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An extension of the infomax algorithm of Bell and Sejnowski (1995) is
presented that is able blindly to separate mixed signals with sub- and
supergaussian source distributions. This was achieved by using a sim-
ple type of learning rule first derived by Girolami (1997) by choosing
negentropy as a projection pursuit index. Parameterized probability dis-
tributions that have sub- and supergaussian regimes were used to derive
a general learning rule that preserves the simple architecture proposed
by Bell and Sejnowski (1995), is optimized using the natural gradient by
Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996)
to switch between sub- and supergaussian regimes. We demonstrate that
the extended infomax algorithm is able to separate 20 sources with a vari-
ety of source distributions easily. Applied to high-dimensional data from
electroencephalographic recordings, it is effective at separating artifacts
such as eye blinks and line noise from weaker electrical signals that arise
from sources in the brain.

1 Introduction

Recently, blind source separation by independent component analysis (ICA)
has received attention because of its potential signal processing applications,
such as speech enhancement systems, telecommunications, and medical sig-
nal processing. The goal of ICA is to recover independent sources given only
sensor observations that are unknown linear mixtures of the unobserved in-
dependent source signals. In contrast to correlation-based transformations
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such as principal component analysis (PCA), ICA reduces the statistical de-
pendencies of the signals, attempting to make the signals as independent
as possible.

The blind source separation problem has been studied by many re-
searchers in neural networks and statistical signal processing (Jutten &
Hérault, 1991; Comon, 1994; Cichocki, Unbehauen, & Rummert, 1994; Bell
& Sejnowski, 1995; Cardoso & Laheld, 1996; Amari, Cichocki, & Yang, 1996;
Pearlmutter & Parra, 1996; Deco & Obradovic, 1996; Oja, 1997; Karhunen,
Oja, Wang, Vigario, & Joutsensalo, 1997; Girolami & Fyfe, 1997a). See the
introduction of Nadal and Parga (1997) for a historical review of ICA, and
Karhunen (1996) for a review of different neural-based blind source sep-
aration algorithms. More general ICA reviews are in Cardoso (1998), Lee
(1998), & Lee, Girolami, Bell, & Sejnowski (1999).

Bell and Sejnowski (1995) have developed an unsupervised learning
algorithm based on entropy maximization in a single-layer feedforward
neural network. The algorithm is effective in separating sources that have
supergaussian distributions: sharply peaked probability density functions
(p.d.f.s) with heavy tails. As illustrated in section 4 of Bell and Sejnowski
(1995), the algorithm fails to separate sources that have negative kurto-
sis (e.g., uniform distribution). Pearlmutter and Parra (1996) have devel-
oped a contextual ICA algorithm within the maximum likelihood estima-
tion (MLE) framework that is able to separate a more general range of
source distributions. Motivated by computational simplicity, we use an
information-theoretic algorithm that preserves the simple architecture in
Bell and Sejnowski (1995) and allows an extension to the separation of mix-
tures of supergaussian and subgaussian sources. Girolami (1997) derived
this type of learning rule from the viewpoint of negentropy maximization1

for exploratory projection pursuit (EPP) and ICA. These algorithms can be
used on-line as well as off-line. Off-line algorithms that can also separate
mixtures of supergaussian and subgaussian sources were proposed by Car-
doso and Soloumiac (1993), Comon (1994), and Pham and Garrat (1997).

The extended infomax algorithm preserves the simple architecture in
Bell and Sejnowski (1995) and the learning rule converges rapidly with the
“natural” gradient proposed by Amari et al. (1996) and Amari (1998) or
the “relative” gradient proposed by Cardoso and Laheld (1996). In com-
puter simulations, we show that this algorithm can successfully separate
20 mixtures of the following sources: 10 soundtracks2, 6 speech and sound
signals used in Bell and Sejnowski (1995), 3 uniformly distributed subgaus-
sian noise signals, and 1 noise source with a gaussian distribution. To test
the extended infomax algorithm on more challenging real-world data, we

1 Relative entropy is the general term for negentropy. Negentropy maximization refers
to maximizing the sum of marginal negentropies.

2 Obtained from Pearlmutter online at http://sweat.cs.unm.edu/∼bap/demos.html.
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performed experiments with electroencephalogram (EEG) recordings and
show that it can clearly separate electrical artifacts from brain activity. This
technique shows great promise for analyzing EEG recordings (Makeig, Jung,
Bell, Ghahremani, & Sejnowski, 1997; Jung et al., 1998) and functional mag-
netic resonance imaging (fMRI) data (McKeown et al., 1998).

