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Abstract

Gene expression time series (GETS) analysis aims to characterize sets of genes according

to their longitudinal patterns of expression. Due to the large number of genes evaluated in

GETS analysis, an useful strategy to summarize biological functional processes and regula-

tory mechanisms is through clustering of genes that present similar expression pattern over

time. Traditional cluster methods usually ignore the challenges in GETS, such as the lack of

data normality and small number of temporal observations. Independent Component Analy-

sis (ICA) is a statistical procedure that uses a transformation to convert raw time series data

into sets of values of independent variables, which can be used for cluster analysis to iden-

tify sets of genes with similar temporal expression patterns. ICA allows clustering small

series of distribution-free data while accounting for the dependence between subsequent

time-points. Using temporal simulated and real (four libraries of two pig breeds at 21, 40, 70

and 90 days of gestation) RNA-seq data set we present a methodology (ICAclust) that jointly

considers independent components analysis (ICA) and a hierarchical method for clustering

GETS. We compare ICAclust results with those obtained for K-means clustering. ICAclust

presented, on average, an absolute gain of 5.15% over the best K-means scenario. Consid-

ering the worst scenario for K-means, the gain was of 84.85%, when compared with the

best ICAclust result. For the real data set, genes were grouped into six distinct clusters

with 89, 51, 153, 67, 40, and 58 genes each, respectively. In general, it can be observed that

the 6 clusters presented very distinct expression patterns. Overall, the proposed two-step

clustering method (ICAclust) performed well compared to K-means, a traditional method

used for cluster analysis of temporal gene expression data. In ICAclust, genes with similar

expression pattern over time were clustered together.
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Introduction

Gene expression time series (GETS) analysis aims to characterize sets of genes according to

their longitudinal patterns of expression, improving the understanding of the biological pro-

cesses and regulatory mechanisms of genes that share similar expression profiles over time [1].

Specifically, in GETS studies, given the large number of genes evaluated, such as those using

RNA-seq data, summarization of expression profiles into a small number of clusters that

include genes with similar expression over time is a typical and useful strategy to deal with the

high dimensionality of GETS data sets.

In general, the methods used for gene clustering can be split into two groups. One com-

posed by traditional methods, such as hierarchical clustering [2] and k-means [3] methodolo-

gies, which consider observations at each time as independent variables for the clustering

process. K-means optimizes the variance of the clusters, whereas hierarchical methods mini-

mize the radius of the clusters. In general, k-means outperforms hierarchical clustering, since

is likely to be a poor choice for further computational analysis of the resulting clusters. [4, 5].

Although these methods are of easy application and interpretation, they have as disadvantage

the fact that the temporal dependence between time-points is not taken into account in the

clustering process. In the other group we have the so called model-based cluster methods [6,

7], which require normality of the data, and cluster membership is decided based on maximiz-

ing the likelihood of data points given the cluster models [1]. However, RNA-seq data, which

has discrete distribution (counts of reads), is not suitable to be used in these methods that

assume normality of the data [8]. In general, GETS analysis present small number of the tem-

poral expression measures.

The application of model-based methodologies in RNA-seq data (discrete variable) presents

some challenges, such as the lack of normality (assumed in several models) and the small num-

ber of temporal observations (small series), which leads to poor estimation of the effects used

in the clustering process. In this context, a methodology that can be used to cluster small series

of distribution-free data while accounting for the dependence between subsequent time-points

should be used for temporal analysis RNA-seq data. The Independent Component Analysis

(ICA) [9] is a statistical procedure that uses a transformation to convert raw time series data

into sets of values of independent variables, which can be used for cluster analysis to identify

sets of genes with similar temporal expression patterns. ICA is a powerful methodology, espe-

cially when traditional methods, such as principal component and factor analyses, are ineffec-

tive, since these can still find intrinsic factors that support the observational data [9].

In summary, in this paper we propose a methodology named ICAclust that jointly consid-

ers ICA and a hierarchical method for clustering temporal RNA-Seq data. The proposed meth-

odology was applied to GETS using temporal simulated and real RNA-seq data.

Material andmethods

Independent Component Analysis

Independent Component Analysis (ICA) uses the existence of independent factors (latent vari-

ables) in multivariate data and decomposes an input data set into statistically independent

components [9].

