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Abstract

Topic models such as Latent Dirichlet Allo-
cation (LDA) and Correlated Topic Model
(CTM) have recently emerged as powerful
statistical tools for text document modeling.
In this paper, we improve upon CTM and
propose Independent Factor Topic Models
(IFTM) which use linear latent variable mod-
els to uncover the hidden sources of correla-
tion between topics. There are 2 main contri-
butions of this work. First, by using a sparse
source prior model, we can directly visual-
ize sparse patterns of topic correlations. Sec-
ondly, the conditional independence assump-
tion implied in the use of latent source vari-
ables allows the objective function to factor-
ize, leading to a fast Newton-Raphson based
variational inference algorithm. Experimen-
tal results on synthetic and real data show
that IFTM runs on average 3-5 times faster
than CTM, while giving competitive perfor-
mance as measured by perplexity and log-
likelihood of held-out data.

1. Introduction

Large-scale document collections have become increas-
ingly available online in the era of pervasive internet.
Popular online message boards, blogs, emails, news
articles gathered over a short span of time comprise
several millions of entries. The magnitude of such
document archives alone makes a compelling case for
the need for automated tools in exploring and organiz-
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ing such collections. In recent years, statistical topic
models (Blei et al., 2003; Blei & Lafferty, 2006) have
emerged as powerful tools in analyzing the content
and extracting key information contained in document
archives. The popularity of such methods stems from
their ability to discover underlying patterns of word co-
occurrences that form interpretable topics. More so-
phisticated models, e.g. (Blei et al., 2004), even allow
topic hierarchies to be learned from the data. In man-
aging large-scale unstructured document repositories,
such topical information proves to be an invaluable cue
for indexing, organizing, and cross-referencing docu-
ments for efficient navigation through the archives.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is the most basic and widely-used model in the fam-
ily of statistical topic models. Given a collection of
documents, LDA decomposes the distribution of word
counts from each document into contributions from K

topics. Under LDA, a document is modeled as a draw
from a Dirichlet distribution, while each topic, in turn,
is modeled as a multinomial distribution over words
in the vocabulary. Despite intractability in perform-
ing exact inference, the choice in modeling the topic
proportion as a Dirichlet greatly simplifies the com-
putation in approximate inference for LDA. In partic-
ular, an efficient variational inference algorithm (Blei
et al., 2003) and an efficient Rao-blackwellized Gibbs
sampling for LDA (Griffiths & Steyvers, 2004) can be
derived due to the Dirichlet-Multinomial conjugacy.

Nonetheless, Dirichlet distribution has a serious re-
striction. Under a Dirichlet, topic proportions are
modeled as nearly independent, thus hampering the
ability of LDA to model topic co-occurrences that are
common-place in real-world documents. Correlated
Topic Models (CTM) were consequently proposed in
(Blei & Lafferty, 2006) to address such a limitation.
By replacing Dirichlet with a powerful logistic normal
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distribution, the correlation between topics is now cap-
tured in the full covariance structure of the normal
distribution. This choice of prior, however, poses sig-
nificant challenges in inference and parameter estima-
tion. In particular, closed-form analytic solutions in
LDA inference are now replaced by a conjugate gradi-
ent update in CTM, causing a significant slowdown in
the inference step. Moreover, parameter estimation for
the full-rank covariance matrix can be very inaccurate
in high dimensional space.

In this paper, we seek an alternative approach to char-
acterize topic correlations. Consider an archive of
news articles on 4 topics: Wall Street collapse, Iraq
war, Subprime mortgage crisis, and September 11 at-
tack. These 4 topics are found to co-occur often in
the news archive of 2008, i.e. if an article contains
a discussion about the Wall Street collapse, then we
can predict, with high probability, the presence of dis-
cussions related to the Iraq war or September 11. An
interesting question one might ask is whether such a
relationship can be explained by a hidden factor, e.g.
the presidential election 2008, that accounts for the
co-occurrence of these topics.

