
Independent Test Sequence Compaction through Integer Programming

Petros Drineas
Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180
drinep@cs.rpi.edu

Yiorgos Makris
Electrical Engineering Department

Yale University
New Haven, CT 06520

yiorgos.makris@yale.edu

Abstract

We discuss the compaction of independent test sequences
for sequential circuits. Our first contribution is the formu-
lation of this problem as an integer program, which we then
solve through a well-known method employing linear pro-
gramming relaxation and randomized rounding. The key
contribution of this approach is that it yields the first poly-
nomial time approximation algorithm for this problem. More
specifically, it provides a provably good approximation guar-
antee while running in time polynomial with respect to the
number of vectors in the original test sequences and the num-
ber of faults. Another virtue of our approach is that it pro-
vides a lower bound for the compacted set of test sequences
and, therefore, a quality measure for the test compaction al-
gorithm. Experimental results on benchmark circuits demon-
strate that the proposed solution efficiently identifies nearly
optimal sets of compacted test sequences.

1. Introduction

Deterministic test generation methods typically target a
primary fault and generate a test sequence for detecting it.
Since the generated test sequence may also detect ancillary
faults, fault simulation is subsequently employed and both
the primary and the ancillary faults are eliminated from the
fault list. The same fault dropping mechanism is also em-
ployed in simulation-based test generation methods, wherein
random, pseudo-random, or algorithmically constructed test
sequences are fault-simulated on the circuit. In either case,
the primary objective is the derivation of a set of test se-
quences that detects all faults and fault dropping is an es-
sential element in order to reduce test generation time. As
a result, test generation methods typically produce a sub-
optimal set of test sequences, i.e. a set wherein some test
sequences (or portions thereof) may be redundant. Elimina-
tion or pruning of redundant test sequences is the objective
of test compaction, which may be performed either during
test generation (dynamic compaction), or after test genera-
tion (static compaction). Efficient test compaction methods
are very important in order to reduce test storage, test appli-
cation time, and by extension, test cost.

In this paper, we study a specific instance of the prob-
lem, namely the compaction of independent test sequences
for sequential circuits. Such test sequences do not rely on
any assumptions regarding the initial state of the circuit and
are, thus, independent of it. It is also assumed that each test
sequence is fault simulated only once, yet without fault drop-
ping so that all detectable faults are obtained. Based on this
information, it is possible that some test sequences may be
eliminated or pruned without any reduction in fault coverage.
Since each test sequence consists of a number of test vectors,
the optimization objective of test compaction in this scenario
is the minimization of the total number of test vectors in the
compacted set of test sequences.

This instance of test compaction was first formulated in
[1], where it is shown to be NP-hard and an approximate so-
lution is computed through Genetic Algorithms. While sig-
nificant levels of compaction within reasonable time are ex-
perimentally observed, no indication of proximity to the op-
timal solution is provided through this method. In an alterna-
tive method described in [2], an exact algorithm (i.e. not an
approximation algorithm) that computes the optimal solution
using a branch-and-bound method is proposed. Even though
this algorithm works well for most benchmarks, is also lacks
any provable, sub-exponential running time guarantee.

These deficiencies are formally addressed through the
work presented herein; more specifically, we contribute a for-
mulation of the problem as an Integer Program, which is sub-
sequently approximated through Randomized Rounding [3]
of the optimal solution to its Linear Programming relaxation.
This approach has three major advantages:

1. The cost of the optimal solution to the Linear Program-
ming relaxation is a lower bound for the cost of the op-
timal set of compacted test vectors. Such a lower bound
not only establishes a mechanism for assessing the qual-
ity of test compaction, but may also provide an informed
termination criterion for iterative approaches, such as
the solution proposed in [1].

2. Unlike all previous approaches, the worst-case theoreti-
cal running time of our algorithm is poly(N +k), where
N is the total number of vectors in the non-compacted
test sequences and k is the number of faults in the cir-
cuit.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

3. We can theoretically prove that the cost of the solution
identified by our algorithm is close to the cost of the
optimal solution.

We should note here that previous approaches are quite
accurate and fast in practice. Nevertheless, they are essen-
tially heuristics that lack any theoretical analysis and prov-
able bounds either with respect to the running time or the
accuracy of the approximation (apart from the obvious ex-
ponential bounds). Hence, we provide the first polynomial
time approximation algorithm for compaction of indepen-
dent test sequences for sequential circuits. On the negative
side, the error bound of our approximation algorithm is rather
pessimistic, but experiments with alternative test sets for the
ISCAS89 [4] benchmark circuits show that the proposed so-
lution yields almost optimal solutions.