In section 2, the problem is stated and a simple but general learning rule
that can separate sub- and supergaussian sources is presented. This rule is
applied to simulations and real data in section 3. Section 4 contains a brief
discussion of other algorithms and architectures, potential applications to
real-world problems, limitations, and further research problems.

2 The Extended Infomax Algorithm

Assume that there is an M-dimensional zero-mean vector s(t) = [s1(t), . . . ,
sM(t)]T, such that the components si(t)are mutually independent. The vector
s(t) corresponds to M independent scalar-valued source signals si(t). We
can write the multivariate p.d.f. of the vector as the product of marginal
independent distributions:

p(s) =
M∏

i=1

pi(si). (2.1)

A data vector x(t) = [x1(t), . . . , xN(t)]T is observed at each time point t, such
that

x(t) = As(t), (2.2)

where A is a full-rank N ×M scalar matrix. Because the components of the
observed vectors are no longer independent, the multivariate p.d.f. will not
satisfy the p.d.f. product equality. In this article, we shall consider the case
where the number of sources is equal to the number of sensors N = M. If the
components of s(t) are such that at most one source is normally distributed,
then it is possible to extract the sources s(t) from the received mixtures x(t)
(Comon, 1994). The mutual information of the observed vector is given by
the Kullback-Leibler (KL) divergence of the multivariate density from the
product of the marginal (univariate) densities:

I(x1, x2, . . . , xN) =
∫ +∞
−∞

∫ +∞
−∞
· · ·
∫ +∞
−∞

p(x1, x2, . . . , xN)

× log
p(x1, x2, . . . , xN)∏N

i=1 pi(xi)
dx1dx2, . . . , dxN. (2.3)
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For simplicity, we write:

I(x) =
∫

p(x) log
p(x)∏N

i=1 pi(xi)
dx. (2.4)

The mutual information will always be positive and will equal zero only
when the components are independent (Cover & Thomas, 1991).

The goal of ICA is to find a linear mapping W such that the unmixed
signals u,

u(t) =Wx(t) =WAs(t), (2.5)

are statistically independent. The sources are recovered up to scaling and
permutation. There are many ways for learning W. Comon (1994) minimizes
the degree of dependence among outputs using contrast functions approxi-
mated by the Edgeworth expansion of the KL divergence. The higher-order
statistics are approximated by cumulants up to fourth order. Other methods
related to minimizing mutual information can be derived from the infomax
approach. Nadal and Parga (1994) showed that in the low-noise case, the
maximum of the mutual information between the input and output of a
neural processor implied that the output distribution was factorial. Roth
and Baram (1996) and Bell and Sejnowski (1995) independently derived
stochastic gradient learning rules for this maximization and applied them,
respectively, to forecasting, time-series analysis, and the blind separation of
sources. A similar adaptive method for source separation has been proposed
by Cardoso and Laheld (1996).

2.1 A Simple But General Learning Rule. The learning algorithm can
be derived using the maximum likelihood formulation. The MLE approach
to blind source separation was first proposed by Gaeta and Lacoume (1990)
and Pham and Garrat (1997) and was pursued more recently by Pearlmutter
and Parra (1996) and Cardoso (1997). The p.d.f. of the observations x can be
expressed as (Amari & Cardoso, 1997):

p(x) = |det(W)|p(u) (2.6)

where p(u) = ∏N
i=1 pi(ui) is the hypothesized distribution of p(s). The log-

likelihood of equation 2.6 is

L(u,W) = log |det(W)| +
N∑

i=1

log pi(ui). (2.7)

Maximizing the log-likelihood with respect to W gives a learning algorithm
for W (Bell & Sejnowski, 1995):

1W ∝
[
(WT)−1 − ϕ(u)xT

]
, (2.8)
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where

ϕ(u) = −
∂p(u)
∂u

p(u)
=
[
−
∂p(u1)

∂u1

p(u1)
, . . . ,−

∂p(uN)

∂uN

p(uN)

]T

. (2.9)

An efficient way to maximize the log-likelihood is to follow the “natural”
gradient (Amari, 1998),

1W ∝ ∂L(u,W)

∂W
WTW =

[
I− ϕ(u)uT

]
W, (2.10)

as proposed by Amari et al. (1996), or the relative gradient, proposed by
Cardoso and Laheld (1996). Here WTW rescales the gradient, simplifies the
learning rule in equation 2.8, and speeds convergence considerably. It has
been shown that the general learning algorithm in equation 2.10 can be
derived from several theoretical viewpoints such as MLE (Pearlmutter &
Parra, 1996), infomax (Bell & Sejnowski, 1995), and negentropy maximiza-
tion (Girolami & Fyfe, 1997b). Lee, Girolami, Bell, & Sejnowski, in press,
review these techniques and show their relation to each other.