Assume Y = (y1, y2, . . ., ym)
T as the random vector. ICA approach assumes that Y can be

modelled as linear combination of n independent components S = (s1, s2, . . ., sn)
T, with some

matrix of unknown coefficients A = [aij], named mixing matrix, Ym×N = Am×n � Sn×N.

Considering the observed data set, yij corresponds to the mean expression value (consid-

ering multiple replicates) at time j for the ith series (gene). Therefore, each serie yi is
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decomposed into a linear combination given by yi = ai1s1 + ai2s2 + � � � +aiksn, for every i = 1,

2, . . ., m, so that each series is represented by the coefficients of each independent compo-

nent of the mixture.

ICA has been used for dimension reduction [10]. This possibility is specially interesting for

situations approaching high dimensional problems. Aiming reduction of dimensionality, a

number k� n of independent components (IC) can be selected by using principal component

analysis (PCA) as pre-processing for ICA, so that, Ym×N/ Am×k � Sk×N, where A can be

approximated by the product KR, where K is an orthogonalization matrix and R the matrix

that maximizes the statistical independence of the columns of the matrix S. However, because

of the low number of temporal observations in GETS analysis, we should use k = m.

To verify the significance of independence hypothesis between the independent compo-

nents the non-parametric Hoeffding test [11] was performed. Hoeffding test computes D sta-

tistics, which represents the distance between F(x,y) and G(x) H(y), where F(x,y) is the joint

cumulative distribution function (CDF) of X and Y, and G and H are marginal CDFs.

Two-step algorithm (ICAclust) for clustering genes with similar gene
expression patterns

Gene clustering was performed using a two-step approach, called ICAclust, in which ICA is

initially applied to convert raw time series data, Ym×N = (yij) into statistically independent

components. Thus, the new data set, composed by elements of matrix of independent compo-

nent S, can be used as input variables in hierarchical cluster analysis using Ward’s method

[12], with the number of cluster being defined by Mojena’s criterion [13]. In the Ward’s

method, the goal at each stage of clustering is minimize the increment of the within-group

error sum of squares by combining two individuals. Considering two groups, A and B, the

increment is defined by IAB ¼
nAnB
nAþnB

ð�yA � �yBÞ
T
ð�yA � �yBÞ, where nA represents the number of

individuals of A, nA represents the number of individuals of B, �yA and �yB are vectors giving the

means of the variables of groups A and B, respectively. Mojena’s criterion, suggests that one

should select the number of groups corresponding to the first stage in the dendrogram satisfy-

ing the condition: ajþ1
> �a þ cSa, where α0, α1, . . ., αn−1 are the fusion levels corresponding to

stages with n, n-1, . . ., 1 clusters. The terms �a and Sα are the mean and standard error of α0s,

respectively; and c is a constant equal to 3.50 [13]. Fig 1 shows a scheme of the proposed

method ICAclust. The resulting clusters from this analysis contain genes with similar expres-

sion patterns over time.

Real data

GETS analyses were performed with four libraries of two pig breeds (Piau and commercial

breed) at 21, 40, 70 and 90 days of gestation. Animals were raised at the Pig Breeding Farm

from Federal University of Viçosa, Brazil. Pregnant gilts were euthanized at each day of gesta-

tion following the procedures described at [14]. For every breed, three sows were used for each

time point and embryos/fetuses were collected (four library per breed). Longissimus dorsimus-

cle samples were collected from the embryos/fetuses, except for those at 21 days post gestation,

in which the whole embryo was used. The collected material was placed in tubes with RNAla-

ter solution (Ambion, Carlsbad, CA, USA) and stored at 4˚C overnight and at -80˚C prior to

RNA isolation. The procedures for obtaining the embryos and fetuses were approved by the

Ethics Committee for Animal Use at UFV (protocol no. CEUA-UFV 85/2013), in accordance

with current Brazilian federal legislation.
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Total RNA was isolated with RNeasy Mini Kit (Qiagen, Valencia, CA, USA). The total con-

centration of RNA was estimated in a spectrophotometer NanoVue TMPlus (GE Healthcare,

Freiburg, Germany) and quality checked at the Agilent 2100 Bioanalyzer (Agilent Technolo-

gies, Palo Alto, CA, USA). rRNA were depleted using RiboMinus Eukaryote kit (Invitrogen,

Carlsbad, CA). Then, RNA was fragmented by enzyme RNAse III, followed by purification

and cDNA synthesis. Resulting samples were used for whole transcriptome library preparation

for sequencing in SOLiD™ v.4 platform (Life Technologies Corporation, Carlsbad, CA, USA).

