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Analysis for Improved
Defect Detection in Guided
Wave Monitoring
This paper applies guided wave methods to detect damage in complex industrial

pipeline structures using independent component analysis (ICA).

By Jacob Dobson and Peter Cawley

ABSTRACT | Guided wave sensors are widely used in a number

of industries and have found particular application in the oil

and gas industry for the inspection of pipework. Traditionally

this type of sensor was used for one-off inspections, but in

recent years there has been a move towards permanent in-

stallation of the sensor. This has enabled highly repeatable

readings of the same section of pipe, potentially allowing im-

provements in defect detection and classification. This paper

proposes a novel approach using independent component

analysis to decompose repeat guided wave signals into consti-

tuent independent components. This separates the defect from

coherent noise caused by changing environmental conditions,

improving detectability. This paper demonstrates independent

component analysis applied to guided wave signals from a

range of industrial inspection scenarios. The analysis is per-

formed on test data from pipe loops that have been subject to

multiple temperature cycles both in undamaged and damaged

states. In addition to processing data from experimental da-

maged conditions, simulated damage signals have been added

to ‘‘undamaged’’ experimental data, so enabling multiple dif-

ferent damage scenarios to be investigated. The algorithm

has also been used to process guided wave signals from finite

element simulations of a pipe with distributed shallow general

corrosion, within which there is a patch of severe corrosion.

In all these scenarios, the independent component analysis

algorithm was able to extract the defect signal, rejecting

coherent noise.

KEYWORDS | General corrosion in pipes; guided wave moni-

toring; independent component analysis

I . INTRODUCTION AND RELATED WORK

Guided wave sensors are widely used in a number of in-

dustries and have found particular application in the oil
and gas industry for the inspection of pipework. This type

of sensor generates a low-frequency ultrasonic wave

(G 100 kHz) that travels along the axis of the pipe using the

walls as a waveguide. The wave has full volumetric cov-

erage and very low attenuation in steel, making it espe-

cially suited for long-range screening applications. It is

possible to inspect a large length of pipework with only a

small number of sensors; a single sensor can routinely
inspect more than 50 m of pipe from a single location [1].

This coverage comes at the cost of lower sensitivity, with

commercial guided wave systems typically sensitive to

changes in cross section of around 5% and above in a single

inspection [2]. This type of sensor is therefore usually used

in conjunction with another localized, high-accuracy tech-

nique such as ultrasonic thickness gauging [3] to do follow-

up inspections of the areas the guided wave sensor has
identified as suspect.

There are several commercial guided wave systems for

pipework, and in all cases these systems use an array of
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sensors attached to the outside of the pipe [4]–[6]. These
sensors operate in pulse-echo mode, exciting a controlled

wave that travels through the structure. When this wave

reaches a change in the impedance of the structure, caused

by a change in the cross section for example, some of the

wave will be reflected back and received by the sensor. A

trained operator can then assess the shape, amplitude, and

mode of these reflections to infer the nature of the feature

that caused the reflection. Damage such as corrosion will
produce a reflection [7], [8], as will benign pipe features

such as welds and supports [9]. There can also be signal

components due to the excitation and reception of un-

wanted modes and imperfect direction control [10]. These

additional components introduce a background noise that

sets the sensitivity of the techniqueVtypically defects

must produce a reflection twice as large as the background

noise in order to be detected. These unwanted signals are
deterministic and cannot be removed through averaging;

for this reason, they are often known as coherent noise

[10]. Standards exist to guide the collection and interpre-

tation of guided wave data [11], limiting the impact of

coherent noise as far as possible.

In the early stages of development, guided wave sen-

sors were typically used in an inspection configuration. A

sensor would be attached to a section of pipe, an
inspection made, and then the sensor moved to another

location. It is, however, becoming more common to

permanently bond the sensor to the pipe and operate the

sensor in a monitoring configuration [2]. In guided wave

techniques, this trend is partly motivated by high access

cost. Pipelines are often buried underground or at

elevation, requiring costly digging or scaffolding equip-

ment for access. In many cases, access to the pipe will also
have health and safety implications. If the sensor is

permanently installed, these access costs need only be

incurred once, and an umbilical cord can be run to a safer,

more convenient location [2].

The other driver for permanent installation is the po-

tential for improvements in defect detection and classifi-

cation. Because the sensor is bonded to the pipe in a

permanent installation, it is possible to obtain highly re-
peatable readings of the same section of pipe. If we make

an initial inspection of the pipe when it is in a known

structural condition, we can use this information to sub-

tract out coherent noise from later measurements. This is

the principle of baseline subtraction where the early mea-

surement, the baseline, is subtracted from the later mea-

surement, the reading [12].

