and positive when

the observed variable is non-Gaussian.

The Bell–Sejnowski algorithm is a neural network gradient-based algorithm whose

learning rule is based on the principle of information maximization (infomax), and it maximizes

the output entropy of a neural network with nonlinear outputs. The learning criterion is the

maximum likelihood estimation of an ICA model (derived through the parameters of a neural

network). In effect, it can be seen that ICA estimation by this criterion reduces to the

maximization of the non-Gaussianity of the sources.

As this is a neural network approach, and hence involves a gradient training algorithm,

it suffers from the problems inherent with such learning in general. The choice of the

nonlinearities used also affects the performance of the algorithm, although in practice for

biomedical signals this choice is generally not critical to a successful implementation.

Joint approximate diagonalization of eigenmatrices: JADE. This approach is known as

ICA by tensorial methods using higher-order cumulant tensors (Hyvärinen et al 2001,

pp 229–37). The covariance matrix is the second-order cumulant tensor, and the fourth-order

tensor is defined by the fourth-order cumulants. By performing an eigenvalue decomposition

of the covariance matrix of the data, Cx, the data are transformed such that the second-order

correlations are zero. Similarly, as a generalization of this principle, fourth-order cumulant

tensors can be used to make the fourth-order cumulants zero or as close to zero as possible. As

with HOS methods described previously, reducing the fourth-order cumulants to zero in this

way implies statistical independence of the sources and JADE is the algorithm that implements

this. As the name implies, JADE involves the joint diagonalization of a number of matrices (i.e.

attempts to make all off-diagonals zero or close to zero as possible) (Cardoso and Souloumiac

1993, 1996). Whilst useful in low dimensional problems, JADE has the limitation that it

cannot be used with high dimensional data due to numerical reasons.
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Figure 3. The relationship between the two covariance matrix stacks of Ck
x and Ck

s . The mixing

matrix A can be seen to link the covariance stack of the sources to the covariance stack of the

measurements and vice versa with the unmixing matrix W.

Overall, ICA based on HOS methods provides a good basis for solving the ICA problem.

However, by far the biggest drawback in using these techniques in a biomedical signal

processing setting is the requirement that the sources have non-Gaussian distributions as

this is generally not known a priori although there are instances where some sources can be

argued to be such, such as for example, bursts of rhythmic narrowband activity. It is also less

intuitive to discard the time-series nature of the recorded data in calculating the underlying

sources and using time-structure-based techniques (as described next) shows more advantages.

2.3. Time structure based methods

A completely different approach to ICA is given by considering not higher order correlations,

or moments of the source waveform distribution, but rather by considering the time structure

of the sources. The assumption of the independence of the sources has a very important and

useful consequence: the source waveforms have no spatial temporal or spatial time–frequency

correlations. The basic approach here is to capture the dependency structure of the observed

signals using a set of square matrices (in the form of a stack of matrices), and then find the

de-mixing matrix which is the joint diagonalizer of the stack, i.e.

Ck
x = ACk

s AT, (6)

where Ck
x is the kth covariance matrix of the data x(t), Ck

s the corresponding covariance matrix

of the sources s(t) and A is the mixing matrix. Conversely, the source covariances are obtained

from the data covariance through the inversion

Ck
s = WCk

xWT, (7)

where W is the unmixing matrix. These two equations hold in general, regardless of the nature

of the matrices in the stack. The relationship between the two covariance matrix stacks of Ck
x

and Ck
s are shown pictorially in figure 3, where the mixing matrix A links the covariance stack

of the sources to the covariance stack of the measurements and vice versa with the unmixing

matrix W.

The index k is an index into the matrix stack and will have different interpretations

depending on what quantities are being measured. For example, when the temporal

dependency is captured through temporal correlation measured at different lags, k is an index

into the cross-covariances at each lag, starting from k = 0, 1, 2, . . . etc, until a maximum

number of lags are reached. So, for a maximum of L lags, there will be L + 1 matrices in the

stack (k = 0, 1, 2, . . . , L).
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Estimating the mixing matrix. There are two ways of estimating the mixing matrix A with

reference to a stack of correlation matrices. The most common approach is to estimate the de-

mixing matrix W first—this is known as an inverse estimation method. Since Cs is supposed to

be diagonal, we can optimize the coefficients of W in such a way as to make the matrix given by

WCk
xWT as diagonal as possible. The diagonality of a matrix can be measured, for example,

by the sum of the squared off-diagonal elements. Previous methods employed orthogonal

constraints (Cardoso and Souloumiac 1993, 1996, Pham 2001); however, more advanced

methods allow non-orthogonal diagonalization (Ziehe et al 2003) but require a square mixing

matrix—which in turn requires pre-whitening. Conversely, forward estimation methods (e.g.

