
Algorithmica (2019) 81:1342–1369

https://doi.org/10.1007/s00453-018-0474-x

Independent Feedback Vertex Set for P5-Free Graphs

Marthe Bonamy1 · Konrad K. Dabrowski2 · Carl Feghali3 ·

Matthew Johnson2 · Daniël Paulusma2

Received: 29 September 2017 / Accepted: 19 June 2018 / Published online: 26 June 2018

© The Author(s) 2018

Abstract

The NP-complete problem Feedback Vertex Set is that of deciding whether or

not it is possible, for a given integer k ≥ 0, to delete at most k vertices from a given

graph so that what remains is a forest. The variant in which the deleted vertices must

form an independent set is called Independent Feedback Vertex Set and is

also NP-complete. In fact, even deciding if an independent feedback vertex set exists

is NP-complete and this problem is closely related to the 3- Colouring problem, or

equivalently, to the problem of deciding whether or not a graph has an independent odd

cycle transversal, that is, an independent set of vertices whose deletion makes the graph

bipartite. We initiate a systematic study of the complexity of Independent Feedback

Vertex Set for H -free graphs. We prove that it is NP-complete if H contains a claw

or cycle. Tamura, Ito and Zhou proved that it is polynomial-time solvable for P4-free

graphs. We show that it remains polynomial-time solvable for P5-free graphs. We

prove analogous results for the Independent Odd Cycle Transversal problem,

which asks whether or not a graph has an independent odd cycle transversal of size at

most k for a given integer k ≥ 0. Finally, in line with our underlying research aim, we

compare the complexity of Independent Feedback Vertex Set for H -free graphs

with the complexity of 3- Colouring, Independent Odd Cycle Transversal

and other related problems.

Keywords Independent feedback vertex set · Near-bipartiteness · Independent odd

cycle transversal · 3-Colouring

This paper received support from EPSRC (EP/K025090/1), London Mathematical Society (41536), the

Leverhulme Trust (RPG-2016-258) and Fondation Sciences Mathématiques de Paris. An extended

abstract of this paper appeared in the proceedings of ISAAC 2017 [4]..

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0474-x&domain=pdf
http://orcid.org/0000-0001-9515-6945
http://orcid.org/0000-0001-6727-7213
http://orcid.org/0000-0002-7295-2663
http://orcid.org/0000-0001-5945-9287

Algorithmica (2019) 81:1342–1369 1343

1 Introduction

Many computational problems in the theory and application of graphs can be formu-

lated as modification problems: from a graph G, some other graph H with a desired

property must be obtained using certain permitted operations. The number of graph

operations used (or some other measure of cost) must be minimised. The computa-

tional complexity of a graph modification problem depends on the desired property,

the operations allowed and the possible inputs; that is, we can prescribe the class

of graphs to which G must belong. This leads to a rich variety of different problems,

which makes graph modification a central area of research in algorithmic graph theory.

A set S of vertices in a graph G is a feedback vertex set of G if removing the vertices

of S results in an acyclic graph, that is, the graph G − S is a forest. The Feedback

Vertex Set problem asks whether or not a graph has a feedback vertex set of size at

most k for some integer k ≥ 0 and is a well-known example of a graph modification

problem: the desired property is that the obtained graph is acyclic and the permitted

operation is vertex deletion. The directed variant of Feedback Vertex Set was

one of the original problems proven to be NP-complete by Karp [26]. The proof of

this implies NP-completeness of the undirected version even for graphs of maximum

degree 4 (see [17]). We refer to the survey of Festa et al. [16] for further details of this

classic problem.

In this paper, we consider the problem where we require the feedback vertex set to

be an independent set. We call such a set an independent feedback vertex set. We have

the following decision problem.

Independent Feedback Vertex Set

Instance: a graph G and an integer k ≥ 0.

Question: does G have an independent feedback vertex set of size at most k?

Many other graph problems have variants with an additional constraint that a set of

vertices must be independent. For example, see [18] for a survey on Independent

Dominating Set, and [33] for Independent Odd Cycle Transversal, also

known as Stable Bipartization. An independent odd cycle transversal of a graph G

is an independent set S such that G − S is bipartite, and the latter problem is that of

deciding whether or not a graph has such a set of size at most k for some given integer k.

We survey known results on Independent Feedback Vertex Set below.

1.1 RelatedWork

Not every graph admits an independent feedback vertex set (consider complete graphs

on at least four vertices). Graphs that do admit an independent feedback vertex set are

said to be near-bipartite, and we can ask about the decision problem of recognising

such graphs.

Near- Bipartiteness

Instance: a graph G.

Question: is G near-bipartite (that is, does G have an independent feedback

vertex set)?

123

1344 Algorithmica (2019) 81:1342–1369

Near- Bipartiteness is NP-complete even for graphs of maximum degree 4 [44]

and for graphs of diameter 3 [6]. Hence, by setting k = n, we find that Independent

Feedback Vertex Set is NP-complete for these two graph classes. The Indepen-

dent Feedback Vertex Set problem is even NP-complete for planar bipartite

graphs of maximum degree 4 (see [43]). As bipartite graphs are near-bipartite, this

result shows that there are classes of graphs where Independent Feedback Vertex

Set is harder than Near- Bipartiteness. To obtain tractability results for Indepen-

dent Feedback Vertex Set, we need to make some further assumptions.

One way is to consider the problem from a parameterized point of view. Taking k as

the parameter, Misra et al. [35] proved that Independent Feedback Vertex Set

is fixed-parameter tractable by giving a cubic kernel. This is in line with the fixed-

parameter tractability of the general Feedback Vertex Set problem (see [27] for

the fastest known FPT algorithm). Later, Agrawal et al. [1] gave a faster FPT algorithm

for Independent Feedback Vertex Set and also obtained an upper bound on the

number of minimal independent feedback vertex sets of a graph.

Another way to obtain tractability results is to restrict the input to special graph

classes in order to determine graph properties that make the problem polynomial-time

solvable. We already mentioned some classes for which Independent Feedback

Vertex Set is NP-complete. In a companion paper [6], we show that the problem is

polynomial-time solvable for graphs of diameter 2, and as stated above, the problem

is NP-complete on graphs of diameter 3. Tamura et al. [43] showed that Independent

Feedback Vertex Set is polynomial-time solvable for chordal graphs, graphs of

bounded treewidth and for cographs. The latter graphs are also known as P4-free

graphs (Pr denotes the path on r vertices and a graph is H-free if it has no induced

subgraph isomorphic to H), and this strengthened a result of Brandstädt et al. [8], who

proved that Near- Bipartiteness is polynomial-time solvable for P4-free graphs.

1.2 Our Contribution

The Independent Feedback Vertex Set problem is equivalent to asking for a

(proper) 3-colouring of a graph, such that one colour class has at most k vertices and

the union of the other two induces a forest. We wish to compare the behaviour of

Independent Feedback Vertex Set with that of the 3- Colouring problem. It is

well known that the latter problem is alsoNP-complete [31] in general and polynomial-

time solvable on many graph classes (see, for instance, the surveys [20,40]). We also

observe that 3- Colouring is equivalent to asking whether or not a graph has an

independent odd cycle transversal (of any size). However, so far very few graph classes

are known for which Independent Feedback Vertex Set is tractable and our goal

is to find more of them. For this purpose, we consider H -free graphs and extend the

result [43] for P4-free graphs in a systematic way.

In Sect. 2, we consider the cases where H contains a cycle or a claw. We first prove

that Near- Bipartiteness, and thus Independent Feedback Vertex Set, is NP-

complete on line graphs, which form a subclass of the class of claw-free graphs. We

then prove that Independent Feedback Vertex Set is NP-complete for graphs

of arbitrarily large girth. Together, these results imply that Independent Feedback

123

Algorithmica (2019) 81:1342–1369 1345

P4 P5

Fig. 1 The paths on four and five vertices

Vertex Set is NP-complete for H -free graphs if H contains a cycle or claw. Hence,

only the cases where H is a linear forest, that is, a disjoint union of paths, remain

open. In particular, the case where H is a single path has not yet been resolved. Due

to the result of [43] for P4-free graphs, the first open case to consider is when H = P5

(see also Fig. 1).

The class of P5-free graphs is a well-studied graph class. For instance, Hoàng

et al. [24] proved that for every integer k, k- Colouring is polynomial-time solvable

for P5-free graphs, whereas Golovach and Heggernes [19] showed that Choosability

is fixed-parameter tractable for P5-free graphs when parameterized by the size of the

lists of admissible colours. Lokshantov et al. [30] solved a long-standing open problem

by giving a polynomial-time algorithm for Independent Set restricted to P5-free

graphs (recently, their result was extended to P6-free graphs by Grzesik et al. [22]).

Our main result is that Independent Feedback Vertex Set is polynomial-

time solvable for P5-free graphs. This is proved in Sects. 3 and 4: in Sect. 3 we

give a polynomial-time algorithm for Near- Bipartiteness on P5-free graphs, and

in Sect. 4 we show how to extend this algorithm to solve Independent Feedback

Vertex Set in polynomial time for P5-free graphs.

In Sect. 5 we consider the related problem Independent Odd Cycle Transver-

sal. We prove that our results for Independent Feedback Vertex Set also hold

for Independent Odd Cycle Transversal.

In Sect. 6, we compare the complexities of Independent Feedback Vertex Set

and Independent Odd Cycle Transversal for H -free graphs with the complexity

of 3- Colouring and several other related problems, such as Feedback Vertex

Set, Vertex Cover, Independent Vertex Cover and Dominating Induced

Matching. We also survey some related open problems.

2 HardnessWhen H Contains a Cycle or Claw

Before stating the results in this section, we first introduce some necessary terminology.

The line graph L(G) of a graph G = (V , E) has the edge set E of G as its vertex

set, and two vertices e1 and e2 of L(G) are adjacent if and only if e1 and e2 share a

common end-vertex in G. The claw is the graph shown in Fig. 2. It is well known and

easy to see that every line graph is claw-free. A graph is (sub)cubic if every vertex has

(at most) degree 3.

We first prove that Near- Bipartiteness is NP-complete for line graphs. It was

already known that Feedback Vertex Set is NP-complete for line graphs of planar

cubic bipartite graphs [37].