The parametric density estimate pi(ui) plays an essential role in the suc-
cess of the learning rule in equation 2.10. Local convergence is ensured if
pi(ui) is the derivative of the log densities of the sources (Pham & Garrat,
1997). If we choose gi(u) to be a logistic function (gi(ui) = tanh(ui)) so that
ϕ(u) = 2 tanh(u), the learning rule reduces to that in Bell and Sejnowski
(1995) with the natural gradient:

1W ∝
[
I− 2 tanh(u)uT

]
W. (2.11)

Theoretical considerations as well as empirical observations3 have shown
that this algorithm is limited to separating sources with supergaussian dis-
tributions. The sigmoid function used in Bell and Sejnowski (1995) pro-
vides a priori knowledge about the source distribution, that is, the super-
gaussian shape of the sources. However, they also discuss a “flexible” sig-
moid function (a sigmoid function with parameters p, r so that g(ui) =∫

g(ui)
p(1− g(ui))

r) can be used to match the source distribution. The idea
of modeling a parametric nonlinearity has been further investigated and
generalized by Pearlmutter and Parra (1996) in their contextual ICA (cICA)
algorithm. They model the p.d.f. in a parametric form by taking into account
the temporal information and choosing pi(ui) as a weighted sum of several
logistic density functions with variable means and scales. Moulines, Car-
doso, and Cassiat (1997) and Xu, Cheung, Yang, and Amari (1997) model
the underlying p.d.f. with mixtures of gaussians and show that they can

3 As detailed in section 4 of Bell and Sejnowski (1995).
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separate sub- and supergaussian sources. These parametric modeling ap-
proaches are in general computationally expensive. In addition, our empir-
ical results on EEG and event-related potentials (ERP) using contextual ICA
indicate that cICA can fail to find independent components. Our conjecture
is that this is due to the limited number of recorded time points (e.g., 600
data points for ERPs) from which a reliable density estimate is difficult.

2.2 Deriving a Learning Rule to Separate Sub- and Supergaussian
Sources. The purpose of the extended infomax algorithm is to provide a
simple learning rule with a fixed nonlinearity that can separate sources
with a variety of distributions. One way of generalizing the learning rule to
sources with either sub- or supergaussian distributions is to approximate the
estimated p.d.f. with an Edgeworth expansion or Gram-Charlier expansion
(Stuart & Ord, 1987), as proposed by Girolami and Fyfe (1997b). Girolami
(1997) used a parametric density estimate to derive the same learning rule
without making any approximations, as we show below.

A symmetric strictly subgaussian density can be modeled using a sym-
metrical form of the Pearson mixture model (Pearson, 1894) as follows (Giro-
lami, 1997, 1998):

p(u) = 1
2

(
N(µ, σ 2)+N(−µ, σ 2)

)
, (2.12)

where N(µ, σ 2) is the normal density with meanµ and variance σ 2. Figure 1
shows the form of the density p(u) for σ 2 = 1 with varying µ = [0 · · · 2]. For
µ = 0 p(u) is a gaussian model whereas for µi = 1.5, for example, the p(u)
is clearly bimodal. The kurtosis k4 (normalized fourth-order cumulant) of
p(u) is

κ = c4

c2
2

= −2µ4

(µ2 + σ 2)2
, (2.13)

where ci is the ith-order cumulant (Girolami, 1997). Depending on the values
of µ and σ 2, the kurtosis lies between −2 and 0. So equation 2.12 defines a
strictly subgaussian symmetric density when µ > 0. Defining a = µ

σ 2 and
applying equation 2.12, we may write for ϕ(u)

ϕ(u) = −
∂p(u)
∂u

p(u)
= u
σ 2 − a

(
exp(au)− exp(−au)
exp(au)+ exp(−au)

)
. (2.14)

Using the definition of the hyperbolic tangent, we can write

ϕ(u) = u
σ 2 −

µ

σ 2 tanh
( µ
σ 2 u

)
. (2.15)
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Setting µ = 1 and σ 2 = 1, equation 2.15 reduces to

ϕ(u) = u− tanh(u). (2.16)

The learning rule for strictly subgaussian sources is now (equations 2.10
and 2.16)

1W ∝
[
I+ tanh(u)uT − uuT

]
W. (2.17)

