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Abstract 24 

Including satellite observations of nitrogen dioxide (NO2) in land-use regression (LUR) 25 

models can improve their predictive ability, but requires rigorous evaluation. We used 123 26 

passive NO2 samplers sited to capture within-city and near-road variability in two Australian 27 

cities (Sydney and Perth) to assess the validity of annual mean NO2 estimates from existing 28 

national satellite-based LUR models (developed with 68 regulatory monitors). The samplers 29 

spanned roadside, urban near traffic (≤100 m to a major road), and urban background (>100 30 

m to a major road) locations. We evaluated model performance using R2 (predicted NO2 31 

regressed on independent measurements of NO2), mean-square-error R2 (MSE-R2), RMSE, 32 

and bias. Our models captured up to 69% of spatial variability in NO2 at urban near-traffic 33 

and urban background locations, and up to 58% of variability at all validation sites, including 34 

roadside locations. The absolute agreement of measurements and predictions (measured by 35 

MSE-R2) was similar to their correlation (measured by R2). Few previous studies have 36 

performed independent evaluations of national satellite-based LUR models, and there is little 37 

information on the performance of models developed with a small number of NO2 monitors. 38 

We have demonstrated that such models are a valid approach for estimating NO2 exposures 39 

in Australian cities.  40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 
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Introduction 49 

Land-use regression (LUR) is frequently used for estimating exposure to outdoor air pollution 50 

in epidemiological studies. LUR models use features of the built and natural environment, 51 

such as road length, impervious surfaces, and tree cover, to capture spatial variability in 52 

pollutant concentrations measured at fixed locations. This allows concentrations at 53 

unmeasured locations to be estimated.1 Several recent studies have shown that the predictive 54 

ability of LUR models for nitrogen dioxide (NO2), quantified as R2, increases by 2 to 15 55 

percentage points when satellite-observed tropospheric NO2 is included as a predictor 56 

variable.2-7 These models aim to leverage the best attributes of satellite observations (e.g., 57 

large spatial coverage) and LUR models (e.g., local-scale predictors) to improve performance 58 

and coverage compared with either technique alone. 59 

 60 

The spatial coverage offered by satellite data makes it suitable for national or multi-national 61 

applications, and satellite-based LUR models have been developed for the USA,2,7,8 Canada,6 62 

Australia,5 Western Europe,3 and the Netherlands.4 A single national satellite model can offer 63 

a simpler and consistent way to assign exposures to geographically dispersed study subjects 64 

compared with separate non-satellite LUR models for each city, which are costly and time-65 

intensive to develop.9 Some national models can also offer comparable predictive ability and 66 

spatial resolution to city-scale models.2,7  67 

 68 

LUR models can overfit, particularly when the number of measurement sites is small and the 69 

number of potential predictors is large.10-12 Validation is therefore important for assessing 70 

how well they perform when applied beyond the data sets used to develop them (e.g., at the 71 

home addresses of subjects in an epidemiological study).12,13 Numerous LUR validation 72 

studies have focused on city-scale models (e.g., 11,14,15). In contrast, there is little information 73 
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on validation of satellite-based national NO2 models,2,3,7,8 especially in countries with limited 74 

ground-based monitoring.6 Validation of these models is particularly important because they 75 

are implemented at a nation-wide scale, which encompasses a wide range of land-use 76 

conditions that may differ from the sites used to develop the models.  77 

 78 

In this study, we sought to perform an independent validation of Australian national satellite-79 

based LUR models for NO2. Through this, we wanted to determine if our models were 80 

suitable for estimating residential NO2 exposures in epidemiological studies. We also aimed 81 

to add to the limited literature on satellite-based LUR evaluation by exploring the ability of 82 

national models developed with a relatively small number of monitoring sites to predict NO2 83 

concentrations at sites selected to capture within-city and near-road variability.   84 

 85 

Experimental Materials and Methods 86 

Models being evaluated 87 

We previously described our satellite-based LUR models for NO2,5 which were developed 88 

using data from 68 continuous regulatory chemiluminescence monitors throughout Australia 89 