Theorem 1 Near- Bipartiteness is NP-complete for line graphs of planar subcubic

bipartite graphs.

123

1346 Algorithmica (2019) 81:1342–1369

Fig. 2 The claw

Proof As the problem is readily seen to be in NP, it suffices to prove NP-hardness.

We reduce from the Hamilton Cycle Through Specified Edge problem. Given

a graph G and an edge e of G, this problem asks whether G has a Hamilton cycle

through e. Labarre [29] observed that Hamilton Cycle Through Specified Edge

is NP-complete for planar cubic bipartite graphs by noting that it follows easily from

the analogous result of Akiyama et al. [2] for Hamilton Cycle. Let (G, e) be an

instance of Hamilton Cycle Through Specified Edge. By the aforementioned

result, we may assume that G is a planar cubic bipartite graph. Let u1 and u2 be the

two end-vertices of e. Delete the edge u1u2 and add two new vertices v1 and v2, and

two new edges e1 = u1v1 and e2 = v2u2. Let G be the resulting graph. We note that

both v1 and v2 have degree 1 in G ′, whereas every other vertex of G ′ has degree 3.

Hence G ′ is subcubic. Since G is planar and bipartite, it follows that G ′ is planar and

bipartite. Moreover, we make the following observation.

Claim 1 The graph G has a Hamilton cycle through e if and only if G ′ has a Hamilton

path from v1 to v2.

Let n be the number of vertices in G. Then the number of vertices in G ′ is n + 2,

meaning that a Hamilton path in G ′ has n + 1 edges. Moreover, as G is cubic, G

has 3
2 n edges, so G ′ has 3

2 n + 1 edges, implying that L(G ′) has 3
2 n + 1 vertices.

Furthermore, e1 and e2 have degree 2 in L(G ′) and all other vertices in L(G ′) have

degree 4, so L(G ′) has maximum degree at most 4.

Claim 2 The graph G ′ has a Hamilton path from v1 to v2 if and only if L(G ′) is

near-bipartite.

To prove Claim 2, first suppose that G ′ has a Hamilton path P from v1 to v2. Then,

as every vertex in G ′ apart from v1 and v2 has degree 3, it follows that G ′ − E(P)

consists of two isolated vertices (v1 and v2) and a set S of isolated edges. Thus S is

an independent set in L(G ′), and so L(G ′) is near-bipartite.

Now suppose that L(G ′) is near-bipartite. Then L(G ′) contains a set S of vertices,

such that F = L(G ′) − S is a forest. As L(G ′) is a line graph, L(G ′) is claw-free.

This means that F is the disjoint union of one or more paths. Suppose that F contains

more than one path. Then, as e1 and e2 are the only two vertices in L(G ′) that are of

degree 2 and all other vertices of L(G ′) have degree 4, at least one path of F has an

end-vertex of degree 4 in L(G ′). Let f be this vertex. As f is the end-vertex of a path

in F , we find that f has three neighbours f1, f2, f3 in S. As S is an independent set,

{ f , f1, f2, f3} induces a claw in L(G ′). This contradiction tells us that F consists of

exactly one path P , and by the same reasoning, e1 and e2 must be the end-vertices

of P .

123

Algorithmica (2019) 81:1342–1369 1347

Hence every vertex of P apart from its end-vertices has two neighbours in S and

every vertex in S has four neighbours on P . Moreover, e1 and e2 have exactly one

neighbour in S. This means that 1+1+2(|V (P)|−2) = 4|S|, so |S| = 1
2 (|V (P)|−1).

Hence we find that

3

2
(|V (P)| − 1) + 1 = |V (P)| +

1

2
(|V (P)| − 1)

= |V (P)| + |S|

= |L(G ′)|

=
3

2
n + 1,

so |V (P)| = n + 1. Hence, as G ′ has n + 2 vertices, the pre-image of P in G ′ is a

Hamilton path of G ′ with end-vertices v1 and v2.

By combining Claims 1 and 2 we have completed our hardness reduction and the

theorem is proved. ⊓⊔

Theorem 1 has the following immediate consequence (take k = n).

Corollary 1 Independent Feedback Vertex Set is NP-complete for line graphs

of planar subcubic bipartite graphs.

We will now prove that Independent Feedback Vertex Set is NP-complete

for graphs with no small cycles even if their maximum degree is small. The length

of a cycle C is the number of edges of C . The girth g(G) of a graph G is the length

of a shortest cycle of G; if G has no cycles then g(G) = ∞. The subdivision of an

edge e = uv in a graph deletes e and adds a new vertex w and edges uw and wv. We

first need the following observation, which is well known. For completeness we give

a short proof.

Lemma 1 (see e.g. [35]) Let uv be an edge in a graph G. Let G ′ be the graph obtained

from G after subdividing uv. Then G has a feedback vertex set of size at most k if and

only if G ′ does.

Proof Let w denote the new vertex obtained from subdividing uv. Any feedback vertex

set S of G is a feedback vertex set of G ′. Suppose S′ is a feedback vertex set of G ′.

If w /∈ S′, then S′ is a feedback vertex set of G. Suppose w ∈ S′. If at least one of u

and v are in S′ as well, then S′ \ {w} is a feedback vertex set of G. If neither u nor v

belong to S′, then (S′ \ {w}) ∪ {u}) is a feedback vertex set of G with the same size

as S′. ⊓⊔

Lemma 1 implies that Feedback Vertex Set is NP-complete for graphs of girth

at least g for every constant g ≥ 3. We also use this lemma to prove our next result.

Proposition 1 For every constant g ≥ 3, Independent Feedback Vertex Set is

NP-complete for graphs of maximum degree at most 4 and girth at least g.

Proof For a graph G, let Gs be the graph obtained from G after subdividing every edge

of G; we say that Gs is a subdivided copy of G. Let Gs be the graph class obtained from

123

1348 Algorithmica (2019) 81:1342–1369

a graph class G after replacing each G ∈ G by its subdivided copy Gs . It follows from

Lemma 1 that if Feedback Vertex Set is NP-complete for some graph class G,

then it is also NP-complete for Gs . By starting from the fact that Feedback Vertex

Set is NP-complete for line graphs of planar cubic bipartite graphs [37] and applying

this observation a sufficient number of times, we find that for any constant g ≥ 3,

Feedback Vertex Set isNP-complete for graphs of maximum degree at most 4 and

girth at least g. Moreover, any non-independent feedback vertex set S of a subdivided

copy Gs of a graph G contains two adjacent vertices, one of which has degree 2 in Gs .

Hence, we can remove such a degree 2 vertex from S to obtain a smaller feedback

vertex set of Gs . Thus all minimum feedback vertex sets of Gs are independent. This

observation, which can also be found in [35], together withNP-hardness for Feedback

Vertex Set for graphs of maximum degree at most 4 and with arbitrarily large girth

proves the proposition. ⊓⊔

Recall that every line graph is claw-free. We also observe that for a graph H with a

cycle C , the class of graphs of girth at least |C |+ 1 is a subclass of the class of H -free

graphs. Hence, we can combine Corollary 1 and Proposition 1 to obtain the following

result.

Corollary 2 Let H be a graph that contains a claw or a cycle. Then Independent

Feedback Vertex Set is NP-complete for H-free graphs of maximum degree at

most 4.

3 Near-Bipartiteness of P5-Free Graphs

In this section, we show that Near- Bipartiteness is polynomial-time solvable for

P5-free graphs, that is, we give a polynomial-time algorithm for testing whether or

not a P5-free graph has an independent feedback vertex set. To obtain a minimum

feedback vertex set we need to first run this algorithm and then do the additional work

described in Sect. 4.

Our algorithm in this section solves a slightly more general problem, which is

a special variant of List 3- Colouring. In the List 3- Colouring problem each

vertex v is assigned a subset L(v) of colours from {1, 2, 3} and we must verify whether

or not a 3-colouring exists in which each vertex v is coloured with a colour from L(v).

We say that a 3-colouring of a graph G is semi-acyclic if the vertices coloured 2

or 3 induce a forest, and we note that G has such a colouring if and only if G is

near-bipartite. This leads to the following variant of List 3- Colouring.

List Semi- Acyclic 3- Colouring

Instance: a graph G and a function L : V (G) → {S | S ⊆ {1, 2, 3}}.

Question: does G have a semi-acyclic 3-colouring c such that c(v) ∈ L(v)

for all v ∈ V (G)?

A graph G is near-bipartite if and only if (G, L), with L(v) = {1, 2, 3} for all

v ∈ V (G), is a yes-instance of List Semi- Acyclic 3- Colouring. To show that

near-bipartite P5-free graphs can be recognised in polynomial time, we will prove the

123

Algorithmica (2019) 81:1342–1369 1349

stronger fact that List Semi- Acyclic 3- Colouring is polynomial-time solvable

for P5-free graphs.

A set of vertices in a graph G is dominating if every vertex of G is either in the set

or has at least one neighbour in it. We will use a lemma of Bacsó and Tuza.

Lemma 2 [3] Every connected P5-free graph admits a dominating set that induces

either a clique or a P3.

Lemma 2 implies that every connected 3-colourable P5-free graph has a dominating

set of size at most 3 (since it has no clique on more than three vertices). This was used

by Randerath et al. [41] to show that 3- Colouring is polynomial-time solvable on

P5-free graphs. Their algorithm tries all possible 3-colourings of a dominating set of

size at most 3. It then adjusts the lists of the other vertices (which were originally set

to {1, 2, 3}) to lists of size at most 2. As shown by Edwards [14], 2- List Colouring

can be translated to an instance of 2- Satisfiability, which is well known and readily

seen to be solvable in linear time. Hence this approach results in a polynomial (even

constant) number of instances of the 2- Satisfiability problem.

Our goal is also to apply Lemma 2 to a connected P5-free graph G and to reduce

an instance (G, L) of List Semi- Acyclic 3- Colouring to a polynomial number

of instances of 2- Satisfiability. However, in our case this is less straightforward

than in the case of 3- Colouring restricted to P5-free graphs: the restriction of List

Semi- Acyclic 3- Colouring to lists of size 2 turns out to be NP-complete for

general graphs even if every list consists of either colours 1 and 3 or only colour 2.

