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ABSTRACT

It has been difficult to elucidate the structure of gene regulatory networks under 

anticancer drug treatment. Here, we developed an algorithm to highlight the hub genes 

that play a major role in creating the upstream and downstream relationships within 

a given set of differentially expressed genes. The directionality of the relationships 

between genes was defined using information from comprehensive collections of 

transcriptome profiles after gene knockdown and overexpression. As expected, among 

the drug-perturbed genes, our algorithm tended to derive plausible hub genes, such as 

transcription factors. Our validation experiments successfully showed the anticipated 

activity of certain hub gene in establishing the gene regulatory network that was 

associated with cell growth inhibition. Notably, giving such top priority to the hub 

gene was not achieved by ranking fold change in expression and by the conventional 

gene set enrichment analysis of drug-induced transcriptome data. Thus, our data-

driven approach can facilitate to understand drug-induced gene regulatory networks 

for finding potential functional genes.

INTRODUCTION

Comparative gene expression analysis defines 

differentially expressed genes (DEGs) under certain 

conditions of interest. To interpret DEGs from biological 

aspects, they have been compared with gene sets from 

curated databases of molecular functions [1–3]. In the 

field of biomedical research, the connectivity map (CMap) 

team developed a transcriptome database, composed of 

five human cell lines treated with 1309 small compounds 

[4, 5]. We have also constructed a transcriptome database 

focusing on anticancer compounds and related compounds, 

mainly using colon adenocarcinoma HT-29 cells [6, 7]. 

These drug-induced transcriptome databases are useful as 

reference databases of gene expression change. However, 

further prior knowledge and summarizing techniques are 

required to extract underlying biological information from 

these gene expression signatures [8].

Recently, the Library of Integrated Network-Based 

Cellular Signatures (LINCS) program (National Institutes 

of Health, USA) initiated an effort to generate a variety of 

biomedical big data [9]. In particular, the LINCS L1000 

project has developed the high-throughput L1000 platform 

[9] and measured the expression of 978 landmark genes 

under 1.3 million cell conditions, consisting of compound 

treatments (multiple doses) and genetic perturbation 

treatments (knockdown by shRNA, overexpression, 

and ligand treatment) at multiple time points in several 

different cell lines [10]. 978 landmark genes were 

determined as informative genes from multivariate 

analysis using 12063 public transcriptome microarray 

data catalogued in the Gene Expression Omnibus [10]. 

Furthermore, based on measured expression levels 

of landmark genes, the expression levels of ~21,000 

unmeasured genes were inferred by a linear regression 

model, in which the weight coefficient was estimated from 

the substantial transcriptome data [10, 11].

In addition to the expansion of gene expression 

databases, bioinformatic methodologies are also required 

for linking different databases and extracting interpretable 
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information from them. Subramanian et al. developed 

the Gene Set Enrichment Analysis (GSEA) methodology 

to evaluate the enrichment of gene sets in genes with 

increased or decreased expression ranked by user-prepared 

transcriptome data [12, 13]. Based on the concept of this 

enrichment analysis, the CMap team developed a pattern-

matching algorithm (CMap algorithm) to search which 

conditions in the CMap database induce the pattern of 

gene expression change similar to the pattern in the user-

prepared list of DEGs [4]. Currently, the CMap algorithm 

is widely accepted in the biomedical field [14, 15] and has 

contributed to biological interpretation of the activities of 

drugs [6, 16, 17].

Thus, the methodology of enrichment analysis has 

succeeded in interpreting the overall biological effects 

of a set of drug-induced DEGs, and thus the expansion 

of genetic perturbation data in LINCS is promising for 

providing further deep insights into DEGs. However, it 

remains a major challenge to interpret how a hierarchical 

network among DEGs was developed and which DEGs 

played a central role in this development. To address this, 

we defined an influential gene as one whose increased or 

decreased expression level centrally mediates the change 

of expression levels of many other genes. Herein, to find 

influential genes from among DEGs, we developed the 

influential gene detection in perturbed transcriptome 

hierarchical network (InDePTH) methodology. InDePTH 

is a novel algorithm to detect hubs of influential 

genes from reconstructed upstream and downstream 

relationships among DEGs (user-prepared, query DEGs), 

by referring to the rank matrix of Z-scores from a database 

of comprehensive genetic perturbations, such as the 

LINCS L1000 dataset (publicly available, reference data). 

The application of the InDePTH method could be effective 

in identifying influential genes from among DEGs under 

anticancer drug treatment.