This technique is effective only if the change between
baseline and reading is a change in the structural condition

of the structure. If there is also a change in the environ-

mental conditions surrounding the pipe, this will introduce

additional changes that are difficult to distinguish from

those caused by structural change. This can partly be dealt

with by collecting a large number of baselines under differ-

ent environmental conditions and selecting the optimal

baseline to compare to a reading [13]. However, in an in-
dustrial setting, it is often not possible to collect multiple

signals under prescribed environmental and structural

conditions.

In response to this limitation, the baseline stretch

technique was developed, which seeks to compensate for

signal changes due to temperature, the most significant

environmental change for guided wave signals [12]. When

the temperature of a pipe changes, the dimensions of the
structure change as does the propagation velocity of the

inspection wave [14]. This causes changes in the arrival

time of reflections and leads to imperfect cancellation

during subtraction. Baseline stretch attempts to compen-

sate for this change through compression or dilation of the

signal and can be applied globally or to windowed portions

of the signal [13], [15].

This compensation procedure is limited however. The
stretch process does not perfectly compensate for temper-

ature, and its performance deteriorates as the temperature

difference increases. This stretch procedure also ignores

the influence of other environmental effects, which have

been found to be significant in guided wave systems [16].

Other researchers have therefore investigated baseline-

free methods such as the time reversal method, a technique

for defect detection based on reciprocal inspections
between sensor pairs [17]. Such methods have obtained

good results in the laboratory, for example on Lamb wave

inspection of composite plates [17], but their effectiveness

on industrial data is still an open question. Others have

pursued data-driven approaches that take a pool of ultra-

sonic signals and look for meaningful trends within the

data [18], [19]. These data-driven approaches have been

based on established data mining techniques such as sup-
port vector machines, neural networks, Singular Value

Decomposition (SVD), and Principal Component Analysis

[20]. Of these, SVD is the most developed for guided wave

systems, with several examples in the literature of SVD

being successfully applied to experimental data [16], [21].

In these studies, SVD was able to compensate for real

environmental and operational variations and extract a

representation of the defect with lower coherent noise
than the original signal.

Independent Component Analysis (ICA) is similar to

SVD in that it seeks to extract meaningful trends in data.

The difference between these techniques is that SVD uses

a decorrelation of the data to separate the information,

while ICA minimizes the mutual information between

groupings. ICA has been used alongside neural networks to

identify damaged and undamaged states in vibration data
from simple truss structures [22], suggesting it may be

advantageous to use it with guided wave systems. The

purpose of this paper is to investigate the potential of ICA

for processing the signals from permanently installed

guided wave systems. This is achieved by applying ICA to

signals that are representative of a range of monitoring

conditions that might be faced in industry.
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Section II introduces Independent Component Analy-
sis and the implementation used in this paper, as well as

the procedure for selecting the damage-sensitive feature.

Section III then introduces the guided wave data that will

be passed to the ICA algorithm, and Section IV shows the

results of this analysis. The signals analyzed in Section IV

all relate to discrete echoes from features with small axial

extent so echoes are well separated. In Section V, we con-

sider the more challenging case of general corrosion
growth within which there is a region of more severe

growth. Section VI presents the conclusions of the work

and a discussion of the potential of the technique.

II . ICA METHODOLOGY

Independent Component Analysis is a statistical technique

for revealing the hidden trends and groupings that under-

lie a set of data. The technique takes a set of multidimen-

sional data and transforms it into components that are as

statistically independent as possible [23], [24]. The inten-
tion of using ICA on guided wave data is that after applying

the transform, one of the independent components will

contain data relating to the defect, while most coherent

noise will be rejected to other independent components;

so giving a clearer representation of the defect. Numerous

implementations of ICA are available [25], [26], but the

FastICA algorithm [23] is used in this study because it

achieves similar performance to other algorithms but at
greater speed [27]. A brief overview of the FastICA method

is given here, but the interested reader can find full details

in [23].

The FastICA method assumes that the input data X can

be described by the model

X ¼ AS (1)

where S is a statistically independent representation of the

data and A is a matrix of scalar values that relates S to X.

In the case of guided wave analysis, X is an ½m� n� matrix
of guided wave signals collected from a sensor. Each of the

m rows is a guided wave response signal as a function of

time (which can be converted to distance knowing the

wave velocity), with each of the n columns containing the

amplitude of that signal at a certain time. The signals that

are the rows of S will be the new representation we want

in which the defect signal and the coherent noise have

been separated into different components. Independent
component analysis allows us to find S by performing the

operation S ¼WX, where W is the inverse of the mixing

matrix A. To calculate W, the algorithm uses the property

that the signals in S must, by definition, be maximally

statistically independent. The algorithm iterates through

possible values of W to find the matrix that minimizes

mutual information between the rows of S.

