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Independent Component Analysis of Noninvasively
Recorded Cortical Magnetic DC-Fields in Humans
Gerd Wübbeler, Andreas Ziehe, Bruno-Marcel Mackert, Klaus-Robert Müller*, Lutz Trahms, and Gabriel Curio

Abstract—We apply a recently developed multivariate statis-
tical data analysis technique—so called blind source separation
(BSS) by independent component analysis—to process magne-
toencephalogram recordings of near-dc fields. The extraction
of near-dc fields from MEG recordings has great relevance for
medical applications since slowly varying dc-phenomena have
been found, e.g., in cerebral anoxia and spreading depression in
animals.

Comparing several BSS approaches, it turns out that an
algorithm based on temporal decorrelation successfully extracted
a dc-component which was induced in the auditory cortex by
presentation of music. The task is challenging because of the
limited amount of available data and the corruption by outliers,
which makes it an interesting real-world testbed for studying the
robustness of ICA methods.

Index Terms—Biomagnetism, biomedical data processing,
blind source separation, dc-recordings, independent component
analysis, magnetoencephalography (MEG).

I. INTRODUCTION

RECENTLY, the feasibility of a noninvasivemagnetic
registration of near-dc (below 0.1 Hz) magnetic fields

from the human cortex using superconducting quantum
interference devices (SQUID’s) has been shown [1]. Such
near-dc phenomena may have importance for metabolic
injuries of brain cells in stroke or migraine [2]–[4]. Since
magnetoencephalography (MEG) records the spatio-temporal
neuromagnetic field with an array of biomagnetometers one
can apply multivariate statistical methods for the data analysis.
A popular method is independent component analysis (ICA),
where the continuous-valued latent variables of input data are
inferred by imposing statistical independence on the outputs.
ICA has received great attention in various technical application
domains like acoustic source separation or telecommunication
[5].
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In addition this technique has been successfully applied to
reduce artifacts in multichannel electroencephalography (EEG),
magnetoencephalography (MEG) and magnetoneurography
(MNG) recordings [6]–[8] and also to analyze evoked responses
[9].

In this work we will show that ICA provides an efficient, un-
supervised tool to extract an interesting physiological phenom-
enon from near-dc neuromagnetic data. A chance for dc-coupled
brain monitoring is of high medical relevance because many
pathophysiological processes have their main energy in the fre-
quency range below 0.1 Hz. Therefore, it is of utmost impor-
tance to further improve the signal extraction from dc-MEG
data.

The biomagnetic recording technology employed here is
based on a mechanical modulation of the head, respectively,
body position relative to the sensor. This yields a high sensi-
tivity which is both chance and challenge since it will not only
enable physicians to detect minute (patho-) physiological fields
[10], [11] but also poses interesting problems for data analysis
since the magnetic fields of a multitude of different biological
processes and noise superimpose the signal of interest. It is
a helpful matter of fact that many of these processes vary in
intensityindependentlyof each other.

When introducing the present paradigm of prolonged audi-
tory (music) stimulation for dc-MEG [1] we sought a physio-
logical dc-source in the brain which we could 1) switch on
and off arbitrarily, and 2) which had a field pattern that could
be predicted by comparison to other (phasic) evoked activities
from auditory cortices [12]. This paradigm defines a measure-
ment and analysis scenario with almost complete knowledge
about both the spatial pattern and the time course of a cerebral
dc-source which on the other hand is fully embedded in the bio-
logical and ambient noise background. Hence it may serve as a
testbed for a critical comparison of advanced ICA approaches
facing the “real world” problems of low signal-to-noise ratio
(SNR) coming along with a limited number of data samples.

In Section II, we will first review some common ICA tech-
niques (JADE, FastICA, and TDSEP) and then (Section III) de-
scribe the neurophysiological experiment for which we analyze
the robustness of the above mentioned ICA algorithms and fi-
nally draw some conclusions from our findings.