Theorem 2 List Semi- Acyclic 3- Colouring is NP-complete even if L(v) ∈

{{1, 3}, {2}} for every vertex v in the input graph.

Proof The problem is clearly in NP so we need only show that it is NP-hard. We do

this by reduction from Satisfiability.

Let φ be an instance of Satisfiability. Note that we can assume that, for each

variable x , φ contains both the literals x and x , and that each clause contains more

than one literal (otherwise in polynomial-time we can obtain another smaller instance

whose satisfiability is the same as that of φ). We create an instance (G, L) of List

Semi- Acyclic 3- Colouring as follows (see also Fig. 3):

– For each clause C of φ create a (2|C |)-cycle and assign lists {1, 3} and {2} alter-

nately to vertices around the cycle. Let the literals of the clause be represented by

distinct vertices with lists {1, 3}.

– For each variable x , choose a clause containing the positive literal x and let vx be

the vertex representing x in the corresponding cycle. For every other occurrence

(if there are any) of the positive literal x , let the corresponding vertex be adjacent

to a new middle vertex that is also joined by an edge to vx . Assign the list {1, 3} to

the middle vertex. For every occurrence of the negative literal x , add an edge so

that the corresponding vertex is adjacent to vx .

We claim that (G, L) is a yes-instance of List Semi- Acyclic 3- Colouring if and

only if φ is a yes-instance of Satisfiability.

First suppose that G has a semi-acyclic 3-colouring that respects L , and let us

show that a satisfying assignment for φ can be found. For each variable x , if vx is

123

1350 Algorithmica (2019) 81:1342–1369

{2}{2}

{2}

x1

{1, 3}

{1, 3}vx2

vx3

{1, 3}

{2}{2}

{2}

vx1

{1, 3}

x3

{1, 3}
vx4

{1, 3}

{2}{2}

{2}

x1

{1, 3}

x4

{1, 3}
x5

{1, 3}

{1, 3}

{2}{2}

{2}

x2

{1, 3}

vx5

{1, 3} x3{1, 3}

{1, 3}

Fig. 3 The instance (G, L) of List Semi- Acyclic 3- Colouring formed from the following instance of

Satisfiability: (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x1 ∨ x4 ∨ x5)∧ (x2 ∨ x3 ∨ x5). The list for each vertex

is displayed and literals label the vertices that represent them except that, for each variable x , one vertex is

labelled vx

coloured 1, then let x be true; if it is coloured 3, let x be false. Note that every other

vertex corresponding to the positive literal x must be coloured the same as x , and

every vertex corresponding to an instance of x is coloured differently, so each literal is

coloured 1 if and only if it is true. Thus every clause contains a true literal, otherwise

in the corresponding cycle every vertex would be coloured 2 or 3 and the colouring

would not be semi-acyclic.

Now suppose that φ has a satisfying assignment. If a literal is true in this assignment,

colour the corresponding vertex 1, otherwise colour it 3. Colour each middle vertex

with the colour not used on its neighbours (which must be coloured alike). Clearly this

is a 3-colouring, and each cycle corresponding to a clause contains a vertex coloured 1

as it contains a true literal. No other cycle in the graph is coloured with only 2 and 3,

as the only edges that do not belong to the cycles representing the clauses each join a

vertex coloured 1 to a vertex coloured 3. Thus the colouring is semi-acyclic. ⊓⊔

By Theorem 2, to prove that List Semi- Acyclic 3- Colouring is polynomial-

time solvable on P5-free graphs, we need to refine our analysis and exploit P5-freeness

beyond the use of Lemma 2. We adapt the approach used by Hoàng et al. [24] to

show that k- Colouring is polynomial-time solvable on P5-free graphs for all k ≥ 3

(extending the analogous result of Randerath et al. [41] for 3- Colouring). Let us

first outline the proof of [24].

The approach of Hoàng et al. [24] to solve k- Colouring for P5-free graphs for any

integer k uses Lemma 2 as a starting point, just as the approach of Randerath et al. [41]

does for the k = 3 case. Lemma 2 implies that every k-colourable P5-free graph G

has a dominating set D of size at most k (as the clique number of a k-colourable graph

is at most k). Let the vertex set of D be {v1, . . . , v|D|}. Then decompose the set of

vertices not in D into |D| “layers” so that the vertices in a layer i are adjacent to vi

(and possibly to v j for j > i) but not to any vh with h < i . Using the P5-freeness of G

to analyse the adjacencies between different layers, it is possible to branch in such

a way that a polynomial number of instances of (k − 1)- Colouring are obtained.

123

Algorithmica (2019) 81:1342–1369 1351

Hence, by repetition, a polynomial number of instances of 2- Colouring are reached,

which can each be solved in polynomial time due to the result of [14].

The algorithm of [24] works by considering the more general List k- Colouring

problem, where each vertex v is assigned a list L(v) ⊆ {1, . . . , k} of permitted colours

and the question is whether there is a colouring in which each vertex is assigned a

colour from its list. The algorithm immediately removes any vertices whose lists have

size 1 at any point (and then adjusts the lists of admissible colours of all neighbours of

such vertices). We will follow the approach of [24]. In our case k = 3, but we cannot

remove any vertices whose lists contain a singleton colour if this colour is 2 or 3. To

overcome this extra complication we carefully analyse the 4-vertex cycles in the graph

after observing that these cycles are the only obstacles that may prevent a 3-colouring

of a P5-free graph from being semi-acyclic.

For a subset S ⊆ V (G) of the vertex set of a graph G, we let G[S] denote the

subgraph of G induced by S.

Theorem 3 List Semi- Acyclic 3- Colouring is solvable on P5-free graphs in

O(n16) time.

Proof Consider an input (G, L) for the problem such that G is P5-free. Since the

problem can be solved component-wise, we may assume that G is connected. If G

contains a K4, then it is not 3-colourable and the input is a no-instance. As we can

test whether or not G contains a K4 in O(n4) time, we now assume that G is K4-free.

We may also assume that G contains at least three vertices, otherwise the problem can

be trivially solved.

For i ∈ {1, 2, 3} let G¬i = G[{v ∈ V (G) | i /∈ L(v)}]. We apply the follow-

ing propagation rules exhaustively, and, later in the proof, every time we branch on

possibilities, we assume that these rules are again applied exhaustively immediately

afterwards.

Rule 1. If u, v ∈ V (G) are adjacent and |L(u)| = 1, set L(v) := L(v) \ L(u).

Rule 2. If L(v) = ∅ for some v ∈ V (G), return no.

Rule 3. If G¬i is not bipartite for some i ∈ {1, 2, 3}, return no.

Rule 4. If G¬1 contains an induced C4, return no.

Rule 5. If G contains an induced C4, and exactly one vertex v of this cycle has a list

containing the colour 1, set L(v) = {1}.

We must show that these rules are safe. That is, that when they modify the instance

they do not affect whether or not it is a yes-instance or a no-instance, and when

they return the answer no, this is correct and no semi-acyclic colouring that respects

the lists can exist. This is trivial for Rules 1 and 2. We may apply Rule 3 since in

any 3-colouring of G every pair of colour classes must induce a bipartite graph. We

may apply Rules 4 and 5 since in every solution, every induced C4 must contain at

least one vertex coloured with colour 1. In fact, if there is a 3-colouring of G with an

induced cycle made of vertices coloured only 2 and 3, then this induced cycle must be

an even cycle. Since G is P5-free, such an induced cycle must in fact be isomorphic

to C4. Hence the problem, when restricted to P5-free graphs, is equivalent to testing

whether G has a 3-colouring respecting the lists such that every induced C4 contains

at least one vertex coloured with colour 1.

123

1352 Algorithmica (2019) 81:1342–1369

By Lemma 2, G has a dominating set S that either is a clique or induces a P3. If S

is a clique, then it has at most three vertices, as G is K4-free, so we can find such

a set in O(n4) time. Thus, adding vertices arbitrarily if necessary, we may assume

S = {a1, a2, a3}. We consider all possible combinations of colours that can be assigned

to the vertices in S, that is, we branch into at most 33 cases, in which a1, a2 and a3

have each received a colour, or equivalently, have had their list of permissible colours

reduced to size exactly 1. In each case we proceed as follows.

Assume that L(a1) = {c1}, L(a2) = {c2} and L(a3) = {c3} and again apply the

propagation rules above. Partition the vertices of V \ S into three parts V1, V2, V3:

let V1 be the set of neighbours of a1 in V \ S, let V2 be the set of neighbours of a2

in V \ S that are not adjacent to a1, and let V3 = V (G) \ (S ∪ V1 ∪ V2) (see also

Fig. 4). Each vertex in V3 is non-adjacent to a1 and a2, so it is adjacent to a3, as S

is dominating. For i ∈ {1, 2, 3}, if v ∈ Vi , then L(v) ⊆ {1, 2, 3} \ {ci } by Rule 1, so

each vertex has at most two colours in its list. For i ∈ {1, 2, 3} let V ′
i be the subset of

vertices v in Vi with L(v) = {1, 2, 3} \ {ci }. Recall that for i ∈ {1, 2, 3}, we defined

G¬i = G[{v ∈ V (G) | i /∈ L(v)}]. Since for every i ∈ {1, 2, 3}, every vertex of Vi

belongs to G¬ci
, it follows that V1, V2 and V3 each induce a bipartite graph in G by

Rule 3. Therefore, we may partition each V ′
i into two (possibly empty) independent

sets V ′′
i and V ′′′

i .

Our strategy is to reduce the instance (G, L) to a polynomial number of

instances (G, L ′), in which there are no edges between any two distinct sets V ′
i and V ′

j

(defined with respect to L ′). We will do this by branching on possible partial colour-

ings in such a way that afterwards there are no edges between V ′′
i and V ′′′

j , no edges

between V ′′
i and V ′′

j and no edges between V ′′′
i and V ′′′

j for every pair i, j ∈ {1, 2, 3}

with i �= j . As the branching procedure is similar for each of these possible com-

binations, we pick an arbitrary pair, namely V ′′
1 and V ′′

2 . As we shall see, we do not

remove any edges between V ′′
1 and V ′′

2 . Instead, we decrease the lists of some of their

Fig. 4 The sets S, V1, V2
and V3. Dashed lines indicate

edges that are not present. Edges

that are not shown may or may

not be present. In particular,

vertices in V1 can be adjacent

to v2 or v3 and vertices in V2
can be adjacent to v3

V3

V2

V1

S

a3

a2

a1

123

Algorithmica (2019) 81:1342–1369 1353

vertices to size 1, so that these vertices will leave V ′
1 ∪ V ′

2 by definition of V ′
1 and V ′

2
(and therefore leave V ′′

1 and V ′′
2 by definition of V ′′

1 and V ′′
2).