When FastICA is applied to guided wave data, the rows
of S will be guided wave signals containing the reflections

from different features, while the columns of A show the

amplitude of these signals across the input data. The col-

umns of A therefore track the amplitude progression of the

rows of S, the components. In this paper, all columns of A
are scaled such that the maximum value in each column is

one, with the amplitude of the rows of S adjusted accord-

ingly. Note that the product of the row of S and the
weighting function A will give the true amplitude of that

component of the signal. How the amplitude is apportioned

between A and S is a matter of presentational clarity. It is

then necessary to know which row(s) of S contain infor-

mation about defect growth. Since the defect location is

known, we merely select the row that is most similar to the

defect reflection response. However, if the method is to be

used in practice with unknown defects, it will be necessary
to produce an automatic method to distinguish components

relating to true defect growth from those relating to random

noise or environmental effects. A method based on k-means

clustering has been proposed in the literature [21], but so

far it has only been proven on step-type defect growth. One

potential alternative is change detection using the gener-

alized likelihood ratio, as reported in [28].

III . DATASETS

A. Laboratory Experiment
The first set of data comes from an experiment with a

6 m length of 8-in schedule 40 piping that was temper-

ature cycled in the laboratory. The purpose of this expe-

riment was to collect commercial quality guided wave
signals from a length of plain pipe experiencing known

changes in environmental condition. Since temperature is

the main contributor to signal changes in guided wave

inspection, this was the condition that was varied. With a

sufficient pool of data collected in the undamaged condi-

tion, the second stage was to introduce a small point defect

and see how this changes the received signal.

The pipe was heated via a resistive heating element that
was suspended in the center using sheet metal inserts. In

this way, the element is prevented from contacting the

pipe wall while the sheet metal inserts produce negligible

reflection during the guided wave inspection. A commer-

cial guided wave sensor (gPIMS unit manufactured by

Guided Ultrasonics, Ltd.) was then installed on the outside

of the pipe, 2 m from one end as well as seven thermo-

couples distributed across the outer surface. This assembly
was then wrapped in an insulating material. A diagram of

this setup is given in Fig. 1.

Using the thermocouples, the heating element and an

appropriate feedback control loop the temperature of the

pipe was varied. The pipe was heated to 90 �C, held to

allow the temperature to equalize throughout the pipe,

and then cooled to 30 �C. During this cooling
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cycle, 42 measurements were made using the gPIMS
sensor in approximately equal steps of time. The measure-

ments were made using an eight-cycle hanning window

toneburst, center frequency 31 kHz, T(0,1) mode. This

process was repeated for six temperature cycles to give a

total of 252 measurements across a range of temperatures.

An example measurement from the sensor is given in

Fig. 2, where only the forward direction is shown (forward

direction indicated by arrow in Fig. 1). Note that we
consider even those parts of the signal that indicate a

distance further than 4 m. These are not caused by physical

features beyond the end of the pipe, but arise due to

reverberations between the pipe ends. These signal

components serve as a useful model for a longer pipe

with multiple features, which is how they are used in this

study.

After this initial period of temperature cycling, the
insulation was removed, and a flat bottom hole was

drilled 2.3 m from the gPIMS sensor. This hole had a

depth of 4 mm and a diameter of 7 mm, representing a

cross-sectional change of 0.5% at its maximum extent. The

insulation was then reapplied, and the same process used

to collect readings from the damaged pipe between 90 �C
and 30 �C.

B. Pipe Loop Experiment
The second set of data comes from a pipe loop installed at

an industrial test site. The purpose of this experiment was to

collect commercial quality guided wave signals from a sec-

tion of pipe with features such as welds, bends, and flanges.

The other purpose of the experiment was to understand how

these signals change when defects are introduced in both

plain sections of pipe and at welds, before and after bends.

Experiments were performed on a section of pipework
made from NPS8 schedule 40 piping. At one end, the

pipework begins with a blanked flange, connected to a

straight section of pipe 5.79 m long. A weld then joins this

to another section of straight pipe that is 6.82 m long. A

Guided Ultrasonics, Ltd., gPIMS unit was permanently

attached to this length of pipe, 11.17 m from the flange. This

in turn is connected by a weld to a 90� bend, beyond which

there is a further section of straight pipe that extends
beyond the region of interest. The pipe is a closed system

filled with a liquid whose temperature can be controlled; in

this way, the temperature of the pipe could be controlled

during the experiment. This setup is shown in Fig. 3.