The above example motivates the idea of employing
latent variable models to uncover the source of correla-
tions between topics. Indeed, the use of latent variable
framework offers great flexibility in specifying the form
of correlation being captured (linear vs non-linear), as
well as in the choice of the latent source prior used
(continuous vs discrete, Gaussian vs Non-Gaussian).
In this work, we focus on the use of well-studied linear
models where the latent source variables are continu-
ous and modeled as independent, and the correlated
topic vectors are formed by linearly combining these
sources. We, therefore, adopt the name Independent
Factor Topic Models (IFTM) to reflect the generative
process of how correlation between topics is modeled.

Two choices of latent source prior model are investi-
gated in this paper. In the first scenario, we present
IFTM with Gaussian source prior, where the indepen-
dent sources are drawn from an Isotropic Gaussian dis-
tribution. Using such a prior implies that the topic
proportion for each document is drawn from a logis-
tic normal distribution. From this viewpoint, IFTM
with Gaussian prior can be seen as a special case of
CTM with a constrained structure of the covariance
matrix. Indeed, assuming we have L sources, where
generally L ≪ K (the number of topics), we reduce
the number of covariance parameters from O(K2) to
O(KL) while still allowing the most significant corre-
lations to be captured. With fewer parameters, IFTM
is therefore more robust to overfitting. In addition, by

eliminating the full covariance structure of CTM, the
objective function factorizes and each component of
the variational parameters can be optimized indepen-
dently, leading to an efficient Newton-Raphson based
variational inference algorithm, which is found to be 5
times faster than that of CTM.

Motivated by the desire to visualize and interpret the
individual sources, we go beyond the linear-Gaussian
assumption and explore non-Gaussian source distribu-
tion. In particular, a sparse source prior in the form
of Laplacian distribution is used. Such a prior favors a
configuration where only a handful number of sources
are “active” for each document, giving rise to more
interpretable results. We adopt the convex dual repre-
sentation of the Laplacian prior (Girolami, 2001) and
derive a variational inference algorithm for the Lapla-
cian source prior as a straightforward modification of
the Gaussian case. Due to additional variational pa-
rameters, inference in this case is more computation-
ally demanding but still runs 3 times faster than CTM.

The paper is organized as follows. In section 2, we
describe IFTM and derive an approximate inference
algorithm for IFTM with Gaussian and non-Gaussian
sources using the variational framework. In section
3, we give a visualization and interpretation of what
the hidden sources represent on an archive of NSF ab-
stracts. We show that IFTM performs competitively
with CTM, as measured using perplexity and the log-
likelihood over held-out dataset. IFTM displays a su-
perior performance over LDA on a document retrieval
task, demonstrating the power of topic models that
can capture correlations between topics.

2. Independent Factor Topic Models

2.1. Model Definition

We establish the notation used throughout the paper.
A word is denoted as a unit-basis vector w of size T

with exactly one non-zero entry representing the mem-
bership to only one word in a dictionary of T words.
A document is a collection of N word occurrences de-
noted by w = {w1, . . . , wN}. A set of D training doc-
uments is denoted by W = {w1,w2, . . . ,wD}.
Similar to LDA, IFTM assumes that there are k under-
lying latent topics corresponding to patterns of word
co-occurrences in the document archive. With each
topic modeled as a multinomial distribution over words
in the vocabulary, we represent a document as a mix-
ture weight of these K basis patterns (topics) and de-
note it by θ. To generate a document with N words,
we first specify the proportion of the K topics that
the document contains; the topics, in turn, govern the
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probability of generating each word in the document.

The key distinction between LDA, CTM, and IFTM
lies in the modeling assumption for θ. In LDA, θ is
drawn from a Dirichlet distribution, which models the
components θi and θj as nearly independent . To al-
low for correlation among topics, CTM assumes θ is a
draw from a logistic normal distribution. First, a ran-
dom variable x is drawn from a Gaussian distribution
with full-covariance structure: x ∼ N (x;µ,Σ), where
N (x;µ,Σ) denotes a multi-variate Gaussian distribu-
tion with mean µ and covariance Σ. The topic propor-
tion θ is then obtained by a mapping from x ∈ R

K to
a point on a K −1 dimensional simplex S

K−1 through
the softmax operation: θk = exk

P

l exl
. Correlations be-

tween pairs of topics are encoded in the entries of Σ. If
the presence of topic i in a document boosts the chance
of observing topic j, then xi and xj are positively cor-
related and is reflected in the covariance entry Σij .