Yeredor (2002)) have the advantage that they allow non-orthogonal and non-square mixing.

However, these methods are not quite as efficient as some of the inverse methods, and still

require some estimate of the number of sources.

ICA by temporal decorrelation. A very straightforward approach to ICA using time structure

is based on temporal decorrelation. If we take expectations of the ICA model with respect to

time and a set of time delays τ = 1, 2, 3, . . . , we obtain the cross-covariance function of the

signal,

E{x(t, τ )xT(t, τ )} = Cτ
x = ACτ

s AT, (8)

where the source cross-covariance function Cτ
s is a set of diagonal matrices due to the assumed

statistical independence of the sources,

Cτ
s = WCτ

xWT. (9)

This approach was initially proposed for two time lags (Tong et al 1991, Molgedey and

Schuster 1994) where diagonalization could be performed in the context of a joint eigenvalue

decomposition, and subsequently extended to several time lags by Belouchrani et al (1997) and

Ziehe and Müller (1998) where diagonalization has to be performed using iterative methods.

Since this approach is based on the cross-covariance function, temporal decorrelation assumes

that the source waveforms are stationary and have unique power spectra, which is unlikely to

hold for long-term recordings of biomedical signals. However, the approach can be adapted

to handle non-stationary signals if we assume that the auto-correlation function of the source

activity is slowly varying in time, so that the sources are approximately stationary over short

time windows. In this case, temporal correlations can be computed over short time windows

and these can be used to estimate the mixing matrix in the usual way (Choi et al 2002,

James and Hesse 2004c).

One issue with this method is the appropriate choice of the number of time lags to use

to describe the spatio-temporal covariance of the data. There are no hard and fast rules for

selecting an appropriate number of time lags. One possibility, however, would be to determine

the average number of time lags of the data by fitting an autoregressive model to each channel

using statistical model selection criteria to determine the necessary and sufficient number of

lags. While this is a well-motivated and principled approach, it may be too costly in practice,

and empirical observation of appropriate values of time lag may suffice.

It is worth noting that ICA by temporal decorrelation is robust in the presence of Gaussian

noise that is spatially and temporally white (because for all lags other than lag zero, the noise

cross-correlation function is zero). Also, this method is very flexible and uses intuitive and

familiar concepts from time series analysis (Chatfield 1996), which makes it attractive for use

in conjunction with conventional signal processing methods.

ICA by sub-band decorrelation. Another way in which BSS can be achieved using time

structure is with reference to signal cross-correlations in different frequency bands, using
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for example a bank of band-pass filters (Cichocki and Belouchrani 2001, Cichocki and Amari

2002). Again, due to assumed statistical independence, the sub-band cross-correlations of

the source waveforms should be a set of diagonal matrices. This may be a very attractive

method in biomedical signal analysis, as the activity of interest is in many instances restricted

to well-defined frequency bands (e.g. rhythmic components of spontaneous EEG).

The success of this approach is obviously dependent on an appropriate choice of frequency

sub-bands. For non-stationary signals, it may be desirable to consider sub-band correlations

over shorter time windows. Because of the need to compute and store different band-

pass filtered versions of the signal for determination of sub-band covariance, this method

can be computationally quite expensive when performed off-line. One way of improving

computational efficiency is to compute the sub-band cross-covariances in the wavelet domain

using the discrete wavelet transform or wavelet packets (Koehler and Orglmeister 1998,

Hesse and James 2004a, 2004b, 2004c). The wavelet-based methods also seem to work

reasonably well for non-stationary signals.

ICA by time–frequency decorrelation. A very principled way of achieving BSS of non-

stationary signals is based on representing the signal dependency structure in terms of a spatial

time–frequency distribution (STDF) (Belouchrani and Amin 1998). Essentially, an STFD is

an extension of a conventional time–frequency distribution (TFD) (e.g. Cohen (1995)) which

considers the cross time–frequency distribution of two signals, computed for each pair of

signals within the recording array. Joint diagonalization is then carried out on the STFD in

the usual way (as described previously).

The sophistication of this approach notwithstanding, computation and diagonalization of

signal STFDs can be prohibitive in terms of memory storage and processing for even a small

number of channels and modest signal length. There are a few suggestions to be found in

the literature that aim at increasing efficiency by doing spatial averaging over selected time–

frequency regions (e.g. Amin et al (2003)), yet this brings with it the problem of choosing

such regions appropriately, and moreover, make the method very similar to more efficient and

simpler approaches based on windowed temporal or sub-band decorrelation.

