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There has been a recent surge in the use of electroencephalography (EEG) as a

tool for mobile brain imaging due to its portability and fine time resolution. When

EEG is combined with independent component analysis (ICA) and source localization

techniques, it can model electrocortical activity as arising from temporally independent

signals located in spatially distinct cortical areas. However, for mobile tasks, it is not

clear how movement artifacts influence ICA and source localization. We devised a

novel method to collect pure movement artifact data (devoid of any electrophysiological

signals) with a 256-channel EEG system. We first blocked true electrocortical activity

using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with

electrical properties similar to real human scalp. We collected EEG movement artifact

signals from ten healthy, young subjects wearing this setup as they walked on a

treadmill at speeds from 0.4–1.6 m/s. We performed ICA and dipole fitting on the

EEG movement artifact data to quantify how accurately these methods would identify

the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of

the independent components in non-neural locations or lacked dipolar characteristics.

The remaining 1% of sources had locations within the brain volume and low residual

variances, but had topographical maps, power spectra, time courses, and event related

spectral perturbations typical of non-neural sources. Caution should be exercised

when interpreting ICA for data that includes semi-periodic artifacts including artifact

arising from human walking. Alternative methods are needed for the identification and

separation of movement artifact in mobile EEG signals, especially methods that can be

performed in real time. Separating true brain signals from motion artifact could clear the

way for EEG brain computer interfaces for assistance during mobile activities, such as

walking.
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INTRODUCTION

Researchers have made great progress in understanding brain

function over the last century, but we still lack information

on the complex cortical activity underlying everyday tasks

performed by mobile individuals. Studies on immobile subjects

have greatly added to our understanding of brain function

during cognitive and motor tasks (Näätänen and Picton, 1987;

Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999; Neuper

and Klimesch, 2006; Jerbi et al., 2009). Almost all functional

brain imaging studies have been limited to lying or seated

postures with little body motion. For real world applications

like brain machine interfaces and clinical neurorehabilitation,

a better understanding of changing brain dynamics during

mobile activities like walking would greatly advance current

neuroscience knowledge. This rationale has driven researchers

in recent years to explore possibilities of electroencephalography

(EEG) for mobile brain imaging (Makeig et al., 2009; Gwin

et al., 2010, 2011; Gramann et al., 2011, 2014; Presacco

et al., 2011; Wagner et al., 2012, 2014; Broccard et al., 2014;

Seeber et al., 2014, 2015). However, a current limitation to

these efforts is that we do not know how mathematical

methods developed for processing EEG data collected on

seated or standing subjects will perform on data collected

on mobile subjects that will inevitably contain movement

artifact.

Due to its portability, low cost, and good time resolution,

EEG shows great promise for studying neural activity during

mobile tasks. Analysis of brain dynamics during a walking stride

requires fine temporal resolution because of its relatively short

duration. With millisecond precision, EEG has inherently better

temporal resolution than other brain imaging methods such as

functional near infrared spectroscopy (Villringer and Chance,

1997; Irani et al., 2007). Blind-source separation methods such as

independent component analysis (ICA) combined with inverse

modeling of neural sources can provide EEG spatial resolution of

approximately 1 cm (Makeig et al., 2004a,b). This combination of

good temporal resolution, reasonable spatial resolution, and the

lowmass of EEG hardware has led to a plethora of new studies on

electrocortical activity during human walking (Gramann et al.,

2010; Gwin et al., 2010, 2011; Presacco et al., 2011; Debener

et al., 2012; Petersen et al., 2012; Severens et al., 2012; Wagner

et al., 2012, 2014; Sipp et al., 2013; Kline et al., 2014; Lin et al.,

2014; Seeber et al., 2014, 2015; Bulea et al., 2015; Malcolm et al.,

2015).

Pervasive, semi-periodic movement artifact is a major

drawback of using EEG to examine electrocortical activity during

human locomotion (Gwin et al., 2010). Two recent studies have

indicated that movement artifact can lead to high levels of

spectral power, especially at very low and very high frequencies,

during double support (Castermans et al., 2014; Kline et al.,

2015). ICA has proven very effective for separating eye and

muscle artifacts from EEG electrocortical signals during seated

or standing tasks (Jung et al., 2000; Delorme et al., 2007).