The rest of this paper is organized as follows: an exten-
sive review of research efforts in test compaction is provided
in Section 2. The problem of Compaction of Independent
Test Sequences is formally defined and, for the purpose of
completeness, the formulation of [1] is reviewed in Section
3. The proposed formulation as an Integer Program is de-
scribed in Section 4 and the corresponding solution via Lin-
ear Programming relaxation and Randomized Rounding [3]
is presented and analyzed in Section 5. Experimental results
in support of both the proposed method and the method of
[1] are provided in Section 6.

2. Related Work

The importance of test compaction is accentuated by the
plethora of research efforts reported in the literature. Most of
these approaches address different instances of the test com-
paction problem than the one targeted herein. A direct com-
parison to the proposed method can not be attempted, yet we
provide references to an extensive list of solutions proposed
for several instances of test compaction.

Several heuristics have been proposed for static test com-
paction in combinational circuits. Reverse order simulation
[5, 6], compatibility analysis of partially specified vectors
[7], forced pair merging along with essential fault pruning
[8], and redundant vector elimination along with essential
fault reduction [9] are the most notable ones. Similarly,
many heuristics have been proposed for dynamic test com-
paction in combinational circuits [10]. These include com-
paction based on independent and compatible fault analysis
which was introduced in [11] and was further improved in
[12], maximal compaction and rotating backtrace [13], dou-
ble detection, two-by-one, and three-by-two [14], as well as
an attempt to formulate dynamic test generation of minimal
test sets through Integer Programming [15].

Sequential circuits impose more stringent constraints on
test compaction, since the effectiveness of test vectors relies
on the particular order of application. Any reordering may
require additional fault simulation to reassess fault coverage.

Static test sequence compaction heuristics requiring only one
fault simulation pass are proposed based on compatibility
with skew or stretch in [16] and based on Genetic Algorithms
in [1]. Heuristics that require two fault simulation passes
include inert and recurrence subsequence removal [17], as
well as state-relaxation based removal [18]. More expen-
sive methods employing several passes of fault simulation
have also been proposed based on vector restoration [19],
segment reordering and accelerated vector restoration [20],
fault restoration [21], vector insertion, omission, and selec-
tion [22], vector replacement [23] and forward-looking fault
simulation [24]. Several dynamic test compaction methods
have also been devised for sequential circuits. Interleaving
of fault-oriented and fault-independent phases is employed
in [25] and heuristics for selecting secondary target faults to
complete a partially-specified sequence generated for a pri-
mary fault are introduced in [26]. Heuristics for improving
the effect of random filling of partially-specified sequences
are also proposed in [27]. The static compaction methods
of [22] are employed for dynamic compaction in [28] and
a symbolic BDD-based method is given in [29]. Test vec-
tor removal and random filling based on Genetic Algorithms
is described in [30] and a property-based dynamic test com-
paction is devised in [31].

3. Compaction of Independent Test Sequences

We recall the problem formulation set forth in [1]. As-
sume that we are given a list of faults (say f1 . . . fk) and a list
of independent test sequences (say s1 . . . sm) for a sequential
circuit. Each test sequence consists of a number of vectors
that need to be applied in sequence: we will denote by ni

the number of vectors in sequence si for all i = 1 . . .m. In
general, we will denote by vi1, vi2, . . . , vini the vectors that
comprise the sequence si; more compactly, si = {vi�}ni

�=1.
In [1], the authors create an m × k matrix F such that

Fij is non-zero if and only if fault fj is detected by the test
sequence si; in particular, if si = {vi�}ni

�=1, Fij is set to p,
where p is the index of the first vector in the test sequence
si after which fault fj is detected. The total length of the
original test sequence is

∑m
i=1 max(F(i)), where max(F(i))

denotes the maximum element of the i-th row of F .
Here, we can safely assume that max(F(i)) is equal to ni

for all i = 1 . . .m. Otherwise, we can simply omit the last
ni −max(F(i)) vectors of the sequence si, since they do not
detect any additional faults and thus they are redundant.