II. BLIND SOURCESEPARATION

A. Model

Due to the fact that magnetic fields of different bioelectric
current sources superimpose linearly, the measured values of the
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SQUID-sensor array can be modeled as a linear combination of
component vectors

(1)

where . For in-
dependent component analysis we assume that the observed sig-
nals are linear mixtures of underlying sources , that
are mutually statistically independent, i.e., their joint probability
density function factorizes.

Furthermore, it is assumed that each componenthas zero
mean. Within these assumptions one can separate the data
into independentcomponents . This recovers the
original sources from the observed mixtures up to scaling
and permutation. As both the mixing processand the sources

are unknown, these techniques are calledblind source sep-
aration (BSS) [13].

B. Three Algorithms for BSS

In the following we will shortly review three representative
types of source separation algorithms that take different ap-
proaches to achieve a demixing.

A substantial amount of research has been conducted on
algorithms using higher order statistics for estimation of ICA
[13], [5]. For off-line (batch) computation, Cardosoet al. [14]
developed theJADE algorithm based on the (joint) diago-
nalization of matrices obtained from “parallel slices” of the
fourth-order cumulant tensor. This algorithm often performs
very efficiently on low dimensional data if sufficiently many
sample points are available. However, for high dimensional
problems like MEG the effort for storing and processing
the fourth-order cumulants is and computation may
become prohibitive. As a remedy for this problem, Hyvärinen
and Oja developed an algorithm utilizing a fixed-point iteration
[15] termedFastICA which uses kurtosis as a contrast function
(see [16] for extensions to generalized contrasts). In matrix
notation, FastICA takes the form

diag

where and
where is a nonlinear contrast function. This

version of FastICA has been shown to be equivalent [17] to the
maximum likelihood approach for ICA given by a stochastic
gradient descent as advocated in [18]–[20].

The previously described set of methods utilizes higher order
moments to exploit the non-Gaussian distribution of the sources
to achieve a separation. In contrast, the Temporal Decorrelation
SEParation (TDSEP) algorithm [21] relies on distinctive spec-
tral/temporal characteristics of the sources using second-order
statistics only (see also [22]–[25]). Such inherent time struc-
ture of signals can be found particularly in neurophysiolog-
ical recordings. The advantage of second-order methods is their
computational simplicity and efficiency. Furthermore, for a re-
liable estimate of covariances only comparably few samples are
needed.

C. Details of TDSEP

The TDSEP algorithm uses the property that the cross-cor-
relation functions vanish for mutually independent signals. As-
suming further that the signals have a temporal structure
i.e., a “nondelta” autocorrelation function all time-delayed cor-
relation matrices should be diagonal. This knowledge is
used to calculate the unknown mixing matrix in (1) by a
simultaneous diagonalization of aset of correlation matrices

1 for different choices of . Since
the mixing model in (1) is just a linear transformation we can
substitute by and get

(2)

For the special case oftwo lagged correlation matrices, e.g.,
and one can achieve a joint diagonalization by

solving the general eigenvalue problem
[22].

The quality of the signal separation varies strongly with the
very choice of [21]. However, solving (2) for several by
simultaneous diagonalization eliminates this problem.

An approximate simultaneous diagonalization of several
matrices can be achieved in two steps: 1) whitening and 2) a
number of Jacobi rotations. First a whitening transformation

achieves a white basis on
a unit sphere. The remaining set of time delayed correlation
matrices can be diagonalized subsequently by a unique
orthogonal transformation , since in the white basis all
degrees of freedom left are rotations. For details we refer to
[14], [21], and [24].

Concatenation of both transforms finally yields an estimate
of the mixing matrix , which has to be inverted to
get the demixing matrix .

As a side remark: one can carry the thought of simultaneous
diagonalization of matrices even further. In principle, any two
(or more) matrices that are diagonal for the sources are sufficient
to find a proper demixing transform . Matrices that could be
used apart from the time-delayed correlations introduced before
are, e.g., correlation matrices of filtered signals [25] or slices of
a higher order cumulant tensor [14], [26].

D. Limits and Problems for Source Separation Algorithms

While using ICA techniques one has to be aware of theira
priori assumptions, limits and difficulties.

