i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

Independent One-Time Passwords

Aviel D. Rubin
Bellcore

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Independent One-Time Passwords

Aviel D. Rubin

rubin@bellcore.com

Bellcore
445 South St.
Morristown, NJ 07960

Abstract

Existing one-time password (OTP) schemes
suffer several drawbacks. Token-based sys-
tems are expensive, while software-based
schemes rely on one-time passwords that are
dependent on each other. There are disad-
vantages to authentication schemes that rely
on dependent OTP’s. It is difficult to repli-
cate the authentication server without low-
ering security. Also, current authentication
schemes based on dependent OTP’s only au-
thenticate the initial connection; the remain-
der of the session is assumed to be authen-
ticated. Experience shows that connections
can be hijacked. A new scheme for generat-
ing one-time passwords that are independent
is presented. The independence property en-
ables easy replication of the authentication
server, and authentication that is persistent
for the lifetime of a connection. This mech-
anism is also ideally suited for smart card
applications. Our implementation and sev-
eral applications are discussed.

1 Introduction

The authentication of users in a large, dis-
tributed environment is an increasingly dif-
ficult task. As networks and software grow
in sophistication, so do the means and meth-

ods of malicious attackers. These intruders
must be denied access to protected systems
and data without also excluding legitimate
users.

There are several ways to verify the iden-
tity of a user in a computer system. The
most common are what they know, what they
have, and who they are. The last involves
biometrics such as retinal scans and finger-
prints; these technologies have not yet ar-
rived. The other two techniques are more
common. Users may prove their identity by
knowing a password or possessing a token.

Computer crackers utilize enormous re-
sources to obtain the information neces-
Sniffer
programs that capture password informa-
tion from packets from well-known services
such as telnet and ftp have been found all
over the Internet. In addition, studies have
shown that users pick poor passwords [7],

sary to impersonate other users.

and thus they are easy to attack with dictio-
nary search. Systems such as Kerberos [11]
are especially vulnerable to this because the
attack can take place off-line. In most sys-
tems, as long as the compromise of a reusable
password is not detected, the imposter can
assume all of the privileges of the unsuspect-
ing user.

Authentication systems based on one-time
passwords are more secure than ones that
rely on reusable passwords. For example, re-

mote access usually requires the user to en-
ter a password or pass phrase. This secret
usually travels across insecure networks in
the clear. In the case of one-time passwords,
the danger of eavesdropping is eliminated be-
cause once a password is used, it is no longer
useful. If a one-time password system is im-
plemented properly, breaking it requires so-
phisticated, active attacks that are beyond
the abilities of most attackers, such as meet
in the middle attacks.

The two best-known one-time passwords
systems are S/KEY™/5] and Secure ID™.
S/KEY is a software solution, and Secure
ID is an expensive hardware solution that
requires a secure authentication server, and
careful administration. We will focus on
software solutions as they are much cheaper
and easier to install. S/KEY has the addi-
tional benefit that there are no secrets stored
on the authentication server. The value of
this benefit is discussed in Section 2.2.2.
However, the one-time passwords in S/KEY
are not entirely independent.
several security risks and poses limitations
on how the system can be used. These are
discussed in a later section.

This causes

This paper describes a technique for
achieving independent one-time passwords.
The method is compared to S/KEY, and

their relative merits are evaluated.

2 Previous work

This section describes the two most popu-
lar authentication systems that use one-time
passwords. Secure ID is a hardware solution,
while S/KEY works entirely in software.

S/KEY is a trademark of Bellcore.
Secure ID is a trademark of Security Dynamics.

2.1 Secure ID

Secure ID is a one-time password system
where physical tokens are used to authen-
ticate users. Each user possesses a card that
displays a six digit number through a glass
display. The user also picks a PIN number.
The card is about 3 millimeters thick and
is relatively fragile; it cannot fit in a wallet
or pants pocket. The number on the card
changes every n seconds, where n is a con-
figurable quantity, usually about 30 seconds.
The algorithm used by the card is propri-
etary, but it is known that each card con-
tains a unique secret seed. A copy of each
seed also exists at the authentication server.
The seed is used to generate the next number
that is displayed by the card.

