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Independent component analysis of natural
image sequences yields spatio-temporal ®lters
similar to simple cells in primary visual cortex

J. H. van Hateren1* and D. L. Ruderman2

1Department of Neurobiophysics, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen,The Netherlands
2Sloan Center forTheoretical Neurobiology, Salk Institute for Biological Studies, 10010 N.Torrey Pines Road, LaJolla, CA 92037, USA

Simple cells in the primary visual cortex process incoming visual information with receptive ¢elds loca-
lized in space and time, bandpass in spatial and temporal frequency, tuned in orientation, and commonly
selective for the direction of movement. It is shown that performing independent component analysis
(ICA) on video sequences of natural scenes produces results with qualitatively similar spatio-temporal
properties. Whereas the independent components of video resemble moving edges or bars, the indepen-
dent component ¢lters, i.e. the analogues of receptive ¢elds, resemble moving sinusoids windowed by
steady Gaussian envelopes. Contrary to earlier ICA results on static images, which gave only ¢lters at the
¢nest possible spatial scale, the spatio-temporal analysis yields ¢lters at a range of spatial and temporal
scales. Filters centred at low spatial frequencies are generally tuned to faster movement than those at high
spatial frequencies.

Keywords: natural scenes; independent component analysis; information theory; simple cells;
visual cortex

1. INTRODUCTION

It has been argued (Barlow 1972, 1989; Field 1987;
Zetzsche et al. 1990) that the visual cortex uses a factorial
code to represent the visual environment. Such a code
uses components in the visual scene that occur indepen-
dently of each other for large ensembles of scenes, and
thus are more easily processed when coinciding in a parti-
cular scene. Recently, evidence has accumulated that a
factorial code may indeed capture part of the function of
the primary visual cortex: research on sparse coding
(Field 1994; Olshausen & Field 1996, 1997; Harpur 1997)
and independent coding (Bell & Sejnowski 1997a,b; van
Hateren & van der Schaaf 1998) of natural images shows
the emergence of spatial receptive ¢elds with properties
similar to those of simple cells in the primary visual
cortex of mammals. These studies are, however, limited to
the space domain, and the question is how well this line
of research predicts the full spatio-temporal receptive
¢elds of simple cells.

Here we investigate this question by applying indepen-
dent component analysis (ICA) to video sequences of
natural scenes. The ICA technique (Comon 1994)
assumes that each particular signal of an ensemble of
signals is a superposition of elementary components that
occur independently of each other. The technique is
di¡erent from principal components analysis (PCA)
because it also imposes higher-order independence, not
just up to the second order (decorrelation) as in PCA. For

images, PCA generally leads to global components
(cf. Fourier components), whereas ICA leads to localized
components (cf. wavelets).

Algorithms performing linear ICA (Bell & Sejnowski
1995; Hyva« rinen & Oja 1997) try to ¢nd those compo-
nents (`ICs') that are as independent of each other as
possible by a linear transformation of the signals. For
example, if the signal is an image patch I(x, y), it can then
be represented as a sum of the ICs

I(x, y) �
X
i

aiCi(x, y), (1)

where ai is the amplitude of independent component
Ci(x, y). This amplitude is extracted by a corresponding
independent component ¢lter Fi(x, y):

ai �
X
x, y

Fi(x, y)I(x, y). (2)

If all image pixels I(x, y) are concatenated, and collected
into a single vector I, and all amplitudes ai into a vector
a, then equation (1) can be written as

I �MICa, (3)

with MIC a matrix containing the independent compo-
nents Ci(x, y) as its columns. Similarly, equation (2) can
be written as

a �MICFI, (4)

with MICF a matrix containing the independent compo-
nent ¢lters Fi(x, y) as its rows. From equations (3) and (4)
we see that the matrices MIC and MICF are each other's
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inverse, thus directly relating the ICs to the independent
component ¢lters (ICFs). Whereas the ICs can be
regarded as the basic building blocks of a signal (as in
equation 1), the ICFs are used for analysing a signal by
determining how strongly each building block is present
(as in equation 2).