Algorithms that model independent components as equivalent

current dipoles, such as DIPFIT, have also been shown to be able

to accurately localize the resultant neural sources (Oostenveld

and Oostendorp, 2002). How algorithms like ICA and DIPFIT

perform in the presence of the semi-periodic movement artifact

inherent to walking is unknown.

Many procedures have been utilized for removing movement

artifact during walking. Using a template regression by

subtracting a moving average of the 20 surrounding strides and

then performing ICA, Gwin et al. (2010) were able to significantly

reduce power at lower frequencies (1.5–8.5 Hz) and recover

event related potentials for a visual oddball task for walking

at 0.8 and 1.2 m/s. More recent research has shown that this

method alone or in combination with wavelet filtering does

not remove all movement-induced fluctuations from data at

speeds from 0.4–1.6 m/s (Kline et al., 2015). More recently, a

more sophisticated algorithm, artifact subspace rejection, has

been developed (Mullen et al., 2013). This method transforms

the data into principal component space and compares the

resulting signals to EEG data during quiet standing to identify

artifact based on amplitude and variance. However, to function

correctly, the thresholds for rejection must be set correctly so

that only movement artifact and not neural data are eliminated.

Further, Seeber et al. (2015) developed a method to separate

overlapping narrow band and broadband frequency activity

in EEG. This process, particularly in combination with this

group’s method for identifying frequencies that show stride-

linked modulation, could be helpful for parsing out neural data

during movement.

There are multiple methods available for separating artifacts

and determining underlying source locations from EEG data.

Many methods stem from blind source separation, which use

mathematical algorithms to determine the underlying sources

from the EEG data using relatively few assumptions about how

the sources were mixed. Of these methods (Bell and Sejnowski,

1995; Belouchrani and Cichocki, 2000; Hyvärinen and Oja, 2000;

Lee et al., 2000), adaptive mixture independent component

analysis (AMICA) has been shown to be most effective at

reducing mutual information between sources (Delorme et al.,

2012). Blind source separation methods do not in isolation

determine neural location, but can be used in combination with

a source localization algorithm, often DIPFIT. Other methods

instead focus instead on solving the inverse problem.While there

are many methods that can be utilized (Gorodnitsky et al., 1995;

Gorodnitsky and Rao, 1997; Grave de Peralta Menendez et al.,

1997, 2004; Baillet, 1998; Gençer and Williamson, 1998; Pascual-

Marqui, 1999, 2002; Valdes-Sosa et al., 2000; Liu et al., 2005;

Schimpf et al., 2005), generally standardized low-resolution brain

electromagnetic tomography (sLORETA) has been shown to

have the best balance of computational complexity and accuracy

(Grech et al., 2008). However, head to head, it remains an open

question whether either ICAwith DIPFIT or sLORETA performs

better. Therefore, due to our group’s previous experience with

ICA and DIPFIT, we chose to focus on these algorithms for this

current study.

To test the effect of semi-periodic movement artifact on ICA

and dipole fitting, we devised a novel way to measure only

gait-related movement artifact with EEG electrodes (Figure 1).

We blocked all real electrophysiological signals and collected

only movement artifact with an EEG system while ten healthy
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subjects walked on a treadmill.We applied ICA to this exclusively

movement artifact EEG data. If the combination of ICA and

DIPFIT was robust to movement artifact, it should find only

sources with non-neural locations and characteristics.

MATERIALS AND METHODS

Movement Artifact Data Collection and
Initial Processing
Ten subjects participated in the study. All subjects were young

and healthy, had no known muscular or neurological deficits,

and provided informed consent to the protocol approved

by the University of Michigan Internal Review Board before

participation. We had the subjects wear a non-conductive

silicone swim cap to block all true electrophysiological

signals. Over the silicone layer, we placed a simulated

scalp with impedance similar to actual human scalp, which

consisted of a very short wig soaked in conductive gel.

We measured the resistances between the ground and the

electrodes on the simulated scalp using a multimeter (0.9

± 0.4 Mohm). This is within an order of magnitude of

the values of real human scalp (Fish and Geddes, 2003).

We then set up the EEG system as usual (Figure 1).

Subjects walked at four different speeds (0.4, 0.8, 1.2, and

1.6 m/s) for 10 min each while we recorded movement

artifact at 512 Hz using a 256-channel active electrode array

system (BioSemi Active 2; Amsterdam, Netherlands). We

simultaneously recorded kinematics using a 10-camera motion

capture system (Vicon Nexus, Oxford, UK) and ground reaction

forces using a custom-built, force-instrumented treadmill.