(population = 23.5 million; area = 7.7 million km2; ~0.3 NO2 monitors/100,000 persons). 90 

Two models using different satellite predictors were developed. One model included the 91 

tropospheric column abundance of NO2 molecules observed by the OMI spectrometer aboard 92 

the Aura satellite as a predictor (molecules × 1015 per cm2; ‘column model’). The other model 93 

included the estimated NO2 concentration at ground-level (ppb; ‘surface model’), based on 94 

applying a surface-to-column ratio from the Weather Research and Forecasting model 95 

coupled with Chemistry (WRF-Chem). Using eight and nine land-use predictor variables, our 96 

column and surface models respectively explained 81% (RMSE = 1.4 ppb) and 79% (RMSE 97 
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= 1.4 ppb) and of spatial variability in measured annual mean NO2 in Australia during 2006-98 

11. 99 

 100 

Measurements used for validation  101 

In this study, we sought a data set independent of that used in our LUR models’ development 102 

to rigorously assess their performance. Because we had previously used most available 103 

regulatory air monitoring data for development, we contacted all investigators who had 104 

performed NO2 monitoring as part of epidemiological studies between 2006 and 2014. Our 105 

initial inclusion criteria were that: (a) NO2 had been measured anywhere in Australia 106 

provided that repeated, precise coordinates were collected (i.e, to 5 decimal places); (b) 107 

measurements ran for at least two weeks, and; (c) a validated measurement method with 108 

documented quality assurance procedures was used. We received data from five studies, 109 

which, to our knowledge, represented all NO2 monitoring that met the inclusion criteria. 110 

Together, these studies included 174 measurement sites across three of Australia’s six states.  111 

 112 

After preliminary screening we imposed additional, more stringent, inclusion criteria for the 113 

studies. Namely, we required three repeated measurements of 14 days’ duration each that 114 

spanned different seasons. We aimed to ensure that measurements from different studies 115 

captured seasonal variation in NO2, were of comparable duration, and able to be converted to 116 

an estimated annual mean using standard methods. These criteria were informed by the well-117 

described European Study of Cohorts for Air Pollution Health Effects (ESCAPE) protocol for 118 

LUR development.16 Based on this, we excluded two studies comprising 43 measurement 119 

sites. 120 

 121 

5 
 



The remaining 131 sites were located in Sydney (87 sites; population = 4.9 million) and Perth 122 

(44 sites; population = 2 million), the most and fourth-most populous cities in Australia, 123 

respectively (Figure 1). All of the sites were located within the metropolitan area of those two 124 

cities, and were selected to capture within-city and near-road variability in NO2. All NO2 125 

measurements were performed using passive sampling techniques (Ferm-type sampler and 126 

Ogawa sampler). Information on sampling dates, measurement methods, and quality 127 

assurance is in Table 1.  128 

 129 

Conversion to annual mean NO2 130 

Because each site was measured over two week periods in different seasons but our models’ 131 

predictions were for annual mean NO2, we adjusted the measurements to an estimated annual 132 

mean. We did this using the ratio of mean NO2 measured by regulatory monitors during each 133 

measurement period compared with its annual mean.17,18 We calculated the ratio based on 134 

three separate regulatory monitors in each study area. We took that approach to improve the 135 

precision of the adjusted annual mean estimate (i.e., the overall mean of adjusted 136 

concentrations for each measurement period), as measured by its standard error.17 The 137 

selection criteria for the regulatory monitors and the adjustment process are described in the 138 

Supporting Information (pages S3-S12).  139 

 140 

Site classification 141 

We classified each site as either: (1) roadside (≤15 m to the centre of a major road), or; (2) 142 

urban near traffic (not roadside, but ≤100 m to the centre of a major road), or; (3) urban 143 

background (not roadside or urban near traffic; >100 m to the centre of a major road). The 15 144 

m distance threshold was selected to capture sites immediately influenced by vehicle 145 

emissions, while the 100 m threshold was selected because it represents the approximate half-146 
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life in the decay of NO2 away from a road.19-21 Borderline sites on either side of a distance 147 

threshold were manually investigated using Google Earth and Street View before assigning 148 

them to a category. We assessed the sensitivity of our analyses to a halving and a doubling of 149 

the distance thresholds used for classifying roadside sites (7.5 m, 30 m) and urban near traffic 150 

sites (50 m, 200 m).  Major roads were defined using transport hierarchy codes supplied by 151 

the Public Sector Mapping Agencies.5,22 We also assessed the effect of changing the 152 

definition of a major road on our analyses (Supporting Information, pages S22-S26).  153 

