
Japan J. Indust. Appl. Math., 24 (2007), 289–305 Area 〈3〉

Index Calculus Attack for Jacobian of Hyperelliptic Curves

of Small Genus Using Two Large Primes

Koh-ichi Nagao∗

∗Dept. of Engineering, Kanto-Gakuin Univ.
E-mail: nagao@kanto-gakuin.ac.jp

Received October 31, 2006

Revised March 27, 2007

This paper introduces a fast algorithm for solving the DLP of Jacobian of hyperelliptic
curve of small genus. To solve the DLP, Gaudry first shows that the idea of index calculus
is effective, if a subset of the points of the hyperelliptic curve of the base field is taken by
the smooth elements of index calculus. In an index calculus theory, a special element (in
our case it is the point of hyperelliptic curve), which is not a smooth element, is called a
large prime. A divisor, written by the sum of several smooth elements and one large prime,
is called an almost smooth divisor. By the use of the almost smooth divisor, Thériault
improved this index calculus. In this paper, a divisor, written by the sum of several
smooth elements and two large primes, is called a 2-almost smooth divisor. By use of the
2-almost smooth divisor, we are able to give more improvements. The algorithm of this
attack consists of the following seven parts: 1) Preparing, 2) Collecting reduced divisors,
3) Making sufficiently large sets of almost smooth divisors, 4) Making sufficiently large
sets of smooth divisors, 5) Solving the linear algebra, 6) Finding a relation of collected
reduced divisors, and 7) Computing a discreet logarithm. Parts 3) and 4) need complicated
eliminations of the large prime, which is the key idea presented within this paper. Before
the tasks in these parts are completed, two sub-algorithms for the eliminations of the large
prime have been prepared. To explain how this process works, we prove the probability
that this algorithm does not work to be negligible, and we present the expected complexity
and the expected storage of the attack.

Key words: index calculus attack, Jacobian, hyperelliptic curve, DLP

1. Introduction

DLP of the Jacobian group of hyperelliptic curve C over finite field Fq, is a
problem finding integer n such that D1 = nD2, where D1,D2 are given reduced
divisors of the curve. When the base curve is a hyperelliptic curve, the additions of
the Jacobian group are easily computable and it has fruitful application to public
key cryptology. Gaudry [4] first present a variation of index calculus attack for
the DLP of the Jacobian of hyperelliptic curve of small genus. In this attack,
B0 = {(P−∞) | P ∈ C(Fq)} is taking as smooth elements of index calculus. Gaudry
and Harley [3] improved this result by the restriction of the smooth elements (B is
taken as some subset of B0) and by attaining the rebalance of the computation of
the group laws and linear algebra. An element in B0 \B is called large prime and
a divisor, written by the sum of several smooth elemments and one large prime, is
called alomst smooth divisor. Thériault improved this attack by the use of alomst
smooth divisor. These algorithms work in time O

(
q2− 2

g+1+ε
)

and O
(
q2− 4

2g+1+ε
)

respectively, where g is the genus of the curve C. When g ≥ 3, the complexity

290 K. Nagao

of Thériault’s method is less than the complexity of the attack using square root
methods such as Pollard’s rho method or baby step giant step method.

Similarly, a divisor, written by the sum of several smooth elemments and two
large primes, is called 2-alomst smooth divisor. In this paper, we propose further
improved index calculus attack against the DLP of the Jacobian by the use of
2-alomst smooth divisor.

Note that the same kind of the attack is done by Gaudry, E. Thomé,
N. Thériault, C. Diem [5] independently. (The method of Gaudry et al. inter-
prets the elimination of large prime by the connection of the graph whose vertexes
are large primes.)