Suppose that G[V ′′
1 ∪V ′′

2] contains an induced 2P2 (see Fig. 5) with edges uu′ andvv′

for u, v ∈ V ′′
1 and u′, v′ ∈ V ′′

2 . Then G[{u′, u, a1, v, v′}] is a P5, a contradiction. It

follows that G[V ′′
1 ∪ V ′′

2] is a 2P2-free bipartite graph, that is, the edges between V ′′
1

and V ′′
2 form a chain graph, which means that the vertices of V ′′

1 can be linearly

ordered by inclusion of neighbourhood in V ′′
2 . In other words, we fix an ordering

V ′′
1 = {u1, . . . , uk} such that NV ′′

2
(u1) ⊇ · · · ⊇ NV ′′

2
(uk).

We choose an arbitrary colour c′ ∈ {1, 2, 3} \ {c1, c2}. Note that if c1 �= c2 then

this choice is unique and otherwise there are two choices (as we will show, it suffices

to branch on only one choice). Also note that every vertex in V ′′
1 and V ′′

2 has colour c′

in its list.

We now branch over k +1 possibilities, namely the possibilities that vertex ui is the

first vertex coloured with colour c′ (so vertices u1, . . . , ui−1, if they exist, do not get

colour c′) and the remaining possibility that no vertex of V ′′
1 is coloured with colour c′.

To be more precise, for branch i = 1 we set L(u1) = {c′}, for each branch 2 ≤ i ≤ k

we remove colour c′ from each of L(u1), . . . , L(ui−1) and set L(ui) = {c′} and for

branch i = k + 1 we remove colour c′ from each of L(u1), . . . , L(uk). If i = k + 1,

all vertices of V ′′
1 will have a unique colour in their list and thus leave V ′

1 and thus V ′′
1

by definition of V ′
1. Hence, V ′′

1 becomes empty and thus, as required, we no longer

have edges between V ′′
1 and V ′′

2 . Otherwise, if i ≤ k, then all of u1, . . . , ui will have

a list containing exactly one colour, so they will leave V ′
1 and therefore V ′′

1 . By Rule 1

all neighbours of ui in V ′′
2 will have c′ removed from their lists, so they will leave V ′

2
and therefore V ′′

2 . By the ordering of neighbourhoods of vertices in V ′′
1 , this means

that no vertex remaining in V ′′
1 has a neighbour remaining in V ′′

2 , so if i ≤ k, then it

is also the case that we no longer have edges between V ′′
1 and V ′′

2 .

Note that removing all the edges between distinct sets V ′
i and V ′

j in the above way

involves branching into O(n12) cases. We consider each case separately, and for each

case we proceed as below.

By the above branching we may assume that there are no edges between any two

distinct sets V ′
i and V ′

j . We say that an induced C4 is tricky if there exists a (proper)

colouring of it (not necessarily extendable to all of G) using only the colours 2 and 3

such that every vertex receives a colour from its list. We say that a vertex in an

induced C4 is good for this induced C4 if its list contains the colour 1. By definition

of tricky, every good vertex for a tricky induced C4 must belong to V ′
1 ∪ V ′

2 ∪ V ′
3. By

Rules 4 and 5, every tricky induced C4 must contain at least two good vertices. If an

induced C4 contains two good vertices that are adjacent, then they must belong to the

same set V ′
i (since there are no edges between any two distinct sets V ′

i and V ′
j), so

they must have the same list. This means that in every colouring of this induced C4

that respects the lists, one of the good vertices in this induced C4 will be coloured

with colour 1, contradicting the definition of tricky. We conclude that every tricky

induced C4 must contain exactly two good vertices, which must be non-adjacent.

Fig. 5 The graph 2P2

123

1354 Algorithmica (2019) 81:1342–1369

Suppose G contains a tricky induced C4 on vertices v1, v2, v3, v4, in that order,

such that v1 and v3 are good. Since the C4 is tricky, we must either have:

– 2 ∈ L(v1), 3 ∈ L(v2), 2 ∈ L(v3) and 3 ∈ L(v4) or

– 3 ∈ L(v1), 2 ∈ L(v2), 3 ∈ L(v3) and 2 ∈ L(v4).

Since v2 and v4 are not good, and there are no edges between distinct sets of the

form V ′
i , the above implies that one of the following must hold:

– L(v1) = {1, 2}, L(v2) = {3}, L(v3) = {1, 2} and L(v4) = {3} or

– L(v1) = {1, 3}, L(v2) = {2}, L(v3) = {1, 3} and L(v4) = {2}.

We say that an induced C4 is strongly tricky if its vertices have lists of this form

(see also Fig. 6). Note that, by the above arguments, we may assume that all tricky

induced C4s in the instances we consider are in fact strongly tricky.

For S � {1, 2, 3}, let L S denote the set of vertices v with L(v) = S (to simplify

notation, we will write L i instead of L{i} and L i, j instead of L{i, j} wherever possible).

Note that for distinct sets S, T ⊆ {1, 2, 3} with |S| = |T | = 2, no vertex in L S can

have a neighbour in LT , because such vertices would be in different sets V ′
i , and

therefore cannot be adjacent by our branching. By Rule 1, if S � T � {1, 2, 3} with

|S| = 1 and |T | = 2, then no vertex in L S can have a neighbour in LT . From the

above two arguments it follows that if a vertex is in L1,2, L2,3 or L1,3, then all its

neighbours outside this set must be in L3, L1 or L2, respectively (see also Fig. 7).

{1, 2}

{3}

{1, 2}

{3}

{1, 3}

{2}

{1, 3}

{2}

Fig. 6 Strongly tricky C4s

Fig. 7 The possible adjacencies

of vertices in the sets L S for

S ⊆ {1, 2, 3}. An edge is shown

between two sets if and only if it

is possible for a vertex in one of

the sets to be adjacent to a vertex

in the other. Every vertex in the

graph has a list of size either 1

or 2

L1

L2 L3

L2,3

L1,3 L1,2

123

Algorithmica (2019) 81:1342–1369 1355

Recall that every tricky induced C4 is strongly tricky, and is therefore entirely

contained in either G[L2 ∪ L1,3] or G[L3 ∪ L1,2]. By Rule 3, G¬1 and therefore

G[L2,3] is bipartite. Hence we can colour the vertices of L2,3 with colours from their

lists such that no vertex in L2,3 is adjacent to a vertex of the same colour in G and

no induced C4s are coloured with colours alternating between 2 and 3 (indeed, recall

that induced C4s cannot exist in G[L2,3] by Rule 4). It therefore remains to check

whether the vertices of G[L2 ∪ L1,3] (and G[L3 ∪ L1,2]) can be coloured with colours

from their lists so that no pair of adjacent vertices in L1,3 (resp. L1,2) receive the same

colour and every strongly tricky C4 has at least one vertex coloured 1. By symmetry,

it is sufficient to show how to solve the G[L2 ∪ L1,3] case. Hence we have reduced

the original instance (G, L) to a polynomial number of instances of a new problem,

which we define below after first defining the instances.

Definition 1 A graph G = (V , E) is troublesome if every vertex v in G has list either

L(v) = {2} or L(v) = {1, 3}, such that L2 is an independent set and L1,3 induces a

bipartite graph.

In particular, for each of our created instances the set L2 is independent due to Rule 1

and L1,3 induces a bipartite graph by Rule 3. Note that by definition of troublesome,

all tricky induced C4s in a troublesome graph are strongly tricky.

Definition 2 Let G be a troublesome graph. A 3-colouring of the graph G is trouble-

free if each vertex receives a colour from its list, no two adjacent vertices of G are

coloured alike and at least one vertex of every strongly tricky induced C4 of G receives

colour 1.

This leads to the following problem.

Trouble- Free Colouring

Instance: a troublesome P5-free graph G

Question: does G have a trouble-free colouring?

We can encode an instance of Trouble- Free Colouring as an instance of 2-

Satisfiability as follows. For each vertex u ∈ L1,3, we create two variables u1

and u3. If we assign u1 or u3 to be true, this means that u will be assigned colour 1

or 3, respectively. Hence, we need to add the clauses (u1 ∨ u3) and (u1 ∨ u3). To

ensure that two adjacent vertices are not coloured alike, for each pair of adjacent

vertices u, v ∈ L1,3 we add the clauses (u1 ∨ v1) and (u3 ∨ v3). For each strongly

tricky C4 with good vertices u and v, we add the clause (u1 ∨ v1) to ensure that

at least one of them will be assigned colour 1. Let I be the resulting instance of

2- Satisfiability. We claim that G has a trouble-free colouring if and only if I is

satisfiable.

First suppose that G has a trouble-free colouring. Then setting xc to be true if the

vertex x receives colour c gives a satisfying assignment for I. Now suppose that I

has a satisfying assignment. Then we colour the vertex v ∈ L1,3 with colour c if vc is

set to true in this assignment. For v ∈ L2 we colour v with colour 2. No two adjacent

vertices of L1,3 are assigned the same colour, because I is satisfied. No vertex of L2

is assigned the same colour as one of its neighbours, since L2 is an independent set

123

1356 Algorithmica (2019) 81:1342–1369

and every vertex of L1,3 is assigned colour 1 or 3. Therefore the obtained colouring is

a 3-colouring of G. Since I is satisfied, every strongly tricky C4 contains at least one

vertex coloured 1. Hence G has a trouble-free colouring.

So, by branching, we have reduced the original instance (G, L) of List Semi-

Acyclic 3- Colouring to a polynomial number of instances of 2- Satisfiability.