In the case of unimodal supergaussian sources, we adopt the following
density model

p(u) ∝ pG(u)sech2(u), (2.18)

where pG(u) = N(0, 1) is a zero-mean gaussian density with unit variance.
Figure 2 shows the density model for p(u). The nonlinearity ϕ(u) is now

ϕ(u) = −
∂p(u)
∂u

p(u)
= u+ tanh(u). (2.19)

The learning rule for supergaussian sources is (equations 2.10 and 2.19):

1W ∝
[
I− tanh(u)uT − uuT

]
W. (2.20)

The difference between the supergaussian learning rule in equation 2.20
and the subgaussian learning rule equation 2.17 is the sign before the tanh
function:

1W ∝
{ [

I− tanh(u)uT − uuT
]

W : supergaussian[
I+ tanh(u)uT − uuT

]
W : subgaussian

(2.21)

The learning rules differ in the sign before the tanh function and can
be determined using a switching criterion. Girolami (1997) employs the
sign of kurtosis of the unmixed sources as a switching criterion. However,
because there is no general definition for sub- and supergaussian sources,
we chose a switching criterion, based on stability criteria, presented in the
next subsection.

2.3 Switching Between Nonlinearities. The switching between the sub-
and supergaussian learning rule is

1W ∝
[
I−K tanh(u)uT − uuT

]
×W

{
ki = 1 : supergaussian

ki = −1 : subgaussian (2.22)
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Figure 1: Estimated subgaussian density models for the extended infomax
learning rule with σ 2 = 1 and µi = {0 · · · 2}. The density becomes clearly bi-
modal when µi > 1.

Figure 2: Density model for the supergaussian distribution. The supergaussian
model has a heavier tail than the normal density.
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where ki are elements of the N-dimensional diagonal matrix K. The switch-
ing parameter ki can be derived from the generic stability analysis of sep-
arating solutions as employed by Cardoso and Laheld (1996)4, Pham and
Garrat (1997), and Amari et al. (1997). In the stability analysis, the mean
field is approximated by a first-order perturbation in the parameters of the
separating matrix. The linear approximation near the stationary point is
the gradient of the mean field at the stationary point. The real part of the
eigenvalues of the derivative of the mean field must be negative so that the
parameters are on average pulled back to the stationary point.

A sufficient condition guaranteeing asymptotic stability can be derived
(Cardoso, 1998, in press) so that

κi > 0 1 ≤ i ≤ N, (2.23)

where κi is

κi = E{ϕ′i(ui)}E{u2
i } − E{ϕi(ui)ui} (2.24)

and

ϕi(ui) = ui + ki tanh(ui). (2.25)

Substituting equation 2.25 in equation 2.24 gives

κi = E{kisech2(ui)+ 1}E{u2
i } − E{[ki tanh(ui)+ ui]ui} (2.26)

= ki

(
E{sech2(ui)}E{u2

i } − E{[tanh(ui)]ui}
)
. (2.27)

To ensureκi > 0 the sign of ki must be the same as the sign of E{sech2(ui)}E{u2
i }

− E{[tanh(ui)]ui}. Therefore we can use the learning rule in equation 2.22,
where the ki’s are

ki = sign
(

E{sech2(ui)}E{u2
i } − E{[tanh(ui)]ui}

)
. (2.28)

2.4 The Hyperbolic-Cauchy Density Model. We present another para-
metric density model that may be used for the separation of sub- and su-
pergaussian sources. We define the parametric mixture density as

p(u) ∝ sech2(u+ b)+ sech2(u− b). (2.29)

Figure 3 shows the parametric density as a function of b. For b = 0, the
parametric density is proportional to the hyperbolic-Cauchy distribution

4 See equations 40 and 41 in their paper.
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and is therefore suited for separating supergaussian sources. For b = 2
the parametric density estimator has a bimodal5 distribution with negative
kurtosis and is therefore suitable for separating subgaussian sources:

ϕ(u) = − ∂

∂u
log p(u)

= −2 tanh(u)+ 2 tanh(u+ b)+ 2 tanh(u− b). (2.30)

The learning algorithm for sub- and supergaussian sources is now (equa-
tions 2.30 and 2.10)

1W∝
[
I+2 tanh(u)uT−2 tanh(u+ b)uT−2 tanh(u− b)uT

]
W. (2.31)

When b = 0 (where 0 is an N-dimension vector with elements 0), then the
learning rule reduces to