Calcaneus marker and ground reaction force data were used to

calculate gait events. Specific data collection methods for this

portion of the study have been previously reported (Kline et al.,

2015).

Our movement artifact processing was similar to previous

EEG walking studies (Gwin et al., 2011; Kline et al., 2014). After

collection, we first filtered the movement artifact data above

a frequency of 1 Hz. We then merged trials for all walking

conditions into one data set for each subject.

Independent Component Analysis
We rejected noisy channels before performing ICA on the

merged data sets for each subject. We identified noisy channels

using similar methods to previous studies, thresholding channels

by standard deviation, correlation with neighboring channels,

and kurtosis (Gwin et al., 2011; Sipp et al., 2013; Kline et al.,

2014). We modified the standard deviation cutoffs for each

subject, rejecting channels with standard deviation values (2.3

± 0.9) that were clear outliers by visual inspection. We used

consistent cutoffs for kurtosis and correlation (Kline et al.,

2014). Using these cutoffs only eliminated 10’s of channels.

This process left an insufficient sample to channel-squared

ratio (18.8 ± 0.1, when 30+ is recommended) to guarantee

our ICA algorithm’s convergence. We therefore took a spatially

distributed subset of the remaining channels, leaving 125.6 ±

8.2 (range 119–148) channels and a sample to channel-squared

ratio of 79.0 ± 8.6. We then performed an ICA on the

merged set using the AMICA algorithm. The AMICA algorithm

combines infomax and multiple mixture methods to separate

EEG signals into maximally independent components fixed in

space (Palmer et al., 2006, 2008). AMICA was chosen because

it has shown to reduce the shared mutual information more

fully than other blind source separation algorithms (Delorme

et al., 2012), but the results were virtually identical if the

CUDAICA algorithmwas substituted for AMICA.We calculated

equivalent dipole models for each of the resulting components

via the DIPFIT function (Oostenveld and Oostendorp, 2002).

For components with residual variance (RV) values less than

15% and dipole locations inside the brain, we calculated

topographical maps, power frequency spectra, average time

course for a stride, and event-related spectral perturbations

(ERSP).

We additionally performed a split-half comparison to

examine how reliably AMICA identified movement artifact

related independent components with RV’s <15% and

consistent, neural locations (Groppe et al., 2009). We split

the data into two equal halves. The first set consisted of the

first half of the data at each speed, concatenated into a single

20-min data set. The other set consisted of the second half of the

data at each speed, concatenated into a single 20-min data set.

We performed AMICA on each set of data and compared the

locations and RVs of the resulting independent components to

those found using the full set of data.

For the spectral analysis, we used EEGLAB’s ‘‘spectopo’’

function, which employsWelch’s power spectral density estimate

method. We used a window of length 512 samples (1 s), an

fft length of 1028, and no overlap between the windows. For

comparison, these same methods were employed in calculating

spectra for components in the middle sensorimotor cortex for

subjects performing a cognitive task while standing and walking

at the same four speeds (Kline et al., 2014).

For the ERSP analysis, we epoched the data from ∼0.5 s

before to 3 s after right heelstrike. This epoch length was

chosen to assure that each epoch captured a full stride plus

a sufficient time buffer for spectral calculations even for

the slowest speed. We used three cycle Morlet wavelets to

compute log spectrograms for each individual stride. We then

timewarped all strides so that initial right heel strike, left

toe off, left heelstrike, right toe off, and the subsequent right

heel strike occurred at the same times. For the ERSP values,

we timewarped to the mean of these median values and

subtracted the mean spectral power over the stride time at each

frequency to calculate only the fluctuations around the mean

value (Gwin et al., 2011; Sipp et al., 2013). We again used

the same methods to calculate ERSP’s around a cognitive task

performed while walking at the same four speeds (Kline et al.,

2014).

We additionally analyzed how average correlation andmutual

information across channels (or components) changed over the

analysis process for both artifact data and for data from subjects

performing a cognitive task while standing and walking (Kline

et al., 2014). We used methods consistent with Delorme et al.