Inspired by the use of linear latent variable models,
e.g. Factor Analysis, Independent Component Analy-
sis, to uncover hidden factors that explain correlations
in the data, IFTM assumes the existence of indepen-
dent sources and model the correlation structure be-
tween topics by linearly mixing these sources to form
correlated topic vectors. Specifically, we introduce, for
each document, an L-dimensional latent variable s to
represent the sources of topic correlations. The cor-
related topic proportion x is then obtained as a lin-
ear transformation of s with additive Gaussian noise:
x = As + µ + ǫ, where A is a K × L mixing matrix,
µ is a K-dimensional mean vector, and ǫ is a zero-
mean Gaussian noise with diagonal inverse covariance
Λ: ǫ ∼ N (ǫ; 0,Λ−1). We explore 2 latent source dis-
tributions: (1) p(s) ∼ N (s; 0, IL) in Section 2.2 and
(2) p(s) distributed as a Laplacian pdf in Section 2.3.

To generate a document with N word occurrences:
{w1, . . . , wN}, we follow the generative process of
IFTM as depicted in Figure 1(c):

• Draw contribution of independent sources: s ∼ p(s).
• Draw correlated topic proportion x from the condi-

tional distribution p(x|s):

x ∼ N (x;As + µ,Λ
−1).

• For each word n ∈ {1, 2, . . . , N},

1. Draw a topic zn ∼ M(θ), where θk = e
xk

P

l e
xl

.

2. Draw a word wn ∼ M(βzn).

2.2. IFTM with Gaussian source prior

When the latent source distribution is an Isotropic
Gaussian, the generative process of x is indeed identi-
cal to the well-known factor analysis model (Everitt,

Figure 1. Graphical Model Representation comparing (a)
LDA (b) CTM (c) our proposed model IFTM. The shaded
nodes represent the observed variables.

1984). IFTM with p(s) = N (s; 0, I) can thus be
thought as using the factor analysis model to ex-
plain the correlation structure in the topic propor-
tions. Since p(s) is Gaussian and the conditional dis-
tribution of p(x|s) is Gaussian, we can integrate out
the latent factors s and obtain the marginal distribu-
tion of x, which is also Gaussian as follows: p(x) =
∫

p(x|s)p(s)ds = N (x;µ,C), where C = AA⊤ +Λ−1.
IFTM with Gaussian source prior can thus be seen as
a special case of CTM with the constrained covariance
matrix parameterized by A,Λ. Assuming s ∈ R

L,
where L ≪ K, we are modeling the covariance struc-

ture with K +KL− L(L−1)
2 free parameters instead of

the K(K+1)
2 free parameters in the full covariance case.

Note that since IFTM with Gaussian source prior is a
special case of CTM, we could use the inference algo-
rithm of CTM, by replacing Σ with AA⊤+Λ−1. In the
M step, however, the closed-form update of Σ must be
replaced by a quasi-newton optimization for A and Λ,
see (Joreskog, 1967). Nonetheless, such an approach
cannot be applied to the non-Gaussian source prior
case in Section 2.3, as the marginal distribution p(x)
is no longer Gaussian. As we shall see, the formulation
of variational inference for IFTM that explicitly incor-
porate the latent sources s simplifies the computation
by taking advantage of the diagonality of Λ, while in
the M-step closed-form updates similar to those de-
rived from EM for factor analysis can be obtained.