1W ∝
[
I− 2 tanh(u)uT

]
W, (2.32)

which is exactly the learning rule in Bell and Sejnowski (1995) with the
natural gradient extension. For b > 1, the parametric density is bimodal (as
shown in Figure 3), and the learning rule is suitable for separating signals
with subgaussian distributions. Here again we may use the sign of the
general stability criteria in equation 2.23 and κi in equation 2.24 to determine
bi so that we can switch between bi = 0 and, for example, bi = 2. In Figure 4
we compare the range of kurtosis values of the parametric mixture density
models in equations 2.12 and 2.29. The kurtosis value is shown as a function
of the shaping parameter µ for the symmetric Pearson density model and
b for the hyperbolic-Cauchy mixture density model. The kurtosis for the
Pearson model is strictly negative except for µ = 0 when the kurtosis is
zero. Because the kurtosis for the hyperbolic-Cauchy model ranges from
positive to negative, it may be used to separate signals with both sub- and
supergaussian densities.

3 Simulations and Experimental Results

Extensive simulations and experiments were performed on recorded data
to verify the performance of the extended infomax algorithm equation 2.21.
First, we show that the algorithm is able to separate a large number of
sources with a wide variety of sub- and supergaussian distributions. We
compared the performance of the extended infomax learning rule in equa-

5 Symmetric bimodal densities considered in this article are subgaussian; however,
this is not always the case.
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Figure 3: p(u) as a function of b. For b = 0 the density estimate is suited to
separate supergaussian sources. If, for example, b = 2 the density estimate is
bimodal and therefore suited to separate subgaussian sources.

tion 2.10 to the original infomax learning rule equation 2.11. Second, we
performed a set of experiments on EEG data, which are high dimensional
and include various noise sources.

3.1 Ten Mixed Sound Sources. We obtained 10 mixed sound sources
that were separated by contextual ICA as described in Pearlmutter and
Parra (1996). No prewhitening is required since the transformation W is
not restricted to a rotation, in contrast to nonlinear PCA (Karhunen et al.,
1997). All 55,000 data points were passed 20 times through the learning
rule using a block size (batch) of 300. This corresponds to 3666 iterations
(weight updates). The learning rate was fixed at 0.0005. Figure 5 shows the
error measure during learning. Both learning rules converged. The small
variations of the extended infomax algorithm (upper curve) were due to
the adaptation process of K. The matrix K was initialized to the identity
matrix, and during the learning process the elements of K converge to −1
or 1 to extract sub- or supergaussian sources, respectively. In this simulation
example, sources 7, 8, and 9 are close to gaussian, and slight variations of
their density estimation change the sign. Annealing of the learning rate
reduced the variation. All the music signals had supergaussian distribution
and therefore were separable by the original infomax algorithm. The sources
are already well separated after one pass through the data (about 10 sec on
a SPARC 10 workstation using MATLAB) as shown in Table 1.
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Figure 4: The kurtosis value is shown as a function of the shaping parameter µ
and b (µ for the Pearson density model and b for the hyperbolic-Cauchy density
model). Both models approach k4 = −2 as the shaping parameter increases.
The kurtosis for the Pearson model is strictly negative except for µ = 0. The
kurtosis for the hyperbolic-Cauchy model ranges from positive to negative so
that we may use this single parametric model to separate signals with sub- and
supergaussian densities.

Table 1: Performance Matrix P (Equation 3.2) for 10 Mixed Sound Sources after
One Pass through the Data.

−0.09 −0.38 0.14 −0.10 −0.06 0.93 −0.36 −0.54 0.17 14.79
11.18 −0.01 0.14 0.05 −0.08 0.02 0.07 0.21 −0.12 −0.68
0.15 0.078 −0.08 −0.02 10.19 −0.02 0.15 0.05 0.07 0.17
0.39 0.61 −0.70 −0.07 0.14 0.32 −0.08 0.85 7.64 −0.16
0.04 0.76 14.89 0.03 0.03 −0.17 0.18 −0.31 −0.19 0.04
0.11 12.89 −0.54 −0.23 −0.43 −0.21 −0.12 0.05 0.07 0.18
0.45 0.16 −0.02 6.53 0.24 0.98 −0.39 −0.97 0.06 −0.08
0.31 0.14 0.23 0.03 −0.14 −17.25 −0.39 −0.25 0.19 0.39
−0.54 −0.81 0.62 0.84 −0.18 0.47 −0.04 10.48 −0.92 0.12
−0.08 −0.26 0.15 −0.10 0.49 0.01 −10.25 0.59 0.33 −0.94

Note: After one pass through the data P are already close to the identity matrix after
rescaling and reordering. An italicized entry signifies the largest component for the cor-
responding channel.
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Figure 5: Error measure E in equation 3.2 for the separation of 10 sound sources.
The upper curve is the performance for extended infomax, and the lower curve
shows the performance for the original infomax. The separation quality is shown
in Table 1.