 154 

There was only one industrial point source of NOX within 250 m of a site, based on the 155 

Australian National Pollutant Inventory.23 The site was located 120 m from a hospital that 156 

emitted a moderate amount of NOX per year (~5000 kg), but the main source of NO2 was 157 

more likely to be traffic emissions because it was also a roadside site. 158 

 159 

 160 

 161 

 162 

 163 
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                                                             164 

Figure 1. The two Australian cities (Sydney and Perth) where validation measurements were performed. The left panel shows Perth and the right 165 

shows Sydney. The map shows the 123 sites used in the main analysis, denoted as red triangles. Major roads are also shown. See Figure S5 in 166 

the supporting information for maps of predicted NO2 in the study areas. The outlines were created using census data published by the 167 

Australian Bureau of Statistics and roads were generated from data supplied by the Australian Public Sector Mapping Agencies.22,37   168 

 169 
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Table 1. Details of each of the three sampling campaigns used for validation. 170 

 

Perth 1 Sydney 1 Sydney 2 

Year 2012 2006-2008 2013-2014 

n sites 44 40 47 

Site selection 

 

 

 

Following ESCAPE protocol16 

 

 

 

Selected to represent the expected 

variability of NO2 in the study area 

 

 

Following ESCAPE protocol16 

 

 

 

Sample height 1.5-2 m above ground 2.2 m above ground 2.3-2.4 m above ground 

Duration per sample 14 days per sample 14 days per sample 14 days per sample 

Timing of samples 

 

 

 

 

1 sample in each of summer, autumn 

and winter 

 

 

 

1 sample in each of summer, winter 

and spring in each year during 2006-

8 (subset of 11-13 sites also sampled 

in autumn) 

 

1 sample in each of summer (2013) 

autumn (2014), and winter (2014) 

 

 

 

 

Measurement method 

 

Ogawa sampler24 

 

Ferm-type sampler25 

 

Ogawa sampler24 
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Analysis 

 

Spectrophotometry based on Saltzman 

method 

Spectrophotometry based on 

Saltzman method 

Spectrophotometry based on 

Saltzman method 

Quality assurance 

 

 

 

co-located with chemiluminescence 

monitors, field blanks, duplicates for 

each sample 

 

co-located with chemiluminescence 

monitors, field blanks, duplicates for 

one in five samples  

 

co-located with chemiluminescence 

monitors, field blanks, duplicates for 

one in five samples  

 

Limit of detection 2.0 ppb 0.5 ppb 2.0 ppb 

Reference 

 

Dirgawati et al. 26 

 

Rose et al. 27 

 

Not yet published  

 

 171 

 172 

 173 
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Model predictions 174 

We used our satellite-based LUR models to predict annual mean NO2 concentrations at each 175 

site. Surface and column model predictions were determined for the year in which the 176 

validation measurements were performed. Where measurements were done across more than 177 

one year, we averaged the predicted NO2 concentrations to match the measurement period. 178 

Measurements from two campaigns (2012 and 2013-14) were performed outside the 2006-11 179 

period used to develop our models. We obtained updated satellite column and surface 180 

estimates of NO2 for those years using our previous methods,5 and applied them using our 181 

existing models. We used all other LUR predictor variables unmodified, based on the 182 

assumption that they were unlikely to change substantially over 1-3 years.  183 

 184 

We excluded validation sites that had values of one or more LUR predictor variables that 185 

were outside the range observed at the 68 regulatory monitoring sites used for model 186 

development. We did this to prevent unrealistic predictions, based on the approach of Wang 187 

et al.9,12 Eight sites were excluded, leaving a total of 123 available for validation. We 188 

assessed the effect of excluding those sites on our results by comparing them to results with 189 