There are several strategies for break-
ing Secure ID. The product is sold on the
premise that these are infeasible. One way
to defeat it is to break the secret algorithm
to predict the next number that will be dis-
played. In addition, the attacker must eaves-
drop on a previous authentication to obtain
the PIN, which is sent in the clear each time.
Another attack is the meet in the middle at-
tack. Here, an attacker eavesdrops on an
authentication session, records the one time
password, and prevents the message from
reaching the authentication server. Then, he
uses the one time password, within the time
window allowed by the card, to authenticate
himself. If the authentication server is repli-
cated, then this attack works even if the real
authentication message is not blocked. Ac-
tive meet in the middle attacks are very dif-
ficult to prevent, and no authentication sys-
tem in wide-spread use is immune to them.

2.2 S/KEY
This section briefly describes the S/KEY au-

thentication system. Further details can be
found in the original paper [5].

2.2.1 How S/KEY works

Before using S/KEY for authentication,
users perform an initialization step. A user
logs into a secure authentication server. The
login must be local or over a secure connec-
tion; a remote login here defeats the purpose
of S/KEY. Then, he selects a secret pass-
word and n, the number of one-time pass-
words to generate. The software then ap-
plies n iterations of a one-way hash function
to the password. The final result is stored
on the authentication server, and the initial-

ization is complete.

The authentication server keeps track of
the number of times that each user authen-
ticates himself. The first time the user logs
in with S/KEY, he is prompted with the
number n — 1. The user types in his secret
password on his local machine, and the soft-
ware applies n — 1 iterations of the one-way
hash function to the password. The result
is sent across the network to the authenti-
cation server. The authentication server ap-
plies the hash function one time to this mes-
sage. The result is compared to the value
that was stored earlier. If they match, then
the authentication is successful. The authen-
tication server then replaces the stored value
with the new message that it receives and
decrements the password count, n, to pre-
pare for the next authentication.

If the user does not have the S/KEY client
software (for example, when using a dumb
terminal) or does not trust his machine, then
there is another mode of operation. Before
leaving his trusted environment, the user
generates and prints a list of one-time pass-
words. This printout must be guarded very
carefully. Then, when the user authenti-
cates, he simply uses his list to send the re-
quested one-time password to the authenti-
cation server.

2.2.2 Secrets on the server

One of the touted advantages of S/KEY over
other schemes is that no secrets are stored on
the server. All the server needs to maintain
is the last OTP that was used for authentica-
tion. However, it is not clear that this is re-
ally an advantage in the Unix®environment.
Although the n'* password is not a secret, it
is still important to guarantee that its value
on the server cannot be changed. It is safe to
say that preventing an intruder from becom-
ing root on the server is a requirement. How-
ever, if we can guarantee that no intruder
will be able to assume root privileges, then
storing secrets on the server is easy. Any se-
cret can be stored in a directly that is only
readable to root. Therefore, a server that
is secure from data tampering can easily be
used to store secrets. Thus, it is not clear
that the fact that S/KEY does not require
secrets on the server is such an advantage
in the Unix environment. The OTP scheme
described in this paper requires storage of a
secret database on the authentication server.

2.2.3 Weaknesses of
OTP’s

dependent

This section discusses several shortcomings
of authentication systems that rely on de-
pendent OTP’s derived from a secret pass-
word.

Susceptibility to off-line dictionary at-
tack

The one-time passwords travel across the
network in the clear. Any eavesdropper can
record them. If the relationship among the

OTP’s is well-known (e.g.

tion), a malicious user can apply the function

a hash func-

to candidate passwords such that if the re-
sult matches a one-time password, then the

Uniz is a registered trademark of Unix Systems
Laboratories.

reusable password is compromised. Thus,
the security of such systems relies on users
picking good passwords - a very bad assump-
tion. The next release of S/KEY will place
constraints on the passwords to make them
more difficult to guess.

Danger of reusable password compro-
mise

The secret password chosen by the user is
the key to all of the one-time passwords.
This password must be protected at all costs.
There are many ways an inexperienced user
may accidentally send the password across
the network. For example, if the user per-
forms authentication from a remote login
shell, every keystroke of his travels across
the network, although he might not real-
ize it. Often, in a Unix/X-windows envi-
ronment, users have windows open to dif-
ferent machines in their network. Anything
typed in a nonlocal window travels across
the network. In addition, malicious users
can exploit weaknesses of X-windows to read
keystrokes on another machine. There is
a program, zkey, that has been widely dis-
tributed on the Internet, that accomplishes
just that. Authentication systems with
OTP’s that are seeded with reusable pass-
words offer users poor protection from peo-
ple on the local network of the client. They
are therefore not very suitable for a univer-
sity or any public environment.