(2012) to find the mean mutual information between different
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FIGURE 1 | Experimental setup and channel location illustration. (A) Illustration of the process of isolating and measuring gait-induced movement artifact in

EEG recordings. A simulated conductive scalp permits the electrodes to measure voltage differences resulting from gait dynamics while a silicone swim cap blocks

true electrocortical signals. (B) Schematic of experimental setup and channel locations. Subjects walked on a custom split-belt force measuring treadmill at four

speeds (0.4, 0.8, 1.2, and 1.6 m/s). Calcaneus marker positions were recorded using motion capture.

channel pairs by averaging first over channel pairs and then

subjects. The mutual information:

Mij = h(xi) + h(xj) − h(xi, xj)

where h(xi) represents the entropy of the time series of a random

variable xi. We used the typical binning method with a fixed

number of bins to create histograms followed a simple Riemann

approximation of the integrals to approximate these entropies.

Specific details of these methods can be found in the ‘‘Methods’’

section at the end of Delorme et al. (2012).

We compared the mean mutual information between

disparate pairs of channels at four different stages: 256 channels

of raw data with a common reference; 256 channels of

data re-referenced to the average; just the channels that

went into the ICA re-referenced to their average; and the

component data. There was some increase with speed

in common information shared between non-referenced
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channels for the artifact data, whereas we found no

difference with speed in the EEG data. We consequently

show different speeds for the artifact data, but not the EEG

data.

RESULTS

Our AMICA results revealed few components that displayed

neural characteristics. The components did not have the

combination of low RVs, superficial cortical locations, clear

dipolar topographical maps, and clean neural spectra commonly

displayed by neural sources. Over all subjects, there were a

total of 72 components with RVs less than 15%, and 63 of

these sources were located outside the brain (Figure 2). There

were nine components from as many subjects with RVs lower

than 15% in the brain, eight of which were in the cortex

(Figure 2).

Seven of the nine components with RVs below 15% and

locations in the brain shared similar locations and topographical

characteristics (Figure 3). However, two revealed differences in

location and topographical map characteristics from the other

seven. These seven sources were generally located along the

midline in the sensorimotor and parietal areas (Figures 2, 3).

They displayed topographical maps that appeared somewhat

dipolar, but possessed asymmetries and abnormalities that are

not typical of true neural sources.

The two remaining sources revealed locations in the

cerebellum (Subject 2, Component 2) and the very front of the

cortex (Subject 5, Component 70) and maps that did not possess

the symmetric, circular pattern typical of dipolar components

(Figure 3).

For most components, the spectral power and event related

spectral perturbations revealed evidence of movement artifact

(Figures 4–6). Spectral power showed artifact in the form

of peaks at approximately the resonant frequencies of the

step frequency (∼2 Hz for 1.6 m/s; ∼1.8 Hz for 1.2 m/s;

1.5 for 0.8 m/s; 1 Hz for 0.4 m/s). These peaks were

more prominent at faster speeds, such as 1.2 and 1.6 m/s,

than at slower speeds (Figure 4). In all cases, these spectral

peaks were large compared to the changes found in neural

components, though the neural data at 1.6 m/s seems to

reveal some contamination (Figures 5, 6). The ERSPs generally

revealed broadband synchronizations and desynchronizations.

The ERSPs also showed generally consistent patterns within a

subject across speeds, though there were minor changes as speed

increased (Figure 5).

The pattern of shared information reduction over analysis

differed for artifact data than for true neural data, and

neural data during walking was far more similar to neural

data during standing than to artifact data (Tables 1, 2).

Much of the common information across channels for the

artifact data was eliminated by re-referencing to the average,

whereas this re-referencing increased common information

for the cognitive data. Despite this reduction in information

due to re-referencing, ICA still reduced correlation and

mutual information by almost an order of magnitude for the

artifact data. For the cognitive data, both eliminating noisy

channels and ICA led to a significant reduction in shared

information.

The split-half comparison revealed that cortically located

movement artifact components with RV’s < 15% were reliably

identified for about half the subjects. AMICA identified reliable

components with RV’s of <15% and consistent neural locations

for Subjects 1, 3, 4, 7, 8, and 10. For these subjects, components

were found for all sets that had an average distance (as measured

in Talairach coordinates) between components of 11 Talairach

units or less and RV’s of less than 15%. For Subjects 2, 5, 6, and

9, either one or more sets revealed no components with RV’s of

<15%.