In general it is apparent that ICA methods using time structure are very well suited to

biomedical signal analysis, possibly more so than methods based on HOS. The temporal

and time–frequency information utilized is clearly relevant in biomedical signals; whereas

the assumptions regarding the (non-) Gaussianity of underlying sources that are necessary in

HOS-based techniques cannot always be guaranteed or anticipated to hold. Whilst dealing

with the spatio-temporal dynamics of biomedical signals brings with it issues such as those of

stationarity, these techniques can be adapted to handle such eventualities. Moreover, we will

show in section 3 how time structure based methods are readily adaptable to provide more

advanced applications of ICA to biomedical signals.

2.4. Perceived limitations when using ICA in practice

These are limitations that are perceived because although they suggest ambiguities in the results

of applying ICA, in reality these ambiguities or indeterminacies are not insurmountable and

workarounds are quite easily implemented and so they do not actually impose a limitation on

the accuracy of the BSS model estimation itself.

Ambiguities. Due to the nature of the BSS problem and the techniques used in solving ICA,

there are generally a small number of ambiguities which apply to the sources that are extracted

from the measured data, these are that: (a) neither energies nor signs of the sources can be
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calculated and, (b) there is no ordering between the sources. Neither of these is particularly

restrictive and for each there are workarounds.

In the case of the first; whilst the sources extracted, i.e. ŝ(t) in equation (2), are each

normalized to unit variance, the columns of the mixing matrix A reflect the power of each

component across the measurement space. This means that it is possible to calculate a quantity,

such as RMS power, for each source from the columns of the mixing matrix which will then

allow ranking of the sources according to RMS power. Such as shown here

pj =

√

√

√

√

1

m

n
∑

i=1

(

a
j

i

)2
, (10)

where a
j

i is the ith element of column j of the mixing matrix A and pj is the RMS power for

independent source j (1 � j � n).

Interpretation of results. The above limitations are symptomatic of a wider problem that is

apparent in the application of ICA to real world data, especially in biomedical signals, and

that there is little in the literature about how to interpret sources extracted after implementing

ICA algorithms. This is generally a subjective process by the authors, choosing sources of

interest based on subjective criterion usually related to the expected outcomes of the analysis.

For example, sources of interest can be chosen by observing either the source time series,

a frequency analysis of the sources or the distribution of the source over the measurement

channels, as well as other relevant techniques (James and Lowe 2000a, 2000b). However, the

choice of sources of interest remains highly subjective.

Model order selection. Correct determination of the number of sources is a problem in ICA,

the importance of which is not immediately apparent from the literature. Especially when

the number of channels exceeds the number of sources, as is the case in many biomedical

applications such as high density EEG/MEG, and in fMRI especially, knowing how many

sources to estimate can have major impact on the quality and accuracy of the ICA solution.

When we try to estimate more sources than there actually are, ICA algorithms (those based on

HOS, especially) will tend to ‘overfit’ the ICA model which leads to distortions as described

in Hyvärinen et al (2001).

The most common approaches to estimating the number of sources underlying multi-

channel measurements are based on the PCA of the data covariance matrix (e.g. Hyvärinen

et al (2001)). In the simplest case, the number of sources is taken to be equal to the number

of dominant eigenvalues, where the latter is defined to be the number of eigenvalues which

account for some (high) proportion of the total observed variance (e.g. 95% or 99%) or the

number of eigenvalues whose individual contribution to the total variance is greater than some

minimum amount (e.g. 1%). There are a number of problems with this approach:

(a) There is no a priori reason to suppose that the sources of interest are contained in the signal

subspace spanned by the dominant principal components (e.g. if there is a lot of noise, or

the sources of interest are relatively weak compared with other artifactual sources). This

is also a main criticism of PCA-based dimension reduction and pre-whitening.

(b) The variance proportion threshold as an inclusion criterion is quite arbitrary, and will

yield results that are dependent on the shape of the eigenvalue spectrum, especially the

tail. They also do not give any indication of the confidence of the model order estimate

(in the statistical sense).
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(c) In the noise-free case, with fewer sources than sensors, an eigenvalue decomposition of

the data covariance matrix can be inaccurate for numerical reasons.

(d) In the presence of noise (especially Gaussian), the number of sources that will be estimated

using cumulative variance criterion varies with the number of sensors, since the proportion

of total variance due to the sensor noise increases with the number of sensors. This results

in overestimation of the number of sources, which in turn can lead to overfitting.

To address some of these issues, there are a number of source enumeration methods (e.g.

Valaee and Kabal (2004), Green and Taylor (2002), and references therein) which use statistical

or information theoretic measures to determine the number of dominant eigenvalues of the

covariance matrix, and hence the number of sources. These criteria essentially determine

how ‘flat’ the noise subspace part of the eigenvalue spectrum is. Yet this approach still

relies on eigen-decomposition of the data covariance matrix (and is hence subject to problems

associated therewith, i.e. overfitting when there are fewer sources and the noise levels are low)

and the assumption that the measurement noise is the same in all channels. The latter may

not always hold in biomedical electrophysiological recordings where, for example, electrical

impedances (and therefore channel gain) can change due to sweat production of the skin,

pressure of electrode contact on skin and related problems.