the sites included.    190 

 191 

Validation  192 

We used standard methods to validate our LUR models,12,28 and summarized their 193 

performance using an independent validation R2 (predicted NO2 regressed on independent 194 

measurements of NO2), the regression slope and 95% confidence intervals, RMSE (absolute 195 

and percentage scale), and bias (absolute and fractional). The R2 we calculated is analogous 196 

to a hold-out validation R2 (HV-R2),11-13 except our validation data were a set of unrelated, 197 

independent measurements, rather than a subset of model development sites held out for 198 
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validation. As such, we refer to our validation metric as R2 rather than HV-R2. We performed 199 

standard diagnostics on the normality of residuals and their variance. We assessed the spatial 200 

correlation of residuals using Moran’s I.  201 

 202 

Because R2 is based on the correlation between validation measurements and model 203 

predictions, it does not reflect their absolute agreement. Therefore, we also calculated a 204 

mean-square-error R2 (MSE-R2) that took absolute values into account.10,12,28 MSE-205 

R2 indicates how well the relationship between measurements and predictions follows a 1:1 206 

line; its derivation is described extensively elsewhere. 10,12,28,29 Using both R2 and MSE-R2 207 

can identify LUR model predictions that are well-correlated with measurements but have 208 

poor absolute agreement.10 Unlike R2, MSE-R2 can have negative values if the average of 209 

measurements leads to a lower MSE than the predictions.10,12,28,29  210 

 211 

We evaluated LUR model predictions for the entire validation set, by site classification, and 212 

by each of the three validation measurement campaigns. We used R version 3.2.2 for all 213 

analyses (R Project for Statistical Computing, Vienna, Austria).  214 

 215 

Results  216 

NO2 concentrations 217 

There were 8,177 days of NO2 measurements performed in total across the 123 validation 218 

sites during 2006-2014. Measured NO2 concentrations adjusted to annual means are 219 

summarized in Table 2. Higher concentrations were observed at roadside sites, followed by 220 

urban near traffic sites, then urban background sites, and concentrations were higher at sites 221 

in Sydney than those in Perth (Table 2).  The concentrations we used for validation were 222 

slightly higher than those used to develop the LUR models (Table S4). The effects of 223 
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changing the definitions used to classify sites on concentration percentiles were minor (Table 224 

S5). 225 

 226 

Site classification 227 

There were 25 roadside sites, 18 urban near traffic sites, and 80 urban background sites using 228 

the standard classification criteria. There was a greater proportion of roadside sites and a 229 

smaller proportion of urban background sites used for validation compared with LUR model 230 

development, particularly in Perth (Tables S6, S7). However, the percentiles of LUR 231 

predictors at validation sites were comparable to the model development sites overall (Table 232 

S8). Changing the definitions used to classify sites led to moderate changes in the number of 233 

sites in each category (Table S9). 234 

 235 

Model validation 236 

Table 3 presents key validation statistics. The surface and column models captured 58% 237 

(MSE-R2 = 51%) and 55% (MSE-R2 = 52%), respectively, of spatial variability in annual 238 

mean NO2 at the 123 validation sites overall (Figures 2a and 2b). The figures show some 239 

evidence of increasing variance of errors with increasing NO2 concentrations, but plots of 240 

predicted NO2 against residuals did not indicate overt violation of homoscedasticity (Figures 241 

S1-S2). 242 

 243 
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Table 2. Percentiles of annual NO2 concentrations (ppb) measured at validation sites. * Any negative concentrations following subtraction of 244 

field blank values were randomly assigned a value between zero and the limit of detection (2.0 ppb) in the Perth study (see Dirgawati et al. 26).   245 

Location Min. 5th  25th   50th  75th  95th  Max. Mean S.D. 

overall (n = 123) 0.4 2.9 5.9 8.5 11.2 14.6 19.3 8.6 3.7 

  roadside (n = 25) 5.1 5.6 8.0 11.0 13.1 17.6 19.3 11.0 3.9 

  urban near traffic (n = 18) 4.8 4.9 5.8 9.5 11.5 14.8 16.5 9.3 3.6 

  urban background (n = 80) 0.4 2.8 5.2 8.2 10.0 12.4 15.3 7.8 3.3 

Sydney (n = 80) 3.9 5.8 8.2 9.9 11.9 16.5 19.3 10.2 3.1 

Perth (n = 43)* 0.4 1.3 4.3 5.1 7.1 11.0 11.5 5.7 2.8 

        