Example: Assume that we are given faults f1, f2, f3, f4

and 3 test sequences s1, s2, s3. Test sequence s1 is com-
posed of 3 vectors; after its first vector is applied fault f1

is detected, while after all three vectors are applied fault f3

is also detected. Similarly, test sequence s2 is composed of 5
vectors; after the first two vectors are applied fault f1 is de-
tected, while after all five vectors are applied fault f2 is also
detected. Finally, test sequence s3 is composed of 4 vectors;

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

after its first vector is applied fault f3 is detected, after the
first three vectors are applied fault f2 is also detected, and af-
ter all of its four vectors are applied fault f4 is also detected.
Thus,

F =

 1 0 3 0

2 5 0 0
0 3 1 4

Note that the total length of the original test set is 12 vec-
tors. Also, n1 = 3, n2 = 5 and n3 = 4; obviously, none of
the 3 sequences contains any redundant vectors.

The objective of test compaction is to find the minimum
number of vectors that detect all faults. We emphasize that
the objective is two-fold: find and keep minimal subse-
quences of the test sequences s1, . . . , sm such that all faults
are detected and the total length of these subsequences is
minimal. To this end, some test sequences may be elim-
inated, while other test sequences may be pruned. In the
above example, we could include all vectors of s3 (a total of
4 vectors, detecting faults f2, f3, f4) and the first vector of s1

(a total of 1 vector, detecting fault f1). Thus, test sequence s2

would be eliminated, while test sequence s1 would be pruned
from 3 to 1 vectors, and all faults would be detected by a
compacted test set of 5 vectors.

4. Integer Program Formulation

In this section we demonstrate how to model this prob-
lem as an Integer Program; namely, an optimization problem
where the constraints and the optimization function are linear
inequalities on a given set of integer variables.

It is easy to see that exactly solving this problem is NP-
hard (reduction from Min-Cover); in [1] the authors employ
a Genetic Algorithm to approximately solve it. The main dis-
advantage of this approach – as is often the case with genetic
algorithms – is the lack of a provably good approximation
guarantee; more specifically, there is no way to know how
close the obtained solution is to the optimal one or provide
any guarantees for the running time/approximation accuracy
of the given algorithm. Our work bridges this gap by formu-
lating the problem as an Integer Program and then showing
that provably accurate solutions may be identified. Integer
Programming is well known to be NP-hard, but trivial lower
bounds on the optimization function exist. In particular, the
optimal value of the Linear Programming relaxation of the
Integer Program provides such a lower bound. We present a
simple algorithm that experimentally almost always achieves
the lower bound implied by the Linear Programming relax-
ation; we also present a theoretical bound for our approach,
which is generally more pessimistic. The algorithm actually
computes the solution to the Linear Programming relaxation
of the Integer Program and then uses Randomized Rounding
[3] to create an integer solution; the running time of our al-
gorithm is polynomial in

∑m
i=1 ni and it is dominated by the

time needed to solve a Linear Program of the same dimen-
sions as the Integer Program.

Our approach starts by creating a new matrix A from
F . Given F (a matrix of sequences vs. faults), we cre-
ate A (a matrix of subsequences vs. faults). Every se-
quence si of length ni gives rise to ni subsequences, denoted
by {Asi

� }ni

�=1; we will assume that ni = max(F(i)) for all
i = 1 . . .m. Each subsequence Asi

� contains the first � vec-
tors of the sequence si. Each row of A corresponds to one
of the Asi

� ; more specifically, the j-th element of that row
(j = 1 . . . k, where k is the total number of faults) is set to
1 if and only if the j-th fault is detected by the subsequence
Asi

� . Let N = (
∑m

i=1 ni); A is an N × k matrix. We should
note here that A is a rather sparse matrix, thus it may be
stored efficiently. The following example explains how A is
created from F :

A =

F1 F2 F3 F4

After v1 1 0 0 0
After v2 1 0 0 0
After v3 1 0 1 0

Sequence S1

(3 vectors)

After v1 0 0 0 0
After v2 1 0 0 0
After v3 1 0 0 0
After v4 1 0 0 0
After v5 1 1 0 0

Sequence S2

(5 vectors)

After v1 0 0 1 0
After v2 0 0 1 0
After v3 0 1 1 0
After v4 0 1 1 1

Sequence S3

(4 vectors)

Note that the first 3 rows correspond to the first test se-
quence, the next 5 rows correspond to the second test se-
quence and the last 4 rows correspond to the third test se-
quence.