First, we will explain the outline of the elimination of the large prime, which
is a key of the algorithm. Note that an almost smooth divisor is written by the
form

∑
terms of B+(P−∞), and a 2-almost smooth divisor is written by the form∑

terms of B+(Q−∞)+(R−∞), where P,Q,R ∈ B0\B. Let v1 =
∑

terms of B+
(P1−∞) and v2 =

∑
terms of B + (P1−∞) be the almost smooth divisors, which

have the same large prime. Then, a new smooth divisor v1 − v2 =
∑

terms of B

is obtained by the elimination of large prime P1 and by using such new smooth
divisors, Thériault realized a faster attack. Let v =

∑
terms of B + (P0 − ∞)

be an almost smooth divisor and v1 =
∑

terms of B + (P0 −∞) + (P1 −∞), v2 =∑
terms of B+(P1−∞)+(P2−∞), . . . , vn =

∑
terms of B+(Pn−1−∞)+(Pn−∞),

be the two-almost smooth divisors written by these forms. Then, new almost
smooth divisors v − v1 + v2 − v3 + · · ·+ (−1)ivi =

∑
terms of B + (−1)i(Pi −∞),

(0 ≤ i ≤ n) are obtained by the elimination of large prime. In this paper, we
propose a faster attack by using such new almost smooth divisors and show the
following theorem.

Theorem 1. Let C be a hyperelliptic curve of genus ≥ 3 over finite field Fq.
Then the DLP of JacC(Fq) can be solved in expected time O(q2−2/g+ε).

Further, Diem [2] presents an index calculus to the Jacobian of non-
hyperelliptic curve. The expected complexity of genus 3 non-hyperelliptic curve
is O(q1+ε) which is smaller than that of genus 3 hyperelliptic curve. Further, a
variant of the index calculus of using two large primes is applied to the attack
of XTR [6].

Further in this paper, we will use the symbols .= and � by the notations
a

.= b⇔ a/b = 1 + o(1) and a� b⇔ (a− b)/a = 1 + o(1).

2. Jacobian arithmetic

In this section, we will prepare the definitions and the lemmas of the Jacobian
arithmetic. Let C be a hyperelliptic curve of genus g over Fq of the form y2+h(x)y =
f(x) with deg f = 2g+1 and deg h ≤ g. Further, use the notation Jq for JacC(Fq).
Moreover, we will assume that |Jq| is odd prime number, for simplicity.

Definition 1. Given D1,D2 ∈ Jq such that D2 ∈ 〈D1〉, DLP for (D1,D2)
on Jq is computing λ such that D2 = λD1.

Index Calculus Attack for Jacobian of Hyperelliptic Curves 291

For an element P = (x, y) in C(F̄q), put −P := (x,−h(x)− y).

Lemma 1. C(Fq) is written by the union of disjoint sets P ∪ −P ∪ {∞},
where −P := {−P | P ∈ P}.

Proof. Since |Jq| is odd prime, we have 2 � |Jq| and there are no point P ∈
C(Fq) such that P = −P . �

Further, we will fix P.

Definition 2.

1) A subset B of P is called factor base.
2) A point P ∈ P \B is called large prime.

Note that the factor base B is used to define the smoothness of index calculus.
Point of JacC can be represented uniquely by the reduced divisor of the form

k∑
i=1

niPi −
k∑

i=1

ni∞, Pi ∈ C(F̄q), Pi �= −Pj for i �= j

with ni ≥ 0 and
∑

ni ≤ g. Thus in this paper, a point of Jacobian will be
called by using the expression “reduced divisor”. Let D(P) := P −∞. Note that
P + (−P) ∼ 2∞. From Lemma 1, a reduced divisor v of Jq can be represented by
the form

v =
∑

P∈C(F̄p)

n
(v)
P D(P)

with n
(v)
P ∈ Z and

∑
P∈C(F̄q)

∣∣n(v)
P

∣∣ ≤ g.

Definition 3. Let v be a reduced divisor of Jacobian Jq.
1) If v is written by the elements of C(Fq) i.e.

v =
∑

P∈C(Fq)

n
(v)
P D(P),

it is called potentially smooth reduced divisor.
2) If v is written by the elements of factor base B i.e.

v =
∑
P∈B

n
(v)
P D(P),

it is called smooth reduced divisor.
3) If v is written by the elements of factor base B except one large prime P ′ ∈

P \B i.e.

v = n
(v)
P ′ D(P ′) +

∑
P∈B

n
(v)
P D(P),

it is called almost smooth reduced divisor.