DISCUSSION

We performed ICA and dipole fitting on data collected using

a novel technique that blocks neural signals and records only

pure gait-related artifact. Our ICA and inverse head modeling

results identified 99% of components as not being neural

based solely on the basis of location and RV above 15%.

The remaining 1% of the components had cortical locations

and RVs below 15%. These sources were mostly located in

cortical areas where one would expect activity during walking.

A reliability analysis revealed that these components show

consistent locations and low RV’s for about half the subjects.

Power spectra and ERSPs of the these components need to be

examined to better differentiate some independent components

as non-neural sources (Onton et al., 2006). Spectral power

peaks at stride frequency and broadband synchronization

and desynchronization can help to identify EEG components

that are primarily related to movement artifacts rather than

electrocortical activity.

The cortically located components were generally found in

locations where we would expect neural activity during walking,

such as the sensorimotor and posterior parietal cortices. Neural

activity has been found previously in the sensorimotor and

posterior parietal cortices both in EEG and fNIRS studies

during human locomotion (Suzuki et al., 2008; Kurz et al.,

2012; Wagner et al., 2012, 2014; Sipp et al., 2013; Koenraadt

et al., 2014; Gramann et al., 2014; Seeber et al., 2014, 2015).

These other observations suggest that there is likely ongoing

real electrocortical activity in these locations during human

locomotion.

Analysis of power spectra and ERSPs clearly distinguished

the cortically located movement artifact components as non-

neural despite their neural locations (Figures 4–6). Their

power spectra revealed artifact at low frequencies that was

particularly identifiable for a normal walking speed, 1.2 m/s,

and a fast walking speed, 1.6 m/s (Figure 4). Further, for all

speeds, the ERSPs for these components generally demonstrated

broadband synchronization and desynchronization patterns that

are consistent with movement artifact (Figure 5) rather than

cognitive changes (Figure 6). These broadband changes made

gait-related artifact components identifiable for all speeds.

Components from walking data that exhibit these spectra and

ERSP patterns should be identified and excluded from any neural

analysis.
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FIGURE 2 | Component locations. (A) All components with RVs > 15% with locations outside the brain are shown in green. (B) All components with RVs > 15%

with locations inside the brain are shown in yellow. (C) All components with RVs < 15% with locations outside the brain are shown in blue. (D) All components with

RVs < 15% with locations inside the brain are shown in red.

A split-half comparison showed that the cortically located

movement artifact components with RV’s < 15% identified by

AMICA were unreliable in slightly less than half the subjects.

Two of the components identified as unreliable had locations

in the cerebellum and the very front of the frontal cortex,

so this method may provide a consistent, algorithmic method

for eliminating movement related artifacts with unlikely neural

locations, such as the cerebellum. However, while a split-half

comparison was effective at identifying non-neural components

for some subjects, AMICA still found independent components

with RVs < 15% and reliable neural locations for over half

of the subjects. Further, AMICA occasionally split similar

components from one set to another, so other algorithms, such

as CUDAICA, may be still less effective at identifying these
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FIGURE 3 | Cortical component characteristics. Cortical locations, topographic maps, residual variance (RV) values for the full set and for each half set for the

split-half comparisons (in parentheses), and average distance between analogous components for the full-set and each half set in Talairach coordinates are shown

for the nine components with RV < 15% and neural locations for the full set. The word “None” appears when there were no components with neural locations and

RVs < 15% for a given set. Components that were reliably identified for all three sets are labeled with a red “R.” Alone, these characteristics are not enough to

declare all of these components non-neural.

components using reliability measures. Therefore, though a

split-half analysis may be used to filter out these components

for some subjects, is not sufficient for the identification

of cortically located movement artifact components for all

data.

There are a number of possibilities for why we find cortical

locations when no cortical dipolar sources were present. Cortical

locations of the IC’s from the movement artifact data could

result from a violation of one of the assumptions necessary

for ICA analysis: independence of the source signals. Because

the gait artifact related changes in electrode voltage are stride-

linked, they likely occur with similar timing. Recent testing in

our lab on a motionless phantom head has revealed that, if

two spatially disparate sources have as little as 50% temporal

overlap in activity, ICA with DIPFIT will locate a single

source with a spatial location in between the two actual

sources. Consequently, if we have movement artifact related

signals that occur at different locations around the head with

similar timing, this could lead to spatial superposition of

these locations during the dipole fitting process. This process

could make it appear as if there is a dipole within the brain

volume, rather than multiple non-dipolar sources outside of

it. Other additional sources could be slight cap movements

or electrode tensioning. These results were found only for

DIPFIT, and results may differ for other source localization

models.