We are now ready to express our problem as an Integer
Program; associate a 0-1 integer variable xsi

� (for all � and i)
to every row of the matrix A. Here xsi

� denotes whether the
subsequence corresponding to that particular row of A will
be kept in the compacted test set. There are two restrictions:
first, we must detect all faults that were detected by the orig-
inal, non-compacted sequences. Note that even though we
are given information on faults f1 . . . fk it may be the case
that only a subset of these faults is detected by the sequences
s1 . . . sm. We will denote by b a k-vector of 0s and 1s; 1
denotes that the corresponding fault is detected by one of the
sequences s1 . . . sm. We can create b in one pass through the
matrix A by examining which faults are detected by the given
test sequences.

Let x denote the N -vector of all the variables xsi

� . In order
to guarantee that our compacted test set has the same fault
coverage as the original, non-compacted one, the following
constraint must be satisfied:

AT x ≥ b (1)

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

A moment’s thought reveals another set of more subtle con-
straints: for each i = 1 . . .m, at most one of the {xsi

� }ni

�=1
will be set to 1! This essentially means that there is no rea-
son to keep two different subsequences of the same sequence;
we could only keep the longer one without any loss in fault
coverage. Thus,

ni∑
�=1

xsi

� ≤ 1, ∀i = 1 . . .m (2)

Given the above restriction, the optimization function is now
straightforward: for each subsequence that we decide to
keep, we will be penalized by the number of vectors in the
subsequence. Let c be a (

∑m
i=1 ni)-vector, denoting the

number of vectors in the corresponding row of A. Thus, we
seek to minimize

cT x (3)

where c is the vector of the costs that are associated with each
subsequence.

Example: In our example, b = (1 1 1 1)T since
all faults are detected by the original sequences. If
we denote our integer variables (12 in this case) by
xs1

1 . . . xs1
3 , xs2

1 . . . xs2
5 , xs3

1 . . . xs3
4 , the restrictions implied

by equation 2 are:

xs1
1 + xs1

2 + xs1
3 ≤ 1

xs2
1 + xs2

2 + xs2
3 + xs2

4 + xs2
5 ≤ 1

xs3
1 + xs3

2 + xs3
3 + xs3

4 ≤ 1

Finally the cost vector is c = (1 2 3 1 2 3 4 1 2 3 4 5).
More generally, given the above definitions, our Integer

Program is:

min cT x (4)

AT x ≥ b (5)
ni∑

�=1

xsi

� ≤ 1, ∀ i = 1 . . .m (6)

0 ≤ xsi

� ≤ 1 , ∀ � = 1 . . . ni, i = 1 . . .m (7)

xsi

� integers , ∀ � = 1 . . . ni, i = 1 . . .m (8)

A final note: in order to diminish the size of the integer pro-
gram, one might remove rows of A that are identical and only
keep the one with the smallest cost. Such rows essentially
correspond to subsequences of different lengths that detect
the same faults; thus only the shortest of these subsequences
should be kept.

5. Proposed Solution

We now employ a two-step approach in order to approxi-
mately solve the above Integer program. The main tool is a
technique called Randomized Rounding [3]. The idea of Ran-
domized Rounding is simple: solve the Linear Programming

relaxation of the Integer Program and round the resulting real
values probabilistically, thus forcing them to integers.

More specifically, the Linear Programming relaxation of
the Integer Program of the previous section is

min cT x (9)

AT x ≥ b (10)
ni∑

�=1

xsi

� ≤ 1, ∀ i = 1 . . .m (11)

0 ≤ xsi

� ≤ 1 , ∀ � = 1 . . . ni, i = 1 . . .m (12)

which is simply the Integer Program after removing the con-
straints of equation (8).

Step 1: Let x̃ denote the solution of the Linear Programming
relaxation; set

xsi

� =
{

1 , with probability x̃si

� + δ
0 , otherwise

(13)

where δ =
√

ln(40N)/
√

2N . The vector x is our – ap-
proximate – solution to the integer program; obviously
x is a 0-1 integer vector. In Theorem 1 we will argue
that, with high probability, x satisfies the constraints of
equation (5) and achieves a bounded penalty in the cost
function.

Step 2: In order to satisfy the constraints of equation (6),
we employ the following simple algorithm for all i =
1 . . .m: if more than one xsi

� , � = 1 . . . ni are set to
one, only keep the one with the highest cost and set the
rest to zero. Thus, we satisfy the constraints without
compromising the fault coverage of the compacted test
set while, at the same time, we decrease the cost of the
final solution.