RNA sequencing and all RNA processing procedures were performed using protocols and kits

(SOLiD™ Total RNA-Seq) as recommended by Applied Biosystems. RNA sequencing was per-

formed at the Research Center René Rachou (BH/MG), Minas Gerais, Brazil.

The data were visualized with fastQC and treated with Prinseq-Lite (v. 0.20.4; [15]. Reads

were mapped by Bowtie software using Sus scrofa build 10.2 (Sscrofa10.2) as reference. After

that, transcripts that had at least ten mapped reads across all the libraries were selected for sub-

sequent analyses. On average, 36.75 million reads were obtained per library.

The proposed method ICAclust was applied to 458 genes that presented differential expres-

sion between breeds (FDR< 0.05) by empirical Bayesian approach based on posterior proba-

bilities using the R package baySeq [16].

Application to simulated data

We evaluated the proposed clustering method performance using simulated datasets, each

one with 458 genes divided into 6 clusters. RNA-seq quantification is based on read counts

(discrete variable), and thus, count distributions such as Poisson or negative binomial are

the usual choices to account for the biological phenomenon under study [17]. Additionally,

since our problem approaches temporally dependent measures, a multivariate count data

distribution seems appropriate for this situation. Therefore, gene expression levels were

generated over 4 time points using a multivariate Poisson model with a heterogeneous first-

order autoregressive covariance structure. The gene expression time series for each gene in

each cluster was sampled from Yik ~ P(λk, Sk), where Yik is the time series (a vector with

dimension 1 x 4) of gene i (i = 1,2,. . .,gi) in cluster k (k = 1,2,. . .,6), λk = [λ1k . . . λ4k]
T is the

rate of occurrence vector, which were sampled from ltk � Nðlt; s
2

ltÞ and the correlation

Fig 1. Flowchart summarizing the ICAclust approach.

https://doi.org/10.1371/journal.pone.0181195.g001
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matrix Sk is given by:

X
¼

st1 fk f
2

k f
3

k

st2 fk f
2

k

st31 fk

st14

2

66664

3

77775
;

where ϕ1k is the autoregressive parameter and s2

tk is the variance in each time.

The number of genes (458) and longitudinal points (i.e. 4 time points) were chosen based

of the real dataset presented in the previous section. The number of clusters (i.e. 6), and num-

ber of genes in each cluster, as well as the values of λk, and σtk were determined according

to the results using the real data and will be presented later. For ϕ1k, values used in the simula-

tion were obtained by averaging the estimates obtained from each resulting cluster k, i.e.,

f
1k ¼

XIk

i¼1

bf
1k=Ik, where

bf
1k is the estimate of ϕ1k for each gene belonging to cluster k, and

Ik is the number of genes in cluster k.

In order to compare the clustering method (ICAclust) presented here with a traditional

clustering method, the simulated datasets were also analyzed using the, k-means algorithm

[18]. The choice of k-means is due to its general use in temporal gene expression clustering [7,

8, 19] and for its overall better performance over hierarchical clustering [4, 5].

The comparison between ICA clustering methodology and k-means was evaluated by mean

correct classification rate (CCR), which was computed as the ratio between the numbers of

genes clustered into the true cluster (from simulation) and the total number of genes over 10

replicated datasets. It is important to emphasize that, unlikely the proposed method, the num-

ber of clusters need to be defined prior to analysis in k-means. Since, in general, the number of

clusters is unknown, we simulated the data using different number of clusters (k = 2, 3, 4, 5, 6

and 7). For ICAclust, we used different values of the Mojena’s constant (c = 2.25, 2.50, 2.75,

3.00, 3.25, 3.50 and 3.75) to evaluate their effect on the clustering process. These values were

chosen aiming to expand the optimal clustering range (2.77–3.50) suggested by [13], and thus,

being more conservative in our comparisons.

Computational features

The simulation process was carried out with the function gen.PoisBinOrd of the PoisBinOrd R

package (http://R-cran.org). The proposed method, denoted by ICAclust, was implemented in

R, through the combination of fastICA [20], hclust R functions and the Mojena’s criterion.

The R scripts for implementation of the proposed clustering method, and the real and simu-

lated data sets are freely accessible at https://zenodo.org/record/571134#.WQsuLca1vIU.