  

     

  

 246 

 247 

 248 

 249 

 250 
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Table 3. Validation statistics for the surface and column models. RMSE = root-mean-square error; FB = fractional bias. Other abbreviations are 251 

defined in the main text.  252 

Surface model R2 β (95% CI) MSE-R2 RMSE (ppb) RMSE (%) Bias (ppb) FB (-) 

overall (n = 123) 0.58 0.69 (0.61, 0.78) 0.51 2.6 29.6 -0.8 -0.10 

  roadside (n = 25) 0.36 0.55 (0.29, 0.81) -0.18 4.1 37.5 -2.5 -0.26 

  urban near traffic (n = 18) 0.71 0.97 (0.70, 1.24) 0.60 2.2 23.9 -0.2 -0.03 

  urban background (n = 80) 0.68 0.74 (0.65, 0.84) 0.66 1.9 24.6 -0.5 -0.06 

  urban near traffic + urban background (n = 98) 0.69 0.80 (0.71, 0.89) 0.66 2.0 24.5 -0.4 -0.06 

        Column  model 

       overall (n = 123) 0.55 0.64 (0.55, 0.72) 0.52 2.5 29.5 -0.6 -0.07 

  roadside (n = 25) 0.29 0.47 (0.21, 0.74) -0.13 4.0 36.7 -2.1 -0.21 

  urban near traffic (n = 18) 0.70 0.91 (0.65, 1.17) 0.64 2.1 22.8 0.1 0.01 

  urban background (n = 80) 0.64 0.67 (0.57, 0.76) 0.64 2.0 25.3 -0.2 -0.03 

  urban near traffic + urban background (n = 98) 0.66 0.73 (0.65, 0.82) 0.65 2.0 24.8 -0.2 -0.02 
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The surface model captured 71% (MSE-R2 = 60%) and 68% (MSE-R2 = 66%) of spatial 253 

variability at urban near traffic and urban background sites, respectively. The column model 254 

captured 70% (MSE-R2 = 64%) and 64% (MSE-R2 = 64%), respectively. When we combined 255 

urban near traffic and urban background sites but excluded the 25 roadside sites, the surface 256 

and column models captured 69% (MSE-R2 = 66%) and 66% (MSE-R2 = 65%) of spatial 257 

variability at the remaining 98 sites, respectively (Figures 3a and 3b). The RMSE and bias of 258 

both models was reduced compared with the analysis that included roadside sites. The surface 259 

and column models captured 36% (MSE-R2 = -18%) and 29% (MSE-R2 = -13%), 260 

respectively, of spatial variability at roadside sites.  261 

 262 

Prediction bias and RMSE 263 

Both models modestly but consistently under-predicted annual mean NO2, and the column 264 

model predicted NO2 with slightly less bias than the surface model (Table 3).  The absolute 265 

bias of both models was less than -0.5 ppb for most analyses. Fractional bias was mostly less 266 

than -0.10. The absolute RMSE was very similar across both models; approximately 2 ppb 267 

(~25% in relative terms). Residuals had an approximately normal distribution and constant 268 

variance across all analyses (Figures S1-S4). There was no evidence of spatial correlation 269 

among residuals (Table S10).  270 

 271 

Sensitivity of results 272 

Moving the distance thresholds used to classify roadside and urban near traffic sites led to 273 

similar results to the main analysis (Table S9). Likewise, changing the classification of major 274 

roads did not substantially alter the results (Table S9). The results of validation stratified by 275 

each of the three measurement campaigns are presented in the Supporting Information (Table 276 

S11). The predictive ability of both models was lower than that observed when the data were 277 
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pooled across all sampling campaigns. Including the eight sites that had predictors outside the 278 

range used to develop the models resulted in comparable R2 values, but lower MSE-R2 values 279 