Prior to stating Theorem 1, we note that the cost of the op-
timal solution to the Linear Program is necessarily less than
or equal to the cost of any feasible solution to the integer
program; equivalently,

cT x̃ ≤ cT x

for all possible 0-1 vectors x. As we shall see in our exper-
iments, the randomized rounding technique identifies solu-
tions that are essentially optimal (their cost is almost equal to
cT x̃). The proof of our main theorem follows the lines of [3]
and argues that our 2-step algorithm identifies accurate solu-
tions with high probability. We skip the rather folklore proof
of the theorem for the sake of brevity; the proof makes heavy
use of the well-known Chernoff-Hoeffding bounds [32].

Theorem 1 If x̃ is the solution to the Linear Programming
relaxation and x is the integer solution that we obtain us-
ing randomized rounding and elimination of redundant se-
quences, with probability at least 0.95,

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

1. cT x ≤ cT x̃ + 2−1/2(M + 1)
√

N ln(40N)

2. The constraints of equation (5) are satisfied, thus x is a
feasible solution for our Integer Program.

In the above, M = maxi(ni) (notice that M = O(1)). Also,
by construction, the constraints of equations (6), (7) and (8)
are satisfied.

Finally, we briefly comment on the running time of our ap-
proach, which is dominated by the time required to solve the
linear programming relaxation. The linear program may be
solved in poly(N+k) time using the Ellipsoid algorithm [33]
or Interior Point methods [34]. In practice, there are many
software packages (usually commercial) that efficiently solve
Linear Programs with a very large number of constraints and
variables. The randomized rounding step is easy to imple-
ment in O(N) time.

6. Experimental Results

In order to evaluate the proposed methodology we repeat
the experiment described in [1], wherein the authors gen-
erated sets of independent test sequences for the ISCAS89
[4] benchmark circuits using three different ATPG tools,
GATTO, HITEC, and SYMBAT. Details and the resulting
fault detection matrices are available at [35]. These matrices
are the starting point for our experiments. Test sequences are
extended into subsequences, the proposed method is applied
and results are reported in Figures (1)-(3)1.

The number of test sequences and total vectors in the orig-
inal test set before compaction are reported in columns 2 and
3. The number of test sequences and total vectors in the com-
pacted test set yielded by the proposed method are reported in
columns 4 and 5. The difference between the number of vec-
tors in the identified solution and the theoretical lower bound
given by the Linear Program solution is reported in column
6. Column 7 indicates the size of the compacted test set as
a percentage of the size of the original test set. Finally, col-
umn 8 indicates the test compaction efficiency of the Genetic
Algorithms method proposed in [1].

The most important observation is that our approach al-
most always identifies the optimal solution, despite the rather
pessimistic prediction of Theorem 1. As shown in the ta-
bles, the distance from the theoretical lower bound is 0 for
most circuits. The same observation applies for the results
of the Genetic Algorithm described in [1]. One can also ob-
serve that, for some circuits, out method achieves better com-
paction ratio over [1] (i.e. GATTO test set for S3271, HITEC
test sets for S1269 and S3271).

The actual running times of our approach (for the HITEC
and GATTO test sets) are reported in Figure (4). We cau-
tion the reader, however, that comparing these times to those

1A “*” in the table of Figure (2) indicates a minor discrepancy between
the numbers reported in [1] and the size of the tables available from [35].