1) A particularly hard practical problem is the limited
availability of data points in combination with a high-di-
mensional sensor input, the latter being a problem of
computational complexity that can be overcome by,
e.g., TDSEP or FastICA algorithms, while the former
is a ubiquitous systematic statistical problem (“curse of
dimensionality”).

2) Channel noise is potentially a rather serious harm to ICA
algorithms as it effectively doubles the number of inde-
pendent sources. Often, however, the application problem

1Hereh�i denotes the time average.
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allows to construct an approximate noise model and pro-
jections to signal spaces orthogonal to the noise space can
be performed [26], [27].

3) Any projection algorithm can only retrieve and denoise
signalswithin the subspace defined by its prior assump-
tions. E.g. an orthogonality assumption leads to principal
component analysis (PCA), orthogonality in some feature
space to nonlinear PCA (cf. [28]) and enforcing mutual
independence of the components defines ICA.

4) The number of sources that can be unmixed has to be
equal or smaller than the number of sensors. Although in
MEG the recorded signals are generated by a multitude
of microscopic sources, these can often be collapsed into
a few macroscopic sources.

5) The mixing model as defined in (1) might be too
simple-minded and models that include noise terms
(see discussion above) or cope with convolutive or even
nonlinear mixtures would be more appropriate. For
MEG/EEG recordings, however, a linear model is suffi-
cient, due to the linearly superimposing magnetic/electric
fields.

6) Outliers can strongly decrease the performance of ICA
algorithms, in particular methods that use higher order
statistics explicitly (e.g., JADE, FastICA with kurtosis).

III. A PPLICATION

This section first gives some medical background on
dc-recordings, then the experimental set-up and preprocessing
is described and finally we apply different ICA techniques to
the data and discuss our findings.

A. Clinical Background of DC-Recordings

Near-dc phenomena are expected in metabolic injuries to
brain cells in stroke or migraine, e.g., in anoxic depolarization,
peri-infarct depolarization or spreading depression [2]–[4].
Noninvasive electrical recordings of near-dc phenomena are
prone to large drift artifacts due to electrochemical instabilities
at the electrode-skin interface. Up to now this limitation
could be overcome only by invasive approaches [29], [30].
In contrast, SQUID’s allow for a noninvasive magnetic reg-
istration of near-dc magnetic fields. Using this technology
biomagnetic fields below 0.1 Hz (near-dc) arising from “injury
currents” of traumatized tissue, e.g., muscle and nerve, have
been measured noninvasivelyin vitro [10], [11]. Biomagnetic
fields in this frequency range were detected, quantified and
continuously monitored noninvasively also from the human
brain by employing an acoustical stimulation paradigm to
induce a prolonged auditory cortex activation (for detailed
physiological background see [1]).

B. Data Acquisition and Validation

The neuromagnetic field data were recorded in a conventional
magnetically shielded room (AK3b) in a clinical environment
using 49 low noise first-order SQUID gradiometers (70-mm
baseline) covering a planar area of 210-mm diameter [31]. The

Fig. 1. Input data used for ICA after dc preprocessing (demodulation and
reconstruction); arranged according to sensor positions; diameter of sensor array
210 mm.

sensor was centered tangentially approximately over the left au-
ditory cortex. The acoustic stimulation was achieved by pre-
senting alternating periods of music and silence, each of 30 s
length, to the subjects right ear during 30 min of total recording
time. The dc magnetic field values were acquired by using a
mechanical horizontal modulation of the body position with a
frequency of 0.4 Hz and an amplitude of 75 mm. This mod-
ulation transposed the dc magnetic field of the subject to the
modulation frequency, which is less contaminated by noise. The
recorded magnetic field data were processed by digital lock-in
techniques in order to extract the modulation induced frequency
components [32]. Then the dc-field of the subject was recon-
structed from these frequency components by using a transfor-
mation technique based on a virtual magnetic field generator
[1]. These reconstructed dc magnetic field values, sampled at
the modulation frequency of 0.4 Hz, gave a total number of 720
sample points per channel for the 30-min recording time and
were used as input for the ICA-algorithms.