The results from ICA and dipole fitting analysis on pure gait-

related movement artifact can offer some insights into how to

interpret ICAs performed on walking data. Our results indicate

that components can be found in cortical areas where activity is

expected during walking, even with pure artifact data as an input,

and that for about half the subjects, these components can be
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FIGURE 4 | Cortical component spectra. Power spectra for the artifact data show large spectral peaks at the stride frequency and resonant frequencies thereof,

particularly at speeds of 1.2 and 1.6 m/s. The peaks of the movement artifact data are large compared to those found in neural data, but neural data at 1.6 m/s does

show some signs of movement contamination.

reliably found across different data sets. However, examination

of power spectra and ERSPs can help determine whether sources

in these locations are neural or caused by movement artifact.

Previous studies have shown different patterns of spectral

perturbations during walking (Gwin et al., 2011; Wagner

et al., 2012, 2014; Seeber et al., 2014, 2015). Data from
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FIGURE 5 | Cortical component event related spectral perturbations. Event related spectral perturbations for the nine components with RVs < 15% and

locations in the cortex show signs of movement artifact such as large broadband spectral fluctuations. Vertical lines indicate median gait event times for all subjects

for all speeds for: left toe-off, left heel strike, right toe-off, and right heel strike.

Gwin et al. (2011) show broadband frequency changes over

the course of a stride, whereas others have shown more

narrow band fluctuations (Wagner et al., 2012, 2014; Seeber

et al., 2014, 2015). Additionally, Petersen et al. (2012) showed

coherence between the motor cortex and the tibialis anterior

at narrow-band frequencies of 8–12 Hz, and 24–40 Hz,

approximately 700–200 ms before heelstrike. The 24–40 Hz

range matches the results of some studies (Wagner et al.,

2012, 2014; Seeber et al., 2014, 2015). The 8–12 Hz range,

found predominantly at the more typical rather than the slower

walking speeds, overlaps with the results found by Gwin et al.

(2011).

Additionally, broadband spectral fluctuations are not specific

to movement artifact and can also occur due to neural
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FIGURE 6 | Cognitive event related spectral perturbations. Spectral perturbations for subjects performing a Brooks spatial memory task show much smaller

fluctuations within a smaller frequency band than the artifact data. Data was epoched around the stimulus (number) presentation, with solid vertical lines indicating

the time the stimulus was presented.

data (Miller et al., 2014). Broadband fluctuations have been

shown at theta, alpha, and beta frequencies in response to

postural perturbation (Varghese et al., 2014), and phase-

locking of theta and alpha frequencies has been found in

memory tasks (Klimesch et al., 2004). This is especially

important to consider in light of the differences between the

studies in question. There are different speeds, with Gwin

et al. combining speeds of 0.8 and 1.25 m/s and Wagner

et al. and Seeber et al. having slower speeds ranging from

0.5–0.61 m/s.

There are also different walking conditions. Gwin and

colleagues had subjects walking freely on a treadmill, whereas

the other studies had subjects walking in a Lokomat. It is quite

possible that the different results stem from a source other than

movement artifact, such as increased sensory input in subjects

walking at more typical walking speeds without a robotic device.

Petersen’s results suggest narrow band coherence can be found at

speeds of 1–1.1 m/s, as well as slow speeds (0.35 m/s), but did not

include the time during heelstrike. The cause of the differences

between the study results therefore remains unknown.
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TABLE 1 | Mutual information and correlation at various stages of analysis

for the artifact data for individual speeds.

Mutual Raw Average Pre ICA Post ICA

information (m/s) data ref (channels) (components)

0.4 0.38 0.046 0.044 0.0105

0.8 0.45 0.064 0.060 0.0113

1.2 0.53 0.074 0.069 0.0121

1.6 0.61 0.090 0.086 0.0123

Correlation

0.4 0.64 0.15 0.15 0.017

0.8 0.71 0.21 0.21 0.027

1.2 0.76 0.24 0.23 0.030

1.6 0.78 0.27 0.27 0.032

Additionally, in recently completed research out of our lab, a

phantom head with electrical characteristics similar to a human

head with controllable embedded source signals was subjected

to walking-like movement with a setup almost identical to that

from Gwin et al., and ICA recovered ground truth signals

even when the head was moved up to 6 cm fluctuations at

frequencies up to 2 Hz (Gwin et al., 2011; Oliveira et al.,

2015). These results indicate that ICA is capable of separating

walking-like movement artifact from simulated neural signals. It

remains to be shown that it performs similarly on actual neural

data.