Figure 1(a) illustrates this for an ensemble of image
patches (centre). Each of these patches can be decom-
posed (as in equation 1) into a set of ICs, two of which
are shown in the ¢gure (centre left). The amplitudes with
which a particular IC is present in the patches of the
ensemble are maximally independent of those of the
other ICs. For natural images, this requirement produces
a sparse distribution of amplitudes for each IC (¢gure 1a,
left), where the probability of small amplitudes is high
(the central peak), but large amplitudes occur as well (the
tails). For extracting the amplitude of an IC, the corre-
sponding ICF (centre right) is applied (as in equation 2)
to an image patch. Applying a particular ICF to the entire
ensemble again produces the original distribution of IC
amplitudes (¢gure 1a, right). Note that an ICF di¡ers
somewhat from the IC for which it gives the amplitude.
This is because the ICs overlap strongly (they are not
orthogonal) and the ICFs solve this by concentrating their
power in those areas in spatio-temporal frequency space
where the overlap of ICs is minimal and the amplitude of
an IC can be obtained without interference from others.

For time-varying images (video sequences) the analysis
is very similar (¢gure 1b), where the ensemble of image

patches is replaced by an ensemble of video blocks, each
consisting of a stacked array of time frames. Equations (3)
and (4) still apply, where the vector I is now the concate-
nation of all voxels I(x, y, t) of a video block. The ICs
(centre left) are the spatio-temporal constituents of video
blocks, and the ICFs are again used for extracting their
amplitudes. If analysing the underlying structure of time-
varying images is a primary task of simple cells in the
visual cortex, they perform an operation similar to that
of the ICFs: their receptive ¢elds weight the stimulus
such that it yields the strength of each component
present. Therefore, the ICFs (and not the ICs) can be
compared with simple cells. This comparison should not
be taken too far, however. First, the linear IC model for
natural scenes can only be approximate (Bell &
Sejnowski 1997a,b; van Hateren & van der Schaaf 1998),
because objects in scenes do not superimpose linearly, but
by occlusion (Ruderman 1997). Thus the ICA technique
merely serves as a heuristic for maximizing indepen-
dence. Nevertheless, it appears that even linear ICA is
dominated by the occurrence of occlusion: in preliminary
ICA experiments on constructed static images we found
that both occlusion and independent statistics (variances)
of the occluding surfaces are necessary to obtain edge
detectors. A second reason to be careful when comparing
ICFs with simple cells is that responses of simple cells are
not expected to be completely independent of each other,
because they appear to achieve a strongly overcomplete
representation. This may be partly related to the fact that
single neurons are noisy, and have a limited information
capacity. Some form of (local) ensemble coding may
therefore be necessary. Thus the ICFs should be viewed
only as generic receptive ¢elds, realizing a code that
presumably underlies the actual neural implementation.

2. METHODS

Broadcasts from Dutch, British and German television were
recorded on S-VHS tape and digitized with a JVC BR-S622E
VCR and a Data Translation DT3851-8 frame grabber. Half-
frames were spatially aligned by interpolation as in Dong &
Atick (1995). Final resolution was reduced, by block-averaging,
to 128�128 pixels at 25 frames s71. The total database consisted
of 216 video clips of 192 s each, on a wide range of subjects,
including sports, ¢lms, and wildlife (more than half of the
data).

The ICA algorithm was the ¢xed-point algorithm of Hyva« r-
inen & Oja (1997) with serial de£ation scheme, using function
g2 as in Hyva« rinen (1997). It was implemented on a Cray J932,
and performed on 524 288 di¡erent 12�12�12 video sequences,
drawn randomly from the database, with intensities logarithmi-
cally transformed (van Hateren & van der Schaaf 1998). Each
12�12�12 video sequence consisted of a stack of 12 time-frames
of 12�12 image patches. This was extracted from the larger
videos by ¢xing a random starting time and patch position, and
then extracting the patches at that position from 12 consecutive
time frames. The ICA yielded approximately 15 ICs per day, and
this made it impracticable to calculate the entire basis set of
1728 ICs. Instead, the analysis was performed on the ¢rst 288
ICs recovered. With di¡erent random selections of video
sequences, or with slight scaling of the data (2�2�2 block
averaging), similar results were obtained. ICs and ICFs, as
shown in ¢gure 2, were normalized to their maximum.
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Figure 1. Independent component analysis (ICA) of images
and video. (a) ICA performed on an ensemble of image
patches yields both a set of independent components (ICs)
and a set of independent component ¢lters (ICFs). The ICs
are the building blocks of image patches, and occur according
to a sparse distribution of amplitudes (symbolized by the line
plots, showing a high peak at amplitude zero, and long tails).
The amplitude of an IC in a patch can be determined by
applying the corresponding ICF to the patch. (b) ICA
performed on video blocks produces spatio-temporal ICs
and ICFs, denoted in the ¢gure by a stack of 12 consecutive
time-frames (denoted by t), each consisting of 12�12 pixels
(denoted by x and y).