292 K. Nagao

4) If v is written by the elements of factor base B except two large primes
P ′, P ′′ ∈ P \B i.e.

v = n
(v)
P ′ D(P ′) + n

(v)
P ′′D(P ′′) +

∑
P∈B

n
(v)
P D(P),

it is called 2-almost smooth reduced divisor.

In this paper, we treat linear sums of reduced divisors whose coefficients are
considerd modulo |Jq|. So, we define the notation of smoothness to the general
divisor of the form

∑
P∈C(F̄q) npD(P) where nP ’s are integers modulo |Jq|.

Definition 4.

1) A divisor v of the form ∑
P∈B

n
(v)
P D(P)

is called smooth divisor.
2) A divisor v of the form

n
(v)
P ′ D(P ′) +

∑
P∈B

n
(v)
P D(P),

where P ′ is a large prime, is called almost smooth divisor.
3) A divisor v of the form

n
(v)
P ′ D(P ′) + n

(v)
P ′′D(P ′′) +

∑
P∈B

n
(v)
P D(P),

where P ′, P ′′ are large primes, is called 2-almost smooth divisor.

For a smooth (resp. almost smooth, resp. 2-almost smooth) divisor v, put

l(v) := #
{
P ∈ B

∣∣ n(v)
P �= 0

}
.

Lemma 2. Let v1, v2 be smooth (resp. almost smooth, resp. 2-almost smooth)
divisors and let r1, r2 be integers modulo |Jq|. Then the cost for computing r1v1 +
r2v2 is O(g2(log q)2(l(v1) + l(v2)).

Proof. It requires l(v1) + l(v2)-time products and additions modulo |Jq|.
Note that |Jq| .= qg. Since the cost of one elementary operation modulo |Jq| is
O((log|Jq|)2) = O(g2(log q)2), we have this estimation. �

3. Outline of algorithm

In this section, we present the outline of the proposed algorithm. Let k be a
real number satisfying 0 < k < 1

2g . Note that in §12, we will take k = 1
log q and

Index Calculus Attack for Jacobian of Hyperelliptic Curves 293

optimize the algorithm. Further in this paper, we will use k as a parameter of this
algorithm. Put

r := r(k) =
g − 1 + k

g
.

We will fix a set of factor base B with |B| = qr.
The main algorithm shown in Algorithm 1 consists of the following 7 parts

1) Preparing, 2) Collecting reduced divisors, 3) Making a sufficiently large set
of almost smooth divisors, 4) Making a sufficiently large set of smooth divisors,
5) Solving the linear algebra, 6) Finding a relation of collected reduced divisors, and
7) Computing the discreet logarithm. Note that the number of collected 2-almost
smooth reduced divisors in Part 2 is bigger than q1+k, which is the meaning of the
parameter k.

Algorithm 1. Main algorithm

Input: C/Fq hyper elliptic curve of small genus g, D1,D2 ∈Jq such that D2 ∈ 〈D1〉.
Output: Integer λ modulo |Jq| such that D2 = λD1.
1: Part 1 Computing all points of C(Fq) and making P and fix B ⊂ P with
|B| = qr.

2: Part 2 Collecting 2-almost smooth divisors and almost smooth divisors
Computing a set V2 of 2-almost smooth reduced divisors and a set V1 of almost
smooth reduced divisors of Jq, of the form αD1 +βD2 with |V1| > q

(g−1)+(g+1)k
g

and |V2| > q1+k.
3: Part 3 Computing a set of almost smooth divisor Hm with |Hm| > q(1+r)/2.
4: Part 4 Computing a set of smooth divisor H with |H| > qr.
5: Part 5 Solving linear algebra of the size qr × qr

Computing integers {γh}h∈H modulo |Jq|, satisfying
∑

h∈H γhh ≡ 0 mod |Jq|.
6: Part 6 Computing integers {sv}v∈V1∪V2 modulo |Jq|, satisfying∑

v∈V1∪V2
svv = 0.

7: Part 7 Computing λ.