Original
Test Set

Compacted
Test Set

Proposed
Method

GA [1]
Method

Circuit
#

Seq
#

Vec
#

Seq
#

Vec

Distance
From
Lower
Bound

%
Red

%
Red

S208 36 1096 6 347 0 31.66 31.66

S298 24 302 11 141 0 46.69 46.69

S344 19 141 10 66 0 46.81 46.81

S349 19 144 11 84 0 58.33 58.33

S382 17 840 7 485 0 57.74 57.74

S386 38 418 15 221 0 52.87 52.87

S400 16 916 7 502 0 54.08 54.08

S420 33 797 8 333 1 41.78 41.78

S444 22 1434 9 788 0 54.95 54.95

S499 29 465 9 192 0 41.29 41.29

S510 37 989 7 237 0 23.96 23.96

S526 18 1050 9 769 0 73.24 73.24

S526n 16 862 6 523 0 60.67 60.67

S641 48 395 24 221 0 55.95 55.95

S713 55 557 23 250 0 44.88 44.88

S820 38 669 14 347 0 51.87 51.87

S832 33 425 10 196 0 46.12 46.12

S838 37 1323 12 476 3 35.98 35.75

S938 37 1323 11 473 0 35.75 35.75

S953 75 1099 32 539 0 49.04 49.04

S967 72 1223 31 660 1 53.96 54.70

S991 20 448 9 365 0 81.47 81.47

S1196 133 1805 74 1124 0 62.27 62.66

S1238 123 1554 74 1004 0 64.61 64.80

S1269 52 450 29 245 0 54.44 54.44

S1423 107 2691 28 1279 0 47.53 47.71

S1488 65 1824 19 946 0 51.86 51.86

S1494 62 1244 19 652 0 52.41 52.41

S1512 52 772 14 289 0 37.44 37.44

S3271 132 2529 50 1178 0 46.58 60.58

S3384 58 888 22 410 0 46.17 46.17

S4863 112 1533 42 790 8 50.88 48.66

S5378 71 919 42 493 0 53.65 53.65

S6669 64 592 36 301 0 50.84 51.18

S13207 34 544 9 187 0 34.38 34.38

S15850 10 153 3 91 0 59.48 59.48

Figure 1. Results for GATTO Test Sets

reported in previous work [1, 2] would be quite misleading:
our algorithm is implemented in MatLab – a slow, interpreted
language – while previous algorithms are implemented in C;
additionally, the various approaches are implemented and ex-
amined on different platforms. More importantly, we em-
phasize that the objective of this work was not to develop
a worst-case exponential time heuristic that yields fast run-
ning times for some benchmark instances of the problem at
hand. Rather, the goal of our paper is to provide a polyno-
mial time approximation algorithm with provable guaran-
tees regarding loss of optimality. In this respect, we feel that
the proposed approach, combining an integer programming
formulation and a randomized rounding solution, may prove
fruitful in tackling various other problems in the area of test.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Original
Test Set

Compacted
Test Set

Proposed
Method

GA [1]
Method

Circuit
#

Seq
#

Vec
#

Seq
#

Vec

Distance
From
Lower
Bound

%
Red

%
Red

S208 44 739 10 292 1 39.51 39.27

S298 20 188 7 116 0 61.70 54.38*

S344 11 61 6 45 0 73.77 75.41

S349 16 84 9 63 0 75.00 76.19

S382 16 358 2 155 0 43.30 43.45

S386 58 258 31 162 0 62.79 62.79

S400 16 354 2 155 0 43.75 43.70

S420 52 786 10 274 0 34.86 34.90

S444 18 305 2 204 0 66.89 66.56*

S510 38 845 27 623 0 73.73 73.67*

S526 18 260 2 172 0 66.15 66.54

S526n 17 257 2 169 0 65.76 65.23*

S713 74 270 35 169 1 62.59 63.33

S820 121 1170 62 671 0 57.35 57.44

S832 112 1058 60 617 0 58.32 58.51

S838 52 671 12 310 1 46.20 45.93

S938 52 671 12 310 1 46.20 45.93

S953 111 825 38 404 0 48.97 48.97

S967 120 831 38 407 0 48.98 48.98

S991 50 83 25 46 0 55.42 55.42

S1196 189 509 110 339 2 66.60 66.60

S1238 191 513 110 334 2 65.11 64.72

S1269 67 255 26 136 0 53.33 61.18

S1423 50 282 16 187 0 66.31 66.43

S1488 24 69 16 56 0 81.16 81.16

S1494 60 523 43 418 0 79.92 81.02

S1512 60 282 14 117 0 41.49 41.70

S3271 61 1158 19 489 0 42.23 49.70

S3384 18 212 8 164 0 77.36 77.83

S4863 106 373 57 256 0 68.63 68.35*

S5378 95 250 50 153 1 61.20 60.80

S6669 68 466 23 259 0 55.58 55.58

S9234 7 19 2 9 0 47.37 52.63

S13207 15 97 6 57 0 58.76 59.79

S15850 15 39 4 14 0 35.90 38.46

S38417 281 806 14 131 0 16.25 16.38

S38584 48 509 30 435 0 85.46 85.46

Figure 2. Results for HITEC Test Sets

7. Conclusion

In this paper we demonstrate the formulation of static
compaction of independent test sequences as an Integer Pro-
gram. Solving the Linear Program relaxation of this Integer
Program provides a lower bound for the optimal solution, i.e.
the minimal set of test sequences. Subsequently, Random-
ized Rounding of the optimal point of the Linear Program is
employed to obtain a solution for the Integer Program. The
key advantage of this approach is that it provides a polyno-
mial time approximation algorithm as well as an indication
of proximity to the optimal solution and, thus, a measure for
evaluating compaction efficiency. As indicated by experi-
mental results, the proposed method is efficiently identifying
almost optimal solutions.