It is interesting to note, however, that despite advances in source enumeration approaches,

the most commonly used criteria for selecting the number of sources for the ICA model are

still based on cumulative and relative variance thresholds. Moreover, the advances in PCA

based source enumeration methods notwithstanding, model order selection (or estimation)

is still an issue in ICA research that has yet to be addressed satisfactorily. Especially with

the advent of non-orthogonal diagonalization methods that do not require pre-whitening, it is

highly desirable to remove PCA based pre-processing (dimension reduction and whitening)

from ICA altogether. We are currently working towards a solution to model order selection

that is based on stepwise estimation (i.e. sequential estimation of the components) of the ICA

model and the use of statistical criteria based on the ‘goodness-of-fit’ of the ICA model to

the data to determine a necessary and sufficient number of sources (Hesse and James 2004d,

2004e).

3. Bringing prior knowledge to bear: extensions to ICA

It is very often the case with biomedical measurements that we have some idea about the

nature of some of the source signals we wish to extract from the recorded data. Many

physiologically relevant signals or patterns have certain temporal, spectral or time–frequency

characteristics, and in the case of multi-channel (body surface, volumetric) measurements also

particular spatial projections. Examples include heart beat waveform morphology, rhythmic

brain (EEG/MEG) activity such as alpha, seizures, or transients such as eye blinks, saccades

and bursts of muscle activity. In the case of artifacts, most especially due to their good SNR,

we can often obtain key information about temporal dynamics from a small subset of channels.

It is desirable and indeed possible to incorporate such prior information into the ICA

model using only minor modifications of the estimation procedures, essentially by imposing

constraints on the model, which can act on the spatial projections, or work on the temporal

dynamics of the source waveforms. The idea is that we may be able to guide/bias the ICA

solution to include an expected outcome. By including prior knowledge into the system and

letting the ICA method of choice estimate the unknown portions (based on the assumptions as

have already been covered) this helps us to interpret the results meaningfully.
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In the following subsections we describe a number of ways in which the ICA solution can

be constrained to take into account prior knowledge about temporal dynamics or spectral

properties of the sources of interest, as well as their spatial projections—this is called

constrained ICA (cICA). We show how ICA can be constrained to extract the spatial projections

of individual components of interest with specified temporal dynamics and can be used to track

components with a desired power spectrum. Subsequently we give a general outline of how

constraints on the spatial projections of independent components (ICs) can be incorporated.

3.1. Temporal constraints with FastICA

In the HOS-based ICA technique of FastICA described previously, the algorithm would first

(theoretically) converge to the single IC having the maximum negentropy of all the underlying

ICs. When one desires a specific IC, this is of little use, unless the IC happened to carry

the maximum negentropy (see section 2.2). Furthermore, the algorithm is not guaranteed

to converge to the global maximum due to random initialization of the algorithm and other

computational factors. The cICA algorithm described in Lu and Rajapakse (2001) brings

in the use of a temporal constraint which is used to obtain an output which is statistically

independent of other sources and is closest to some reference signal r(t). This constraining

signal need not be a perfect match (indeed, if it were, one would argue that there would be

little point in performing the analysis at all) but it should be enough to point the algorithm in

the direction of a particular IC spanning the measurement space. The closeness constraint can

be written as

g(w) = ε(w) − ξ � 0, (11)

where w denotes a single demixing weight vector, such that y = wTx; ε(w) represents the

closeness between the estimated output y and the reference r, and ξ some closeness threshold.

The measure of closeness can take any form, such as mean-squared-error or correlation, or any

other suitable closeness measure. In our implementation of the algorithm we used correlation

as a measure of closeness such that g(w) becomes

g(w) = ξ − E{r(wTx)} � 0, (12)

where ξ now becomes the threshold that defines the lower bound of the optimum correlation.

With the constraint in place, the cICA problem is modelled as follows:

Maximize: f (w) = ρ[E{G(wTx)} − E{G(ν)}]2,

subject to: g(w) � 0, h(w) = E{y2} − 1 = 0 and E{r2} − 1 = 0,
(13)

where f (w) denotes the contrast function described in (5); g(w) is the closeness constraint;

h(w) constrains the output y to have unit variance; and the reference signal r is also constrained

to have unit variance. In Lu and Rajapakse (2001), the problem of (13) is expressed as

a constrained optimization problem which is solved through the use of an augmented

Lagrangian function, where learning of the weights and Lagrange parameters is achieved

through a Newton-like learning process.