4. Collecting 2-almost smooth reduced divisors and almost smooth re-
duced divisors

In order to collect enough 2-almost smooth divisors and almost smooth divisors
(Part 2 of the main algorithm), the following Algorithm 2 can be used.

Further, we will estimate the cost of this algorithm.

Lemma 3. The probability that a reduced divisor in Jq is almost smooth is

1
(g − 1)!

q(−1+r)(g−1)

and the probability that a reduced divisor is 2-almost smooth is

1
2(g − 2)!

q(−1+r)(g−2).

294 K. Nagao

Algorithm 2. Collecting the 2-almost smooth and almost smooth reduced divisors

Input: C/Fq curve of genus g, D1,D2 ∈ JacC(Fq)
Output: V1 a set of almost smooth reduced divisors, V2 a set of 2-almost

smooth reduced divisors such that |V2| > q1+k, |V1| > q
(g−1)+(g+1)k

g , Integers
{(αv, βv)}v∈V1∪V2 such that v = αvD1 + βvD2

1: V1 ← {}, V2 ← {}
2: repeat
3: Let α, β be random numbers modulo |Jq|
4: Compute v = αD1 + βD2

5: if v is almost smooth then
6: V1 ← V1 ∪ {v}
7: (αv, βv)← (α, β)
8: end if
9: if v is 2-almost smooth then

10: V2 ← V2 ∪ {v}
11: (αv, βv)← (α, β)
12: end if
13: until |V2| > q1+k and |V1| > q

(g−1)+(g+1)k
g

14: return V1, V2, {(αv, βv)}v∈V1∪V2

Proof. The first formula is from Propositions 3, 4, 5 in [8]. By the use of
the similar argument, the probability of a reduced divisor being 2-almost smooth
is roughly estimated by

(2|B|)g−2(2|P \B|)2
2! (g − 2)! |Jq|

.=
(qr)g−2q2

2! (g − 2)! qg
=

1
2(g − 2)!

q(−1+r)(g−2),

and the second formula is obtained. �

From this lemma, the number of the loops that |V2| > q1+k is estimated by

q(1+k) · 2(g − 2)! q(1−r)(g−2) = 2(g − 2)! q2r,

and the number of the loops that |V1| > q
(g−1)+(g+1)k

g is estimated by

q
(g−1)+(g+1)k

g · (g − 1)! q(1−r)(g−1) = (g − 1)! q2r.

Since the cost of computing Jacobian v = αD1 + βD2 is O(g2(log q)2) and the cost
of judging whether v is potentially smooth or not is O(g2(log q)3), the total cost of
this part is estimated by

O(g2(g − 1)! (log q)3q2r).

Here, we will estimate the required storage. Note that the bit-length of
one potentially smooth reduced divisor is 2g log q. So, the storage for V1 is

Index Calculus Attack for Jacobian of Hyperelliptic Curves 295

O
(
gq

(g−1)+(g+1)k
g log q

)
and the storage for V2 is O(gq(1+k) log q). Since 1 + k >

(g−1)+(g+1)k
g , we have gq(1+k) log q � gq

(g−1)+(g+1)k
g log q. So the total required

storage can be estimated by

O(gq(1+k) log q).

5. Elimination of large prime

In this section, we give sub-algorithms of the elimination of large prime, which
are needed Part 3 and Part 4 of Main Algorithm. Let E be a set of almost smooth
divisors. Also, let F be 1) a set of 2-almost smooth divisors or 2) a set of almost
smooth divisors. Note that elements e ∈ E and f ∈ F are written by

e = n
(e)
P1

D(P1) +
∑
P∈B

n
(e)
P D(P),

f = n
(f)
P2

D(P2) +
∑
P∈B

n
(f)
P D(P), if F is a set of almost smooth divisors,

f = n
(f)
P2

D(P2) + n
(f)
P3

D(P3) +
∑
P∈B

n
(f)
P D(P),

if F is a set of 2-almost smooth divisors.

Put sup(e) := {P1} and

sup(f) :=

{
{P2} if F is a set of almost smooth divisors,

{P2, P3} if F is a set of 2-almost smooth divisors.