Initially, the temperature of the pipe loop was set to

38 �C, and four measurements were made under the no-

damage condition. The measurement was made using an

eight-cycle hanning window toneburst, center frequency
31 kHz, T(0,1) mode. The temperature of the loop was then

ramped to 90 �C and allowed to cool again to 38 �C. The

purpose of this ramping was to cause thermal stress in the

sensor and study the effect of sensor changes due to envi-

ronmental cycling. Three 1-in-diameter flat bottom holes

were then drilled to give defects A, B, and C indicated in

Fig. 3. Defect A was drilled in a clean section of pipe and

should be the easiest to detect. Defect B was drilled adja-
cent to a weld and will be more difficult to detect due to

masking by the weld reflection. Defect C is adjacent to a

weld and beyond a bend, making it the most difficult to

detect due to masking and the fact that bends tend to exa-

cerbate environmental effects. Initially, the holes in these

three locations were drilled to a depth that gives a 0.25%

cross-sectional change. Four measurements were made

using the sensor, and the loop is again ramped to 90 �C and

Fig. 2. Example pulse-echo measurement from the laboratory

experiment, showing reflected T(0,1) mode in the forward

direction (forward direction indicated by arrow in Fig. 1).

Sensor located at the origin, with reflections caused by (a) end

reflection, (b) imperfect direction control, (c) ring reflection,

and (d) first reverberation.

Fig. 3. Equipment for the pipe loop experiment: feature-rich pipe with

welds and bends, filled with temperature controlled fluid and with a

guided wave sensor (gPIMS) permanently attached. Not to scale.

Fig. 1. Equipment for the laboratory experiment: NPS8 pipe

with internal heating element and guided wave sensor (gPIMS)

permanently attached. Note the noncontacting heating element

through the center of the pipe. Not to scale.
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cooled to 38 �C. The holes were enlarged to 0.5% cross-

sectional change, and another four measurements made.

This process was repeated a final time for a hole with 0.75%
cross-sectional loss. An example output from the sensor is

given in Fig. 4, with positive direction indicated by the

arrow in Fig. 3.

C. Data Post-Processing
It is possible to apply ICA directly to the signals from

the laboratory and pipe-loop experiments. However, it was

found that the ICA performed better if the signals were

first partly compensated for environmental changes. For

the results presented in this paper, each signal has been

compensated using a stretch algorithm. This stretch in-
volves dilation or compression of the signal in the time

domain, an amplitude scaling, and a delay, the purpose

being to bring the signal as close as possible to a reference

signal. This manipulation was performed in the frequency

domain and in this study was achieved using a simulated

annealing optimization to optimize across the three va-

riables simultaneously. Note that other implementations

are available [13], [15]. For both the laboratory experiment
and pipe loop experiment, a suitable reference signal had to

be chosen to stretch to. This reference was arbitrarily

chosen as the signal with a temperature closest to the mean.

IV. RESULTS OF APPLYING ICA

A. Laboratory Experiment With Simulated Simple
Step Defect

The first test of the algorithm was to see if it could

identify a simple step change in a pipe undergoing temper-

ature changes. This scenario was modeled by taking data

from the undamaged pipe in the laboratory experiment

and adding a signal that models the reflection from a point

defect. This first test looked at three scenarios: case A that

uses 20 experiment signals collected in the temperature
range 60 �C–63 �C, case B that uses 20 signals collected

in the temperature range 60 �C–70 �C, and case C that

uses 10 signals in the temperature range 60 �C–70 �C and

10 signals in the temperature range 71 �C–80 �C. The spe-

cific temperatures for each case are given in Table 1. Note

that these temperatures do not come directly from ther-

mocouple measurements, but have been inferred from the

dilation or compression between signals within a known
temperature range. In all three cases, the first 10 signals

were left in the undamaged condition, while the second

10 signals had another signal added. This signal is a model

of the reflection from a point defect and is simply an am-

plitude scaled version of the excitation signal used by the

sensor: an eight-cycle hanning window toneburst, center

frequency 31 kHz. This signal was added at a constant

amplitude of 0.75%, thus simulating a simple step change
in the structural condition of the pipe. The amplitude is

given here as a percentage of the amplitude of the largest

reflector in the signal (the first end reflection). This signal

was added at a distance of 7.1 m from the transduction,

remote from the major feature reflections. Note that this is

not a physically possible damage location in the 6 m pipe,

but instead is a portion of the signal that arises due to

reverberation between the pipe ends.
Some of the outputs from the ICA algorithm for case A

are shown in Fig. 5. Parts (a) and (b) are the signal (row of

matrix s) and weighting function (column of matrix A) for

the defect signal, showing a defect signal that is clearly

separated from coherent noise and a weighting function

that correctly tracks the true amplitude of the defect

[dotted line in part (b)]. Parts (c)–(f) show some of the

other output signals from the algorithm. Parts (c) and (d)
show the signal and weighting for end reverberations and

ring reflections, these parts having constant weighting

Fig. 4. Example pulse-echo measurement from the pipe loop

experiment showing reflected T(0,1) mode in the forward and

backward directions (forward indicated by arrow in Fig. 3). Sensor

located at the origin (0 m), with reflections caused by (a) flange,

(b) weld and defect B, (c) defect A, (d) weld before bend, and

(e) weld after bend and defect C.