RESULTS

Development of the InDePTH methodology

InDePTH involves four steps for the identification 

of influential genes from among query DEGs (Figure 

1a). First, it calculates similarity scores between patterns 

of query DEGs and those of perturbed genes from each 

of the genetic perturbations in LINCS, using the CMap 

algorithm [4] (Figure 1b). Second, if these similarity 

scores are above the predetermined cut-off point and if 

a gene subjected to the genetic perturbation satisfies the 

condition that the direction of change of its expression 

due to the perturbation is the same as that of the query 

DEGs, the gene is selected as an upstream gene. Third, 

InDePTH searches for downstream genes (genes whose 

expression change by an upstream gene perturbation is 

significant (z-score ≥ 2 or ≤ −2), as recorded in LINCS) 
whose direction of change in expression is the same as that 

of the query DEGs, and then upstream and downstream 

genes are connected by arrows (Figure 1c). Finally, from 

the hierarchical network of DEGs with connections by 

arrows (i.e. directed graph model), InDePTH mines the 

hub of upstream genes that play central roles in developing 

the gene network, using a data-mining algorithm for the 

complex world wide web to discover information sources 

and hubs that join the sources [18] (Figure 1d). For each of 

the query DEGs, a hub score is obtained within the range 

of 0 to 1, in which a DEG with a hub score = 1 is the most 

highly influential gene among the query DEGs, and the 

hub scores of other genes are values relative to the score 

of the highest one.

Optimization of the InDePTH parameters

In the InDePTH algorithm, a critical tuning 

parameter for refining hierarchical network structure 

is the cut-off point of the CMap similarity score, but 

no method is available for determining the threshold 

of the score from a rank matrix obtained by ordering 

the Z-scores of the reference LINCS L1000 dataset. 

Thus, we measured the sensitivity and specificity of 

the similarity score calculated from the DEGs of HT-29 

cells treated with anticancer compounds, obtained from 

a previously developed transcriptome database [6, 7] 

(Supplementary Table 1). Here, area under the receiver 

operating characteristic (ROC) curve (i.e. concordance 

index: c-index) was calculated by regarding the same 

drug treatment conditions as positive and the others as 

negative when assessing the similarity to experimental 

conditions that should substantially be the same between 

reference and query DEGs (Figure 2a). We first used 

978 landmark genes for calculating the CMap similarity 

score and compared two types of calculation method 

for c-index: one that used all of the LINCS’ 1.3 million 

perturbations, including all of the cell lines contained in 

the LINCS database [i.e. c-index
ALL

], and the other that 

used perturbations for only HT-29 cells to consider the 

effect of cellular context on the origin of the query DEGs 

[i.e. c-index
HT29

]. Interestingly, both c-indexes for many 

compounds showed moderate accuracy (c-index>0.7) [19], 

despite only 978 genes having been used for the similarity 

scoring (Figure 2b). In the area corresponding to moderate 

accuracy for both c-indexes, each c-index
HT29

 of almost all 

compounds was higher than the corresponding c-index
ALL

, 

except for the case of mitomycin C (Figure 2b). In the 

area with poor accuracy for the c-index
ALL

 <0.7, each 

c-index
HT29

 of many tyrosine-kinase inhibitors was higher 

than the corresponding c-index
ALL

 (Figure 2c), but not for 

the cases of sunitinib and axitinib (Figure 2d). Thus, when 

selecting cut-off points, it is important to consider the 

cellular context.

Next, we investigated whether the expression data 

of ~21,000 genes inferred from 978 landmark genes can 

improve the accuracy of the similarity score. Calculating 
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the similarity score, however, revealed that including 

inferred expression data decreased c-index
HT29

 (Figure 

2e), as well as c-index
ALL

 (Supplementary Figure 1), for 

many drugs. Notably, each c-index
HT29

 was also higher 

than the corresponding c-index
ALL

, even when inferred 

expression data were also used for calculating similarity 

scores (Supplementary Figure 2). Taking these findings 

together, in the InDePTH analysis, CMap similarity scores 

from only landmark gene sets were preferred. It is noted 

that, even in the area corresponding to high accuracy 

Figure 1: Overview of InDePTH algorithm. (a) Overview of InDePTH methodology. Drug-induced DEGs (query DEGs) and 

LINCS gene expression perturbation database (reference data, high-throughput gene expression DB) were used for creating a directed 

graph of DEGs and subsequent detection of influential genes. (b) Similarity score calculation in InDePTH. (c) DEG connection method. 

Query DEG-related perturbations were selected from reference data using the following two criteria: 1) a record that showed a similarity 

score greater than the best cut-off point was selected, and 2) a record that showed a match in the direction of gene expression change 

between query DEGs and reference data was filtered. (d) Scoring method for influential genes [18].
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Figure 2: Identification of comparable conditions in InDePTH algorithm. (a) Method for evaluating sensitivity and specificity, 

and the best cut-off point of similarity score. See also Materials and Methods. (b–d) A comparison of the c-index between one from the 

1.3 million LINCS dataset [x-axis, c-index
ALL

] and one from the HT-29 LINCS dataset [y-axis, c-index
HT29

]. The area representing high 

c-index
HT29

 but low c-index
ALL

 is enlarged in (c). The area corresponding to a low c-index in both conditions is enlarged in (d). (e) A 

comparison of the c-index between only landmark genes (y-axis) and landmark genes with inferred genes (x-axis). Red plot indicates that 

the difference of c-index is statistically significant (P-value<9.6×10−4, Bonferroni-corrected, n=52). See also Supplementary Figures 1 

and 2.
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(c-index>0.9) [19] of the optimized conditions, the best 

cut-off point led to the CMap similarity score being 

distributed in the range of >0.2 (Supplementary Figure 3). 