When P ∈ sup(e) ∩ sup(f), also put

φ(e, f, P) := n(f)
p e− n(e)

p f.

Note that φ(e, f, P) is a new divisor obtained by once large prime elimination. So,
if F is a set of 2-almost smooth divisors, φ(e, f, P) is an almost smooth divisor.
If F is a set of almost smooth divisors and e is not of the form constant times f ,
φ(e, f, P) is a smooth divisor.

First, we treat the case that E being a set of almost smooth divisors and F

being a set of 2-almost smooth divisors. By using Algorithm 3, we construct another
set of almost smooth divisors, named E′, by once elimination of large prime.

Here, we explain the meanings of E′ and F ′ in Algorithm 3. A set of almost
smooth divisors

⋃
φ(e, f, P), where e, f , and P moves e ∈ E, f ∈ F , and P ∈

sup(e)∩ sup(f), is made by once large prime elimination from E and F . The set of
almost smooth divisors E′ made by Algorithm 3 is a subset of

⋃
φ(e, f, P) and has

the following properties: if φ(e1, f, P1) and φ(e2, f, P2) are distinct elements of E′,
e1, e2 are distinct. This property will be needed in Lemma 8. The set of 2-almost
smooth divisors F ′ made by Algorithm 3 is a subset of F , consist of the 2-almost
smooth divisors that dose not used to the eliminations.

296 K. Nagao

Algorithm 3. Elimination of large primes

Input: E almost smooth divisors, F 2-almost smooth divisors
Output: E′ almost smooth divisors, F ′ 2-almostsmooth divisors
1: set P \B = {R1, R2, . . . , R|P\B|} (pre-computation)
2: for i = 1, 2, . . . , |P \B| do
3: st[i]← {}
4: od
5: for all e ∈ E do
6: P = sup(e)
7: Compute i s.t. P = Ri

8: st[i]← st[i] ∪ {e}
9: od

10: E′ ← {}, F ′ ←− F

11: for all f ∈ F do
12: P1, P2 := sup(f)
13: Compute i s.t. P1 = Ri

14: if st[i] �= ∅ then
15: Take some e ∈ st[i]
16: E′ ← E′ ∪ {φ(e, f, P)}, F ′ ← F ′ \ {f}
17: break
18: break (return to the loop of next f ∈ F)
19: end if
20: Compute i s.t. P2 = Ri

21: if st[i] �= ∅ then
22: Take some e ∈ st[i]
23: E′ ← E′ ∪ {φ(e, f, P)}, F ′ ← F ′ \ {f}
24: break
25: break (return to the loop of next f ∈ F)
26: end if
27: od
28: return E′, F ′

Definition 5. Further, put

E · F := E′, E � F := F ′.

We will estimate the size of E · F and E � F .

Lemma 4. Let E be a set of randomly chosen almost smooth divisors and F

be a set of randomly chosen 2-almost smooth divisors. Assume |E| � q < |F |. The
size of E · F is estimated by

|E · F | .=
2|E| |F |
|P \B|

.=
4|E| |F |

q
.

Further, |E � F | = |F | − |E · F |.

Index Calculus Attack for Jacobian of Hyperelliptic Curves 297

Proof. Let e ∈ E, f ∈ F be randomly chosen elements. Put P := sup(e).
Since F is a set of 2-almost smooth divisors, the probability that P ∈ sup(f) is

2
|P\B|

.= 4
q and the size is estimated by 2

|P\B| |E| |F | = 4
q × |E| |F |. Second formula

is trivial. �

We will estimate the cost and the storage for computing E · F and E � F by
Algorithm 3.

Lemma 5. Put c1 := max{l(e) | e ∈ E} and c2 := max{l(f) | f ∈ F}. Assume
that |E| � q. Then the cost of computing E · F and E � F is

O(c1(log q)2|E|) + O((log q)2|F |) + O((c1 + c2)(g log q)2|E| |F |/q)

and the required storage is

O(c1 log q|E|) + O((c1 + c2) log q|E| |F |/q).