Table 1 Temperature Distribution of Signals Across Three Example Cases:

A, B, and C
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because these parts of the signal do not change across the

input signals. Parts (e) and (f) show the signal and weight-

ing for one of the components of noise introduced by im-

perfectly compensated environmental effects. The noise

component with the largest amplitude has been shown, but

the ICA algorithm outputs a total of six noise signals for this

set of inputs. These noise signals all have similar oscillating
weighting functions, but their maximum amplitude varies

from 2% in the case shown in Fig. 5(e) to a minimum of

0.4%. Although in some cases the noise components have a

larger amplitude than the defect signal, their weighting

function is different to that of the defect. This difference in

weighting function may be one way of distinguishing be-

tween damage and noise components.

The ICA output for temperature case B is shown in
Fig. 6(a) and (b), where only the defect signal has been

shown. The other outputs of the algorithm are similar to

those shown in Fig. 5 although there are now 10 noise

Fig. 5. Output from the ICA algorithm for a simulated step defect

in the laboratory experiment (temperature case A), showing:

(a) the recovered defect signal and (b) the associated weighting

function (solid line is the weighting calculated by ICA, while

the dotted line is the true weighting [i.e., the known weighting

of the added defect]), (c) the major feature reflections and

(d) the associated weighting function, (e) one component of

the noise introduced from imperfectly compensated

environmental effects and (f) the associated weighting

function.

Fig. 6. Example output of the ICA algorithm for simulated step

defects in the laboratory experiment, showing: (a) defect signal

for temperature case B and (b) the associated weighting function,

(c) the defect signal for temperature case C and (d) the associated

weighting function.

Dobson and Cawley : Independent Component Analysis for Improved Defect Detection in Guided Wave Monitoring

Vol. 104, No. 8, August 2016 | Proceedings of the IEEE 1625



components due to imperfectly compensated environmen-
tal variations. These noise components have a maximum

amplitude that varies from 4.0% to 0.2% across the 10 noise

outputs. This increase in the number of components is due

to the greater temperature difference among the input

signals, which causes an overall increase in the background

noise. These noise components all have nonmonotonic

weighting functions that vary in a pattern similar to that

shown in Fig. 5(f). Similarly, the defect signal for tem-
perature case B has more coherent noise than temperature

case A. This is again thought to be because there is greater

temperature difference among the input signals, and hence

the algorithm has greater difficulty separating the defect

signal. The ICA output for temperature case C is shown in

Fig. 6(c) and (d), where only the defect signal has been

shown. As before, the other outputs of the algorithm are

similar to those shown in Fig. 5, although there are now 14
noise components in the ICA output. These noise compo-

nents have a maximum amplitude that varies from 6.0% to

0.1%, with the maximum noise occurring at the end re-

flections. Again, the weighting functions for these noise

components are nonmonotonic, varying in patterns similar

to those shown in Fig. 5(f). The noise on the defect signal is

also higher than temperature case A or B, again because

there is greater temperature difference on the input signals.
It is likely that greater temperature variations would lead to

increased noise and deteriorating performance of the ICA,

and this is now being investigated.

B. Laboratory Experiment With Simulated Growth
of a Flat Bottom Hole

The second test of the algorithm was to look at a more

realistic model for defect growth. Instead of modeling a
simple step change, this test modeled the reflection from a

flat bottom hole with increasing cross-sectional loss over

time, but a constant depth-to-diameter ratio. This is a

model of, for example, growing localized corrosion. This

scenario was modeled by taking 20 signals from the

undamaged pipe in the laboratory experiment and adding a

defect signal to the final 10. For the sake of brevity, only

temperature case B is presented in this paper, where all
signals have a temperature within the range 60 �C–70 �C
(see Table 1 for details). The added defect signals were

generated using the analytical model of Cegla et al. [29].

Using this model the reflection coefficient versus frequency

behavior of 10 different flat bottom holes was calculated.

Each hole had a depth-to-diameter ratio of 1:2 and repre-

sented a cross-sectional loss of between 0.1% and 1.0% in

the 8-in pipe. These reflection coefficient curves are shown
in Fig. 7. To generate a signal to add to the laboratory data,

the frequency spectrum of the inspection signal (eight-

cycle hanning window toneburst, 31 kHz center frequency)

was multiplied by these curves. Transforming this data back

into the time domain gave a signal with the correct am-

plitude and frequency content for a reflection from each

hole. Note that as the hole size increases, the frequency

content of reflection changes, so the defect signal is no

longer simply an increasing amplitude of the same signal. It

is of interest to see whether ICA can still identify this hole

as a single component at all hole sizes. Although this model

is for flat bottom holes in plates, the ratio of pipe radius to

hole radius was large enough to justify this approximation.
This signal was again added at a distance of 7.1 m, away

from major feature reflections.