Original
Test Set

Compacted
Test Set

Proposed
Method

GA [1]
Method

Circuit
#

Seq
#

Vec
#

Seq
#

Vec

Distance
From
Lower
Bound

%
Red

%
Red

S208 64 2049 35 1356 2 66.18 66.08

S298 34 344 17 193 0 56.10 56.10

S344 47 187 23 111 0 59.36 59.36

S349 46 184 24 113 0 61.41 61.41

S382 59 2580 25 1318 0 51.09 51.09

S386 76 340 44 206 2 60.59 60.00

S400 59 2538 26 1352 0 53.27 53.27

S420 49 9377 26 8750 2 93.31 93.29

S444 39 2034 24 1262 0 62.05 62.05

S499 33 418 23 298 0 71.29 71.29

S510 59 1066 41 810 0 75.98 75.98

S526 74 3607 31 1679 0 46.55 46.55

S526n 73 3573 31 1679 0 46.99 46.99

S713 164 538 100 356 0 66.17 66.17

S820 202 1425 108 777 0 54.53 54.74

S832 195 1370 107 768 0 56.06 56.06

S953 155 1261 86 763 2 60.51 60.35

S967 162 1322 88 795 0 60.14 60.14

S1196 297 613 199 378 3 61.66 61.34

S1238 300 619 204 386 3 62.36 62.20

S1488 157 1709 101 1118 8 65.42 64.95

S1494 160 1787 99 1140 0 63.79 63.79

Figure 3. Results for SYMBAT Test Sets

References

[1] F. Corno, P. Prinetto, M. Rebaudegno, and M. Sonza Reorda,
“New static compacion techniques of test sequences for se-
quential circuits,” in European Design and Test Conference,
1997, pp. 37–43.

[2] J. Raik, A. Jutman, and R. Ubar, “Fast static compaction of
tests composed of independent sequences: Basic properties
and comparison of methods,” International Conference on
Electronics, Circuits, and Systems, pp. 445–448, 2002.

[3] P. Raghavan and C. Thompson, “Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[4] “ISCAS’89 benchmark circuits information,” Available from
http://www.cbl.ncsu.edu.

[5] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES:
a highly efficient automaitc test pattern generation system,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 1, pp. 126–137, 1988.

[6] J. A. Waicukauski, P.A. Shupe, D. J. Giramma, and A. Matin,
“ATPG for ultra-large structured designs,” in International
Test Conference, 1990, pp. 44–51.

[7] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, 1990.

[8] J-S. Chang and C-S. Lin, “Test set compaction for combina-
tional circuits,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 14, no. 11, pp.
1370–1378, 1995.

[9] Ilker Hamzaoglu and Janak H. Patel, “Test set compaction
algorithms for combinational circuits,” in International Con-
ference on Computer-Aided Design, 1998, pp. 283–289.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Circuit
HITEC

(in secs)
GATTO

(in secs) Circuit
HITEC

(in secs)
GATTO

(in secs)

S208 5.16 6.7 S991 14.99 1054.53

S298 9.28 11.3 S1196 371.32 197.6

S344 10.69 14.6 S1238 326.18 1830.3

S349 11.04 14.4 S1269 153.69 106.2

S382 6.80 17.7 S1423 35.52 1063.91

S386 7.86 20.5 S1488 11.47 1246.7

S400 7.62 10.7 S1494 150.33 489.7

S420 9.47 40.9 S1512 18.09 90.3

S444 8.82 41.32 S3271 1024.40 2881.18

S510 137.28 30.6 S3384 119.00 741.3

S526 8.59 24.1 S4863 220.36 51.4

S526n 7.79 945.4 S5378 146.51 36.8

S713 26.48 1830.3 S6669 948.44 43.7

S820 182.09 106.2 S9234 15.78 397.7

S832 157.27 40.1 S13207 29.71 256.1

S838 20.44 32.2 S15850 5.29 10.1

S938 20.10 8.5 S38417 1601.44 n/a

S953 188.08 32.2 S38584 1779.58 n/a

S967 177.15 1206.67

Figure 4. Running times for HITEC/GATTO Test Sets

[10] P. Goel and B. C. Rosales, “Test generation and dynamic
compaction of tests,” in Digest of Papers, Test Conference,
1979, pp. 189–192.