Results

Real data

The six scatterplots used to visualize relationships between the four independent components,

D statistics of Hoeffding and their associate p-values are shown in Fig 2. As expected, the data

showed a random pattern indicating absence of any association. Overall, p-values were greater

than 0.01.

Using the four independents components as variables, genes were grouped into six distinct

clusters (clusters A to F) with 89, 51, 153, 67, 40, and 58 genes each, respectively. In general, it

can be observed that the 6 clusters presented very distinct expression patterns (Fig 3). Fold-

change is presented as the log2 of the ration between the reads in the Piau and Commercial

ICA based-clustering of temporal RNA-seq data
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Fig 2. Scatterplots based on independent components, D statistics of Hoeffding and their associated p-values. The six scatterplots used to
visualize relationships between the four independent components are represented in figures A to F.

https://doi.org/10.1371/journal.pone.0181195.g002

Fig 3. Time series average expression of six gene clusters found by the ICAclust. Fold-change = log2(Piau/
Commercial). The six clusters are represented in figures A to F.

https://doi.org/10.1371/journal.pone.0181195.g003
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breeds. Among the various differences, it can be observed that the genes that make up groups A

and D had opposite average expression pattern across time. While Piau had greater overall

expression than Commercial animals at 21 and 40 days of gestation in cluster A (Fig 3A), the

opposite trend was found at days 70 and 90 of gestation in cluster D, where Commercial ani-

mals had greater expression than Piau. Genes belonging to the second cluster (Fig 3B) presented

greater expression values in the Piau breed only at the beginning of gestation (i.e. 21 days).

However, genes belonging to cluster C (Fig 3C) had greater expression in the Piau breed at all

time points. In contrast, genes in cluster F had greater expression in the Commercial breed

throughout the whole gestation period (Fig 3F). Furthermore, genes belonging to cluster E pre-

sented higher expression in Piau compared to Commercial only at 70 days of gestation (Fig 3E).

Simulated data

Ten replicates of gene expression profiles were simulated to compare the ICAclust and k-

means methodologies. The average of expression profiles across all replicates is presented in

Fig 4. The simulated data set presented similar temporal expression pattern to those clusters

obtained in the real data analysis, showing that the simulation process was able to capture the

same temporal relationship presented in the real data.

Performance of the clustering methods based on the simulated data is presented in Fig 5.

Correct classification rate (CCR), which considers the ratio between the numbers of genes

clustered into the true cluster (from simulation) and the total number of genes, was used for

evaluation over the 10 replicated datasets. As depicted in Fig 5A, k-means clustering had a

lower CCR compared to ICAclust in all cases. The k-means method presented the highest

average CCR (86%) when the number of clusters specified for analysis was the same as the

number of simulated clusters (i.e. 6), thus, representing the best case scenario for this method.

Fig 4. Average expression profile of over ten simulated data set considering the number of clusters determined
according to the results using the real data. Fold-change = log2(Piau/Commercial). The six clusters are represented in
figures A to F.

https://doi.org/10.1371/journal.pone.0181195.g004
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Furthermore, CCR values decreased as the number of clusters specified for the analysis moved

away from 6.

On average, all ICAclust results had great CCR than k-means, and ranged from 89% to

92%, for c between 2.50 and 3.75, respectively (Fig 4B). Moreover, ICAclust presented, on

average, an absolute gain of 5.15% over the best k-means scenario (k = 6). Considering the

worst scenario for k -mean (k = 2), the gain was of 84.85%, when compared with the best ICA-

clust result (c = 3.00). Differently than for k-means, which requires to have the number of clus-

ters (k) defined to perform cluster analysis, ICAclust uses Mojena’s criterion to determine the

number of clusters automatically at end of the clustering process, and thus, increases the CCR.

The modal number of clusters identified by ICAclust was 6 over all replicates and Mojena’s

constant (c) values. Time series average expression of clusters, considering the modal number

of clusters (k = 6), found by ICAclust is presented in Fig 6. The patterns presented in this figure

are similar to those obtained from the simulated data (Fig 6), indicating that this methodology

was able to create the same results as those using the real data (Fig 4).

Time series average expression of clusters found by k-means considering k = 2, 3, 4, 5, 6

and 7 are presented in Fig 7.

The correct simulated pattern was only observed when the correct number of groups

(k = 6) was informed for k-means method. However, in real life, the correct number of clus-

ters is unknown. When a lower number of clusters is considered (k< 6) in k-means, unique

gene expression patterns can hidden. On the other hand, when the number of clusters used

for analysis is higher than true value, some gene expression patterns can be split into two

new groups.