2.2.1. Variational Inference

We begin with the expression of the log-likelihood for
1 document:

log p(W|Ψ) ≥
∫

q(Z,x, s)(log p(W,Z,x, s|Ψ)

− log q(Z,x, s))dZdxds, (1)

where equality in (1) holds when the posterior over
the hidden variables q(Z,x, s) equals the true poste-
rior p(Z,x, s|W). While the graphical model of IFTM
in Figure 1 shows several missing arrows representing
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the conditional independence properties that exist be-
tween the hidden nodes {Z,x, s}, when conditioned on
the observed words W, these hidden variables are no
longer independent. Computing the exact joint pos-
terior p(Z,x, s|W ) thus proves to be computationally
intractable. We employ a mean-field approximation
to approximate the joint posterior distribution with
a variational posterior in a factorized form (Attias,
2000): p(Z,x, s|W) ≈ ∏

n q(zn)q(x)q(s). The prob-
lem now becomes one of finding, within such family of
factorized distributions, the variational posterior that
maximizes the lower bound of the data log-likelihood
in (1). With q(Z,x, s) now in a factorized form, the
RHS of (1) becomes a strict lowerbound of the data
log-likelihood and can be expressed as:

log p(W|Ψ) ≥
∑

n

Eq[log p(wn|zn, β)] + Eq[log p(zn|x)]

+ Eq[log p(x|s,A,Λ, µ)] + Eq[log p(s)]

+ H[q(Z)] + H[q(x)] + H[q(s)] = F . (2)

Due to the normalization term in the softmax opera-
tion, the expectation term Eq[log p(zn|x)] will be dif-
ficult to compute, regardless of the form of q(x). We
make use of convex duality and represents a convex
function, i.e. − log(·) function, as a point-wise supre-
mum of linear functions. In particular, the log normal-
ization term is replaced with adjustable lower bounds
parameterized by variational parameters ξ.

log p(zn = k|x) ≥ xk − log ξ − 1

ξ
(
∑

l

exl − ξ). (3)

Since the logistic normal distribution is not a conju-
gate prior to the Multinomial, the form of the varia-
tional distributions q(zn), q(x), and q(s) need to be
examined as follows.

1. q(zn) is a discrete probability distribution, whose pa-
rameters q(zn = k) are denoted as φnk.

2. q(x): Under the diagonality assumption of Λ and the
use of convex variational bound of the log-normalizer
term in (3), the free-form maximization of F w.r.t
q(x) shows the variational posterior taking on a fac-
torized form q(x) =

Q

k
q(xk). However, q(xk) ob-

tained from the free-form maximization is not in the
form of a distribution that we recognize. We thus ap-
proximate q(xk) as a Gaussian distribution: q(xk) ∼
N (xk; x̄k, γ−1

k
).

3. q(s): The free-form maximization of F w.r.t q(s) re-
sults in q(s) ∼ N (s; s̄,B−1), where B is an L × L
non-diagonal precision matrix.

Given the model parameters Ψ = {A, µ,Λ, β}, the
variational inference maximizes the lower bound of the
data log-likelihood given in (2) w.r.t the variational pa-
rameters {ξ, φnk, x̄k, γk, s̄,B}. This culminates in a co-
ordinate ascent algorithm, where we optimize one pa-
rameter while holding the rest of the parameter fixed.

First, we maximize F w.r.t. ξ, φnk, and γ−1
k , which

attain the maximum at:

ξ =
∑

k

e
x̄k+ 0.5

γk , (4)

φnk ∝
∏

t

β
1(wn=t)
kt · exp(x̄k), (5)

∂F
∂γ−1

k

= −N

ξ
ex̄k · e

γ
−1

k
2 − λk +

1

γ−1
k

= 0. (6)

Since there’s no analytical solution available for (6),
we use a Newton-Raphson algorithm to update γk.

Secondly, we maximize F w.r.t x̄k. This is where we
improve significantly upon the variational inference of
CTM. The choice of diagonal precision matrix Λ, in
effect, converts a K-dimensional optimization problem
into K one-dimensional optimization problems which
are easy to solve and extremely fast. To simplify the
notation, we denote nk =

∑

n φnk and c = As̄ + µ.
The derivative of F w.r.t. x̄k can be written as:

∂F
∂x̄k

=
nk

λk

− N

ξλk

ex̄k · e
0.5
γk − x̄k + ck = 0. (7)

As we can see, x̄k that makes the gradient vanish
cannot be obtained analytically. We thus employ a
Newton-Raphson algorithm to find such x̄k. First, we
rewrite (7) in the form:

tketk = uk, (8)

where we now substitute uk = N
ξλk

e
nk
λk

+ck+ 0.5
γk and

tk = nk

λk
+ ck − x̄k. We find that the newton algo-

rithm derived from (8) (with proper initialization e.g.
tk ≈ log uk) converges in a few iterations.