Difficult to maintain multiple servers

It is often desirable to have more than one
authentication server for higher availability
of the service. Dependent one-time password
systems make it difficult to replicate the
authentication server (AS). Each AS must
know the current one-time password num-
ber. That is, if a user authenticates 10 times,
then every AS must know that 10 passwords

have been used. Any time one AS is out of
sync with any of the others, the system is
easy to defeat. For example, say that AS-1
believes that there have been 10 authentica-
tions, and AS-2 believes there have been 9.
An eavesdropper who recorded the last au-
thentication to AS-1 can replay the one-time
password to AS-2 and authenticate success-

fully.

All of the shortcomings described in this
section result from the dependency of the
one-time passwords on each other and on
the reusable password of the user. This
paper presents a one-time password scheme
that generates independent one-time pass-
words for the users. Section 3.4 discusses
how replication of the authentication server
is accomplished.

Hijacked connections

In addition to the shortcomings listed above,
there is a weakness shared by most current
authentication systems. After the initial
connection is authenticated, the remainder
of the session remains unchallenged. There-
fore, any malicious intruder that can dupli-
cate the state of the authenticated client,
while breaking off his connection, can take
over the session. Attacks such as these are
alluded to by Bellovin [1], and they are oc-
curring more frequently [3].

3 A new approach

This
scheme based on a new mechanism for gener-
ating one-time passwords (OTP’s) that are
independent.

section presents an authentication

3.1 Pseudo-random functions

The new approach presented here is based
on a class of functions called pseudo-random
functions (PRF’s). The notion of a PRF was
introduced by Goldreich et. al. [4]. A func-
tion is considered random if no polynomial-
time algorithm can distinguish a computa-
tion on chosen inputs that outputs the cor-
rect values from one that outputs random
values. Goldreich et. al. give a construction
to transform any one-to-one one-way func-
tion to a PRF.

It is currently believed that there are
good PRF’s. A good encryption algorithm
should have the property that a polynomial-
bounded adversary, without knowledge of
the key, should not be able to gain any infor-
mation about the plaintext, given a cipher-
text. Thus, strong encryption algorithms are

good candidates for PRF’s.

3.2 Generating independent

OTP’s

It OTP’s are truly independent, then the au-
thentication server must store them all indi-
vidually. This is an unreasonable require-
ment for a large system with many users.
However, if there is a way to generate all the
passwords from a small amount of informa-
tion, then they cannot be totally indepen-
dent. The technique described here uses a
pseudo-random function to generate OTP’s
from an initial secret key. Finding a relation-
ship between any two OTP’s is equivalent to
breaking the PRF.

Our implementation uses three rounds of
DES [8] (triple-DES) as the PRF.' This
function is believed to be a PRF, and it is
resistant to differential [2] (and linear [6])
cryptanalysis. This property insures that

'We have also implemented the system with a
keyed version of MD5 [9] because of export restric-
tions on triple-DES. In practice, any PRF will due.

the outputs of the algorithm cannot be re-
lated in polynomial time and/or space even
if the inputs are very similar. Our implemen-
tation utilizes this strength of triple-DES to
produce independent OTP’s. For the re-
mainder of the paper, we will assume that
triple-DES is a good PRF.

Before OTP’s can be generated, a user
must register with the authentication server
(AS). It is assumed that the AS has
some means of authenticating the initial
registration.? The AS maintains a table with
certain information about each user, such as
an identification number (ID) and a random
key that is generated on his behalf. This in-
formation, along with a couple of number,
2 and n, and some other data are stored in
the authentication server’s table. ¢ —1 repre-
sents the number of OTP’s already used and
n represents the total number of OTP’s for a
user. n is optional; it is included in our im-
plementation for reasons that are explained
later. The following is a simplified table for
3 users.

1D # Secret Key 2 n
459332 | dah4f8cd703b7hdc | 1 | 500
459181 | e0bf9bd6b0dfcee6 | 55 | 500
458932 | bbb3c2c8d36bf2ab | 1 | 450

User 459332 has never authenticated, and
he may authenticate 500 times. On the
other hand, user 459181 has authenticated
54 times.
secret key has been assigned to them.