As only a limited set of ICs was calculated for the 12�12�12
video data, it is possible that, given the particular ICA algo-
rithm used, the properties of this set are not representative of
the complete set. As a control, we therefore computed a
complete set of ICs for 8�8�8 video data. The results are
qualitatively consistent with those of 12�12�12 video, and
there was no signi¢cant change in IC properties depending on
the order of recovery. This was also observed in earlier work on
spatial ICA (van Hateren & van der Schaaf 1998). As the
8�8�8 ICA is more strongly in£uenced by boundary e¡ects,
and spans only a very limited range of spatial and temporal
frequencies, further analysis is limited to the results for
12�12�12 video.

3. RESULTS

ICA on digitized video of natural scenes yields ICs that
resemble edges or bars, moving with a ¢xed velocity
perpendicularly to their main axis of orientation (¢gure
2a, odd rows). The corresponding ICFs (even rows) move
with similar velocity, but at higher spatial and temporal
frequencies. Both ICs and ICFs are con¢ned to a parti-
cular region in space and time, but their behaviour
within these spatial and temporal envelopes is di¡erent.
Whereas the ICs move as a whole (identical group and
phase velocity), the ICFs consist of an undulation moving
within a relatively steady envelope (group velocity small
compared with phase velocity). The spatio-temporal
behaviour of ICs and ICFs can be summarized by inte-
grating them along their main axis of spatial orientation,
i.e. by projecting them onto the direction of propagation
(Adelson & Bergen 1985; DeAngelis et al. 1993). The
resulting space^time diagrams (¢gure 2b,d) show how

the spatial pro¢le develops as a function of time. The
identical slopes in these diagrams indicate an identical
velocity of the undulations of corresponding ICs and
ICFs. The envelopes of the space^time diagrams of the
ICFs (¢gure 2e), however, have a position that is more
steady as a function of time than those of the ICs (¢gure
2c), consistent with the steady ICFenvelope noted above.

The spatio-temporal properties of the ICFs closely
resemble those of receptive ¢elds measured in simple cells
(DeAngelis et al. 1993). Both are con¢ned to a limited
region in space and time and both resemble an undula-
tion travelling through a steady envelope. Moreover, both
are found for a range of velocities, spatial frequencies,
and spatial scales. However, there are also di¡erences.
First, di¡erent ICFs are centred at di¡erent positions and
times. For visual space, this is similar to how the visual
cortex is organized: the ¢nite extent of (angular) visual
space can be covered with a ¢nite number of neurons at
di¡erent positions. For visual time, however, it implies
coding with many cells, each only responding if a
stimulus occurs at a speci¢c time. As time is unbounded,
this would be an unwieldy processing strategy. In
practice, ICFs that are spatially identical but centred at
di¡erent times can be combined into a single continuously
acting ¢lter (with a proper delay to comply with
causality). A second di¡erence with the receptive ¢elds
of simple cells is that ICFs are more symmetrical in
time and more narrowly tuned in temporal frequency
(DeAngelis et al. 1993).

Figure 3(a,b) shows an IC and ICF in frequency space,
with the surface showing points where the amplitude is at
half maximum. The ICF is shifted towards higher spatial
and temporal frequencies than the IC (median ratios 1.76
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Figure 2. Four examples of an IC and the corresponding ICF. (a) Odd rows: ICs, shown as 12 consecutive time-frames each of
12�12 spatial pixels. Grey denotes zero, black negative, and white positive values. Even rows: corresponding ICFs. (b) Space^
time diagrams of the ICs shown in (a), constructed by projecting the IC in each time-frame onto the direction of propagation;
the result was slightly smoothed for presentation purposes, just enough to blur the edges of the constituent pixels. (c) Envelopes
of (b), calculated as the magnitude of the vector sum of each spatial pro¢le of (b) and its Hilbert transform (DeAngelis et al.
1993). Contours are drawn at 0.2, 0.4, 0.6, 0.8 and 1.0 of the maximum. (d) Space^time diagrams of the ICFs shown in (a).
(e) Envelopes of (d).