If we find that one of the instances of the latter problem is a yes-instance, then we

obtain a corresponding yes-instance of Trouble- Free Colouring. We therefore

solve Trouble- Free Colouring on G[L2 ∪ L1,3] and (after swapping colours 2

and 3) on G[L3 ∪ L1,2]. If one of these two instances of Trouble- Free Colouring

is a no-instance, then we return no for this branch and try the next one. If both of

these are yes-instances, then we return yes and obtain a semi-acyclic 3-colouring

by combining the colourings on G[L1 ∪ L2,3], G[L2 ∪ L1,3] and (after swapping

colours 2 and 3 back) G[L3 ∪ L1,2]. If every branch returns no then the original graph

has no semi-acyclic 3-colouring. This completes the proof of the correctness of the

algorithm and it remains to analyse its runtime.

Let n be the number of vertices in G. Recall that we can check if G is K4-free

in O(n4) time and if it is then we can find a dominating set of size at most 3 in O(n4)

time. Rule 1 can be applied in O(n2) time. Rule 2 can be applied in O(n) time. Rule 3

can be applied in O(n2) time. Rules 4 and 5 can be applied in O(n4) time. We first

branch up to 33 times and then sub-branch O(n12) times and in each case we apply

the rules. We find all (strongly) tricky C4s and the two corresponding good vertices

in O(n4) time. It is readily seen that every created instance of 2- Satisfiability

is solvable in O(n2) time (see also Edwards [14]). This leads to a total runtime of

O(n4) + O(1) × O(n12) × (O(n4) + O(n4) + O(n2)) = O(n16). ⊓⊔

As mentioned, Theorem 3 has the following consequence.

Corollary 3 Near- Bipartiteness can be solved in O(n16) time for P5-free graphs.

Proof Let G be a graph. Set L(v) = {1, 2, 3} for all v ∈ V (G). Then G is near-bipartite

if and only if (G, L) is a yes-instance of List Semi- acyclic 3- Colouring. In par-

ticular, the vertices coloured 1 by a semi-acyclic colouring of G form an independent

feedback vertex set of G. The corollary follows by Theorem 3. ⊓⊔

4 Independent Feedback Vertex Sets of P5-Free Graphs

In this section we prove that Independent Feedback Vertex Set is polynomial-

time solvable for P5-free graphs by extending the algorithm from Sect. 3: the first part

of our proof uses the proof of Theorem 3, as we will explain in the proof of Lemma 3.

As such, we heavily use Definitions 1 and 2. Let G = (V , E) be a troublesome P5-free

graph. For a trouble-free colouring c of G, let tc(G) = |{u ∈ V | c(u) = 1}| denote

the number of vertices of G coloured 1 by c. Let t(G) be the minimum value tc(G)

over all trouble-free colourings c of G, and set tc(G) = ∞ if no such colouring exists.

Lemma 3 Let G be a near-bipartite P5-free graph. In O(n16) time it is possible to

reduce the problem of finding the smallest independent feedback vertex set of G to

finding the value t(G ′) of O(n12) instances of Trouble- Free Colouring, all on

induced subgraphs of G.

123

Algorithmica (2019) 81:1342–1369 1357

Proof Let G be a near-bipartite P5-free graph, that is, we assume that G has an inde-

pendent feedback vertex set. We may assume that G is connected, otherwise, we solve

the problem component-wise. We set L(v) = {1, 2, 3} for all v ∈ V (G) and run the

algorithm of Theorem 3. As can be seen from the proof of Theorem 3, this algorithm

branches up to 33 times and then sub-branches O(n12) times. Each branch gives us,

after some preprocessing in O(n4) time, either a no answer, in which case we discard

this branch, or two vertex-disjoint instances of Trouble- Free Colouring (one on

G[L2 ∪ L1,3] and one (after swapping colours 2 and 3) on G[L3 ∪ L1,2]) and we will

denote these two instances by G ′ and G ′′, respectively. Such instances consist of a

troublesome graph G ′ or G ′′, which is an induced subgraph of G and whose vertices

have lists of admissible colours determined by the branching.

As explained in the proof of Theorem 3, in any branch that we did not discard,

G[L1 ∪ L2,3] will have a semi-acyclic 3-colouring that respects the lists and L1 will be

the set of vertices that are coloured 1 in any such colouring. Therefore, given trouble-

free colourings c and c′ of G ′ and G ′′, respectively, we can obtain an independent

feedback vertex set S(c, c′, G ′, G ′′) by taking the union of the set L1 of G[L1 ∪ L2,3]

and the sets of vertices in G ′ and G ′′ that c or c′ colour with colour 1.

Now let c∗ and c∗∗ be such that t(G ′) = tc∗(G ′) and t(G ′′) = tc∗∗(G ′′). If we

know t(G ′) and t(G ′′), we can compute the size s(G ′, G ′′) = |S(c∗, c∗∗, G ′, G ′′)|

in O(1) time (and, if we know c∗ and c∗∗, we can compute the corresponding

independent feedback vertex set S(c∗, c∗∗, G ′, G ′′) in O(n) time). Let ŝ be the min-

imum s(G ′, G ′′) over all branches of our procedure. As our procedure had O(n12)

branches, given the values of t(G ′) and t(G ′′) for every branch, we can compute ŝ

in O(n12) time. As we branched in every possible way, ŝ is the size of a minimum

independent feedback vertex set of G. ⊓⊔

We still need a polynomial-time algorithm that computes t(G) for a given trou-

blesome P5-free graph. We present such an algorithm in the following lemma (in the

proof of this lemma we again use Definitions 1 and 2).

Lemma 4 Let G be a troublesome P5-free graph on n vertices. Determining t(G) can

be done in O(n3) time.

Proof Let G = (V , E) be a troublesome P5-free graph. Note that in G, an induced C4

on vertices v1, v2, v3, v4, in that order, is strongly tricky if v1, v3 ∈ L1,3 and v2, v4 ∈

L2.

We construct an auxiliary graph H as follows. We let V (H) = L1,3. Every edge

of G[L1,3] belongs to H . We say that such edges are red. For non-adjacent vertices

v1, v3 ∈ L1,3, if there is a strongly tricky induced C4 on vertices v1, v2, v3, v4 with

v2, v4 ∈ L2, we add the edge v1v3 to H . We say that such edges are blue. Note that H

is a supergraph of G[L1,3] and that there exists at most one edge, which is either blue

or red, between any two vertices of H .

We say that a colouring of H feasible if the following two conditions are met:

(i) no red edge is monochromatic, that is, the two end-vertices of every red edge must

be coloured, respectively, 1&3 or 3&1;

123

1358 Algorithmica (2019) 81:1342–1369

(ii) the two end-vertices of every blue edge must be coloured, respectively, 1&3, 3&1

or 1&1 (the only forbidden combination is 3&3, as in this case we obtain a strongly

tricky induced C4 in G with colours 2 and 3).

We note that there is a one-to-one correspondence between the set of trouble-free

colourings of G and the set of feasible colourings of H . Hence, we need to find a

feasible colouring of H that minimises the number of vertices coloured 1.

Let R1, . . . , Rp be the components of G[L1,3], or equivalently, of the graph

obtained from H after removing all blue edges. We say that these are red compo-

nents. As G[L1,3] is bipartite and P5-free, all red components of H are bipartite and

P5-free. We denote the bipartition classes of each Ri by X i and Yi , arbitrarily (note

that these classes are unique, up to swapping their order). We apply the following rules

on H exhaustively, making sure to only apply a rule if all previous rules have been

applied exhaustively.

Rule 1. If there is a blue edge in H between two vertices u, v ∈ X i or two vertices

u, v ∈ Yi , then assign colour 1 to u and v.

Rule 2. If there is a blue edge e in H between a vertex u ∈ X i and a vertex v ∈ Yi ,

then delete e from H .

Rule 3. If there are blue edges uv and u′v′ such that either u, u′ ∈ X i or u, u′ ∈ Yi

(where u = u′ is possible), while v ∈ X j and v′ ∈ Y j for some j �= i , then

assign colour 1 to u and u′.

Rule 4. If an uncoloured vertex u is adjacent to a vertex with colour 3 via a blue edge,

then assign colour 1 to u.

Rule 5. If an uncoloured vertex u is adjacent to a coloured vertex v via a red edge,

then assign colour 1 to u if v has colour 3 and assign colour 3 to u otherwise.

Rule 6. If there is a red edge with end-vertices both coloured 1 or both coloured 3, or

a blue edge with end-vertices both coloured 3, then return no.

Rule 7. Remove all vertices that have received colour 1 or colour 3, keeping track of

the number of vertices coloured 1.

Since each Ri is connected and bipartite, in every feasible colouring of H , for all i

either all vertices in the set X i must be coloured 1 and all vertices in the set Yi must

be coloured 3, or vice versa. Therefore we may safely apply Rules 1 and 2. Suppose

that there exist vertices u and u′ (we allow the case where u = u′) in some X i or in

some Yi , such that u is incident with a blue edge uv and u′ is incident with a blue

edge u′v′ for two vertices v and v′ that belong to different partition classes of the

same red component R j for some j �= i . Then, as either v or v′ must get colour 3 in

every feasible colouring of H and u, u′ must be coloured alike, we find that u and u′

must receive colour 1. Hence Rule 3 is also safe to apply. Rules 4–6 are also safe;

this follows immediately from the definition of a feasible colouring. If a vertex v is

assigned colour 3, then by Rule 4 all its neighbours along blue edges get colour 1, so

Property (ii) of a feasible colouring is satisfied for all blue edges with end-vertex v. If

a vertex v is assigned a colour, then by Rule 5 all its neighbours along red edges get a

different colour, so Property (i) of a feasible colouring is satisfied. We conclude that

Rule 7 is safe.

By Rules 1 and 2, if two vertices are in the same red component Ri , we may assume

that they are not connected by a blue edge. Hence, we may assume from now on that

123

Algorithmica (2019) 81:1342–1369 1359

red components contain no blue edges in H . By Rule 3, we may also assume that if

i �= j then either no vertex in X j is joined by a blue edge to a vertex of X i or no vertex

in Y j is joined by a blue edge to a vertex of X i (and similarly with X i replaced by Yi).

From H we construct another auxiliary graph H∗ as follows. First, we replace each

red component Ri on more than two vertices by an edge xi yi , which we say is a red

edge. Hence, the set of red components of H is reduced to a set of red components

in H∗ in such a way that each red component of H∗ is either an edge or a single vertex.