3.2. Spectral constraints in temporal decorrelation

In the context of temporal decorrelation methods, prior knowledge of the spectral content of

(some of ) the sources to be extracted can be introduced into the model by means of reference

channels. When the power spectrum of particular source activity is known, as is the case with

rhythmic EEG signal components such as alpha activity or epileptic seizures, for example,
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the reference channel(s) would consist of band-pass filtered noise with the desired power

spectrum.

Specifically, a reference channel r1(t), containing noise with a particular power spectrum,

is included with the observed signal channels x(t) to form an augmented signal matrix

⌢

x(t) =

[

x(t)

r1(t)

]

. (14)

ICA using temporal decorrelation is then applied to this augmented signal matrix in the usual

manner, i.e. using lagged covariance matrices. To eliminate the effects of phase differences

between the reference channel and the source activity, cross-covariances can be computed in

the frequency domain.

The ICA problem is now such that the extra row in the measurement space due to the

reference vector results in an extra row in the IC space after the ICA step (as well as a

corresponding extra column in the mixing matrix). For an m-channel system, the first m

elements of the extra mixing matrix column depict the spatial distribution (topography) of the

new IC given by the row vector ŝm+1(t). Furthermore, each of the elements of the (m + 1)th

row of the mixing matrix reflects a weighting of each corresponding IC. This row vector, am+1,

can in fact be used to depict the contribution of each topography described by the columns of

the mixing matrix, due to the reference channel r1(t). In this way ICA provides a convenient

spanning basis, which can be used to obtain the topography of interest, and which is extracted

by summing the weighted contributions of each column of the mixing matrix. It can be seen

that this can be readily extended to more than one reference.

3.3. Topographical maps as spatial constraints

When there is prior knowledge about the spatial projections of some of the sources to be

estimated, this can be incorporated into the ICA model by means of constraints on (some of )

the columns of the mixing matrix. The type of constraint can reflect the certainty (accuracy)

that can be attached to prior knowledge.

Choosing a particular set of initial values for the columns of the mixing matrix constitutes

a very simple and weak form of spatial constraint. Most ICA estimation methods involve

numerical optimization and convergence can depend on initial conditions. The usual

initialization for the mixing matrix is an identity matrix or a random orthogonal matrix.

However, in EEG for example, approximate spatial topographies for eye-blink and saccade

artefacts can be determined from the raw traces and included as an initial guess in the first

two columns of the mixing matrix. While selective initialization of the mixing matrix does

not guarantee that the constraint components form part of the solution, it can help to increase

convergence when they are present in the data.

Staying with the example of ocular artefacts in EEG, when it is quite certain that particular

spatial topographies form part of the ICA solution, they may be included in the mixing matrix

and they can be kept fixed while the spatial projections of remaining components (brain

activity) are estimated. This is preferable to simply applying the known topographies as a

spatial filter to the data, since some of the other components may be spatially correlated with

the former, and estimation of the remaining activity prevents data distortion. Using this type of

‘hard’ spatial constraint is only advisable when one can be absolutely certain of the accuracy

of the a priori spatial projection.

In cases when there is only one approximate idea of the spatial projections that may form

part of the ICA solution, it is possible to include these as reference projections and adapt

the estimation algorithm in such a way that it seeks independent components whose spatial
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projections lie ‘near’ the references, using some distance metric and penalty function. This

type of ‘soft’ constraint is potentially a very useful and flexible way of taking into account

prior knowledge that can be fairly vague.

Regardless of the type of spatial constraint used, when PCA based pre-whitening is used

to pre-process the data, it is important to appropriately transform the spatial constraints using

the whitening matrix.

4. Advanced applications of ICA: the neurophysiological domain

For this topical review we purposely did not set out to review the multitude of applications of

ICA to biomedical signals, but rather to review some of the more prevalent approaches to ICA

that are available in the literature and their potential benefits, with a specific intent of applying

these to biomedical signals. For this reason, in this section we will show just a select number

of examples of how we have applied ICA in our field of expertise—the neurophysiological

domain and the application to EM brain signal analysis. The main idea is that of illustrating

the variety of specializations that ICA allows, hopefully highlighting the many more potential

uses of ICA in biomedicine than is currently presented in the literature. Few papers can be

found in the literature that compare ICA with conventional methods for varied biomedical

signals, because (we presume) that this is not always so easy to do. For the most part the

use of ICA as a ‘black-box’ method may result in situations, such as the violation of some

assumption (where another ICA method might have been better, or over/under fitting of the

model occurs) which implies that ICA is inferior where, in fact, it could have been better had

it been used appropriately.

In our implementation of ICA for EM brain signal analysis we make assumptions that are

in keeping with the general assumptions governing the application of ICA. In particular we

assume that:

1. The measured EEG/MEG is a linear summation of the electrical/magnetic activity from

various brain regions.

2. The EM field distribution is spatially fixed and only the electrical ‘strength’ is changing

within these regions.