The results from the ICA algorithm are given in Fig. 8,

which shows the defect signal and associated weighting

function. The figure shows that the reflection from the

Fig. 7. Reflection coefficient versus frequency behavior for

a flat bottom hole. Values along each curve are the percentage

cross-sectional change represented by each curve. All holes have

a constant depth-to-diameter ratio of 1:2.

Fig. 8. Output from the ICA algorithm for a simulated flat bottom

hole grown in stages in the laboratory experiment data, showing:

(a) defect signal and (b) the associated weighting function. Solid line

is recovered weighting function, while dotted line is the true.

Signals have the temperature variation described by case B.
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defect can be identified and the weighting function cor-
rectly tracks the true weighting function [dotted line in

Fig. 7(b)], albeit with some noise. The other outputs from

the algorithm are similar to those shown in Fig. 5, with a

total of 10 noise outputs in this case. The maximum am-

plitude of these noise components varies from 3.7% to

0.4%, and their weighting functions vary nonmonotoni-

cally in a pattern similar to Fig. 5(f).

C. Laboratory Experiment With Drilled Flat
Bottom Hole

The previous tests with laboratory data have used sig-

nals from the undamaged pipe with added artificial defect
signals. This is a reasonable approach given that the inter-

action of guided waves with defects in pipes is well under-

stood [29]. However, there may be some subtlety that arises

with a physically introduced defect that is not captured in

this previous approach. For that reason, the next test of the

ICA algorithm involved data from both the undamaged and

damaged pipe in the laboratory experiments. Thirty signals

were selected, 15 from a pipe in the undamaged condition
and 15 from a pipe containing a 7-mm-diameter, 4-mm-

deep flat bottom hole; such a hole represents a cross-

sectional loss of 0.75% This hole was drilled 2.3 m from the

sensor. These 30 signals were collected in the temperature

range 60 �C–70 �C, with the temperatures covering this full

range. These signals were then passed to the ICA algorithm,

although note that only the first 4 m of the signals were

processed to keep the analysis physical.
The results of the ICA algorithm are given in Fig. 9,

which shows: (a) the reflection from the flat bottom hole

(at a distance of 2.3 m), and (b) the associated weighting

function. The algorithm has extracted the defect signal with

a fairly low level of coherent noise given the size of the

defect and has accurately tracked the amplitude growth of
the signal. Note that in this case the algorithm is trying to

extract a defect reflection of around 0.75%, whereas in one

off guided wave nondestructive testing, the operator would

typically look to detect changes of 5% or greater. The other

outputs of the ICA algorithm are similar to those shown in

Fig. 5, with a total of 12 noise components. These noise

components have a maximum amplitude that varies from

1.4% to 0.2%, and again the corresponding weighting func-
tions vary nonmonotonically in a pattern similar to Fig. 5(f).

D. Pipe Loop Experiment With Physical Flat
Bottom Holes

The last analysis on signals with discrete echoes looks at

the reflection from holes physically introduced in the pipe

loop experiment. As with the previous test, the defects in

this case have been physically drilled in the pipe. The
difference compared to the previous case is that these holes

have been grown in stages and have been drilled not only in

clean sections of pipe, but also close to welds and beyond

bends. Fourteen signals were selected, with this group

representing four different damage conditions: four signals

in the undamaged condition, four signals with holes repre-

senting a 0.25% cross-sectional change, four signals with

holes representing a 0.50% cross-sectional change, and
three signals representing a 0.75% cross-sectional change.

All of these signals were collected at a temperature of

38 �C, but with temperature cycling in between each da-

mage condition to simulate ageing of the sensor and hence

possible changes in sensitivity or frequency response.

The analysis of this data is split into two: the data from

the ‘‘forward’’ direction looking towards the bend and the

data in the ‘‘backwards’’ direction that looks towards the
flange (forward direction indicated by arrow in Fig. 3).

Looking in the backwards direction first [Fig. 10(a) and

(b)], the ICA algorithm extracts defects A and B, which are

in a clean section of pipe and close to the weld, respectively.

Both defects occur on the same output because the holes

were drilled at the same time. All signals therefore either

have neither or both defects present. Although the defects

have the same cross-sectional loss, they have different
amplitudes in the output from the ICA. It is thought that

the amplitude of defect B is underestimated because of the

difficulty in separating it from the reflection from the

neighboring weld. The weighting function [Fig. 10(b)]

correctly tracks the known weighting function of the de-

fect. The other outputs from the ICA algorithm are the

unchanging weld and flange reflections and 12 noise com-

ponents. These noise components have a maximum ampli-
tude between 4% and 0.2% and weighting functions that

vary nonmonotonically in patterns similar to Fig. 5(f). In

the forward direction [Fig. 10(c) and (d)], the algorithm

extracts the reflection from the drilled hole with little co-

herent noise. The algorithm also correctly tracks the

weighting of the defect, albeit underestimating the ampli-

tude when the defect is small. The fact that the weighting

Fig. 9. Result of applying the ICA algorithm for a drilled flat bottom

hole in the laboratory experiments, showing: (a) the reflection from

the flat bottom hole, beginning at 2.4 m, and (b) the associated

weighting function (dotted line is true). All signals at 60 �C–70 �C.
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function is poorer in the forward direction than the back-

wards direction is to be expected: A defect at a weld beyond

a bend is a challenging inspection scenario, especially for

this size of defect. The other outputs from the ICA algo-

rithm are the unchanging reflection from the welds before
and after the bend and 12 noise components. These noise

components have a maximum amplitude between 4% and

0.2% and weighting functions that vary nonmonotonically

in a pattern similar to Fig. 5(f).