Thus, an arbitrary threshold >0.2 can be acceptable when 

an appropriate cut-off threshold of the similarity score 

cannot be determined by ROC curve analysis.

Validation of the InDePTH analysis

To evaluate whether InDePTH can reliably select 

hubs of influential genes, we closely examined its results 

using compounds showing moderate accuracy from 

c-index
HT29

. First, directed graphs modelling upstream and 

downstream relationships among DEGs were successfully 

created (Figure 3a and 3b), but in many cases, the graphs 

were too complex to interpret (Supplementary Figure 

4), suggesting the importance of the scoring system for 

the hub in the data-mining algorithm. The most highly 

influential gene for each of the drug-induced DEGs, 

which was determined by the hub score, is shown in 

Supplementary Table 2, and relatively highly influential 

genes are shown in Supplementary Table 3. The most 

highly influential genes included transcription factors, 

such as v-myc myelocytomatosis viral oncogene 

homolog (MYC), in the conditions of 6-h treatments with 

methotrexate, mitomycin C, mitoxantrone, etoposide, 

and U-0126, and 16-h treatments with gemcitabine, 

methotrexate, and etoposide; jun proto-oncogene (JUN) in 

the conditions of pazopanib and SB218078 treatment; and 

Kruppel-like factor 6 (KLF6) in the condition of BEZ235 

treatment (Figure 3c and Supplementary Table 2). Thus, it 

is likely that InDePTH could prioritize influential genes 

from potential upstream genes including those encoding 

transcription factors under drug treatment. It is notable 

that no genetic perturbation was selected in the analysis of 

some compounds, such as bortezomib and vemurafenib, 

due to the extremely high cut-off point of the similarity 

score (Supplementary Table 1).

To conduct further validation of InDePTH by 

in vitro study, we focused on MYC because InDePTH 

analysis showed MYC to be the most highly influential 

gene for many conditions for the query DEGs (Figure 

3c), and because the curated MYC target signatures [3] 

may be useful for unbiased comparison. We investigated 

the role of MYC in the transcriptome change associated 

with the compounds showing relatively high hub scores 

(>0.01), most of which were DNA damaging agents 

(Supplementary Table 4). Notably, in all conditions of 

compound treatment, the rank of MYC expression change 

was about 4000th–5000th place (top 8%), in ascending 

order among the genes measured by the microarray 

(Supplementary Figure 5), suggesting that InDePTH 

could evaluate the transcriptome data from a perspective 

other than the degree of change in gene expression. 

Associated with these MYC expression changes, MYC 

protein levels were decreased by 16-h treatments with 

gemcitabine, methotrexate, etoposide, 6-mercaptopurine, 

and mitomycin C (DNA damaging agents) (Figure 4a), 

and by 6-h treatments with U-0126 (MEK inhibitor), 

mitoxantrone, doxorubicin, methotrexate, etoposide, 

mitomycin C, and topotecan (DNA damaging agents) 

(Figure 4b).

We also found that the knockdown of MYC in HT-

29 cells by siRNA treatment (Figure 4c and 4d) decreased 

cell growth (Figure 4e and 4f) and the expression levels 

of genes from curated MYC target signatures as well 

(Supplementary Table 5). As expected, gene expression 

patterns under MYC siRNA treatments were similar to 

those under 16-h and 6-h treatments of DNA damaging 

agents (Figure 4g). In general, MYC knockdown-

associated DEGs, which would include both primary 

and secondary transcription targets of MYC, were 

significantly enriched in the genes whose expression 

increased and decreased under treatment with the above 

compounds (Figure 4h, and Supplementary Figures 6 and 

7). Notably, GSEA using hallmark signatures of gene sets 

[3] confirmed that the curated MYC target signatures were 

enriched in genes whose expression decreased under the 

drug treatments (Figure 5a), but many other signatures 

showed stronger significance than the MYC signatures 

(Figure 5b). This comparison indicated that InDePTH can 

detect the influence of MYC on other DEGs, in a different 

way from the conventional enrichment analysis.