3. Any activity of interest is independent of the ongoing background EM brain activity. This

certainly holds true for most artifacts and to activity such as seizure activity (at least early

on in the evolution of a seizure).

Whilst ICA is not necessarily advocated for use in all problems in this domain, one of

the biggest assets in favor of using ICA in EM brain signal analysis is the fact that multi-

source activity can be naturally separated into neurophysiologically meaningful components.

Standard signal processing techniques such as matched and/or adaptive filters can be used

to detect and extract activity of interest, but these generally require much detailed a priori

knowledge about the characteristics of each of the signals in question. Furthermore, such

techniques are never as discrimantive as ICA can be, because there are usually residuals in

performing unmixing in this way. ICA also unmixes signals by making very basic assumptions

about the data (those of independence foremost) and it makes little difference if the signals

are artifactual in origin or brain-signals, for example, for the technique to work—standard

techniques are usually not so flexible.

4.1. Case study A: temporally constrained ICA for automatic artifact rejection

As shown in section 3.1, temporally constrained ICA can extract signals from measurements

that are statistically independent, yet which are constrained to be similar to some temporal
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reference signal, in this way incorporating a priori information. In James and Gibson (2003)

we demonstrated this method on a synthetic dataset and on a number of artifactual waveforms

identified in multi-channel recordings of EEG and MEG. cICA repeatedly converged to the

desired component within a few iterations and subjective analysis showed the waveforms to be

of the expected morphologies and with realistic spatial distributions. In this work cICA was

applied with great success to EM brain signal analysis, in particular with a view to automating

artifact extraction in EEG and MEG.

Figure 4 shows a 20 s epoch of multi-channel scalp EEG recorded from a long-term

Epilepsy Monitoring Unit using the modified 10–20 electrode placement system

(Lagerlund et al 1993) (with reference channel Fcz) with a sampling frequency of 200 Hz.

Figure 4(a) depicts an epileptic seizure, the onset of which is around the 5–7 s mark. The

seizure EEG is contaminated with ocular artifact throughout (see highlighted sections of EEG).

In figure 4(b), a closer view is taken of channel Fp1 showing the seizure onset and the repeated

ocular artifact. In order to obtain a reference signal for cICA a simple threshold is applied

to Fp1 and a positive going pulse is recorded when the EEG at Fp1 exceeds that threshold,

as shown in figure 4(c). After applying the cICA algorithm to the EEG data matrix, using

the reference derived above, the ocular artifact depicted in figure 4(d) was extracted. The

inset shows the topographic map of ocular artifact component derived from the de-mixing

weight vector, which depicts a clear focus over the eyes. Finally, the extracted component is

projected to the measurement space and subtracted from the recorded EEG matrix; a close-up

view of channel Fp1 with the ocular artifact subtracted (from all channels of EEG) is shown in

figure 4(e). This shows the seizure onset uncontaminated by ocular artifact.

In this case strong a priori information about the morphology of the desired signal was

brought into play. This information allowed a FastICA based technique to rapidly isolate a

statistically independent component from the measured data within a few iterations. As the

desired end result was the automated detection of artifacts from ongoing EM brain signal

recordings the underlying assumption of statistical independence and the use of a HOS based

technique is probably quite justified.

4.2. Case study B: temporal decorrelation based constrained ICA to track changing

brain states

In this study we use the temporal decorrelation based cICA of section 3.2 in tracking the

changing scalp topographies of rhythmic brain activities (James and Hesse 2004a, 2004b).

We demonstrate this method on a multi-channel recording of an epileptiform EEG, where we

automate the repeated simultaneous extraction of both rhythmic seizure activity, as well as

alpha-band (∼10 Hz) activity, over an epoch of EEG. Subjective analysis of the results shows

scalp topographies with realistic spatial distributions which conform to our neurophysiologic

expectations.

It has already been stated that EEG recordings capture ongoing brain activity which can

be interpreted as brain sources whose outputs vary over time. Some specific types of brain

activity are associated with specific brain states. In general, rhythmic activity in the EEG is

of interest (e.g. alpha-, beta-, delta- and gamma-band activities, or rhythmic seizure activity);

furthermore, the spatial topographies of such activities showing the distribution over the scalp

are also desirable. Automatically isolating, visualizing and tracking the scalp topographies

of multiple neurophysiologically meaningful sources underlying the ongoing EEG recordings

would be desirable. When tracking rhythmic brain activity in particular, it is generally the

case that the frequency band of interest is known a priori and it is desirable to observe the

changing power within that band and the topographies associated with that activity. Simple
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(a)

(b)

(c)

(d)

(e)

Figure 4. (a) A 20 s epoch of multi-channel scalp EEG recorded with modified 10–20 electrode

system (ref channel Fcz) depicting seizure onset contaminated with ocular artifact. (b) A closer

look at channel Fp1 showing seizure onset (∼7 s into recording) and ocular artifact. (c) Reference

signal obtained by applying a threshold to Fp1. (d) cICA output after applying a cICA algorithm to

EEG data using reference derived at (c) (inset shows topographic map of ocular artifact component).