Lastly, we maximize w.r.t s̄, and obtain an analytic
solution for the maximum at

s̄ = B−1A⊤Λ(x̄ − µ), (9)

where B = (A⊤ΛA+IL) is the precision of q(s). Note
here that the update rule for B depends only on the
model parameters A,Λ. B thus only needs updating
in the M-step, avoiding the expensive matrix inver-
sion in each variational inference step. Variational In-
ference for IFTM constitutes iteratively updating the
variational parameters using (4)-(9) until convergence.

2.3. IFTM with Sparse source prior

In an attempt to give an interpretation to the individ-
ual sources s, two main problems arise with IFTM
that uses Gaussian source prior. First, the mixing
matrix A learned from Gaussian source prior is often
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uninterpretable. The reason is that, under a Gaus-
sian assumption, the sources s, which control how the
columns of A are combined together to form the cor-
related topic vector x, are non-sparse. Therefore, to
generate x for each document, all the columns of the
mixing matrix will be needed. As a result, the in-
dividual columns of A do not carry meaningful pat-
terns of correlation, while linear combinations of all
the columns do. Second, as with the Factor Analysis
model, the mixing matrix A when the source prior is
Gaussian is identifiable only up to a rotation, since the
log-likelihood remains unchanged when multiplying A
with any arbitrary rotation matrix Q ∈ R

L×L.

By assuming the independent sources are drawn from
a sparse distribution, we remove nonidentifiability as-
sociated with rotations. In addition, a sparse distri-
bution favors a representation of x that uses a small
number of “active” sources for each document, allow-
ing more interpretable correlation structures to emerge
in the columns of A. In this work, we propose to model
the independent sources as a Laplacian distribution:

p(s) =

L
∏

l

1

2
e−|sl|, log p(s) = −

∑

l

|sl| − L log 2. (10)

Indeed, the choice of Laplacian distribution implies
an L1-norm constraint on the solutions of s. Unlike
the L2-norm constraint of the Gaussian source case,
L1 regularization penalizes the configurations that use
many sources to explain correlations between topics,
while encourages those which use only a few sources.

2.3.1. Variational Inference

Variational inference for IFTM with Laplacian source
prior proceeds similarly to the Gaussian case. We pro-
pose a factorized variational posterior p(Z,x, s|W) ≈
∏

n q(zn)q(x)q(s). Unlike the Gaussian case, how-
ever, the form of Laplacian in (10) will require fur-
ther approximating q(s). To this end, we adopt the
convex variational approximation that replaces the
Laplacian source distribution with an adjustable lower
bound as used in (Girolami, 2001). By proving that

log p(s) = −
√

s2 is convex in s2 (square-convex), we
can express the dual representation of log p(s) in the
form of a pointwise supremum of functions of s2, and
in the process introduce a variational parameter η,
which will be optimized out. Dropping the supremum,
we obtain the following lower bound, as a function of
the adjustable parameter η. For more details, refer to
(Jaakkola, 1997; Girolami, 2001).

−
∑

l

|sl| ≥ −
∑

l

(
|ηl|
2

+
s2

l

2|ηl|
) (11)

The dual form representation of the log prior of Lapla-
cian source distribution in (11) takes a quadratic form,
which, in essence, expresses the Laplacian distribution
in terms of adjustable lower-bounds in the Gaussian
form. This dual representation allows the variational
inference algorithm to be derived as a slight modifi-
cation of the Gaussian case. In particular, the varia-
tional updates for {ξ, φnk, x̄k, γk} remain the same as
in (4)-(7). The variational posterior over sources s also
conveniently takes a Gausisan form: q(s) ∼ N (s; s̄,B),
but now with the update for the precision matrix B
that depends on the variational parameter η.

s̄ = B−1A⊤Λ(x̄ − µ) (12)

B = A⊤ΛA + diag(
1

|η| ) (13)

|ηl| =
√

E[s2
l ] (14)

where E[ss⊤] = s̄s̄⊤ + B−1 and diag( 1
|η| ) denotes a

diagonal matrix with |ηl| in entry (l, l).