Let us examine the time courses of 30 min for all 49 channels
(cf. Fig. 1). At the first glance, the signals have an obvious trend
behavior (slow drift) while possible components of interest are
covered by other strong signals of unknown origin, i.e., the re-
sponse to the stimulus is completely hidden in the data.

To apply ICA algorithms to this data we have to ensure that
the criteria of the checklist from Section II-D are fulfilled. The
hardest problem is posed by 1) since we have 49 channels and
only 720 data points per channel. Additive channel noise 2) is
a minor problem due to the experimental set-up, but slow base-
line drifts are certainly present. As we are looking for a signal
that is time-locked with the stimulus and due to linear superposi-
tion of biomagnetic fields our assumption of temporal decorrela-
tion/independence and a linear mixing model 3) holds. Also, the
number of sources 4) has to be less than the number of sensors.
Even though the exact number is unknown, at least the eigen-
value spectrum of the covariance matrix decayed rapidly,
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Fig. 2. Spatial field patterns, waveforms and frequency contents of four
selected components obtained by TDSEP. For units and details of ICA10 cf.
Fig. 3.

indicating few dominating sources. Finally, as we see from the
occasional spikes in various channels shown in Fig. 1, outliers
5) pose a problem in this data set.

C. Results and Discussion

We now apply TDSEP [21] to the data, reduced to a 32-di-
mensional subspace by PCA, using 50 time-lagged correlation
matrices ( sample points) for simultaneous diago-
nalization. In Fig. 2 some selected ICA components are shown.
Not surprisingly, the first component (ICA1) mainly captured
the slow drift, that was already visible in the data in Fig. 1. While
most other components show irregular time courses reflecting
the dynamics of undetermined processes it is noteworthy that
their field maps feature spatially coherent field patterns which
clearly distinguish them from random channel noise patterns.

Remarkably, one component (ICA10) shows a (noisy) rect-
angular waveform. Its time course and frequency (see Fig. 3)
clearly displays the s “on/off” characteristics of the stim-
ulus. The spatial field distribution of ICA10 shows a bipolar
pattern, located at the expected position of cortical activity [1],
[12]. Both findings give direct evidence that ICA10 represents
the response to the acoustical stimulus.

Even though we do not expect that the cortical response
resembles the stimulus completely, computing the correlation
coefficient between the “on/off” stimulus and the ICA time
courses provides a useful measure to evaluate and compare
the performance of different separation algorithms. Applying
the three algorithms from Section II-B, we find that only the
TDSEP algorithm is able to recover a signal that is highly
correlated to the stimulus, while FastICA and JADE fail for
this specific task (for correlation coefficients see also Fig. 4).
There might be a number of reasons for this finding. On one
hand the limited number of sample points is a serious problem
for algorithms based on higher order statistics, as they have to
estimate a larger amount of parameters from the same amount
of data. On the other hand, the low SNR is problematic as well
and makes the distinction between different sources solely
relying on the probability density very difficult. Furthermore,
we note a number of outliers in Fig. 1 that may harm the
estimation of higher order moments. Unfortunately, simply
removing potential outliers did not improve the results, as one
might erroneously remove also data points which are important
for a proper estimate of the higher order statistics.

Fig. 3. Spatial field pattern, frequency content and time course of ICA10.

One might argue that our comparison in this specific context
is inadequate, as dc signals contain by definition a strong tem-
poral correlation and may have a Gaussian distribution. How-
ever, the extracted component (ICA 10) from which we be-
lieve that it corresponds to interesting brain activity has a clear
non-Gaussian structure (kurtosis ).