V. SIMULATED GENERAL CORROSION

A. Method
The analysis so far has focused on discrete echoes from

features with small axial extent. The purpose of this section

is to consider the case of interacting echoes from distri-

buted general corrosion. Specifically, we are interested in

whether the ICA algorithm is able to identify the reflection

from a region of deep corrosion growing within a patch of

shallower corrosion. Finite element simulations were used
to study this issue given the difficulty of preparing long

sections of pipe with a prescribed surface profile.

The finite element model consisted of a 3.0-m-long

section of pipe, 168-mm outer diameter, and a wall thick-

ness of 7 mm (NPS 6 schedule 40). This model was dis-

cretized into tetrahedral elements with a characteristic

length of 2 mm using the Netgen algorithm [30]. The ele-

ments were then given the properties of steel except for the
first 0.3 m that was set up as an absorbing region following

Petit et al. [31]. This absorbing region attenuates all waves

entering it to negligible amplitude. The inner surface of the

pipe from 0.7 to 2.7 m was then adjusted to follow a given

corrosion profile. The corrosion profile was generated

separately as a grid 2.0 m by 0.484 m (inner circumference

of the pipe) broken into 2-mm elements. Each point in the

grid was given a value taken from a Gaussian distribution
with desired mean and given standard deviation. An

analysis of industrial corrosion patches indicates that the

Gaussian distribution is a suitable model for distributed

general corrosion [32]. This surface was then multiplied

by a 3D-Gaussian to give the surface a specific correlation

length in both directions, and all heights greater than zero

are set to zero (no increase in pipe thickness). The nodes of

the pipe model were then adjusted to match this corrosion
profile, with smoothing applied in the radial direction to

reduce mesh distortion. Further mesh smoothing was

applied using the mesh smoothing function in Gmsh [33].

A uniform tangential force was then applied to a ring of

nodes on the outside surface of the pipe, 0.4 m from one

end. This changing force generated a T(0,1) mode, eight-

cycle hanning window toneburst, center frequency 31 kHz.

This model was then stepped in time using POGO, a finite
element solver based on the GPU [34]. This software is two

orders of magnitude faster than similar commercial pack-

ages and enables the current work [34]. The T(0,1) mode

reflection from the corrosion patch was then measured at

the location where the T(0,1) mode was generated. This

model is shown in Fig. 11.

B. Dataset
Initially, 10 random corrosion surfaces were generated

having a correlation length of 5 mm and a root mean

square depth of 0.1 mm. These shallow surfaces were used

to generate a low level of background noise to model the
low levels of coherent noise observed when inspecting a

nominally clean section of pipe. A further 10 surfaces were

Fig. 10. Results of applying ICA to pipe loop data showing: (a) defect A

and B, (b) the associated weighting function, (c) defect C, and (d) the

associated weighting function. All signals collected at 38 �C.

Fig. 11. Geometry of the model used in general corrosion simulations.

Not to scale.
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then generated to model a patch of general corrosion
gradually increasing in depth and severity.

The first surface was a Gaussian random surface with a

correlation length of 5 mm and a root mean square depth

of 0.15 mm. However, a small region of this surface was

given a root mean square depth of 0.3 mm. This region

extended from 0.95 to 1.05 m along the axis of the pipe and

around half of the circumference, with Gaussian smooth-

ing applied at the interface with the rest of the corrosion
surface to prevent discontinuities.

To generate the second surface, a perturbing surface

was then added to this original surface. The perturbing

surface had an increased correlation length and root mean

square depth and again had a small region from 0.95 to

1.05 m where the corrosion was deeper. This perturbing

surface used a random number grid that was a 50:50

weighting of the previous random number grid and a new
random number grid. This process of taking the previous

surface and perturbing it was continued nine times to give a

total of 10 random surfaces with increasing mean depth and

correlation length. The correlation length of the perturbing

surface was increased from 5 to 50 mm, and the mean depth

was increased from 0.1 to 0.5 mm across the nine surfaces.