2.3.2. Parameter Estimation

To update the model parameters Ψ = {A,Λ, µ, β}, we
maximize the lower bound of the log-likelihood in (2)
w.r.t. Ψ and obtain the following closed-form updates:

A = Rxs · R−1
ss (15)

µ =
1

D
(
∑

d

x̄d − A
∑

d

s̄d) (16)

Λ−1 = diag(
1

D
(Rxx − AR⊤

xs) +
1

D

∑

d

Γ−1
d ) (17)

βkt =

∑

d,n φd
nk1(wd

n = t)
∑

t,d,n φd
nk1(wd

n = t)
(18)

where the sufficient statistics of the variational posteri-
ors are defined as follow: Rxx =

∑

d(x̄d−µ)(x̄d−µ)⊤;
Rxs =

∑

d(x̄d − µ)s̄⊤d ; Rss =
∑

d(s̄ds̄
⊤
d + B−1

d ).

3. Experimental Results

3.1. Correlated Topics Visualization

To understand what each independent source repre-
sents, we look at the most likely topics to co-occur
when the source is “active”. In particular, for each
source, we sort the corresponding column of the mix-
ing matrix A first in ascending order to discover the
most likely patterns of topic cooccurrence when s > 0.
Another set of pattern emerges by sorting the same
column of A in reverse order (for the case of s < 0).
As a concrete example, we learn IFTM with Laplacian
sources, using K=60 and L=10, on a corpus of 3,946
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NSF abstracts1 submitted in 2003. After removing
function words and common/rare words, this corpus
has vocabulary size 5261 words, with an average of
120 words per document. Figure 2 shows 3 indepen-
dent sources—s1, s2, and s3 learned from the data,
denoted by the 3 circles in the figure. For each source,
we show 3-4 most likely topics to co-occur when the
source is active. Each topic is represented by 10 most
likely words. As seen in Figure 2, s1 groups the topics
related to material science together. s2 represents a
group of topics from various areas of physics, while s3

represents a grouping of topics under the subject of
biology and chemistry. Some of the topics are shared
by many independent sources. For example, topic 37
discusses the physical and magnetic properties of the
material, thus topic 37 is likely under the subjects of
material science (s1) and physics (s2).

Figure 2. Visualization of 3 sources of topic correlations.

3.2. Model Comparison

3.2.1. Synthetic Data

Since IFTM with Gaussian source prior model (de-
noted by IFTM-G) can be seen as a special case of
CTM with a constrained covariance structure, we first
compare the performance of IFTM-G and CTM using
simulated data generated according to the generative
model of CTM (with full covariance structure). In par-
ticular, we sample 1,000 documents with an average of
80 words per document. The CTM model parameters
{µ,Σ, β} used to generate this dataset are drawn ran-
domly from some distribution, with K = 300 and the
vocabulary size T = 625. Unless specified otherwise,

1UCI KDD archive: http://kdd.ics.uci.edu/

the number of sources used for IFTM-G and IFTM-L
are set to K

4 . 800 documents are used for training,
200 for testing, with 5-fold cross validation. We run
variational inference and EM until the relative change
in the log-likelihood bound falls below 10−5.

We evaluate the generalization ability of the model
to explain unseen documents by using log-likelihood
over held-out documents as a performance measure.
Following the lead of (Blei & Lafferty, 2006), the log-
likelihood of test documents is computed by employing
importance sampling that uses the variational poste-
rior as the proposal distributions. We are interested
in observing how the 2 models perform as we increase
the number of hidden topics K. As seen from the left
panel of Figure 3, IFTM-G gives higher likelihood than
CTM on all values of K. When K is small, the dif-
ference between the 2 models seems smaller, but as K

increases their difference gets magnified. CTM clearly
overfits the data as the likelihood drops after K=150.
Since IFTM-G has much fewer parameters, it is able
to support larger numbers of topics.