Proof. The required storage for st[i] is O(c1 log q|E|) and the required storage
for E′ is O((c1 +c2) log q|E| |F |/q), since |E′| .= |E| |F |/q and max{l(v) | v ∈ E′} =
c1 + c2. Note that the cost of the routine “Computing index i” is log q log |P \B| =
O((log q)2). Also note that |E · F | = O(|E| |F |/q) and remark that the probability
of st[i] �= ∅ is very small, since |E| � q. Thus, we see that the cost of the 1st loop
is O(c1(log q)2|E|), the cost of the part “Computing index i” of the 2nd loop is
O((log q)2|F |), and the cost of the part “Computing the elements of E′ and F ′” of
the 2nd loop is O((c1 + c2)(g log q)2|E| |F |/q) from Lemma 2. �

Now, let E be a set of almost smooth divisors. A set of smooth divisors E′ is
constructed from E by Algorithm 4.

Similarly, the set of smooth divisors
⋃

φ(e1, e2, P), where e, f and P moves
e1, e2 ∈ E, e1 �= Const × e2, and P = sup(e1) ∩ sup(e2) is made by once large
prime elimination from E. The set of smooth divisors E′ made by Algorithm 4 is
a subset of

⋃
φ(e, f, P) and has the following property: if φ(e, e1, P1), φ(e, e2, P2),

φ(e3, e, P3) and φ(e4, e, P4) are distinct elements of E′, then e1, e2, e3 and e4

are distinct. Note that if e1, e2 ∈ E are used once, e1, e2 are never used to the
construction of E′. This property will be needed in Lemma 8.

Definition 6. Also put

E · E := E′.

We will estimate the size of E · E and the cost of this computation.

Lemma 6. Let E be a set of randomly chosen almost smooth divisors. As-
sume |E| � q. The size of E · E is estimated by

|E · E| .=
|E|2

2|P \B|
.=
|E|2
q

.

298 K. Nagao

Algorithm 4. Elimination of large primes

Input: E almost smooth divisors
Output: E′ smooth divisors
1: set P \B = {R1, R2, . . . , R|P\B|} (pre-computation)
2: for i = 1, 2, . . . , |P \B| do
3: st[i]← {}
4: od
5: for all e ∈ E do
6: P = sup(e)
7: Compute i s.t. P = Ri

8: st[i]← st[i] ∪ {e}
9: od

10: E′ ← {}
11: for all f ∈ E do
12: P := sup(f)
13: Compute i s.t. P = Ri

14: if st[i] �= ∅ then
15: for all e ∈ st[i] s.t. e �= Const× f do
16: E′ ← E′ ∪ {φ(e, f, P)}, st[i]← st[i] \ {e, f}
17: break (return to the loop of next f ∈ E)
18: od
19: end if
20: od
21: od
22: return E′

Further, put c1 := max{l(e) | e ∈ E}, then the cost of computing E · E is

O(c1(log q)2|E|) + O(c1(g log q)2|E|2/q),

and the required storage is

O(c1 log q|E|) + O(c1 log q|E|2/q).

Proof. Let e1, e2 ∈ E be randomly chosen elements. Put P := sup(e1). The
probability that P ∈ sup(e2) is 1

|P\B|
.= 2

q and the size is estimated by
(|E|

2

)×prob. =
1

2|P\B| |E|2 = 1
q × |E|2. Cost estimations are similarly done by the previous case.

�

6. Computing a large enough set of almost smooth divisors

In this section, we construct a set of almost smooth divisors Hm such that
|Hm| > q(1+r)/2 using the following Algorithm 5.

Note that the set of almost smooth divisors Hi is obtained by (i− 1)-th large
prime eliminations from V1 and V2 and that 2-almost smooth divisors in V2,i are

Index Calculus Attack for Jacobian of Hyperelliptic Curves 299

Algorithm 5. Computing Hm

Input: V1 a set of almost smooth divisors s.t. |V1| > q
(g−1)+(g+1)k

g , V2 a set of
2-almost smooth divisors s.t. |V2| > q(1+k)

Output: Integer m > 0 and H1,H2, . . . , Hm sets of almost smooth divisors s.t.
|Hm| > q(1+r)/2