and 1.71, respectively, for all 12�12�12 ICs and ICFs
that were computed), but remains at the same orientation
(correlation coe¤cient r�0.97) and velocity (r�0.94).
Figure 3(c) shows the shift of frequencies of ICFs (dots)
relative to ICs (open circles). As can be seen, the ICFs do
not tile the spatio-temporal frequency space by more or
less uniformly ¢lling a sphere (as in the tiling recently
proposed by Simoncelli & Heeger (1998)). Instead, they
are concentrated mostly in an outer shell of such a
sphere. This shift of frequency changes the correlation
between spatial and temporal frequencies from slightly
positive for the ICs (r�0.35) to slightly negative for the
ICFs (r�70.23). Negative correlations (r�70.57 and
r�70.21) were also measured in simple cells in the cat
(DeAngelis et al. 1993; Baker 1990). Qualitatively similar
results (¢gure 3d) were obtained for an 8�8�8 video
analysis, where all ICs were calculated rather than a
subset as for the 12�12�12 video. The frequency shift
produces an increased correlation between spatial
frequency and velocity for ICFs (¢gure 3e, r�70.42 for
ICs, and r�70.75 for ICFs, with a slope of 71.28 for
the logarithmic regression line; cf. r�70.84 and a slope
of 71.24 for cat simple cells (DeAngelis et al. 1993)).

Thus ICFs centred at low spatial frequencies are gener-
ally tuned to faster movement than those at high spatial
frequencies. As a result, there is a much higher propor-
tion of ¢lters at low spatial frequencies for moving images
than for still images, which alleviates a lingering discre-
pancy between the properties of spatial ICFs and simple-
cell receptive ¢elds (van Hateren & van der Schaaf
1998). Figure 3( f ) compares a histogram of the peak
spatial frequency measured in macaque simple cells
(DeValois et al. 1982) with ICFs of single video frames
(solid line) and video sequences (dashed line) taken from
the same data set. Although the histogram for the video
sequences (dashed line) is still not as broad as the
measurements, it should be remarked that its width is
probably an underestimate, because for 12�12�12 video
only a total ratio of six is possible for the range of peak
spatial frequencies (i.e. for horizontal and vertical orien-
tations). The curve for single video frames is consistent
with results for still images (van Hateren & van der
Schaaf 1998), suggesting that it is not motion blur in the
video that causes an increase in ICFs and ICs at low
spatial frequencies, but rather space^time correlations
introduced by the movement.
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Figure 3. Spatial and temporal frequency analysis of ICs and ICFs. (a) Amplitude spectrum of an IC, showing the surface at
half maximum; fx and fy are spatial frequencies (cycles per 12 pixels), and ft temporal frequency (cycles per 12 video frames).
(b) Amplitude spectrum of the ICF corresponding to (a). (c) Positions of the peaks in frequency space of 288 ICs (open
circles) and ICFs (dots). Spatial frequency ( fs) is the magnitude of the vector sum of fx and fy. Frequency resolution was
enhanced by performing a 128�128�128-point FFT with zero-padding of the 12�12�12 data. (d) As (c), all 512 ICs and
ICFs of 8�8�8 video data. (e) Peaks in spatial frequency^velocity (� ft /fs) space. Details as in (c). ( f) Distribution of the
spatial frequencies at the peak in the amplitude spectrum of ICFs for single video frames (solid line), 12�12�12 video
sequences (dashed line), and measurements of simple cells in the foveal area of macaque primary visual cortex (histogram,
from DeValois et al. 1982). The ICF histograms have an arbitrary position along the spatial frequency axis, because the video
data do not have a ¢xed spatial scale. Thus only the relative widths of the distributions can be compared. Note that for the
12�12�12 video, a total ratio of only six is possible for the peak spatial frequency; thus the width of the calculated histogram
(dashed line) may be underestimated.



In control experiments with video computed by
sliding a window at constant speed over still images, we
found that video sequences with a single velocity
produced ICs and ICFs moving at exactly that velocity.
The results deviate from those for natural video in
several ways: ¢rst, the ICs and ICFs have their main
axis of orientation not exclusively perpendicularly to the
direction of motion; second, ICFs are all at a single,
high spatial frequency; and third, the ICs and the ICFs
extend over all frames, i.e. they lack a temporal
envelope. The ¢rst two results follow directly from ICA
on still images, because spatio-temporal ICA of video
with a single velocity is a degenerate case, which can be
reformulated as a two-dimensional, spatial ICA. An
ICA on sequences with a more natural movement distri-
bution (continuously distributed random directions, and
a velocity distribution *1/(v+v0)2, with v angular velocity
and v0 a constant; see van Hateren (1993) and Dong
(1997)) yielded perpendicular movement, and ICFs
peaking at di¡erent spatial frequencies with di¡erent
velocities. The ICs and ICFs are not as localized in
space and time as those of natural video, however, thus
it appears that local spatio-temporal structure (such as
relative movement within a scene, acceleration, and
scene cuts or saccades) is important.