For all experiments and simulations, a momentum term helped to accel-
erate the convergence of the algorithm:

1W(n+ 1) = (1− α)1W(n)+ αW(n), (3.1)

where α takes into account the history of W and α can be increased with an
increasing number of weight updates (as n→∞, α→ 1).

The performance during the learning process we monitored by the error
measure proposed by Amari et al. (1996),

E =
N∑

i=1

 N∑
j=1

|pij|
maxk |pik|

− 1

+ N∑
j=1

(
N∑

i=1

|pij|
maxk |pkj|

− 1

)
, (3.2)

where pij are elements of the performance matrix P = WA. P is close to a
permutation of the scaled identity matrix when the sources are separated.
Figure 5 shows the error measure during the learning process.

To compare the speed of the extended infomax algorithm with another
closely related one, we separated the 10 mixed sound sources using the ex-
tended exploratory projection pursuit network with inhibitory lateral con-
nections (Girolami & Fyfe, 1997a). The single feedforward neural network
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converged several times faster than this architecture using the same learning
rate and a block size of 1. Larger block sizes can be used in the feedforward
network but not the feedback networks, which increase the convergence
speed considerably due to a more reliable estimate of the switching ma-
trix K.

3.2 Twenty Mixed Sound Sources. We separated the following 20
sources: 10 soundtracks obtained from Pearlmutter, 6 speech and sound
signals used in Bell and Sejnowski (1995), 3 uniformly distributed subgaus-
sian noise signals, and 1 noise source with a gaussian distribution. The
densities of the mixtures were close to the gaussian distributions. The fol-
lowing parameters were used: learning rate fixed at 0.0005, block size of
100 data points, and 150 passes through the data (41,250 iterations). Table 2
compares the separation quality between the infomax algorithm and the
extended infomax algorithm.

Figure 6 shows the performance of the matrix P after the rows were man-
ually reordered and normalized to unity. P is close to the identity matrix, and
its off-diagonal elements indicate the amount of error. In this simulation,
we employ k4 as a measure of the recovery of the sources. The original in-
fomax algorithm separated most of the positive kurtotic sources. However,
it failed to extract several sources, including two supergaussian sources
(music 7 and 8) with low kurtosis (0.78 and 0.46, respectively). In contrast,
Figure 7 shows that the performance matrix P for the extended infomax
algorithm is close to the identity matrix. In a listening test, there was a
clear separation of all sources from their mixtures. Note that although the
sources ranged from Laplacian distributions (p(s) ∝ exp(−|s|), e.g., speech),
and gaussian noise to uniformly distributed noise, they were all separated
using one nonlinearity.

The simulation results suggest that the supergaussian and subgaussian
density estimates in equations 2.12 and 2.18 are sufficient to separate the
true sources. The learning algorithms in equations 2.21 and 2.31 performed
almost identically.

3.3 EEG Recordings. EEG recordings of brain electrical activity from
the human scalp, artifacts such as line noise, eye movements, blinks, and
cardiac signals (EKG) pose serious problems in analyzing and interpreting
the recordings. Regression methods have been used to remove eye move-
ment partially from the EEG data (Berg & Scherg, 1991); other artifacts such
as electrode noise, cardiac signals, and muscle noise are even more diffi-
cult to remove. Recently, Makeig, Bell, Jung, & Sejnowski (1996) applied
ICA to the analysis of EEG data using the original infomax algorithm. They
showed that some artifactual components can be isolated from overlapping
EEG signals, including alpha and theta bursts.

We analyzed EEG data that were collected to develop a method of ob-
jectively monitoring the alertness of operators listening for auditory signals
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Table 2: Kurtosis of the Original Signal Sources and Recovered Signals.

Source Source Original Recovered Kurtosis Recovered Kurtosis Signal-to-Noise Ratio (SNR)
Number Type Kurtosis (infomax) (extended infomax) (extended infomax)

1 Music 1 2.4733 2.4754 2.4759 43.4
2 Music 2 1.5135 1.5129 1.5052 55.2
3 Music 3 2.4176 2.4206 2.4044 44.1
4 Music 4 1.076 1.0720 1.0840 31.7
5 Music 5 1.0317 1.0347 1.0488 43.6
6 Music 6 1.8626 1.8653 1.8467 48.1
7 Music 7 0.7867 0.8029 0.7871 32.7
8 Music 8 0.4639 0.2753 0.4591 29.4
9 Music 9 0.5714 0.5874 0.5733 36.4