Our previous study indicated that data from 16-h 

treatment with DNA damaging agents tended to cluster 

together, despite these agents having different mechanisms 

of action (MoA) [6]. We found that the genes whose 

expression increased in association with MYC siRNA 

enabled DNA damaging agents with the same MoA to 

cluster closer together, especially for compounds targeting 

nucleic acid metabolism (Figure 6a and 6b). Interestingly, 

the pattern of hierarchical clustering retained the pattern 

of the original clustering, despite the MYC siRNA-induced 

DEGs (Figure 6c) and known cell cycle signature of gene 

sets (Figure 6d) having been removed from the original 

DNA damaging agent-induced DEGs. Consistent with 

these findings, a great number of genes were required for 

fully constructing the gene expression networks induced 

by the DNA damaging agents; however, a set of genes 

with high hub scores explained most of these complex 

structures (Supplementary Figures 8 and 9). Collectively, 

most of the drug-induced DEGs were derived from both 

primary and secondary effects of the drug treatments, and 

these effects can be distinguished by InDePTH.

We further analysed public transcriptome datasets 

including 14 compounds treatments on diffuse large 

B cell lymphoma cells (OCI-LY3) [20] by InDePTH 

and compared the result with an algorithm named 

detecting mechanism of action by network dysregulation 

(DeMAND), which prioritizes proteins whose interactions 

(such as protein-protein interactions) could be perturbed 

by drug treatments [21]. We successfully selected query 
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DEGs from the datasets of 14 compounds (FDR <.10; 

no DEG in aclacinomycin A and geldanamycin; too 

small DEGs for InDePTH analysis in blebbistatin and 

vincristine). In general, the rank of genes from InDePTH 

and DeMAND analysis did not correlate (Supplementary 

Figure 10). Especially for DNA damaging agents including 

camptothecin, doxorubicin, etoposide and mitomycin 

C, the commonly prioritized genes in InDePTH (hub 

score >.01 and top 20) were MYC and polo-like kinase 

1 (PLK1). Interestingly, PLK1 was also predicted by 

DeMAND as an effector protein for the drug perturbations 

[21]. The other effector proteins from DeMAND analysis 

were not the commonly prioritized in InDePTH analysis 

at mRNA levels, such as DNA damage-inducible gene 

Figure 3: Prediction of drug-induced gene expression network. (a, b) Constructed DEG directed graph. Yellow circles represent 

UP-DEGs and blue circles represent DOWN-DEGs from among the query DEGs. Each arrow indicates a direction of upstream and 

downstream relationships. Arrows connecting to MYC are highlighted by red. DEGs without an arrow mean that the upstream gene is over 

the cut-off value, but no downstream gene shows the same direction of gene expression change between query DEGs and reference data. 

(c) Counts of most highly influential genes (see Supplementary Table 2).
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45A (GADD45A), cyclin-dependent kinase inhibitor 1A 

(CDKN1A), proliferating cell nuclear antigen (PCNA), 

cyclin B1 (CCNB1) and Aurora Kinase A (AURKA) [21] 

(Supplementary Figure 10). However, of interest was 

that InDePTH analysis could show potential hierarchical 

relationships of these genes for each agent (Supplementary 

Figure 11).

Finally, we performed InDePTH analysis of 

hypoxia-responsive genes whose expression levels were 

increased and decreased depending on mitochondrial 

functions [22]. InDePTH reconstructed the gene regulatory 

network and interestingly showed that the gene with the 

highest hub score was NADH:Ubiquinone Oxidoreductase 

Complex Assembly Factor 4 (NDUFAF4), an assembly 

Figure 4: MYC, one of the most influential genes, accounts for the drug-induced change in gene expression. (a, b) 

Immunoblot analysis of MYC under (a) 16-h treatment and (b) 6-h treatment of HT-29 cells with the indicated compounds. mTOR was 

used as a loading control. Blot intensities of MYC relative to those of mTOR (n=3 independent experiments, mean ± SD) are shown (b, 

below). The drug concentrations were the same with the description in Supplementary Table 1. (c, d) Immunoblot analysis of MYC upon 

treatment with MYC siRNAs. RPS3 and β-actin were used as a loading control. (e, f) Cell growth assay after treatment with MYC siRNAs. 

ON-TARGETplus SMART pool siRNA was used (in c, e) and Silencer Select Pre-designed siRNAs were used (in d, f). (g) Hierarchical 

clustering analysis of indicated conditions using DEGs of MYC siRNA. (h) Enrichment plot using MYC siRNA-increased gene sets. Running 

enrichment score (top portion, green curve) and the statistics were calculated from the order of gene sets based on the gene expression 

change (bottom) upon treatment with U-0126. GEM, gemcitabine; MTX, methotrexate; ETP, etoposide; 6-MP, 6-mercaptopurine; MMC, 

mitomycin C; TOP, topotecan; DOX, doxorubicin; MIT, mitoxantrone.
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Figure 5: Conventional enrichment analysis entirely prioritized gene sets other than MYC target signatures. (a, b) 

GSEA analysis of hallmark signatures of gene sets. (a) False discovery rate (FDR)-based significance scores (see Materials and Methods) 

of the indicated drug treatments (column) were shown for each hallmark signature (row) and (b) absolute values. MYC_TARGETS_V1 

and MYC_TARGETS_V2, gene sets defined as subgroups of genes regulated by MYC in the hallmark signature of gene sets [3], were 

highlighted by the green arrow in (a) and colored diamond shapes in (b). GEM, gemcitabine; MTX, methotrexate; ETP, etoposide; 6-MP, 

6-mercaptopurine; MMC, mitomycin C; TOP, topotecan; DOX, doxorubicin; MIT, mitoxantrone.
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factor for mitochondrial complex I [23] (Supplementary 

Figure 12).