Next, for i �= j we add an edge, which we say is a blue edge, between two vertices xi

and x j if and only if there is a blue edge between a vertex in X i and a vertex in X j .

Similarly, for i �= j we add a blue edge, between two vertices yi and x j (resp. y j) if

and only if there is a blue edge between a vertex in Yi and a vertex in X j (resp. Y j).

Recall that, by Rules 1 and 2, no two vertices in the same component Ri are

connected by a blue edge in H . So every feasible colouring of H corresponds to

a feasible colouring of H∗ and vice versa. To keep track of the number of vertices

coloured 1, we introduce a weight function w : V (H∗) → Z+ by setting w(xi) = |X i |

and w(yi) = |Yi |. Our new goal is to find a feasible colouring c of H∗ that minimises

the sum of the weights of the vertices coloured 1, which we denote by w(c).

Since in the graph H , for i �= j either no vertex in X j is joined by a blue edge to a

vertex of X i or no vertex in Y j is joined by a blue edge to a vertex of X i (and similarly

with X i replaced by Yi), we find that H∗ contains no triangle consisting of one red

edge and two blue edges. As red edges induce a disjoint union of isolated edges, this

means that the only triangles in H∗ consist of only blue edges. Let B1, . . . , Bq be the

components of the graph obtained from H∗ after removing all red edges. We say that

these are blue components (this includes the case where they are singletons).

We will now show that all blue components of H∗ are complete.

Claim 1 Each Bi is a complete graph.

We prove Claim 1 as follows. For contradiction, suppose there is a blue component Bi

that is not a complete graph. Then Bi contains three vertices u, v, w such that uv

and vw are blue edges and uw is not a blue edge. As uv and vw are blue edges, v is

not in the same red component of H∗ as u or w. As no triangle in H∗ can have two

blue edges and one red edge, u and w are not adjacent in H∗, meaning that u, v, w in

fact belong to three different red components in H . Let u′v′ and v′′w′ be blue edges

of H corresponding to the edges uv and vw, respectively. As uw is not a blue edge

in H∗, we find that u′w′ is not a blue edge in H ′. We distinguish between two cases

and show that neither of them is possible.

Case 1 v′ = v′′.

As u′v′ is a blue edge in H , we find that in G, the vertices u′ and v′ must have at

least two common neighbours in L2. For the same reason, in G, the vertices v′ and w′

must have at least two common neighbours in L2. Since u′w′ is not a blue edge in H ,

we find that in G, the vertices u′ and w′ have at most one common neighbour in L2.

Therefore G contains two vertices p, q ∈ L2 such that p is adjacent to u′ and v′ but

non-adjacent to w′ and q is adjacent to v′ and w′ but non-adjacent to u′. As L2 is an

independent set in G, p is non-adjacent to q. Now G[{u′, p, v′, q, w′}] is a P5, which

is a contradiction.

123

1360 Algorithmica (2019) 81:1342–1369

Case 2 v′ �= v′′.

Let Ri be the red component of H containing v′ and v′′. Then, due to the way the red

edges of H∗ are constructed, either v′ and v′′ both belong to X i , or they both belong

to Yi . As Ri is bipartite, connected and P5-free, Ri must contain a vertex s that is

adjacent to both v′ and v′′. Just as in Case 1, in G the vertices u′ and v′ have at least

two common neighbours p, p′ ∈ L2, and v′ and w′ also have at least two common

neighbours q, q ′ ∈ L2. As L2 is independent in G, it follows that {p, p′, q, q ′} is also

an independent set (which may have size smaller than 4).

Now p must be adjacent to at least one vertex in {s, v′′}, as otherwise

G[{u′, p, v′, s, v′′}] would be a P5. Similarly, p′ must be adjacent to at least one vertex

in {s, v′′}. If p and p′ are both adjacent to s, then there is a blue edge between u′ and s

in H . This is not possible, as then we would have applied Rule 3. If p and p′ are both

adjacent to v′′ then there is a blue edge between u′ and v′′ in H , so Case 1 applies and

we are done. We may therefore assume that p is adjacent to s but non-adjacent to v′′,

and that p′ is adjacent to v′′ but non-adjacent to s. Similarly, we may assume that q

is adjacent to s but non-adjacent to v′, and that q ′ is adjacent to v′, but non-adjacent

to s. As p, p′, q have different neighbourhoods in {s, v′′}, we find that p, p′, q are

pairwise distinct. Recalling that {p, p′, q} ⊆ L2 is an independent set, it follows that

G[{p, v′, p′, v′′, q}] is a P5 (see also Fig. 8). This contradiction completes Case 2.

Hence we have proven Claim 1.

By Claim 1, H∗ is the disjoint union of several blue complete graphs with red edges

between them. Recall that we allow the case where these blue complete graphs contain

only one vertex. On H∗ we apply the following rule exhaustively in combination with

Rules 4–7. While doing this we keep track of the weights of the vertices coloured 1.

Rule 8. If there exist (red) edges u1v1 and u2v2 for u1, u2 ∈ Bi and v1, v2 ∈ B j

(i �= j), then assign colour 1 to every vertex in (Bi ∪ B j) \ {u1, u2, v1, v2}.

s

p qp q

u wv v

Fig. 8 An illustration of Case 2 of Claim 1 with the forbidden P5 shown in bold. The red edges edges sv′

and sv′′ are present in both G and H . The blue edges u′v′ and v′′w′ are present in H , but not G. The

vertices p, p′, q, q ′ are present in G, but not H , and the same holds for all of their incident edges. Note

that the vertices p′ and q ′ are not necessarily distinct. The edges pw′, p′w′, qu′ and q ′u′ may or may not

be present in G (Color figure online)

123

Algorithmica (2019) 81:1342–1369 1361

Since Rules 4 and 5 can be safely applied on H , they can be safely applied on H∗.

It follows that Rules 6 and 7 can also be safely applied on H∗. We may also safely

apply Rule 8: the red edges u1v1 and u2v2 force ui and vi to have different colours for

i ∈ {1, 2}, whereas the blue components forbid u1, u2 both being coloured 3 and v1, v2

both being coloured 3. Hence, exactly one of u1, u2 and exactly one of v1, v2 must

be coloured 3. Because at most one vertex in any blue component may be coloured 3,

this implies that all vertices in (Bi ∪ B j) \ {u1, u2, v1, v2} must be coloured 1.

As every vertex is incident with at most one red edge in H∗, we obtain a resulting

graph that is an induced subgraph of H∗ with the following property: if there exist (red)

edges u1v1 and u2v2 for u1, u2 ∈ Bi and v1, v2 ∈ B j , then {u1, u2, v1, v2} induces a

connected component of H∗. We can colour such a 4-vertex component in exactly two

ways and we remember the colouring with minimum weight (either w(u1) + w(v2)

or w(u2) + w(v1) depending on whether u1 gets colour 1 or 3, respectively). Hence,

from now on we may assume that the resulting graph, which we again denote by H∗,

does not have such components. That is, there is at most one red edge between any

two blue components of H∗. As we can colour H∗ component-wise, we may assume

without loss of generality that H∗ is connected.

For each Bi we define the subset B ′
i to consist of those vertices of Bi not incident

with a red edge, and we let B ′′
i = Bi \ B ′

i . We note the following. If we colour

every vertex of some B ′′
i with colour 1, then every neighbour of every vertex of B ′′

i

in any other blue component B j must be coloured 3 by Rule 5 (recall that vertices in

different blue components are connected to each other only via red edges). As soon

as one vertex u in some blue component B j has colour 3, all other vertices in B j − u

must get colour 1 by Rule 4. In this way we can use Rules 4 and 5 exhaustively to

propagate the colouring to other vertices of H∗ where we have no choice over what

colour to use.

Recall that no vertex of H∗ is incident with more than one red edge. This is a

crucial fact: it implies that propagation to other blue components of H∗ happens only

via red edges vw between two blue components, one end-vertex of which, say v, is

first coloured 1, which implies that the other end-vertex w of such an edge must get

colour 3; this in turn implies that all other vertices in the blue component containing w

must get colour 1 and so on. Hence, as H∗ was assumed to be connected, colouring

every vertex of a set B ′′
i with colour 1 propagates to all vertices of H∗ except for the

vertices of B ′
i . Note that we may still colour (at most) one vertex of B ′

i with colour 3.

Due to the above, we now do as follows for each i ∈ {1, . . . , q} in turn: We colour

every vertex of B ′′
i with colour 1 and propagate to all vertices of H∗ except for the

vertices of B ′
i . If we obtain a monochromatic red edge or a blue edge whose end-

vertices are coloured 3, we discard this option (by Rule 6). Otherwise, we assign

colour 3 to a vertex u ∈ B ′
i with maximum weight w(u) over all vertices in B ′

i (if

B ′
i �= ∅). We store the resulting colouring ci that corresponds to this option.

After doing the above for all q options, it remains to consider the cases where

every B ′′
i contains (exactly) one vertex coloured 3. Before we can use another propa-

gation argument that tells us which vertices get colour 3, we first perform the following

steps, only applying a step when the previous ones have been applied exhaustively.

These steps follow immediately from the assumption that every B ′′
i contains a vertex

coloured 3.

123

1362 Algorithmica (2019) 81:1342–1369

(i) Colour all vertices of every B ′
i with colour 1 (doing this does not cause any prop-

agation).

(ii) If some B ′′
i consists of a single vertex, then colour this vertex with colour 3, and

afterwards propagate by using Rule 5 exhaustively.

(iii) Remove coloured vertices using Rule 7.

If due to (ii) we obtain a monochromatic red edge or a blue edge whose end-vertices

are coloured 3, we discard this option (using Rule 6). Otherwise, we may assume from

now on that B ′
i = ∅, so B ′′

i = Bi due to (i) and that |Bi | ≥ 2 due to (ii). Note that

doing (iii) does not disconnect the graph: the vertices in the vertices in B ′
i that are

coloured in (i) only have neighbours in the clique Bi (and these are via blue edges)

and if a vertex of v ∈ B ′′
i is coloured with colour 3 in (ii), then its only neighbour w

(via a red edge) is in a set B ′′
j and since (i) has been applied exhaustively, the only

other neighbours of w are in B ′′
j (via blue edges), so the propagation stops there and

the graph does not become disconnected.