(Table S12). That finding supported the decision to exclude the sites. 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
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 302 

Figure 2a (left) and 2b (right). Measured vs. predicted annual mean NO2 at 123 validation sites (roadside, urban near traffic, and urban 303 

background combined) for the surface (2a) and column (2b) models. The dashed line is the line of best fit (see Table 3 for fit statistics). The solid 304 

line is the line of agreement. Symbols denote different measurement campaigns: solid circles = Perth 1; hollow squares = Sydney 1; hollow 305 

diamonds = Sydney 2.   306 
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 307 

Figure 3a (left) and 3b (right). Measured vs. predicted annual mean NO2 at 98 urban near traffic and urban background validation sites combined 308 

for the surface (3a) and column (3b) models. The dashed line is the line of best fit (see Table 3 for fit statistics). The solid line is the line of 309 

agreement. Symbols denote different measurement campaigns: solid circles = Perth 1; hollow squares = Sydney 1; hollow diamonds = Sydney 2.  310 
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Discussion   311 

Key results and comparison to other studies 312 

Validation of LUR models with data not used in their development is the optimum method 313 

for quantifying how well they perform.12 In this study, we used a large independent set of 314 

NO2 measurements in two Australian cities (n = 123 sites) that was not available at the time 315 

of model development to assess the ability of our national satellite-based LUR models (n = 316 

68 sites) to capture within and near-road variability. We previously used five-fold cross-317 

validation with five replications to validate our models due to the scarcity of long-term 318 

regulatory NO2 data in Australia.5 The model R2 was 79% (RMSE = 19%) and 81% (RMSE 319 

= 19%), respectively, for the surface and column models. Here, we found that our surface and 320 

column models explained 69% (RMSE = 25%) and 66% (RMSE = 25%), respectively, of 321 

spatial variation in measured annual mean NO2 at urban near traffic and urban background 322 

validation sites combined (n = 98).  323 

 324 

Excluding roadside sites, which are discussed in a separate section below, we observed a 325 

decrease in R2 from model development to independent validation of between 10 and 15 326 

percentage points. Bechle et al.7 assessed their satellite-based LUR for NO2 in the USA by 327 

varying the proportion of sites held out from 10 to 95%. With approximately 70 sites for 328 

development and 300 sites for validation, both the model build R2 (median ~80%) and 329 

decrease in R2 when validated (approximately 10 percentage points) were consistent with 330 

what we observed here and in our previous study.5 Our results also agree with those reported 331 

by Wang et al.12 for a Dutch national, non-satellite LUR for NO2 developed with 70 sites.  332 

 333 

The R2 decrease we found was less than that described by Hystad et al.6 for their Canadian 334 

national satellite-based LUR for NO2. They found an average decrease from model 335 
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development to independent validation at 618 sites of 34 percentage points (73% vs. 39%). 336 

Because of the diverse siting of validation sites in their study, its results are more comparable 337 

with our overall validation results at 123 sites (i.e., including roadside sites). In that analysis, 338 

we observed a decrease in R2 of 21 and 26 percentage points for the surface and column 339 

models, respectively. The smaller reduction in R2 in this study might reflect the reduced 340 

number of sites we used for validation, or the standard criteria we used for repeat 341 

measurements and annual adjustment at validation sites to capture seasonal variation in NO2, 342 

which Hystad et al.6 did for some, but not all, of their sites. It might also reflect that their 343 

model had fewer variables (4 predictors vs. 8 and 9 predictors in our models) and was not 344 

geared towards detecting emissions attributable to heavy industry and biomass combustion, 345 

which the authors noted may have affected their results. 346 

 347 

Relevance of LUR validation to epidemiological studies  348 

LUR models that have higher out-of-sample R2 (i.e., between 3 and 16 percentage points 349 

lower than model R2) introduce substantially less attenuation in health effect estimates (from 350 