DISCUSSION

InDePTH is a novel semantic algorithm for linking 

DEGs to each other according to their influence on the 

expression levels of other genes. It then reconstructs 

hierarchical network models of upstream and 

downstream relationships among the DEGs. InDePTH 

is also equipped with a data-mining program for hub 

detection and can rank DEGs by their influence in a 

gene expression network. Indeed, InDePTH revealed 

that one of the genes whose expression had the greatest 

Figure 6: MYC downstream genes enabled DNA-damaging agents with the same MoA to cluster closer together. 
Hierarchical clustering and heatmap. The used gene sets were as follows: (a) DEGs for each indicated drug, (b) MYC siRNA-increased 

DEGs, (c) DEGs for each indicated drug but without MYC siRNA-increased/decreased DEGs, and (d) DEGs in each indicated drug but 

without both MYC siRNA-increased/decreased DEGs and G
2
/M and cell cycle gene sets [3]. The legends for the coloured boxes are shown 

at the bottom. Drug MoA was obtained from reference #[7].
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influence on the expression levels of many other 

genes upon exposure to many anticancer compounds 

was MYC, whose contribution was masked by other 

DEGs in conventional signature-based enrichment 

analysis. Taking these findings together, InDePTH is 

a powerful algorithm for creating networks of DEGs 

and focusing on the hubs of such networks. A package 

for implementation of the InDePTH algorithm in the 

software environment R is now available to the research 

community at the GitHub repository (https://github.com/

koido/InDePTH).

InDePTH provides upstream and downstream 

relationships in network analysis. In general, upstream and 

downstream relationships in gene regulatory network have 

been provided from text mining-based approaches [24, 25], 

while the information from text mining is limited, partly 

because the names of genes are often not standardized and 

partly because it is also difficult to distinguish between 

genes and proteins in the literature [26]. In contrast to 

text mining-based approaches, InDePTH can utilize 

experimentally verified information about the upstream 

and downstream relationships of numerous genes, stored 

in the massive database LINCS. Similar to InDePTH, 

DeMAND also uses drug-induced transcriptome data 

and can shed light on the role of protein-coding genes 

in drug MoA, even when the extent of their change in 

expression is not significant [21]. Interestingly, a hub 

gene of DNA-damaging agents from InDePTH analysis 

overlapped with the DeMAND-identified effector protein 

for them, even though methods and overall results 

between the two methods were fundamentally different. In 

addition, InDePTH successfully showed the hierarchical 

relationships among mRNAs of DeMAND-identified 

effector proteins for the drug perturbations. Notably, 

for predicting the dysregulation of interacting proteins, 

DeMAND requires a minimum of six samples for both 

case and control samples [21], while InDePTH has no 

such limitation and requires only user-defined DEGs of 

any type. This advantage of InDePTH enables users to 

develop hypothesis even in the early stage of the research 

which in general collects minimum sample sets.

The direction of paths in the InDePTH-reconstructed 

network can be interpreted to represent the pseudo-time 

flow of gene expression change because these directions 

were determined based on the upstream and downstream 

relationships between perturbed genes after genetic 

perturbations. In fact, InDePTH detected MYC as the most 

highly influential gene upon treatment with methotrexate 

for 16 h, 10 h before which, the expression level of 

MYC was slightly decreased (Figure 4a, 4b). The same 

was true for mitomycin C treatments, whose hub score 

upon treatment for 6 h was the highest (Supplementary 

Table 2) and that upon treatment for 16 h was the 

second highest (Supplementary Table 3, Figure 4a, 4b). 

Therefore, InDePTH has one useful aspect of enabling the 

identification of genes whose expression can change at an 

early stage of drug treatment, without time-series data-

based approach [27].

In many cases, the CMap similarity scores from 978 

landmark genes were sufficient to analyse drug-induced 

DEGs by InDePTH. This indicates that the selection of 

landmark genes was preferable for expressing the features 

of drug-induced DEGs. However, a few compounds 

showed c-indexes of around 0.5, indicating that the 

true expression levels of genes other than landmark 

genes were required for InDePTH analysis in such 

cases. Unfortunately, we found that the current inferred 

expression levels could not address these limitations. 

Currently, LINCS makes inferences on genome-wide gene 

expression levels by a linear penalized regression model. 