4. DISCUSSION

Because the structure of the ICFs is determined by the
statistics of video sequences, we can try to understand
their form in terms of natural image composition. At a
fundamental level, scenes consist largely of occluding
objects undergoing various degrees of motion (Ruderman
1997). Several studies (Bell & Sejnowski 1997a,b; van
Hateren & van der Schaaf 1998) have shown that the
independent components of spatial images resemble
edges. This suggests that moving edges have an analogous
role for the spatio-temporal case. The velocity distribu-
tion in natural scenes is continuous, and this means that
an ICF tuned to a particular velocity always has to deal
with a range of velocities. For high spatial frequencies,
even a small range of velocities will produce strongly
varying phase relationships between frequency compo-
nents in consecutive time frames, which makes it di¤cult
to track fast-moving high spatial frequencies. Thus it can
be understood that fast-moving ICFs are mainly limited
to low spatial frequencies. Given the presence of moving
object borders in natural scenes, it is also not unexpected
that the ICFs reported here are producing sparse
response distributions (i.e. distributions with both high
central peaks and long tails). We suggest that the ICFs
produce the high central peaks because they are local in
space^time, and most of the time measure small pixel
di¡erences within a single object. They have long tails in
the response distribution because they are able to momen-
tarily track object borders: when the speed and orienta-
tion match, they measure large pixel di¡erences between
two (or a few) adjacent objects.

Although the properties of the ICFs found (see, for
example, ¢gure 2) are qualitatively similar to spatio-
temporal receptive ¢elds of cortical simple cells, the
present analysis is too limited to make a full quantitative
comparison possible. First, the spatial and temporal size

of the video blocks used (12 in each dimension) is not
large enough to avoid boundary e¡ects completely.
Although, for a purely spatial ICA, 12�12 image patches
are already reasonably free from boundary e¡ects
(Olshausen & Field 1997; Bell & Sejnowski 1997b; cf. the
18�18 analysis in van Hateren & van der Schaaf (1998)),
the movement in video blocks presumably increases
boundary e¡ects. This can only be tested with larger
video blocks, but such testing is not possible with the
present (already large) database and the available compu-
tational power. Furthermore, recent results on spatial
ICA (van Hateren & van der Schaaf 1998) indicate that
systematic variations in the statistics of di¡erent scenes
are causing variability in ICF properties which should be
taken into account when comparing these with cortical
receptive ¢elds. For the same reasons as outlined above, a
similar analysis for spatio-temporal ICA is not yet
possible.

In a recent study (DeValois & DeValois 1991), patterns
called `moving Gabors' were presented to human obser-
vers. These patterns consist of a moving sinusoidal grating
windowed by a steady Gaussian envelope, and resemble
both the ICFs reported here and the spatio-temporal
receptive ¢elds measured in simple cells. It was shown
that this stimulus elicits a strong positional illusion: the
envelope of the pattern appears to be displaced in the
direction of movement of the sinusoid. This illusion can
be understood from the results presented here. As already
mentioned, the ICFs are di¡erent from the ICs, because
ICs overlap strongly, and the ICFs need to extract the IC
amplitude without interference from other ICs. A strong
excitation of a particular ICF signi¢es the strong presence
of the corresponding IC. However, the IC is not the most
e¡ective stimulus for the ICF: the strongest response will
occur when a matched stimulus is given, i.e. a stimulus
identical to the ICF itself (Watson et al. 1983; Watson &
Turano 1995). Although neighbouring ICFs will also be
excited to some extent, noise in the visual system will
prevent a faithful representation of the ICF-shaped
stimulus: we assume that noise in e¡ect turns the set of
ICs into an undercomplete basis for arbitrary video
blocks, though still completeöor even overcompleteöfor
video blocks with natural spatio-temporal statistics. The
response of the matching ICF and its neighbours is,
however, not interpreted by the visual system as
signifying the presence of an ICF-shaped stimulus, but
rather the presence of an IC-shaped stimulus. Thus it
causes a visual illusion. Fortunately, this will seldom inter-
fere with normal vision, because natural scenes are not
composed of ICF-shaped components (an unnaturally
moving object with too many fringes), but rather of IC-
shaped components (resembling moving edges or bars).
Only when the visual system is deliberately presented
with an ICF-shaped stimulus, such as a moving Gabor, is
the illusion revealed: the steady envelope is misinter-
preted as a moving one, which subsequently causes a posi-
tional misjudgement.

We thank Arjen van der Schaaf and Herman Snippe for com-
ments. This research was supported by the Netherlands
Organization for Scienti¢c Research (to J.H.v.H.), the Alfred P.
Sloan Foundation (to D.L.R.), and the Groningen Centre for
High-Performance Computing.
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