1: H1 ← V1, V2,1 ← V2

2: i← 1
3: repeat
4: i ++
5: Hi ← Hi−1 · V2,i−1, V2,i ← Hi−1 � V2,i−1,
6: until |Hi| > q(1+r)/2

7: m← i

8: return m,H1,H2, . . . , Hm

not used to the construction of H2, . . . , Hi. Now, we estimate the size of m. In
order to estimate the sizes |Hi| and |V2,i|, we use the size estimation of Lemma 4
as a heuristics. From Lemma 4, the size of Hi is estimated by

|Hi| .= |H1| × (qk)i−1 = q
(g−1)+(gi+1)k

g .

So, solving the equation (g−1)+(gi+1)k
g = (1 + r(k))/2 for i, we have the following.

Lemma 7. m is estimated by

1− k

2gk
.

Then, we can assume m = O
(

1
gk

)
, which is needed for the cost estimation

in §12. Note that
{
l(v)

∣∣ v ∈⋃i≤m Hi

} ≤mg. From Lemma 5, the cost for com-
puting Hm is

m× (O((log q)2q(1+k)) + O(mg(g log q)2q(1+r)/2)))

and the required storage is

O(mgq(1+r)/2 log q).

7. Computing a large enough set of smooth divisors

In this section, we construct a set of smooth divisors H such that |H| > qr

using the following Algorithm 6.
Note that one can put H ′ = Hm. If we assume H ′ = Hm, the arguments of

this paper also hold. Moreover, the proof of Lemma 8 becomes easier. However,
form an experimental point of view, not using the almost smooth divisors

⋃m−1
i=1 Hi,

300 K. Nagao

Algorithm 6. Computing H

Input: H1,H2, . . . , Hm sets of almost smooth divisors s.t. |Hm| > q(1+r)/2

Output: H a set of smooth divisors s.t. |H| > qr.
1: Put H ′ :=

⋃m
i=1 Hi

2: H ← H ′ ·H ′

3: return H

difficultly obtained, is wasteful. Then we ought to use
⋃m

i=1 Hi. From this construc-
tion, |H ′| > |Hm| ≥ q(1+r)/2. Similarly, we use the size estimation of Lemma 6 as
heuristics and the size of H is estimated by

|H| = |H ′|2/q ≥ qr.

Note that
{
l(v)

∣∣ v ∈⋃i≤m H
} ≤ 2mg and from Lemma 6, the cost for com-

puting H is estimated by

O((log q)2q(1+r)/2) + O(mg(g log q)2qr)

and the required storage is estimated by

O(mg log qq(1+r)/2).

8. Two-way representation of h ∈ H

An element h ∈ Hi is written by the form

h = nP1D(P1) +
∑
P∈B

a
(h)
P D(P),

since it is a almost smooth divisor. Moreover, from its construction, we easily
see that

l(h) = #
{
P ∈ B

∣∣ a(h)
P �= 0

} ≤ ig.

Similarly, an element h ∈ H is written by the form

h =
∑
P∈B

a
(h)
P D(P),

since it is a smooth divisor. Moreover, from its construction, we see easily that

l(h) = #
{
P ∈ B

∣∣ a(h)
P �= 0

} ≤ 2mg.

Set B = {R1, R2, . . . , R|B|}.

Index Calculus Attack for Jacobian of Hyperelliptic Curves 301

Definition 7. For any h ∈ Hi or H, put vec(h) :=
(
a
(h)
R1

, a
(h)
R2

, . . . , a
(h)
R|B|

)
.

The computation of h (= vec(h)) means the set of pairs
{(

a
(h)
Ri

, Ri

)}
for non-

zero a
(h)
Ri

. Note that the required storage for one h is O(mg log q).
On the other hands, from its construction, h ∈ Hi is written by linear sum of

at most i elements of V1 ∪ V2. i.e.

h =
∑

v∈V1∪V2

b(h)
v v, #

{
v
∣∣ b(h)

v �= 0
} ≤ i.

Similarly, h ∈ H is written by linear sum of at most 2m elements of V1 ∪ V2. i.e.

h =
∑

v∈V1∪V2

b(h)
v v, #

{
v
∣∣ b(h)

v �= 0
} ≤ 2m.