For making inferences on gene expression, it may be 

necessary to include nonlinear effects (e.g. gene-to-gene 

interactions). One study already attempted to address this 

problem by applying a machine learning approach [11], 

and the LINCS team also has the aim of improving the 

inference accuracy by creating a cloud data analysis 

competition (http://crowdsourcing.topcoder.com/cmap, 

accessed on 16/4/2017). These approaches would lead to 

more accurate estimation of expression levels under drug 

and/or genetic perturbation in LINCS, which would also 

be promising for InDePTH in the future.

InDePTH analysis revealed MYC as a common 

influential hub gene, especially upon treatment with 

DNA damaging agents. Previous studies showed that the 

expression levels of MYC mRNA or MYC protein were 

reduced by methotrexate [28] and gemcitabine [29], while 

it depended on the cellular context whether the expression 

level of MYC increased or decreased upon exposure to 

etoposide [30–32]. In HT-29 cells, knockdown of MYC 

inhibited cell proliferation in vitro and in vivo [33], 

indicating that one of the basic characters of HT-29 cells 

depends on MYC expression. Similarly, suppression of 

MYC expression in OCI-LY3 cells is also considered to 

suppress the growth of the cells [34, 35]. Therefore, MYC 

can indeed be an influential gene, especially for HT-29 

cells and OCI-LY3 cells treated with many anticancer 

compounds.

InDePTH was applicable to not only drug-induced 

DEGs but also other types of gene sets. Indeed, we 

successfully interpreted the mitochondria-dependent 

hypoxic responsive genes via the gene regulatory network 

and found that decreased expression of mitochondrial 

assembly factor NDUFAF4 was the most influential in 

the network. Consistently, it has been reported that a 

missense mutation of NDUFAF4 causes assembly defects 

of the mitochondrial complex I [36]. Thus, it is plausible 

to interpret NDUFAF4 as an influential hub gene under 

the network.

Currently, InDePTH has two potential limitations. 

First, it strongly depends on the conditions catalogued 

in the LINCS database. For example, tissue-specific 

gene expression patterns [37] and genetic effects on 

https://github.com/koido/InDePTH
https://github.com/koido/InDePTH
http://crowdsourcing.topcoder.com/cmap
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gene expression [38] governs gene expression patterns 

as well as effects of oncogenes such as MYC. Therefore, 

when seeking the best cut-off point of CMap similarity 

score, the conditions of query DEGs would be preferable 

when the same reference data was obtained in terms of 

compounds and tissue origins of cell lines. To counter 

this limitation, we provided a reasonable cut-off 

range of a CMap similarity score >0.2 for hypothesis 

development by InDePTH (Supplementary Figure 3). 

In addition, as novel and low-cost methods for genome-

wide transcriptome, such as pooled library amplification 

for transcriptome expression (PLATE-Seq) [39], have 

continuously developed, genome-wide transcriptome 

database of genetic perturbation in multiple cell types 

would expand more in future, leading to more reliable 

results from InDePTH. Second, as suggested by Figure 

6c and 6d, it is the case that regulatory networks of 

gene expression under drug treatment might be due 

to conditions other than changes in expression levels, 

such as protein phosphorylation, degradation, and 

stabilization or non-coding RNAs [40]. Considering 

these potential limitations, it will be necessary in future 

to expand the reference database for dealing with 

more multiple cellular contexts and perturbations and 

incorporate other omics data. InDePTH source code is 

online available and therefore users can use reference 

database other than LINCS, and flexibly combine 

InDePTH algorithm with other omics tools, according 

to various purposes.

Taking the above findings together, InDePTH has 

been proven to be effective in identifying influential 

genes from among drug-induced DEGs, even when 

such influence was masked by many other signatures in 

conventional enrichment analysis. InDePTH should thus 

be useful to decipher the hierarchical networks of DEGs 

under anticancer drug treatment.

MATERIALS AND METHODS

LINCS L1000 dataset analysis

All data of LINCS L1000 were obtained from 

the Amazon S3 server, in which access keys were 

provided from lincscloud.org. L1000 gene expression 

data were obtained on 17/11/2014 (level 4 zspc data) 

and on 18/11/2014 (level 3 q2norm data), and the data 

description file (inst.info) was obtained on 13/11/2014. 

We defined the upregulated (downregulated) genes in 

LINCS using the threshold z-score ≥ 2 (≤ −2). If the 
item ‘pert_desc’ in inst.info was ‘−666’ and also the 
item ‘pert_type’ was ‘trt_cp’, we updated the inst.

info file by merging with a chemical information file 

(downloaded on 24/2/2015). We manually confirmed 

that the names of compounds matched between LINCS 

and our database.