(e) Channel Fp1 with ocular artifact of (d) subtracted (from all channels of EEG).

band-pass (BP) filtering in the single-channel recordings of the EEG is generally of little use

as the activities of interest are usually small in comparison to other ongoing activities, and
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the move to multi-channel analysis to visualize scalp topographies further compounds the

problems.

The method of section 3.2 was repeatedly applied to 20 s of multi-channel epileptiform

EEG (figure 5(a)) data using two reference signals, each of which was derived as above. The

first reference described the seizure activity and consisted of BP filtered white noise with

lower and upper corner frequencies of 2 Hz and 6 Hz, respectively. The second reference

represented alpha-band activity, with lower and upper corner frequencies set at 9 Hz and

11 Hz, respectively. A series of overlapping (each time shifted by 125 ms) 3 s windows

of multi-channel EEG was analysed and in each case the resulting topographies of the two

reference channels were recorded along with the relative power of each (relative to total power

within the data matrix). Figure 5(b) shows the relative power of each set of consecutive scalp

topographies (normalized) obtained for each reference and figure 5(c) shows some of the

normalized topographies for each.

This study shows a different implementation of the concept of cICA—this time through

temporal decorrelation based ICA and the constraint is applied as an extra channel in the

measurement space. This has been shown to be useful in tracking the changing topographies

of different rhythmic activities which are manifest as the changing columns of the mixing

matrix A—each time the algorithm is applied to a new time-shifted dataset.

4.3. Case study C: model order selection/non-square mixing

In this example we present an approach to simultaneous ICA model order and source estimation

(Hesse and James 2004d, 2004e), which uses a method for direct estimation of the mixing

matrix adapted from Yeredor (2002). Starting with one component, the mixing matrix is

constructed in a stepwise fashion, one column at a time, until a number of sources have

been found which strikes an optimal balance between model parsimony and goodness-of-fit

to the data (in the least-squares sense). In this case, the stopping criterion was based on a

statistical test (an F-test) which determines whether the difference in goodness-of-fit between

two consecutive models is significantly different (at a particular significance level, e.g. α =

0.01). Thus, the test seeks to determine whether the addition of an extra source leads to an

improvement in the ICA model goodness-of-fit that can be justified against the associated

increase in the number of model parameters, i.e. whether the extra source is statistically

significant. This approach is analogous to that of conventional stepwise regression analysis.

We applied the stepwise ICA model estimation method to a 20 s segment of 25-channel

seizure EEG (see figure 6(a)). The electrodes were arranged on the scalp according to the

international 10–20 system, and signals were recorded with Fpz as reference at a sampling

rate of 200 Hz, and off-line re-referenced to an average reference. The EEG shows the onset

of a seizure with a right temporal focus (T10, F10) about 6 s into the recording, as well as

ocular artifacts (Fp1, Fp2) and bursts of EMG activity due to chewing.

For stepwise ICA estimation we captured the spatio-temporal dependency structure of

the non-stationary EEG using a set of time delayed cross-covariance matrices with τ =

[0, 1, . . . , 5] from 4 s non-overlapping windows. For comparison we also applied conventional

FastICA (kurtosis based) where the number of sources was determined by the index of the last

eigenvalue of the data covariance matrix that accounted for at least 1% of the overall variance,

which in this case yielded an estimate of 10 sources.

Figures 6(b) and (c) show the waveforms and scalp topographies of the ICs estimated

using FastICA and the stepwise temporal decorrelation method, respectively. The ICs extracted

using FastICA recognizably reflect seizure, eye blink and eye movement activity. However,

the decomposition is not particularly ‘clean’ and appears to be dominated by muscle activity
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(a)

(b)

(c)

Figure 5. (a) A 20 s epoch of multi-channel seizure EEG to which the cICA method was repeatedly

applied using a sliding window of 3 s width and moving by 125 ms. Rhythmic ∼5 Hz seizure

activity appears 7–8 s into the recording with a left-temporal focus. (b) The relative power of the

consecutive topographies obtained from cICA for each of the two references (normalized). (c) A

number of topographies obtained for each reference channel.

(which in this case has high kurtosis). In contrast, the stepwise temporal decorrelation method

yields only five sources (figure 6(c)), two of which relate to the seizure (S1, S2). The muscle
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(a)

(b)

(c)

(d)

Figure 6. (a) A 20 s segment of 25-channel seizure EEG. The seizure has a right temporal focus

and begins about 6 s into the segment. Waveforms and scalp topographies of sources extracted

using FastICA with PCA based model order estimation are shown in (b), and stepwise estimation

of the mixing matrix using time-lagged cross-covariances over a series of 4 s windows in (c), and

wavelet transform sub-band cross-covariances in (d).

activity that dominated the FastICA solution is here only reflected in one component (S3).