1% to 14%).30 The attenuation due to models with lower out-of-sample R2 (i.e., between 16 351 

and 74 percentage points lower than model R2) ranges from 9 to 57%, depending on the 352 

number of predictors and sites used to develop the model.30 In the present study, we observed 353 

a relatively modest decrease in R2 from model build through to validation at urban near 354 

traffic and urban background sites (10 to 15 percentage points), which was consistent 355 

with  that in other comparable studies, as outlined above. 356 

 357 

Recent work has shown that LUR models with higher independent validation R2 values 358 

produce larger effect estimates than those with lower R2 values when applied to the 359 

association between NO2 and forced viral capacity (FVC) in children.13 Model performance 360 
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evaluated using leave-one-out-cross-validation (LOOCV) had a much weaker correlation 361 

with effect estimates, which underscores the importance of independent validation to 362 

determine the utility of LUR models in health studies.13 Our results demonstrate that the 363 

national satellite-based LUR models can be used to estimate with reasonable accuracy the 364 

annual mean NO2 exposures of people living in the metropolitan parts of Australia.  365 

 366 

The absolute agreement between pollutant measurements and LUR model predictions is 367 

important when models are used to assign exposures in epidemiological studies.10 Because 368 

we aimed to determine if our models were fit for this purpose, we assessed absolute 369 

agreement using MSE-R2. We observed between one and three percentage points difference 370 

in R2 and MSE-R2 values for urban near traffic and urban background sites combined, and 371 

between three and seven percentage points for all sites combined. The differences we found 372 

was mostly comparable to those reported by Wang et al.12 and Basagãna et al.10 in their 373 

European studies. The consistency we observed between R2 and MSE-R2 demonstrates that in 374 

addition to being correlated, predicted and measured NO2 also showed similar absolute 375 

agreement.   376 

 377 

Improving the accuracy of LUR model predictions does not always improve health effect 378 

estimates.29,31 This has been demonstrated when the variability in an LUR predictor is smaller 379 

at the measurement sites used to develop the model than the locations to which it will be 380 

applied. In turn, this leads to an increase in classical-like measurement error associated with 381 

estimating the predictor, which increases bias in the effect estimate compared with a model 382 

that has a lower R2 but less classical error.29 Such findings illustrate that careful attention 383 

needs to be paid to the characteristics of the sites used to develop LUR models versus those 384 

they are applied to. In this study, we demonstrated that the percentiles of predictors at 385 
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validation sites were well-matched to the model development sites (Table S8), and both sets 386 

of sites were generally consistent with the ~350,000 census block centroids across Australia 387 

(Table S8, 5). This suggests that our models can be applied to a range of geographic settings 388 

within Australia.    389 

 390 

Surface vs. column model performance 391 

Our surface and column models had similar R2, MSE-R2 and RMSE values (Table 3), which 392 

agrees with our original model development results.5 The column model had slightly lower 393 

absolute and fractional bias compared with the surface model. We previously reported that 394 

column models are a more straightforward and less time-consuming approach, which do not 395 

require the simulation of surface-to-column ratios that the surface model does.5 Since then, 396 

Bechle et al.7 also found that models using tropospheric NO2 columns performed slightly 397 

better than those using surface estimates in a national LUR for the USA. The validation we 398 

have described here confirms that column-based NO2 LUR models for Australia offer a 399 

simpler alternative to surface-based models. 400 

 401 

Performance at roadside sites 402 

The predictive ability of our models at roadside sites (n = 25) was markedly reduced and 403 

prediction error increased compared with urban near traffic and urban background sites. The 404 

R2 at roadside sites was 36% (RMSE = 4.1 ppb [38%]) and 29% (RMSE = 4.0 ppb [37%]) 405 

for the surface and column models, respectively, indicating some correlation between 406 

roadside measurements and predictions. The MSE-R2 values were negative in both cases, 407 

indicating poor absolute agreement and that the mean of measurements performed better than 408 

model predictions in terms of MSE. Both models under-predicted at roadside locations, with 409 

bias of -2.5 ppb and -2.1 ppb for the surface and column models, respectively.  410 
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 411 

Our satellite-based LUR models were developed using ambient regulatory monitors, which 412 

are deliberately sited away from hotspots like roads. Although the roadside sites used for 413 

validation had predictors within the range observed at ambient sites, there was a higher 414 

proportion of roadside sites in the validation compared with development data; 20% versus 415 