For some applications, it may be desirable
to protect the entire table with a master key.
Rather than constantly encrypting and de-

The users are not aware that a

crypting the table, the master key is included
in the calculation of every OTP. Thus, to
calculate the :** QTP for a user, the authen-
tication server computes:

X = f(MK, Kyser, i)

2This process may take place off-line or require
that users go somewhere in person.

where f is a suitable PRF, M K is the mas-
ter key for the authentication server’s table,
and K., 1s the secret key associated with
the user. Thus, X is a function of the master
key, the secret key of the user and the OTP
number, ¢. Any change in the input will re-
sult in an X’ that is unrelated to X. The
AS then computes

OTP = g(X)

where ¢ is a function that converts any string
of bits into a list of small, human-readable
passwords. In our implementation, we bor-
rowed code from S/KEY for the function g.
We used 3-DES for the function f. The se-
cret key for each user is 192 bits long and
consists of three random DES keys. The first
key is exclusively or’ed with the master key

before 3-DES is applied. Thus,

X = DES(DES(DES(i, K, & MK),

[('3567’)7 [(3567’)
This formula will produce a unique X for
each value of 7. Also, as long as the secret
keys for each user are different, the probabil-
ity that it will produce the same X for two
users for the same value of 7 is negligible. Fi-
nally, without the master key, it is infeasible
to compute X.

3.3 Using the OTP’s

This section discusses several applications
of the one-time password scheme described
above.

3.3.1 Internet billing

Our one-time password scheme is being used
to authenticate users to a billing server on
the Internet. There are several serious con-
siderations to any service that is offered in
such an insecure environment. It can be

assumed that there is eavesdropping on all

communications, that workstations and user
accounts may be compromised, and that user
keystrokes can be monitored. It is impos-
sible to store any long-term secret in such
an environment. Therefore, any public-key
system where the private key is stored in a
password protected file (such as PGPT™/[12])
is inadequate.

In our billing system, the users register
on the phone with a credit card. There are
various safeguards in place, and how this is
achieved is not the subject of this paper.
The billing server (formerly the AS) gener-
ates 350 OTP’s for the user by default, or
more if requested. A booklet containing a
numbered list of OTP’s is sent to the user
by some trusted out of band mechanism.?
When the user needs to authenticate, he is
prompted for OTP, k, which he looks up in
the booklet. After the OTP number k is
entered, the billing server computes the k'*
OTP and compares. If they match, then au-
thentication succeeds, otherwise it fails.

The scheme presented here is vulnerable
to over the shoulder attacks. In a pub-
lic computer room at a university, it may
be possible for someone to copy passwords
from the current page of a user’s booklet
while he is entering his OTP. To counter this,
the OTP numbers are not requested sequen-
tially. In fact, the OTP’s are guaranteed to
be far apart in the booklet. This is accom-
plished as follows. When the user registers,
he is assigned a number, j, that such that
% < j <nand j is relatively prime to n. j
is also chosen to be as closer to 7 than to n
if possible. The billing server table from the
previous example looks like this.

1D # Secret Key 2 7 n
459332 | dah4f8cd703b7hdc | 1 | 331 | 500
459181 | e0bf9bd6b0dfcee6 | 55 | 281 | 500
458932 | bbb3c2c8d36bf2ab | 1 | 241 | 450

PGP 1s a trademark of Phil Zimmerman.
3E.g. registered mail.

To calculate the OTP number for the next
authentication, the billing server computes

k=1%j modn

k is always between 1 and n. Also, as ¢ goes
from 1 to n, k equals each value between 1
and n exactly once. This results from the
relative primality of 7 and n. For example,
the user 459181 will be prompted for pass-
words 281, 62, 343, 124, etc. There are 50
OTP’s on each page, so these OTP’s will ap-
pear on pages 6, 2, 7, 3. etc. Thus, it is un-
likely that an intruder will be able to copy
down an OTP that will be prompted for in
the near future.

After user 459181 enters OTP number
281, the authentication server computes

OTP2/81 = g(f(M[(, [(4591817 281))

and checks to see if OT Pyg; matches what
the user entered. OTP number 62 is calcu-
lated as

OTP, = g(f(MK, Kis9181,62)).

The corresponding value of k is used in the
" OTP calculation. After each successful
authentication, the value of 7 is incremented
until it reaches n. At that point the user is
removed from the table, and he must register
again. Unsuccessful authentication attempts
are logged.