[11] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the role of
independent fault sets in the generation of minimal test sets,”
in International Test Conference, 1987, pp. 1100–1107.

[12] G-J. Tromp, “Minimal test sets for combinational logic,” in
International Test Conference, 1991, pp. 204–209.

[13] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COM-
PACTEST: a method to generate compact test sets for com-
binational circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 12, no. 7, pp.
1040–1049, 1993.

[14] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy,
“Cost-effective generation of minimal test sets for stuck-at
faults in combinational logic circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 14, no. 12, pp. 1496–1504, 1992.

[15] J. P. Marques Silva, “Integer programming models for opti-
mization problems in test generation,” in Asia South Pacific
Design Automation Conference, 1998, pp. 481–487.

[16] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham,
“Test compaction for sequential circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 11, no. 2, pp. 260–267, 1992.

[17] M. H. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast static com-
paction algorithms for sequential circuit test vectors,” IEEE
Transactions on Computers, vol. 48, no. 3, pp. 311–322,
1999.

[18] M. Hsiao and S. T. Chakradhar, “State relaxation based sub-
sequence removal for fast static test compaction,” in Design
Automation and Test in Europe Conference, 1998, pp. 577–
582.

[19] I. Pomeranz, S. M. Reddy, and R. Guo, “Static test com-
paction for synchronous sequential circuits based on vector

restoration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 18, no. 7, pp. 1040–
1049, 1999.

[20] S. K. Bommu, S. T. Chakradhar, and K. B. Doreswamy,
“Static test sequence compaction based on segment reorder-
ing and accelerated vector restoration,” in International Test
Conference, 1998, pp. 954–961.

[21] X. Lin, W-T. Cheng, I. Pomeranz, and S. M. Reddy, “SI-
FAR: static test compaction for synchronous sequential cir-
cuits based on single fault restoration,” in VLSI Test Sympo-
sium, 2000, pp. 205–212.

[22] I. Pomeranz and S. M. Reddy, “Procedures for static com-
paction of test sequences for synchronous sequential circuits,”
IEEE Transactions on Computers, vol. 49, no. 6, pp. 596–607,
2000.

[23] I. Pomeranz, S. M. Reddy, and R. Guo, “Vector replacement
to improve static-test compaction for synchronous sequential
circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 2, pp. 336–342,
2001.

[24] I. Pomeranz and S. M. Reddy, “Forward-looking fault simula-
tion for improved static compaction,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, no. 10, pp. 1262–1265, 2001.

[25] I. Pomeranz and S. M. Reddy, “On generating compact test
sequences for synchronous sequential circuits,” in European
Design Automation Conference, 1995, pp. 105–110.

[26] A. Ragunathan and S. T. Chakradhar, “Acceleration tech-
niques for dynamic vector compaction,” in International Con-
ference on Computer-Aided Design, 1995, pp. 310–317.

[27] T. J. Lambert and K. K. Saluja, “Methods for dynamic vector
compaction in sequential test generation,” in International
Conference on VLSI Design, 1996, pp. 166–169.

[28] I. Pomeranz and S. M. Reddy, “Dynamic test compaction
for synchronous sequential circuits using static compaction
techniques,” in Fault Tolerant Computing Symposium, 1996,
pp. 53–61.

[29] R. Bevacqua, L. Guerazzi, F. Ferrandi, and F. Fummi, “Im-
plicit test sequences compaction for decreasing test applica-
tion cost,” in International Conference on Computer Design,
1996, pp. 384–389.

[30] E. M. Rudnick and J. H. Patel, “Efficient techniques for
dynamic test sequence compaction,” IEEE Transactions on
Computers, vol. 48, no. 3, pp. 323–330, 1999.

[31] R. Guo, S. M. Reddy, and I. Pomeranz, “PROPTEST: a prop-
erty based test pattern generator for sequential circuits using
test compaction,” in Design Automation Conference, 1999,
pp. 653–659.

[32] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” American Statistical Association Journal,
pp. 13–30, March 1962.

[33] L.G. Khachiyan, “A polynomial-time algorithm for linear
programming,” Soviet Math. Dokl., vol. 20, no. 1, pp. 191–
194, 1979.

[34] N. Karmarkar, “A new polynomial-time algorithm for lin-
ear programming,” Proceedings of the Annual Symposium on
Theory of Computing, pp. 302–311, 1984.

[35] “Test sequence tables used in [1],” Available from
http://www.cad.polito.it/tools.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