Although the simulated data set was generated according to the results from the real data

analysis, the comparison between the proposed ICAclust and the traditional k-means methods

is reasonable. While ICAclust performed well using a traditional hierarchical method without

losing information about the relationship between observations, the traditional k-means

method did not account for this dependence, leading to worse results compared to those

obtained by ICAclust.

Fig 5. Average correct classification rate (CCR, %) for each clusteringmethod across 10 replicates. The performance of k-means
and ICAclust clustering methods are represented, respectively in figures A and B. Error bars represent the CCR standard deviation of 10
replicates.

https://doi.org/10.1371/journal.pone.0181195.g005
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Discussion

In this paper we have presented the ICAclust methodology, which can be used to decompose

RNA-seq data into statistically independent components and to group genes into mutually

exclusives clusters.

Fig 6. Time series average expression of six gene clusters found by the ICAclust considering values for c
between 2.50 and 3.75. Fold-change = log2(Piau/Commercial). The six clusters are represented in figures A to F.

https://doi.org/10.1371/journal.pone.0181195.g006

Fig 7. K-means clusters. Fold-change = log2(Piau/Commercial). Time series average expression of clusters found by k-
means considering k = 2, 3, 4, 5, 6 and 7 are represented, respectively, in figures A to F.

https://doi.org/10.1371/journal.pone.0181195.g007
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Independent Component Analysis (ICA) decomposes an input data set into statistically

independent components. In the last decade, ICA approach was proposed as PCA, to

reduce the dimensionality of the data [10]. However, differently than for PCA, where

components are independent only in the presence of multivariate normality of the

input variables, in ICA we can obtain statistically independent components even in the

absence of multivariate normality. Therefore, ICA seems ideal for data with mixed distribu-

tions, such as those found in high-dimensional and non-normal RNA-seq data sets. Since

ICA naturally takes the temporal dependency into account through its underlying model

when decomposing variables [21], ICA gives the opportunity to quickly generate indepen-

dent components and then group them based (e.g. genes) based on the temporal depen-

dence among them. In our methodology, the number of latent variables (i.e. independent

components) is equal to the number of samples in gene expression data, i.e., 100% of origi-

nal information is used in the clustering process. The small number of RNA-seq samples

does not present any problems, as ICA has been successfully used in many studies with

microarray data and cluster analyses [22]. In addition, differently than the most clustering

methodologies, our method outputs the number of the clusters automatically at the end of

clustering process. ICAclust methodology is simpler and quicker than based-model meth-

ods [6, 7], specifically those using a Bayesian approach, since these require evaluating con-

vergence of the chains.

Although several advantages of ICAclust have been reported here, one possible disadvan-

tage is that this method is not model-based. Some model-based approaches have been specially

indicated for time course RNA-seq studies [23], such as the autoregressive time-lagged regres-

sion and hidden Markov models. However, when working with short gene expression time

series, as in the present study (only four temporal measures), the model-based methods can

lead to poor clustering performance [24].

One interesting point to be exploited under a gene clustering approach is to examine how

the genes are assigned to clusters as the number of clusters increases. Schonlau [25] proposed a

relevant method denominated “clustergram”, which enables to visualize the clustering forma-

tion and give insight on the optimal number of clusters. Since we used the Mojena criterion to

identify this number, one future implication might be to update the ICAclust to provide infor-

mation requested for “clustergram” implementation. Finally, with the rapid increase in the size

of high-throughput genomic data, other efficient algorithms, such as MapReduce [26] and trie

trees [27], could be considered in the future to improve the computational performance for

read alignment.

Conclusions

The proposed two-step clustering method (ICAclust) performed well compared to k-means,

a traditional method used for cluster analysis of temporal gene expression data. In ICAclust,

genes with similar expression pattern over time were clustered together. Compared to k-

means method, ICAclust methodology present some advantages: (i) the dependence between

observations are take account in the clustering process through of independent components

that are linear combinations of original variables; (ii) it is not necessary to define the number

of the clusters prior to analysis, as these are obtained automatically using Mojena’s criterion;

(iii) ICAclust does not make any assumptions about the data distribution, i.e., it can be used

for discrete data such as RNA-seq data; and (iv) it performed well to small number of temporal

observations. However, more studies using different RNA-seq data sets are needed to further

validate results found in this study.
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