S/KEY can be used in this mode as
well. A user prints out a list of OTP’s and
uses them in the same manner as described
above. However, due to the dependence of
the OTP’s on each other, they must be en-
tered in the correct order. In S/KEY, if a
user accidentally enters the wrong OTP from
his list, he compromises all of the passwords
between the one he enters and the correct
one. Also, there is no way to defend against
over the shoulder attacks by jumping around
the password list.

3.3.2 Limited access

The scheme described above is especially
useful when a company wishes to allow lim-
ited access to a business partner. For various
reasons, one company may wish to grant ac-
cess to specific machines, services or files to
several individuals outside of their organiza-
tion. To do this, a machine can be dedicated
Then,
each of the privileged users is given a small
list of OTP’s. In this manner, a user can be
allowed to log into a machine a maximum of
ten times. The one-time password technique
described above allows for a flexible authen-

as a special authentication server.

tication scheme.

3.3.3 A passive attack

There is a passive attack on any authentica-
tion scheme where the user types in an OTP
manually [10]. We illustrate how an eaves-
dropper, Eve, can use information from an
active session to beat a legitimate user, Bob.
Eve situates herself so that she can read any
packet between Bob and the authentication
Assume that Bob must type in 6
short words from a known dictionary, and

server.

that Bob types in these words at normal typ-
ing speed. Say that the OTP is HOW LOON
CRY SOFT PAR MEND. Eve sets up several
simultaneous authentication attempts to the
authentication server. Immediately after
Bob has typed HOW LOON CRY SOFT
PAR M, Eve automatically sends candidate
OTP’s to the authentication server by try-
ing all possible values for the last OTP word
from the dictionary. In all likelihood, Eve
will authenticate before Bob finishes typing
the OTP. This attack can be easily prevented
by only allowing one authentication attempt
per user at a time.

3.4 Replication of the authen-
tication server

As explained earlier, both S/KEY and Se-
cure 1D are limited in their abilities to sup-
port multiple authentication servers. How-
ever, using the independent one-time pass-
word scheme described in this paper, repli-
cating the AS is easy.

The following example demonstrates how
two authentication servers, AS; and AS, are
used. The generalization to n authentication
servers is obvious. Say that user 459181 reg-
isters with 500 OTP’s. Half of the OTP’s are
used to authenticate to AS; and the other
half are used for AS,. This is accomplished
as follows. The n in the previous exam-
ples represents the maximum value of ¢, and
the modulus that determines the next OTP
number. These two roles are now split into
two variables, ny and ny. The former repre-
sents the maximum value of ¢ for a user at
the AS, while the latter represents the modu-
lus. AS; stores the following for user 459181.

D #
459181

Secret Key 7 7 n1 72
e0bf9bd6b0dfcees | 1 281 250 500

AS, stores the following for the same user:

D #
459181

Secret Key 7 7 n1 72
e0bf9bd6b0dfcees 251 281 500 500

Thus, there are 500 OTP’s associated with
this user. 250 of these correspond to each
AS. Given the j value of 281, AS; will
prompt for OTP’s 281, 62, 343, 124, etc.
When ¢ reaches 250, the user will be re-
moved from ASy’s table. AS, will prompt
for 31 (251 * 281 mod 500), 312, 93, 374,
etc. As 281 and 500 are relatively prime,
no number appears in both lists. Given the
OTP number, the user key, and the master
key, the actual OTP is easily computed by
each AS. The user is given one list without
knowing which OTP’s are associated with
which AS. Therefore, the two authentication
servers must use the same master key.

3.5 Persistent authentication
with OTP’s

Traditional authentication systems such as
S/KEY and Secure ID only authenticate
once per session. If the authentication suc-
ceeds, there is little to protect the user from
a hijacked connection. We implemented a
prototype authentication system that uses
the OTP scheme described above for persis-
tent authentication. That is, authentication
is repeated every ¢ seconds, where t is a con-
figurable system parameter. The persistent
authentication is transparent to the user as
long as the connection is legitimate.

Unlike the Internet billing application
above, persistent authentication requires
computing on the client side. This can only
be achieved with a secure client machine or
with a tamper resistant smart card (see Sec-
tion 3.6). Our implementation assumes a se-
cure client machine; it was designed to map
directly into a smart card implementation.
In our implementation, the authentication
server has a table containing user ID’s, a se-
cret key for each user (3 DES keys), and a
number, 2. These are the same 3 data items
in the earlier examples. However, for per-
sistent authentication, we also assume that
each user is in possession of his secret key.
These keys must be distributed off-line. Ide-
ally, they reside in a smart card. Also, there
is no master key.