Though our results offer insights into walking data, there

are conflicting pieces of evidence as to how compromising

gait-related movement artifact is to ICA analysis of neural

data. Our ICA results, taken alone, suggest that caution should

be exercised with data that contain gait-related movement

artifact, but our mutual information offers more insight.

Simply re-referencing all channels to the average eliminated

most of the shared information in the movement artifact

data. Very little additional mutual information reduction

occurred due to ICA. This suggests that most movement

artifact data is similar across all channels. It also suggests

that ICA may not perform as well on this data because,

when most of the common information has been removed

by re-referencing, the resulting inputs may not appear to

be the mixed inputs assumed by the ICA algorithm, leading

ICA to perform sub optimally. Further, re-referencing the

TABLE 2 | Mutual information and correlation at various stages of analysis

for the EEG data for just walking, walking with a cognitive task, and

standing with a cognitive task.

Cognitive data

Mutual Raw Average Pre ICA Post ICA

Information data ref (channels) (components)

Walking 0.26 0.44 0.23 0.016

Cog walking 0.29 0.36 0.22 0.016

Cog standing 0.27 0.39 0.23 0.016

Correlation

Walking 0.42 0.47 0.29 0.019

Cog walking 0.42 0.47 0.30 0.018

Cog standing 0.4 0.47 0.31 0.016

cognitive data to the average did not reduce shared mutual

information for walking or standing data, with or without

a cognitive task. If the movement artifact in this data is

consistent across channels, as was found for the artifact data,

this suggests that little of the common data across channels,

even during walking without a cognitive task, seems to be

related to gait patterns. However, ICA performed on walking

data, especially at fast speeds or over uneven surfaces that

induce more head acceleration, produces components with

spectral fluctuations consistent with walking-related artifact.

It therefore remains an open question as to how neural

data containing gait-related movement artifact is separated

by ICA.

To determine how ICA parses out neural and movement

artifact data, a next step should be combining known neural

data with known movement artifact data and analyzing how

ICA parses out the two separate contributions. This would

consist of collecting clean, seated neural data, collecting

pure movement artifact data collected using a setup similar

to that used in this study, summing the two resulting

signals, and performing ICA on the combined time series.

By including both signals, we could determine whether ICA

will parse out movement artifact as separate components

similar to the ones found in our study or into components

containing both neural and movement artifact elements.

In practice, this would likely involve varying the relative

amplitudes of these two series to determine whether there is

a threshold past which gait-related movement artifact becomes

problematic.

The best way to fully separate movement artifact without

compromising neural data during walking remains an open

question in EEG research and may involve a combination

of different hardware or software methods. One hardware-

based solution consists of interspersing channels collecting pure

movement artifact with channels collecting both neural and

movement artifact data. Researchers could then interpolate

the artifact only channels to calculate artifact alone at the

locations that recorded both movement artifact and neural

data, and subtract the artifact data out. Additionally, using

an inverse-based model, rather than a blind source separation

method, may allow for better identification of movement

artifact sources that result in fluctuations that overlap in time

and/or frequency with those resulting from neural sources.

Alternatively, there are ways to combine the software-based

noise rejection methods that have been used previously.

For instance, Bulea et al. (2015) combined ICA/DIPFIT

with artifact subspace rejection to obtain results on how

different parts of the brain activate when changing speed.

Further, multiple methods developed by Seeber et al. (2014),

including gait phase modulation, which determines what

particular frequencies are modulated across a stride, and

muscle artifact correction, in which PCA methods are used

to distinguish muscle from cortical contributions in similar

frequency ranges, could be utilized in concert with artifact

subspace rejection, particularly its thresholding capabilities,

to distinguish between stride linked signals due to cortical

activity, artifact, and muscle. Integrating multiple algorithms
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with ICA could allow for additional artifact identification

and rejection. More research needs to be done on these

methods in combination to establish the optimal method for

distinguishing neural data from artifact in EEG during human

walking.
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