3%, respectively (Table S6). This is a likely explanation for the lower predictive performance 416 

at roadside sites. Also, our models were developed for all of Australia and did not include 417 

traffic density data because they are not available nationally. We instead used road length 418 

data, and the lower predictive ability at roadside sites is probably partially due to the 419 

difficulty associated with capturing the variability in NO2 associated with complex, highly 420 

trafficked locations.32  421 

 422 

We previously geocoded the residential addresses of 15,000 Australian women randomly 423 

selected from Australia’s universal healthcare database. We found that the median distance to 424 

a major road was 296 m in that cohort, where 84% of women lived in the major cities and 425 

inner regional areas of Australia.33 Moreover, 5.7% of women lived within our definition of a 426 

roadside location (≤15 m from a major road), while 8.5% of women lived ≤30 m from a 427 

major road. Here, we were mainly interested in the ability of our models to predict at a 428 

typical residential address in an epidemiological study, most of which are unlikely to be 429 

located immediately proximate to a major road. Our models’ performance at roadside 430 

locations is therefore less influential on decisions about implementing them in health 431 

studies.12,32  432 

 433 

 434 

 435 
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Limitations 436 

Our study has some important limitations. The validation data we used came from two 437 

Australian cities, Sydney and Perth, while the models we sought to validate had national 438 

coverage. Sydney and Perth combined (6.9 million people) account for 29% of the Australian 439 

population, but it is possible that our validation sites may be less representative of other 440 

areas. However, the values of LUR model predictors at our validation sites were largely 441 

consistent with those at ~350,000 Australian census block centroids across the country (Table 442 

S8), suggesting that the sites are appropriate for validating a national model. Our sites were 443 

all located in the metropolitan part of the two cities, which means that validation was not 444 

possible in rural and remote parts of Australia. Over 70% of Australians live in major cities, 445 

and more than 85% of the population live in urban areas, making Australia one of the world’s 446 

most urbanized countries.34 We therefore focused our models’ validation on the locations 447 

where they will be applied most frequently. 448 

 449 

Although our LUR models were developed using continuous regulatory chemiluminescence 450 

monitors we validated them using data from Ferm-type and Ogawa passive samplers. 451 

However, these methods have consistently been shown to correlate and agree well for the two 452 

week measurement periods we used.25,35,36 453 

 454 

Our main analysis only included validation sites that had predictors within the range used to 455 

develop our satellite-based LUR models. We did this to prevent unreasonably high or low 456 

predictions.9,12 This means that the predictive performance we observed holds for situations 457 

where the predictors are within the models’ development range.10,12 Options for assigning 458 

exposures to out-of-range sites in epidemiological studies have been discussed by Wang et 459 

al.12 460 
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In summary, we capitalized on the availability of a large number of NO2 measurements 461 

performed in Australia using standard passive sampling methods, which were not available at 462 

the time we built our LUR models. We used almost double the number of sites to validate our 463 

models (n = 123) as we used to develop them (n = 68). Our results add to the scant literature 464 

on independent validation of national satellite-based LUR models for NO2, particularly those 465 

developed using a relatively small ground-based monitoring network. Our models captured 466 

up to 69% of spatial variability in annual mean NO2 at independent urban near traffic and 467 

urban background validation sites, and up to 58% at all validation sites (including roadside 468 

sites). Our findings indicate that satellite-based LUR models provide a valid, consistent, and 469 

cost-effective method for assigning NO2 exposures, even when the number of sites available 470 

to develop them is limited. Based on the results, we will use the models to estimate 471 

residential NO2 concentrations in a national study of children’s respiratory health.    472 

 473 

Supporting Information 474 

Tables S1-S12: adjustment to annual mean NO2; NO2 concentration percentiles; LUR model 475 

development and validation site information; percentiles of predictors at development and 476 

validation sites and census block centroids; site classification effects; spatial correlation 477 

results; validation results by sampling campaign; effects of excluding sites. 478 

 479 

Figures S1-S5: predicted NO2 vs. residuals; Q-Q plots of residuals; predicted NO2 in 2008 480 

for Sydney and Perth.  481 
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