By our procedure, every vertex of every blue component Bi is incident with a red

edge, so the total number of outgoing red edges for each Bi is equal to |Bi | ≥ 2, and all

outgoing red edges go to |Bi | different blue components. Hence the graph H ′ obtained

from H∗ by contracting each blue component to a single vertex has minimum degree

at least 2. As H ′ has minimum degree at least 2, we find that H ′ contains an edge that

is not a bridge (a bridge in a connected graph is an edge whose removal disconnects

the graph). Let uv be the corresponding red edge in H∗, say u belongs to Bi and v

belongs to B j .

We have two options to colour u and v, namely by 1, 3 or 3, 1. We try them both.

Suppose we first give colour 1 to u. Then we propagate in the same way as before.

Because uv is not a bridge in H ′, eventually we propagate back to Bi by giving colour 3

to an uncoloured vertex of Bi . When that happens we have “identified” the colour-

3 vertex of Bi and then need to colour all other vertices of Bi with colour 1. This

means that we can in fact propagate to all blue components of H∗, just as before. If

at some point we obtain a monochromatic red edge or a blue edge with end-vertices

coloured 3, then we discard this option (by Rule 6). Next, we give colour 1 to v and

proceed similarly.

At the end we have at most q + 2 different feasible colourings of H∗. We pick the

one with minimum weight and translate the colouring to a feasible colouring of H .

Finally, we translate the feasible colouring of H to a trouble-free colouring of the

original graph G.

It remains to analyse the runtime. Let n be the number of vertices in G. Given

two non-adjacent vertices in L1,3, we can test whether they have have two common

neighbours in L2 in O(n) time. Therefore we can construct H in O(n3) time.

Applying Rules 1 and 2 takes O(n2) time. Applying Rule 3 takes O(n3) time.

Rules 1–3 only need to be applied exhaustively once, just after H is first constructed.

Rules 4 and 5 can be applied exhaustively in O(n3) time. Rule 6 can be applied

in O(n2) time. Rule 7 can be applied in O(n) time.

Constructing H∗ takes O(n2) time. By Claim 1, in H∗ every blue component is a

clique, so Rule 4 can be applied exhaustively on H∗ in O(n2) time. By construction,

every red component of H∗ contains at most one edge, so applying Rules 5 and 8 on H∗

123

Algorithmica (2019) 81:1342–1369 1363

can be done in O(n2) time. Therefore, Rules 4–8 can be applied to H∗ in O(n2) time.

It follows that each option of colouring the vertices of some B ′′
i with colour 1 and

then doing the propagation and colouring the vertices of B ′
i takes O(n2) time. Since

there are q ≤ n blue components, the total time for this is O(n3). Then afterwards

we consider the situation where each blue component of H∗ has exactly one vertex

coloured 3.

We construct H ′ in O(n2) time and also identify a non-bridge of H ′ in O(n2)

time. Colouring the corresponding red edges in both ways and doing the propagation

takes O(n2) time again. Then, if there is at least one possibility for which we did

not return a no-answer, then we have obtained O(n) different feasible colourings

of H∗. Finding the colouring with minimum weight and translating this colouring into

a feasible colouring of H and then into a trouble-free colouring of the original graph G

also takes O(n2) time. ⊓⊔

We are now ready to state and prove the main result of our paper.

Theorem 4 The size of a minimum independent feedback vertex set of a P5-free graph

on n vertices can be computed in O(n16) time.

Proof Let G be a P5-free graph on n vertices. As we can check in O(n16) time whether

or not G is near-bipartite, we may assume without loss of generality that G is near-

bipartite. Then, by Lemma 3, in O(n16) time we can reduce the problem finding

the value t(G ′) of O(n12) instances of Trouble- Free Colouring, all on induced

subgraphs of G (which have at most n vertices). By Lemma 4 we can compute t(G ′)

in O(n3) time for each such instance. This gives a total runtime of O(n16). The result

follows. ⊓⊔

Remark 1 From our proof, we can find in polynomial time not just the size of a min-

imum independent feedback vertex set, but also the set itself. The corresponding

algorithm can also be adapted to find in polynomial time a maximum independent

feedback vertex of a P5-free graph, or an independent feedback vertex set of arbitrary

fixed size (if one exists).

5 Independent Odd Cycle Transversal

Recall that an (independent) set S ⊆ V of a graph G is an (independent) odd cycle

transversal if G − S is bipartite. We also recall that a graph G has an independent odd

cycle transversal if and only if G is 3-colourable. This means that if 3- Colouring is

NP-complete for a graph class G, then so is Independent Odd Cycle Transver-

sal. Hence, as 3- Colouring is NP-complete for graphs of girth at least g for any

constant g ≥ 3 [15] (see also [28,32]) and for line graphs [25], we find the following

result.

Proposition 2 Independent Odd Cycle Transversal is NP-complete for

– graphs of girth at least g for any constant g ≥ 3;

– for line graphs.

123

1364 Algorithmica (2019) 81:1342–1369

As shown by Chiarelli et al. [13], Odd Cycle Transversal is also NP-complete

for graphs of girth at least g for any constant g ≥ 3 and for line graphs. Hence, both

problems are NP-complete for H -free graphs if H contains a cycle or a claw.

Our algorithm for Independent Feedback Vertex Set restricted to P5-free

graphs can be adapted in the following way to solve Independent Odd Cycle

Transversal for P5-free graphs. We follow the proof of Theorem 3 but remove

Rules 4 and 5 used in that proof. For each branch, we still obtain the situation displayed

in Fig. 7, and it remains to colour the vertices in L1,3 and L1,2 greedily and component-

wise, such that the number of vertices with colour 1 is minimized.

Theorem 5 The size of a minimum independent odd cycle transversal of a P5-free

graph on n vertices can be computed in O(n16) time.

6 Conclusions

Our main result is that Independent Feedback Vertex Set is polynomial-time

solvable for P5-free graphs. As explained in Sect. 5, our algorithm can be readily

adapted to also solve Independent Odd Cycle Transversal for P5-free graphs

in polynomial time. We also proved that Independent Feedback Vertex Set is

NP-complete for H -free graphs if H contains a cycle or a claw. As discussed, the same

hardness results were known for Feedback Vertex Set and 3- Colouring, and

the hardness results for 3- Colouring immediately transfer across to Independent

Odd Cycle Transversal.

Another problem that is closely related to 3- Colouring is Independent Vertex

Cover, which is the independent problem variant of Vertex Cover. The latter

problem is that of testing whether or not a given graph G has a set S of size at most k

for some given integer k, such that the vertices of G − S form an independent set.

Similarly, the Independent Vertex Cover problem requires S to be an independent

set and is equivalent to asking whether or not a graph has a 2-colouring such that one

colour class has size at most k. This problem is clearly solvable in polynomial time.

In contrast, Vertex Cover is NP-complete for graphs of girth at least g for any

constant g ≥ 3 [38], but Vertex Cover stays polynomial-time solvable for claw-

free graphs [34,42].

Apart from Independent Vertex Cover, the complexities of the other problems

that we discussed are not settled for H -free graphs when H is a linear forest (disjoint

union of one or more paths), or even when H is a path. Randerath and Schiermeyer [39]

proved that 3- Colouring is polynomial-time solvable for Pr -free graphs for r = 6,

and more recently, Bonomo et al. [7] proved this for r = 7. The complexity of 3-

Colouring for Pr -free graphs is not known for r ≥ 8 (we refer to [20] for further

details on k- Colouring for Pr -free graphs).

The problems Feedback Vertex Set and Odd Cycle Transversal are

polynomial-time solvable for the class of permutation graphs [9], which contains

the class of P4-free graphs [9], but their complexity is not known for Pr -free graphs

when r ≥ 5. This is in contrast to Independent Feedback Vertex Set and Inde-

pendent Odd Cycle Transversal due to our result on P5-free graphs. For these

123

Algorithmica (2019) 81:1342–1369 1365

T
a
b
le
1

T
h

e
co

m
p

le
x

it
y

o
f

3
-

C
o

l
o

u
r
in

g
an

d
ei

g
h

t
re

la
te

d
p

ro
b

le
m

s
fo

r
P

r
-f

re
e

g
ra

p
h

s,
w

h
er

e
r

≥
1

is
a

fi
x
ed

in
te

g
er

(t
h
e

co
lu

m
n
s

r
≤

4
an

d
r

≥
8

re
p
re

se
n
t

m
u
lt

ip
le

ca
se

s)

r
≤

4
r

=
5

r
=

6
r

=
7

r
=

8
r

≥
9

3
-

C
o

l
o

u
r
in

g
P

P
[4

1
]

P
[3

9
]

P
[7

]
?

?

V
e
r
t
e
x

C
o

v
e
r

P
P

[3
0

]
P

[2
2
]

?
?

?

In
d

e
p
e
n

d
e
n

t
V

e
r
t
e
x

C
o

v
e
r

P
P

P
P

P
P

F
e
e
d

b
a

c
k

V
e
r
t
e
x

S
e
t

P
[9

]
?

?
?

?
?

In
d

e
p
e
n

d
e
n

t
F
e
e
d

b
a

c
k

V
e
r
t
e
x

S
e
t

P
[4

3
]

P
?

?
?

?

N
e
a

r
-

B
ip

a
r
t
it

e
n

e
s
s

P
[8

]
P

?
?

?
?

O
d

d
C

y
c
l
e

T
r
a

n
s
v

e
r
s
a

l
P

[9
]

?
?

?
?

?

In
d

e
p
e
n

d
e
n

t
O

d
d

C
y

c
l
e

T
r
a

n
s
v

e
r
s
a

l
P

P
?

?
?

?

D
o

m
in

a
t
in

g
In

d
u

c
e
d

M
a

t
c
h

in
g

P
P

P
P

[1
0
]

P
[1

1
]

?

H
er

e,
P

st
an

d
s

fo
r

b
ei

n
g

p
o
ly

n
o
m

ia
l-

ti
m

e
so

lv
ab

le
,

w
h
er

ea
s

o
p
en

ca
se

s
ar

e
d

en
o
te

d
b
y

?