10 Music 10 2.6358 2.6327 2.6343 46.4
11 Speech 1 6.6645 6.6652 6.6663 54.3
12 Speech 2 3.3355 3.3389 3.3324 50.5
13 Music 11 1.1082 1.1072 1.1053 48.1
14 Speech 3 7.2846 7.2828 7.2875 50.5
15 Music 12 2.8308 2.8198 2.8217 52.6
16 Speech 4 10.8838 10.8738 10.8128 57.1
17 Uniform noise 1 −1.1959 −0.2172 −1.1955 61.4
18 Uniform noise 2 −1.2031 −0.2080 −1.2013 67.7
19 Uniform noise 3 −1.1966 −0.2016 −1.1955 63.6
20 Gaussian noise −0.0148 −0.0964 −0.0399 24.9

Note: The source signals range from highly kurtotic speech signals, gaussian noise (kurtosis is zero) to noise sources with uniform distribution
(negative kurtosis). The sources that failed to separate clearly are italicized. In addition, the SNR is computed for extended infomax.
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Figure 6: Performance matrix P for the separation of 20 sources using the orig-
inal infomax algorithm after normalizing and reordering. Most supergaussian
sources were recovered. However, the three subgaussian sources (17, 18, 19),
the gaussian source (20), and two supergaussian sources (7, 8) remain mixed
and aliased in other sources. In total, 14 sources were extracted, and 6 channels
remained mixed. See Table 2.

Figure 7: Performance matrix P for the separation of 20 sources using the ex-
tended infomax algorithm after normalizing and reordering. P is approximately
the identity matrix that indicates nearly perfect separation.



An Extended Infomax Algorithm 433

(Makeig & Inlow, 1993). During a half-hour session, the subject was asked
to push a button whenever he or she detected an auditory target stimulus.
EEG was collected from 14 electrodes located at sites of the International 10-
20 System (Makeig et al., 1997) at a sampling rate of 312.5 Hz. The extended
infomax algorithm was applied to the 14 channels of 10 seconds of data with
the following parameters: learning rate fixed at 0.0005, 100 passes with block
size of 100 (3125 weight updates). The power spectrum was computed for
each channel, and the power in a band around 60 Hz was used to compute
the relative power for each channel and each separated component.

Figure 8 shows the time course of 14 channels of EEG and Figure 9 the in-
dependent components found by the extended infomax algorithm. Several
observations on the ICA components in Figure 9 and its power spectrum
are of interest:

• Alpha bursts (about 11 Hz) were detected in components 1 and 5. Alpha
band activity (8–12 Hz) occurs most often when the eyes are closed and
the subject is relaxed. Most subjects have more than one alpha rhythm,
with somewhat different frequencies and scalp patterns.

• Theta bursts (about 7 Hz) were detected in components 4, 6, and 9.
Theta-band rhythms (4–8 Hz) may occur during drowsiness and tran-
sient losses of awareness or microsleeps (Makeig & Inlow, 1993), but
frontal theta bursts may occur during intense concentration.

• An eye blink was isolated in component 2 at 8 sec.

• Line noise of 60 Hz was concentrated in component 3 (see the bottom
of Figure 10).

Figure 10 (top) shows power near 60 Hz distributed in all EEG channels
but predominantly in components 4, 13, and 14. Figure 10 (middle) shows
that the original infomax cannot concentrate the line noise into one compo-
nent. In contrast, extended infomax (figure 10, bottom panel) concentrates
it mainly in one subgaussian component, channel 3.

Figure 11 shows another EEG data set with 23 channels, including 2 EOG
(electrooculogram) channels. The eye blinks near 5 sec and 7 sec contam-
inated all of the channels. Figure 12 shows the ICA components without
normalizing the components with respect to their contribution to the raw
data. ICA component 1 in Figure 12 contained the pure eye blink signal.
Small periodic muscle spiking at the temporal sites (T3 and T4) was ex-
tracted into ICA component 14.

Experiments with several different EEG data sets confirmed that the sep-
aration of artifactual signals was highly reliable. In particular, severe line
noise signals could always be decomposed into one or two components with
subgaussian distributions. Jung et al. (1998) show further that eye move-
ment also can be extracted.
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Figure 8: A 10 sec portion of the EEG time series with prominent alpha rhythms
(8–21 Hz). The location of the recording electrode from the scalp is indicated on
the left of each trace. The electrooculogram (EOG) recording is taken from the
temples.