Figure 3. Results on Synthetic Data. Left: Held-out log-
likelihood vs. the number of topics. Right: Per-word per-
plexity vs. the proportion of test document observed.

Another important metric to compare the 2 models
is how well they can predict unseen words in a test
document, given that some portions of the words are
observed. We conduct the following experiment where
each test document is divided into 2 parts—a% of
the words will be observed, while the rest will be un-
observed. We use a perplexity score given below to
measure the performance of the 2 models. To com-
pute log p(Wmis|Wobs) for IFTM-G and CTM, we run
variational inference on the observed portions of the
test documents until convergence, and use the inferred
variational posterior to predict the unseen words. As
we increase the proportion of test documents that are
observed, we expect the perplexity score to decrease,
since the inferred variational posterior should become
more accurate as more words are observed.

Perp(Wmis|Wobs) = exp

(

−
∑

d log p(Wmis
d |Wobs

d )
∑

d Nd

)

.
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Using the above described synthetic data, we obtain
the results shown on the right panel of Figure 3. We
compare perplexity of LDA, CTM, and IFTM-G using
K = 100. The perplexity score obtained from IFTM-
G is lower than CTM by 20 words, since CTM overfits
the data due to a much larger number of parameters
that needs to be learned. Nonetheless, both CTM and
IFTM-G outperform LDA (not shown in graph). This
is to be expected because the data is generated accord-
ing to the CTM generative model.

3.2.2. NSF Abstract Data

In this section, we show how IFTM with Gaussian
and Laplacian source prior models perform compar-
atively to CTM and LDA, on real data. To this end,
we train the 4 models on the corpus of 3,946 NSF ab-
stracts (used in previous section), using 90% of the
data for training and 10% as a held-out test set. 4-
fold cross-validation is used and the results are aver-
aged. Performance is measured by log-likelihood over
held-out dataset. We avoid comparing the different
bounds used in the 4 models, and again employ im-
portance sampling that uses the variational posterior
as the proposal distributions. In particular, for IFTM
with Laplacian source prior, since log p(x) cannot be
computed analytically, we sample s ∼ q(s) first to com-
pute log p(x), which is then used in estimating the true
log-likelihood log p(W).

Figure 4. Results on NSF Abstracts Data. Left: Held-out
log-likelihood score as a function of the number of topics,
averaged over 4 folds with average standard deviation =
1.13×103. Right: Predictive perplexity as a function of the
percentage of observed words in test documents, comparing
the 3 models when K = 60.

Figure 4 (left) shows the averaged log-likelihood of the
held-out data as a function of the number of topics.
LDA performance peaks at K = 40 but as we increase
the number of topics, the performance drops dramat-
ically. This is due to the nearly independent assump-
tion of the topic proportion generated from a Dirichlet.
As K increases, more topics will likely become corre-
lated, and the Dirichlet distribution will no longer be
a good fit for such topic proportions. On the contrary,
topic models that capture correlations between topics,

i.e. IFTM and CTM, are able to support larger num-
bers of topics. IFTM peaks at somewhere between
60-80 topics, and compared to LDA, IFTM always
gives higher likelihood for different number of topics.
The performance of CTM and IFTM on this dataset
turns out to be very similar so far up to K = 160,
since this dataset is much larger than the synthetic
dataset. However, we do expect IFTM to outperform
CTM, as K increases, again due to overfitting. Figure
4 (right) shows the predictive perplexity as a function
of percentage of observed words in test documents, for
K = 60. IFTM-G and IFTM-L give lower perplexity
than CTM by almost 200 words, when only 10% of
the words are observed. The difference between the 3
models becomes smaller as more words are observed
and the inferred posterior become more accurate.