In-house datasets and microarray analysis

The transcriptome dataset of anticancer compounds 

was obtained from our previous study [7]. In this study, we 

limited our analysis to only the dataset of HT-29 cells (see 

Supplementary Table 1 for detail conditions). Microarray 

analysis was conducted using GeneChip Human Genome 

U133 Plus 2.0 array (Affymetrix, Santa Clara, CA, USA), 

following standard protocols. Expression measurement 

was carried out using Affymetrix Microarray Suite version 

5.0 from R package affy v1.40.0 [41]. Expression values 

were normalized to a mean target level of 100. Up- or 

downregulated genes (UP DEGs and DOWN DEGs, 

respectively) after exposure to the drug were determined 

as follows: For each treatment sample, we calculated 

treatment-to-control ratio statistics, where, if any intensity 

value was <50, the value was replaced by 50 [7], and we 

selected probe sets if the treatment-to-control ratio was ≥ 
2 for UP DEGs or ≤ 0.5 for DOWN DEGs. Unsupervised 
hierarchical clustering was performed using the Pearson’s 

correlation distance and Ward’s linkage method. When 

performing network analysis, the average signal intensity 

ratio to the same gene was assigned. GSEA was performed 

with GSEA software (v2.0.14, Broad Institute) [12, 13] 

using the Molecular Signatures Database (MSigDB, v5.0) 

[13] or our defined signature gene sets. We set the false 

discovery rate (FDR) as 1 for gene sets, which means that 

the gene sets were not enriched at all. If the FDR of a gene 

set was 0, we set the FDR as the minimum FDR within each 

test. The FDR of gene sets was subjected to logarithmic 

transformation, and a positive or negative sign was used 

in front of this value if the gene set was enriched in genes 

with increased or decreased expression, respectively, under 

drug treatment. If there were both positive and negative 

scores due to marginal enrichment, we summed the two.

The transcriptome dataset for hypoxia-responsive 

genes were described in our previous paper [22]. From the 

hierarchical clustering of the hypoxia-responsive genes, 

mitochondria-dependent DEGs (Supplementary Figure 

12a) were analyzed by InDePTH.

Public transcriptome datasets

Normalized transcriptome data of 14 compounds 

on OCI-LY3 cells were obtained from NCBI Gene 

Expression Omnibus under the series accession no. 

GSE510681. Mapped genes were selected from R package 

hgu219.db v3.2.3 and the probe with the highest median 

of signal intensity for a gene was selected. T-statistics 

were calculated in log2 space by Welch’s two-sample 

t-test from all time points- and concentrations-aggregated 

datasets like DeMAND paper [21]. DEGs (FDR <.10) 

were assigned to probes of GeneChip Human Genome 

U133 Plus 2.0 array by hgu133plus2.db v3.2.3, in which 

using probes were limited to those with the median of 

signal intensity > 50 in the in-house datasets of anticancer 

compounds. Using these probes, InDePTH analysis was 
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performed and the results were compared with the ranking 

of DeMAND analysis using U133p2 network (from a 

supplementary table in DeMAND paper [21]).

Similarity scoring

CMap similarity scores were calculated from 

the CMap algorithm [4] using the R script described 

previously [6]. A reference rank matrix for the CMap 

algorithm was constructed from the LINCS gene 

expression database by ordering LINCS L1000 z-scores 

in descending order, in which, if z-scores had exactly the 

same values as the others, we set a higher rank for genes 

showing higher expression values. Using this LINCS rank 

matrix of 978 landmark genes or 22,268 inferred ones 

(including the 978 landmark genes), CMap similarity 

scores were calculated by using UP DEGs and DOWN 

DEGs obtained from the in-house dataset.

ROC curve analysis

ROC curve analysis was conducted by regarding the 

drug treatment conditions of the same name as positive 

and the others as negative when assessing the similarity 

to experimental conditions that should substantially be the 

same between LINCS L1000 (reference data) and query 

DEGs. ROC curve analysis was performed using the R 

package pROC (version 1.7.3) [42]. When the c-index, area 

under the ROC curve, was <0.5, we set this value as 0.5 

because c-index<0.5 means that there is no comparability 

between the two databases. Overall, 1,328,098 conditions 

were used for c-index
ALL

 and 113,867 HT-29 cell-specific 

conditions were used for c-index
HT29

. The Delong method 

[42] was used for calculating the P-value of the difference 

of c-index from the CMap similarity score from landmark 

genes and the CMap similarity score from landmark genes 

with inferred genes. Notably, we could not calculate the 

P-value between c-index
HT29

 and c-index
ALL

 because the 

number of genes used to create the ROC curve differed. 

The best cut-off of the CMap similarity score was 

determined at the point with the best sum of sensitivity 

and specificity, by using Youden’s J statistic [43].