This gave the final corrosion surface shown in Fig. 12,

where the shallow general corrosion had a maximum depth
of 1.5 mm, while the deep corrosion pits had a maximum

depth of 3 mm. Note that these are absolute limits on the

depth; outlier regions deeper than this have been set to the

maximum depth. Although convoluted, this process of

perturbing previous surfaces was preferable to generating

completely new random surfaces for each increment. This

is because a perturbation more closely resembles the physi-

cal corrosion process. In the real corrosion of pipework,
each new corrosion surface must necessarily be an incre-

ment of the corrosion surface that preceded it.

The amplitude of T(0,1) reflection from the general

corrosion surface in Fig. 12 is shown as the solid black line

in Fig. 13. This reflection amplitude is shown alongside the

cross-sectional loss represented by the corrosion. As ex-

pected, there is broad agreement between the two varia-

bles, although the agreement will not be perfect due to the

complex constructive and destructive interference between
overlapping waves. This figure shows clearly the increased

reflection from the more severely corroded section of pipe.

Note that this figure does not show the reflection from the

end of the pipe (2.6 m from the monitoring point) that

dominates the received signal.

C. Results of Applying ICA Algorithm
Some example outputs from the ICA algorithm are

given in Fig. 14, where the input to the ICA algorithm is the

first 3.0 m of the signals from the model. Fig. 14(a) and (b)

shows the signal and weighting function for the severely
corroded section of pipe. This signal contains a major re-

flection from the severely corroded region and is the only

signal of this type in the ICA output. This is a very encour-

aging result, showing that ICA tracks the severe corrosion,

keeping it in single component even though the corrosion is

growing at more than one point and its shape is changing.

Fig. 14(c) and (d) shows the signal and weighting function

for the pipe end reflection. This weighting function cor-
rectly shows a decrease in the amplitude of the reflection

across the final 10 signals as the corrosion grows. This

happens because the increase in corrosion causes a reduc-

tion in the T(0,1) mode reaching the pipe end. Fig. 14(e)

and (f) shows the signal and weighting function for one of

the signal components due to the shallow general corro-

sion. Note that the algorithm separates the reflection from

the shallow corrosion into 14 components, with the largest
amplitude component shown in Fig. 14. The other com-

ponents have a maximum amplitude from 2.4% to 0.6%,

and these components constructively and destructively in-

terfere to give the total reflection seen in Fig. 13.

VI. CONCLUSION

In this paper, we have discussed the use of Independent

Component Analysis for improved defect detection in guided
Fig. 12. Thickness map of the final state of the simulated

corrosion patch.

Fig. 13. Overlay of cross-sectional loss and reflection coefficient for

the corrosion patch. Note that the corroded surface starts at a distance

of 0.3 m from the monitoring point.
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wave monitoring. Through a combination of the traditional

baseline stretch approach and the novel use of ICA, we are

able to extract a representation of the defect that has lower

coherent noise than the original signal. The algorithm can
also be used to accurately track the amplitude history of the

defect and hence understand its growth pattern. This is in the

context of changing environmental conditions.

This paper has looked at experimental data from both a

plain section of pipe and a pipe loop containing welds,

bends, and flanges. Data were collected from these pipes

while they were in their undamaged and damaged con-

dition and undergoing temperature variations. Initially
model defect signals were added to the data from the un-

damaged plain pipe to simulate step changes and gradual

defect growth. The ICA algorithm was able to separate

these defect signals from coherent noise in the context of

changes in temperature and changing frequency content of

the defect signal. The ICA algorithm was then applied to

data from the undamaged and damaged pipes, and again the

algorithm was able to separate the defect signal from co-
herent noise. This was for physically introduced defects in

clean sections of pipe, at welds, and at welds beyond bends.

This paper also used finite element simulations to inves-

tigate generally corroded sections of pipe with a patch of

severe corrosion. It was found that the ICA algorithm cor-

rectly separated the reflection due to the severe corrosion

and recognized it as a single evolving defect. This is in the

context of the corrosion undergoing a complex growth
pattern where its shape and amplitude is changing.

It therefore appears that ICA is a promising method for

the automated processing of guided wave data. The next

stage is to look at ways of automating identification of the

component containing information about the defect. The

ICA algorithm outputs several components, some of which

are noise and some of which contain useful information. A

method must be developed for automatically identifying
the components containing useful information, and work

is in progress on this issue. One promising approach is to

use the weighting functions of the components; in all the

cases reported here, the noise components have strongly

nonmonotonic weighting functions, while the defect sig-

nals have near-monotonic weighting functions. The ICA

technique is also only one of several possible techniques for

processing guided wave monitoring data. A quantitative
comparison of the different techniques would indicate when

each method is most appropriate. Such a comparison is in

preparation and will be reported in the literature shortly. h
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Fig. 14. Results of applying ICA to the general corrosion signals,

showing: (a) the reflection from the severely corroded region and

(b) the associated weighting function, (c) the end reflection and (d) the

associated weighting function, and (e) one of the components of the

general shallow corrosion and (f) the associated weighting function.
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