For the initial authentication, the client
software calculates the first OTP,

9(f(Kuser, 1))

and sends it to the AS. The AS performs
the same calculation to verify the OTP. We
use triple-DES for the function, f, as before.
Subsequent OTP’s are generated by incre-
menting the number in the PRF. Next, the
client forks a process that sleeps, but wakes
up every t seconds and sends the next OTP
to the server. The server sets a timer, and

if the next OTP is not received in time, kills
the connection.

It the OTP is received, and it is correct,
then the server acknowledges it with the next
OTP. Thus, the client and the server mutu-
ally authenticate every ¢ seconds, and two
OTP’s are used each time. If either side
does not send the correct OTP at the right
time, the connection is terminated. Thus, if
an intruder hijacks the connection, and he is
not in possession of the user’s secret key, his
connection is killed when the current time
interval expires.

3.6 Authentication with smart
cards

The independent one-time password scheme
described here is ideally suited for smart card
applications. As described in the previous
section, each smart card contains a secret
key (3 DES keys, in our example). We as-
sume that the tamper resistant nature of
smart cards means that there is no way to
obtain any information about the key with-
out destroying it in the process. A virtu-
ally unlimited number of OTP’s can be com-
puted on both the client and server side us-
ing a PRF, such as triple-DES. The OTP’s
are independent, and thus, none of the short-
comings associated with dependent OTP’s
applies. Many interesting applications can
be designed using smart cards, along with

independent OTP’s.

4 Conclusions

The independent OTP scheme described in
this paper has been implemented. We are
currently using the authentication system
described in Section 3.3.1 in our billing
server. The advantages offered by the new
technique for generating OTP’s are easy
replication of the authentication server, per-

sistent authentication for the lifetime of a
connection, and a natural mapping to smart
card applications.
OTP requires one application of a pseudo-
random function, as opposed to the many

iterations of S/KEY.

The calculation of each

Acknowledgements

The author thanks Bill Aiello for very help-
ful comments and explanations of pseudo-
random functions, R. Venkatesan for sug-
gesting triple-DES as a PRF, Milt Anderson
and Yacov Yacobi for helpful comments, Phil
Servita and Neil Haller for pointing out the
passive attack on some OTP schemes and a
possible solution, and Ali Bahreman for in-
tegrating the code into a working prototype.

References

[1] Steve Bellovin. Security problems in
the TCP/IP protocol suite. Computer
Communication Review, 19(2):32-48,
April 1989.

[2] E. Biham and A. Shamir. A Differen-
tial Cryptanalysis of the Data Encryp-
tion Standard. Springer-Verlag, 1993.

[3] CERT. Cert advisory CA-95:01, Jan-
uary 1995.

[4] Oded Goldreich, Shafi Goldwasser, and
Silvio Micali.

dom functions.

How to construct ran-

Proceedings of the
25th Annual Symposium on Founda-
tions of Computer Science, pages 464—
479, 1984.

[5] Neil Haller. The s/key(tm) one-time
password system. Symposium on Net-

work and Distributed System Security,
pages 151-157, February 1994.

[6]

[10]

[11]

[12]

M. Matsui. Linear cryptanalysis
method for DES cipher. In T. Helle-
seth, editor, Advances in Cryptology —
FEurocrypt '93, volume 765 of Lecture
Notes in Computer Science, pages 386—
397, Berlin, 1994. Springer-Verlag.

Robert Morris
and Ken Thompson. Password security:
A case history. CACM, 22(11):594-597,
November 1979.

National Bureau of Standards. Data
encryption standard. Federal Informa-
tion Processing Standards Publication,

1(46), 1977.

R. Rivest. The md5 message digest al-
gorithm. RFC 1321, April 1992.

Phil Servita. Personal communication,

1995.

J.G. Steiner, B.C. Neuman, and J.I.
Schiller. Kerberos: An authentication
service for open network systems. In
Useniz Conference Proceedings, pages

191-202, Dallas, Texas, February 1988.

P. Zimmerman. Pgp user’s guide. De-
cember 4, 1992.