Network connection methods

To connect DEGs, perturbations of knockdown, 

overexpression, and ligand treatment (we refer to such 

perturbed genes as upstream genes) were selected if their 

CMap similarity scores were no less than the best cut-off 

point of the score. Upstream genes were further filtered 

using the following criteria: 1) if an upstream gene was 

knocked down in the reference data, the gene in the query 

DEGs must be DOWN DEG, and 2) if an upstream gene 

was overexpressed or treated with a ligand in the reference 

data, the gene must be UP DEG. If upstream genes with 

the same perturbation ID remained, the record with the 

highest CMap similarity score was used. Genes whose 

expression was increased or decreased by perturbation of 

upstream genes (referred to as downstream genes) were 

selected if the upstream genes significantly changed the 

expression of these downstream genes (LINCS Z-score>2 

or Z-score<−2). When selecting knocked down conditions 
from the reference data, we discarded conditions for which 

only one independent perturbation ID remained, to avoid 

including off-target effects. In this process, we did not limit 

our analysis to HT-29 cells because the number of such 

genetic perturbations for HT-29 cells was small [0 records 

for overexpression, 865 records (296 genes) for ligand 

treatment, and 44,729 records (3666 genes) for knockdown].

By using these relationships between upstream and 

downstream genes, query DEGs were fully connected by 

arrows. If present, multiple edges and loops connecting 

a DEG to itself were removed. Kleinberg’s hub score 

[18] was used to identify the most influential gene in the 

network. This scoring method was originally developed 

for the complex world wide web to discover information 

sources and hubs that join the sources [18]. In short, the 

hub score was defined by the sum of authority scores, while 

the authority score was defined by the sum of hub scores. 

These recursive relationships were solved by finding the 

eigenvector of the autocorrelation matrix showing the link 

structure by using R package igraph (version 1.0.1) [44]. 

Components of the autocorrelation matrix were defined by 

the following formulation: α × δ. Here, α is a signal intensity 
ratio of query DEGs identified as an upstream gene in the 

network; δ is a penalty parameter that is the ratio of the 
number of upregulated or downregulated query DEGs to the 

number of upregulated or downregulated landmark genes in 

LINCS, respectively, to avoid off-target effects.

Cell cultures and treatments

Human colorectal adenocarcinoma HT-29 cells 

[45] were cultured in RPMI-1640 (Wako, Osaka, Japan), 

supplemented with 10% heat-inactivated FBS and 100 μg/
ml kanamycin. The chemical conditions for the in-house 

dataset were described previously [6, 7] and shown in 

Supplementary Table 1. 6-Mercaptopurine, doxorubicin, 

etoposide gemcitabine, methotrexate, mitomycin C, 

mitoxantrone, and topotecan have different MoA but 

ultimately induce DNA damage, so they were referred to 

here as DNA damaging agents [7].

Immunoblot analysis

Immunoblot analysis was conducted as described 

previously [22]. Briefly, equal amounts of protein were 

resolved on an SDS-polyacrylamide gradient gel and 

transferred by electroblotting onto a nitrocellulose 

membrane. Membranes were probed with the indicated 

primary antibodies. The specific signals were visualized 

with a chemiluminescence detection system using 

appropriate secondary antibodies (Perkin-Elmer, 

Waltham, MA, USA). The following antibodies were 
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used for immunoblotting: anti-β-actin (Sigma, St. Louis, 
MO, USA); anti-RPS3, anti-mTOR, and anti-MYC (Cell 

Signaling Technology, Danvers, MA, USA). β-actin, RPS3 
and mTOR were used as controls.

RNA preparation

Total RNA from cultured cells was extracted using 

an RNeasy RNA purification kit (Qiagen, Valencia, CA, 

USA). RNA quality was checked with a 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA).

siRNA treatment

ON-TARGETplus SMART pool siRNA (GE 

Healthcare, Little Chalfont, UK) and Silencer Select Pre-

designed siRNA (Thermo Fisher Scientific, Waltham, MA, 

USA) were used for the knockdown of MYC expression. 

ON-TARGETplus Non-targeting Pool (GE Healthcare) 

or Silencer Select Pre-designed siRNA (Thermo Fisher 

Scientific) was used as a control. HT-29 cells were seeded 

at a density of 8×104 cells/well on a six-well plate for 

immunoblot analysis and at a density of 3×103 cells/

well on a 96-well plate for cell viability assay, and were 

transfected for 24 h with 20 nM of each siRNA in Opti-

MEM (Thermo Fisher Scientific) with lipofectamine 

RNAiMAX (Thermo Fisher Scientific), in accordance 

with the manufacturer’s reverse transfection protocol. 

After 48 h, the cells were used for further experiments.

Cell growth assay

Cell growth was determined by a CellTiter-Glo 

luminescent cell viability assay (Promega), in accordance 

with the manufacturer’s protocol. Cell growth is shown as 

a percentage of the control level.

Data availability

The microarray datasets of MYC siRNA experiments 

were deposited in the NCBI Gene Expression Omnibus 

under the series accession no. GSE104175.

Computer code

The statistical computing language R (https://

www.r-project.org/) was used for all InDePTH analyses, 

including estimating the best cut-off point of the similarity 

score.
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