4 Discussion

4.1 Applications to Real-World Problems. The results reported here
for the separation of eye movement artifacts from EEG recordings have im-
mediate application to medical and research data. Independently, Vigario,
Hyvaerinen, and Oja (1996) reported similar findings for EEG recordings
using a fixed-point algorithm for ICA (Hyvaerinen & Oja, 1997). It would
be useful to compare this and other ICA algorithms on the same data sets to
assess their merits. Compared to traditional techniques in EEG analysis, ex-
tended infomax requires less supervision and is easy to apply (see Makeig
et al., 1997; Jung et al., 1998). In addition to the very encouraging results
on EEG data given here, McKeown et al. (1998) have demonstrated another
successful use of the extended infomax algorithm on fMRI recordings. They
investigated task-related human brain activity in fMRI data. In this appli-
cation, they considered both spatial and temporal ICA and found that the
extended infomax algorithm extracted subgaussian temporal components
that could not be extracted with the original infomax algorithm.
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Figure 9: The 14 ICA components extracted from the EEG data in Figure 8.
Components 3, 4, 7, 8, and 10 have subgaussian distributions, and the others have
supergaussian distributions. There is an eye movement artifact at 8 seconds. Line
noise is concentrated in component 3. The prominent rhythms in components
1, 4, 5, 6, and 9 have different time courses and scalp distributions.

4.2 Limitations and Future Research. The extended infomax learning
algorithm makes several assumptions that limit its effectiveness. First, the
algorithm requires the number of sensors to be the same as or greater than
the number of sources (N ≥ M). The case when there are more sources than
sensors, N < M, is of theoretical and practical interest. Given only one or
two sensors that observe more than two sources, can we still recover all
sources? Preliminary results by Lewicki and Sejnowski (1998) suggest that
an overcomplete representation of the data to some extent can extract the
independent components using a priori knowledge of the source distribu-
tion. This has been applied by Lee, Lewicki, Girolami, and Sejnowski (in
press b) to separate three sources from two sensors.

Second, researchers have recently tackled the problem of nonlinear mix-
ing phenomena. Yang, Amari, and Cichocki (1997), Taleb and Jutten (1997),
and Lee, Koehler, and Orglmeister (1997) propose extensions when lin-
ear mixing is combined with certain nonlinear mixing models. Other ap-
proaches use self-organizing feature maps to identify nonlinear features in
the data (Lin & Cowan, 1997; Pajunen & Karhunen, 1997). Hochreiter and
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Figure 10: (Top) Ratio of power near 60 Hz over 14 components for EEG data
in Figure 8. (Middle) Ratio of power near 60 Hz for the 14 infomax ICA com-
ponents. (Bottom) Ratio of power near 60 Hz for the 14 extended infomax ICA
components in Figure 9. Note the difference in scale by a factor of 10 between
the original infomax and the extended infomax.

Schmidhuber (1999) have proposed low-complexity coding and decoding
approaches for nonlinear ICA.

Third, sources may not be stationary; sources may appear and disappear
and move (as when a speaker moves in a room). In these cases, the weight
matrix W may change completely from one time point to the next. This is a
challenging problem for all existing ICA algorithms. A method to model the
context switching (nonstationary mixing matrix) in an unsupervised way
is proposed in Lee, Lewicki, and Sejnowski (1999).

Fourth, sensor noise may influence separation and should be included
in the model (Nadal & Parga 1994; Moulines et al., 1997; Attias & Schreiner,
1999). Much more work needs to be done to determine the effect of noise
on performance.

In addition to these limitations, there are other issues that deserve fur-
ther research. In particular, it remains an open question to what extent the
learning rule is robust to parametric mismatch given a limited number of
data points.

Despite these limitations, the extended infomax ICA algorithm presented
here should have many applications where both subgaussian and super-
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Figure 11: EEG data set with 23 channels including 2 EOG channels. Note that
at around 4–5 sec and 6–7 sec, artifacts from severe eye blinks contaminate the
data set.

gaussian sources need to be separated without additional prior knowledge
of their statistical properties.

5 Conclusions

The extended infomax ICA algorithm proposed here is a promising gen-
eralization that satisfies a general stability criterion for mixed subgaussian
and supergaussian sources (Cardoso & Laheld, 1996). Based on the learn-
ing algorithm first derived by Girolami (1997) and the natural gradient, the
extended infomax algorithm has shown excellent performance on several
large real data sets derived from electrical and blood flow measurements of
functional activity in the brain. Compared to the originally proposed info-
max algorithm (Bell and Sejnowski, 1995), the extended infomax algorithm
separates a wider range of source signals while maintaining its simplicity.
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