Indeed, with comparable performance, CTM is found
to be much more computationally demanding than
IFTM. Table 1 shows the averaged training time re-
quired to train the 4 models in Figure 4. All of our sim-
ulations run on an IntelTMQ6600 quad-core computer
(one core is used for each algorithm). We use fairly
optimized and comparable C implementation of the 4
models. The CTM implementation used in our exper-
iment is obtained directly from the CTM’s authors’
website. On average, if IFTM-G requires 1 day to
train, without the availability of distributed comput-
ing, CTM will take 5 days to train, which is quite pro-
hibitive for practical applications. Note that IFTM-L
is computationally more expensive than IFTM-G. This
is due to the new dependency between B and the con-
vex variational parameter η in (13), which requires B
to be inverted every time η and s̄ are updated.

3.3. Document Retrieval

In this section, we demonstrate that the ability of
IFTM to capture topic correlations can be beneficial
in a real-world application. To this end, we are in-
terested in comparing IFTM to LDA in a document
retrieval task. We use 20 Newsgroup dataset2, con-
taining 19,949 messages from 20 Usenet newsgroups
(each class contains ≈ 1000 documents). This version
of the dataset has been pre-processed: function words
and rare/common words have been removed, and we
are left with 43,586 words in the vocabulary. Using 70
topics, we train 3 models: IFTM with Gaussian source
prior, IFTM with Laplacian sources, and LDA with
16,000 training documents, while 3,949 documents are
used for testing. 5-fold cross validation is used.

Given the query, the task of a retrieval system is to
return items in the database that is most similar to

2http://shi-zhong.com/research
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the query. To use LDA and IFTM for a retrieval
task, we use the following method. First, we train
the models on 16,000-document training set. For each
query document, we run variational inference until
convergence, and use the variational posterior—q(x)
for IFTM and q(θ) for LDA—to compute the “dis-
tance”: log p(Wtrain|Wquery) between any given doc-
ument in the training set to the query. Indeed, this
distance metric is directly related to the perplexity
score, which measures how well the words in the query
predict the words in the training set. Using such a
distance measure, IFTM has a built-in advantage over
LDA when presented with short queries, since IFTM
can draw upon other topics, known to be correlated
with the topics inferred from the words in the query
documents, to explain the training data.

The performance of our retrieval system is measured
by a precision-recall curve. Precision measures the
percentage of relevant items in the returned set, while
recall is the percentage of all relevant documents that
gets returned. In this case, if a query belongs to class 1,
then all the other documents under the same class are
considered relevant in the returned set. As expected,
Figure 5 shows that IFTM with both Gaussian source
prior and Laplacian source prior give higher precision
values at the same recall rate, as compared to LDA.

Figure 5. Precision-recall curve on 20 NewsGroup dataset.

4. Conclusions

In this paper, we describe Independent Factor Topic
Models (IFTM), which present an alternative to CTM
in modeling correlations between topics. IFTM pro-
poses the use of a latent variable framework to model
the sources of topic correlation directly. Such a frame-
work for capturing correlation offers great flexibility
in exploring different source prior models. In this
work, we show the results from using Gaussian sources
and Laplacian sources. When the sources are mod-
eled as Gaussian distribution, we found that IFTM
can be thought of as CTM with a constrained covari-
ance structure. When the sparse source prior, e.g.
Laplacian, is used, we can visualize and give interpre-
tation to the sources of topic correlation by examining

Table 1. Training Time (in hours) as K increases.

K LDA IFTM-G IFTM-L CTM
20 0.546 0.878 1.177 3.648
40 1.108 1.833 4.033 13.973
60 2.795 3.861 7.733 22.551
80 3.651 8.705 13.030 43.156
100 4.147 9.296 18.599 53.376
120 4.840 13.836 19.963 65.446
140 6.521 17.340 22.946 70.833
160 10.173 20.287 25.523 90.900

×0.45 ×1 ×1.5 ×5

the corresponding columns of the mixing matrix A.
The introduction of the latent sources in our formula-
tion leads to a fast variational inference algorithm for
IFTM. Our results show that IFTM is, on average, 3-5
times less computationally demanding, while still per-
forming very competitively with CTM. In the future
work, we are interested in finding out a way to de-
termine the number of hidden sources automatically.
One direction we are pursuing is the introduction of a
prior over the mixing matrix A.
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