In Fig. 4, we show the performance of the three algorithms
as different numbers of PCA components were used for sub-
space projection. Clearly, TDSEP is the only algorithm which
reliably extracts a component which is highly correlated to the
stimulus, given a sufficient amount of components (i.e., ).
We also used the Molgedey–Schuster algorithm [22], which can
be seen as the simplest variant of TDSEP, performing a simulta-
neous diagonalization of the equal-time covariance matrix and
only one delayed covariance matrix by solving a generalized
eigenvalue problem. However, the performance of this method
depends strongly on the choice of the delay parameterand
variations between the best and the worst result are extremely
high [21]. For the best value (which is not accessiblea priori)
we obtain a curve which lies about 2% below the TDSEP solu-
tion in Fig. 4, whereas for the worstvalue only a rather bad
performance is achieved—lying in the interval 0.3–0.4 of the
correlation coefficient like FastICA or JADE (both curves are
not shown to keep Fig. 4 simple).

Fig. 5 shows the dependency of the separation result for
TDSEP as a function of the sample size. Already for 300
samples we observe an enhanced correlation, which is even
higher than the respective correlation coefficient obtained by
the JADE or FastICA algorithm for all 720 data points.

IV. CONCLUSION AND OUTLOOK

The presented results provide deeper insights into strengths
and limitations of ICA approaches to process dc-magnetoen-
cephalography data.

Considering this dc-MEG scenario as a testbed for evaluating
the performance of source separation methods we find that the
TDSEP approach appears remarkable in its performance under
two test-the-limits conditions: 1) Even for a substantially re-
duced dimensionality of the data TDSEP identifies the stimulus
response with high confidence (Fig. 4). 2) When keeping the
number of channels fixed (49) but reducing the number of data
samples entering the ICA, TDSEP showed only a slight degra-
dation for the correlation of its best matching component with
the target signal (Fig. 5). In this test case, higher order-based
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Fig. 4. A PCA projection to a given number of components is performed
prior to ICA in this subspace. We show the correlation coefficient between
stimulus and the best matching ICA component vs number of components. The
correlation to the best matching PCA component is shown as a baseline.

Fig. 5. Correlation coefficient between stimulus and the best matching
ICA component vs number of samples used for TDSEP applied on the full
49-dimensional sensor space.

techniques did not show a satisfying performance hence we
strongly advocate the use of second-order BSS techniques in
this and similar scenarios which contain intrinsic time informa-
tion.

Under a general physiological point of view it is of primary
interest to note that when employing TDSEP it became possible
on the single subject level (i.e., without reverting to group sta-
tistics) to derive a faithful estimate for the time course of the
dc-activation level in a relatively circumscript brain area (i.e.,
the auditory cortex in the temporal lobe). Most importantly, this
analysis proceeded fully blind to oura priori experimental back-
ground knowledge on both the spatial signature of the music-re-
lated dc-fields (field map characteristic for auditory cortex acti-
vations) and its time course (30 s on and 30 s off). Both the spa-
tial and the temporal source aspects were adequately captured in
one ICA component (ICA10) using TDSEP. In contrast to ear-
lier paradigms which identified cortical sources of short-term
(2–9 s) “sustained” fields [12] or potentials [33] by averaging at
least dozens of such repeated activations the present approach
“dc-MEG plus ICA” allows to monitor the time course of cere-
bral dc-activations without any need for averaging (Fig. 3). This
is a first step toward “on-line” brain monitoring providing a
chance for single trial, respectively single event, analysis. It is
important to note that the sustained activity evoked in the au-
ditory cortex does not merely represent an “on/off” signal re-

flecting an automatic brain response to switches in the stimulus
channel, rather its amplitude can be modified by higher cogni-
tive brain functions, such as attention directed by subject to or
away from the auditory input [33], [34]. It shall be emphasized
that the component of interest in the present paradigm had only
rank ten in a list ordered according to the L2-norm of component
power. Since many of the ICA components with larger power
show up with maps featuring spatially coherent fields (i.e., they
did not resemble random sensor noise patterns) a further physi-
ological analysis of possibly underlying biological sources can
be reasonably based on such decompositions.

Concluding, the general problem that arises when applying
algorithms developed under mathematically strict assumptions
to real-world scenarios was sufficiently handled by the TDSEP
version of ICA for the case of dc-magnetoencephalography.
Hence the conjunction of dc-MEG and ICA holds a promising
potential for assessing slowly varying neuroelectric brain
processes both in health and disease, in particular concerning
stroke patients.
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