123

1366 Algorithmica (2019) 81:1342–1369

two problems we do not know their complexity for r ≥ 6. As mentioned, Lokshan-

tov et al. [30] proved that Vertex Cover (or equivalently, Independent Set) is

polynomial-time solvable for P5-free graphs, and this result was recently extended

to P6-free graphs by Grzesik et al. [22]. The computational complexity of Vertex

Cover for Pr -free graphs is not known for r ≥ 7.

We refer to Table 1 for a summary of the above problems. In this table we also

added the Dominating Induced Matching problem, which is also known as the

Efficient Edge Domination problem. This problem is that of deciding whether or

not a graph G has an independent set S such that G − S is an induced matching, that is,

the disjoint union of a set of isolated edges. Cardoso et al. [12] proved that G − S is in

fact a maximum induced matching. We note that every graph G whose vertex set allows

a partition into an independent set and an induced matching is 3-colourable. Grinstead

et al. [21] proved that Dominating Induced Matching is NP-complete. Later,

the problem was shown to be NP-complete or polynomial-time solvable for various

graph classes. In particular, Brandstädt and Mosca [10] proved that Dominating

Induced Matching for Pr -free graphs is polynomial-time solvable if r = 7. Later

they extended their result to r = 8 [11]. The complexity status of Dominating

Induced Matching is unknown for r ≥ 9. Hertz et al. [23] conjectured that the

problem is polynomial-time solvable for H -free graphs whenever H is a forest, each

connected component is a subdivided claw, a path or an isolated vertex.

Completing Table 1 is a highly non-trivial task. In particular, we note that no NP-

hardness results are known for any of the problems in Table 1 when restricted to Pr -free

graphs. As such, it would be interesting to know whether the problem of determining

whether or not a Pr -free graph has an independent feedback vertex set (or equivalently,

whether or not a Pr -free graph is near-bipartite) is polynomially equivalent to the 3-

Colouring problem restricted to P f (r)-free graphs for some function f .

To solve Independent Feedback Vertex on Pr -free graphs for r ∈ {6, 7, 8},

one could try to exploit the techniques used to solve 3- Colouring for Pr -free graphs,

just as we did for the r = 5 case in this paper. However, this seems difficult due to

additional complications and a different approach may be required.

Finally, we point out that the connected problem variants Connected Feedback

Vertex Set, Connected Odd Cycle Transversal, and Connected Vertex

Cover, which each require the desired set S of size at most k to induce a connected

graph, are also known to be NP-complete for line graphs and graphs of arbitrarily large

girth. This was shown by Chiarelli et al. [13] for Connected Feedback Vertex

Set and Connected Odd Cycle Transversal, whereas Munaro [36] proved that

Connected Vertex Cover is NP-hard for line graphs (of planar cubic bipartite

graphs) and for graphs of arbitrarily large girth. Moreover, for these three problems

the complexity has not yet been settled for H -free graphs when H is a linear forest

(see [13] for some partial results in this direction).

123

Algorithmica (2019) 81:1342–1369 1367

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for

independent feedback vertex set. In: Proceedings of IPEC 2016, LIPIcs, vol. 63, pp. 2:1–2:14 (2017)

2. Akiyama, T., Nishizeki, T., Saito, N.: NP-Completeness of the Hamiltonian cycle problem for bipartite

graphs. J. Inf. Process. 3(2), 73–76 (1980)

3. Bacsó, G., Tuza, Zs: Dominating cliques in P5-free graphs. Period. Math. Hung. 21(4), 303–308 (1990)

4. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex

set for P5-free graphs. In: Proceedings of ISAAC 2017, LIPIcs, vol. 92, pp. 16:1–16:12 (2017)

5. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Recognizing graphs close to

bipartite graphs. In: Proceedings of MFCS 2017, LIPIcs, vol. 83, pp. 70:1–70:14 (2017)

6. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex

sets for graphs of bounded diameter. Inf. Process. Lett. 131, 26–32 (2018)

7. Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and list

three-coloring of graphs without induced paths on seven vertices. Combinatorica (in press)

8. Brandstädt, A., Brito, S., Klein, S., Nogueira, L.T., Protti, F.: Cycle transversals in perfect graphs and

cographs. Theor. Comput. Sci. 469, 15–23 (2013)

9. Brandstädt, A., Kratsch, D.: On the restriction of some NP-complete graph problems to permutation

graphs. In: Proceedings of FCT 1985, LNCS, vol. 199, pp. 53–62 (1985)

10. Brandstädt, A., Mosca, R.: Dominating induced matchings for P7-free graphs in linear time. Algorith-

mica 68(4), 998–1018 (2014)

11. Brandstädt, A., Mosca, R.: Finding dominating induced matchings in P8-free graphs in polynomial

time. Algorithmica 77(4), 1283–1302 (2017)

12. Cardoso, D.M., Cerdeira, J.O., Delorme, C., Silva, P.C.: Efficient edge domination in regular graphs.

Discrete Appl. Math. 156(15), 3060–3065 (2008)

13. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected transver-

sals in graphs: new hardness results and tractable cases using the price of connectivity. Theor. Comput.

Sci. 705, 75–83 (2018)

14. Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–343

(1986)

15. Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colour-

ing graphs of large girth. Comb. Probab. Comput. 7(04), 375–386 (1998)

16. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Floudas, C.A., Pardalos, P.M.

(eds.) Encyclopedia of Optimization, 2nd edn, pp. 1005–1016. Springer, Berlin (2009)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman & Co., New York (1979)

18. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discrete

Math. 313(7), 839–854 (2013)

19. Golovach, P.A., Heggernes, P.: Choosability of P5-free graphs. In: Proceedings of MFCS 2009, LNCS,

vol. 5734, pp. 382–391 (2009)

20. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of

colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017)

21. Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domination problems in

graphs. Inf. Process. Lett. 48(5), 221–228 (1993)

22. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum

weight independent set on P6-free graphs. arXiv:1707.05491 (2017)

23. Hertz, A., Lozin, V.V., Ries, B., Zamaraev, V., de Werra, D.: Dominating induced matchings in graphs

containing no long claw. J. Graph Theory 88(1), 18–39 (2018)

24. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-colorability of P5-free graphs

in polynomial time. Algorithmica 57(1), 74–81 (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1707.05491

1368 Algorithmica (2019) 81:1342–1369

25. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

26. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-

plexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

27. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10),

556–560 (2014)

28. Král’, D., Kratochvíl, J., Tuza, Zs, Woeginger, J.G.: Complexity of coloring graphs without forbidden

induced subgraphs. In: Proceedings of WG 2001, LNCS, vol. 2204, pp. 254–262 (2001)

29. Labarre, A.: Comment on “complexity of finding 2 vertex-disjoint (|V |/2)-cycles in cubic graphs?”.

http://cstheory.stackexchange.com/questions/6107/complexity-of-finding-2-vertex-disjoint-v-

2-cycles-in-cubic-graphs (2011). Accessed 24 June 2018

30. Lokshantov, D., Vatshelle, M., Villanger, Y.: Independent set in P5-free graphs in polynomial time. In:

Proceedings of SODA, pp. 570–581 (2014)

31. Lovász, L.: Coverings and coloring of hypergraphs. In: Proceedings of the 4th Southeastern Conference

on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, vol. VIII, pp. 3–12

(1973).

32. Lozin, V.V., Kamiński, M.: Coloring edges and vertices of graphs without short or long cycles. Contrib.

Discrete Math. 2(1), 61–66 (2007)

33. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction.

ACM Trans. Algorithms 9(4), 30:1–30:35 (2013)

34. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B

28(3), 284–304 (1980)

35. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set.

Theor. Comput. Sci. 461, 65–75 (2012)

36. Munaro, A.: Boundary classes for graph problems involving non-local properties. Theor. Comput. Sci.

692, 46–71 (2017)

37. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discrete Math. 340(6), 1210–1226 (2017)

38. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carol. 15, 307–309

(1974)

39. Randerath, B., Schiermeyer, I.: 3-Colorability ∈P for P6-free graphs. Discrete Appl. Math. 136(2–3),

299–313 (2004)

40. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs: a survey. Graphs Comb.

20(1), 1–40 (2004)

41. Randerath, B., Schiermeyer, I., Tewes, M.: Three-colourability and forbidden subgraphs. II: polynomial

algorithms. Discrete Math. 251(1–3), 137–153 (2002)

42. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile.

Discrete Math. 29(1), 53–76 (1980)

43. Tamura, Y., Ito, T., Zhou, X.: Algorithms for the independent feedback vertex set problem. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. E98–A(6), 1179–1188 (2015)

44. Yang, A., Yuan, J.: Partition the vertices of a graph into one independent set and one acyclic set.

Discrete Math. 306(12), 1207–1216 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Marthe Bonamy1 · Konrad K. Dabrowski2 · Carl Feghali3 ·

Matthew Johnson2 · Daniël Paulusma2

B Matthew Johnson

matthew.johnson2@durham.ac.uk

Marthe Bonamy

marthe.bonamy@u-bordeaux.fr

123

http://cstheory.stackexchange.com/questions/6107/complexity-of-finding-2-vertex-disjoint-v-2-cycles-in-cubic-graphs
http://cstheory.stackexchange.com/questions/6107/complexity-of-finding-2-vertex-disjoint-v-2-cycles-in-cubic-graphs
http://orcid.org/0000-0001-9515-6945
http://orcid.org/0000-0001-6727-7213
http://orcid.org/0000-0002-7295-2663
http://orcid.org/0000-0001-5945-9287

Algorithmica (2019) 81:1342–1369 1369

Konrad K. Dabrowski

konrad.dabrowski@durham.ac.uk

Carl Feghali

feghali@irif.fr

Daniël Paulusma

daniel.paulusma@durham.ac.uk

1 LaBRI, CNRS, Bordeaux, France

2 Department of Computer Science, Durham University, Durham, UK

3 IRIF, Université Paris Diderot, Paris, France

123

	Independent Feedback Vertex Set for P5-Free Graphs
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Hardness When H Contains a Cycle or Claw
	3 Near-Bipartiteness of P5-Free Graphs
	4 Independent Feedback Vertex Sets of P5-Free Graphs
	5 Independent Odd Cycle Transversal
	6 Conclusions
	References