The ocular artifacts are clearly separated into blinks (S4) and saccades (S5).

This example shows how a small number of statistically independent, statistically

significant and neurophysiologically meaningful components can be extracted by direct,
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stepwise estimation of the mixing matrix, without the need for pre-whitening. Moreover,

in this particular case, conventional PCA based model order estimation causes a HOS based

ICA method such as FastICA to converge to an unacceptable, ‘messy’ solution.

4.4. Case study D: time–frequency based techniques

In this study we illustrate the use of ICA by multispectral decorrelation based on wavelets

as a robust and efficient alternative to (windowed) temporal decorrelation (Hesse and James

2004a, 2004b, 2004c). Here, the data dependency structure is represented by means of cross-

covariance matrices computed for each of the sub-bands of the discrete wavelet transform

(DWT) of each channel. These are then used for stepwise estimation of the mixing matrix as

described in the previous section.

The same set of EEG data as in case study C was used, and wavelet decomposition of

each channel was based on a fourth-order Daubechies wavelet with decomposition level 6 (e.g.

Mallat (1999)). Sub-band cross-covariances from all bands were used to estimate the mixing

matrix. Figure 6(d) shows the waveforms and scalp topographies of the resultant six sources,

which clearly reflect seizure activity (S1, S2), bilateral muscle activity (S3, S5) and ocular

artefacts (S4, S6). Despite the presence of an additional source, these results are comparable

with the windowed temporal decorrelation method.

One of the advantages of using the DWT is that the computation of all of the sub-band

cross-covariances has the same computational cost as computing the (instantaneous) data

covariance. Conversely, the cost associated with computing time-lagged cross-covariances

for temporal correlation is proportional to the cost of computing the data covariance times

the number of lags. Moreover, the number of cross-covariance matrices used to estimate the

mixing matrix can be much smaller when compared with (windowed) temporal decorrelation

methods, in this case there were only seven wavelet sub-band cross-covariance matrices

compared with 30 time lagged cross-covariance matrices.

This example shows that a small number of neurophysiologically meaningful sources

with non-stationary waveforms can be extracted from multi-channel seizure EEG using ICA

based on multispectral decorrelation in the wavelet domain. Compared with ICA based on

temporal decorrelation, this Wavelet ICA method is computationally more efficient.

5. Conclusions

This topical review sets out to describe the technique of ICA as a method for performing

BSS in the context of biomedical signal processing. The generic technique of ICA is first

discussed and the fundamental assumptions that are generally made in order to make the

problem a more tractable one are introduced. Essentially ICA techniques make assumptions

based on the mixing of the independent sources and (most importantly) based on the statistical

independence of those sources. As already stated, the mixing assumptions such as those of

linearity, stationarity and square mixing are made in order to allow specific embodiments of

ICA to be easily formulated and may be relaxed at will—depending on the algorithm in use.

The same holds, for example, for the assumption of noiseless mixing. It has been shown that

although these assumptions might make ICA seem like a technique which is quite restricted in

its potential applications, it has found many applications in the biomedical signal processing

field in the literature.

Of the many possible algorithms devised towards solving the BSS problem, ICA is

popularly solved through the use of HOS techniques—basically trying to separate statistically

independent sources based on their non-Gaussianity. We show that another, more appealing
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(from the viewpoint of biomedical signal analysis) viewpoint is that of using spatio-temporal

and spatial-time frequency based ICA techniques. The main difference between the two being

that in the latter technique the information inherent in the time-sequence of the measured data

points is made use of—whereas in the former it is not. It can be seen that in the biomedical

signal processing field where the analysis of information is generally based on the frequency

content of recordings and on waveform morphology, such ICA techniques are invaluable.

We also show that ICA becomes much more informative as a technique when prior

information is used to enhance the performance of the standard ICA models. We show this

can be done by using only minor modifications of the estimation procedures, by essentially

imposing constraints on the model. By including prior knowledge into the system and letting

the ICA method of choice estimate the unknown portions this helps to interpret the results

meaningfully. Whilst this can be simply seen as just making more rigid assumptions on the

BSS model, as before, if the assumptions made are meaningful in the settings which they are

made, then ICA will generally be more informative.

Finally it can be seen that the use of spatial, time and time–frequency dependency based

techniques coupled with prior information make for a more flexible set of tools available to

extract information from the underlying set of measurements. The technique of ICA can be in

fact used to extract a lot of meaningful information from a set of measurements through just a

few assumptions about the underlying sources and their mixing in the measurement space.
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