Definition 8. For any h ∈ Hi or H, put v(h) :=
{(

b
(h)
v , v

) ∣∣ b(h)
v �= 0

}
.

Note that the required storage for one v(h) is O(m log q).
By slightly modifying Algorithms 2, 3, 4, 5, 6, we can obtain both representa-

tions of h of the forms vec(h) and v(h). Note that the order of the cost and the
order of the storage for computing H is essentially the same.

Further, we will assume that the computations of vec(h) and v(h) for each
h ∈ Hi or H are done.

9. Linear algebra

In this section, we will solve linear algebra and finding a linear relation of H

by the following Algorithm 7.

Algorithm 7. Linear algebra

Input: H a set of smooth divisors such that |H| > qr

Output: Integers {γh}h∈H modulo |Jq| s.t.
∑

h∈H γhh ≡ 0 mod |Jq|
1: Set H = {h1, h2, . . . , h|H|}
2: Set matrix M = (tvec(h1), tvec(h2), . . . , tvec(h|H|))
3: Solve linear algebra of M and compute (γ1, γ2, . . . , γ|H|) such that∑|H|

i=1 γi vec(hi) ≡ −→0 mod |Jq|
4: return {γi}

Note that the elements of matrix is integers modulo |Jq| .= qg and that the
cost of an elementary operation modulo Jq is O(g2(log q)2).

M is a sparse matrix of the size qr × qr. Note that the number of non-zero
elements in one column is 2mg. So, using [7, 9], the cost of computing {γi} is
estimated by

O(g2(log q)2 · 2mg · qrqr) = O(mg3(log q)2q2r).

302 K. Nagao

The required storage for sparse linear algebra is essentially the storage for non-zero
data. Note that the bit length of integer modulo |Jq| is log(qg) and that the number
of nonzero elements of one row is mg. Thus the required storage is estimated by

O(log(qg)mg · qr) = O(mg2qr log q).

10. Nontrivial relation of the divisors in V1 ∪ V2

In the previous section, we found {γh} such that
∑

h∈H γhh ≡ 0 mod |Jq|.
On the other hands, in order to solving DLP, the relation of collected reduced
divisors V1∪V2 is desired. h ∈ H is written by some linear sum h =

∑
v∈V1∪V2

b
(h)
v v.

So, put

sv :=
∑
h∈H

γhb(h)
v mod |Jq| for all v ∈ V1 ∪ V2

and we have the relation of the reudced divisors V1 ∪ V2

∑
v∈V1∪V2

svv = 0.

Algorithm 8. Computing sv

Input: V1, V2,H, {γh}h∈H s.t.
∑

h∈H γhh ≡ 0 mod |Jq|
Output: {sv}v∈V1∪V2

1: for all v ∈ V1 ∪ V2 do
2: sv ← 0
3: od
4: for all h ∈ H do
5: for all v ∈ V1 ∪ V2 s.t. b

(h)
v �= 0 do

6: sv ← sv + γhb
(h)
v

7: od
8: od
9: return {sv}

The cost of this part is

O(gq1+k log q) + O(mg2(log q)2q(1+r)/2)

and the storage is

O(gq1+k log q).

Here, we will show that the obtained relation
∑

svv = 0 is non-trivial.

Lemma 8. {sv}v∈V1∪V2 contains at least one non-zero element.

Proof of this lemma is complicated, so we prepare the following two lemmas.

Index Calculus Attack for Jacobian of Hyperelliptic Curves 303

Lemma 9. For any h ∈ Hi, there exists some v ∈ V2,i−1 satisfying

1) b
(h)
v �= 0 and

2) b
(h′)
v = 0 for any h′ ∈ ⋃i

k=1 Hk \ {h}.
Proof. h is written by the form φ(h[1], v, ∗) for h[1] ∈ Hi−1 and v ∈ V2,i−1. We

will show that this v satisfies the conditions of the lemma. Form the construction,
we see b

(h)
v �= 0. Further, we see that b

(h′)
v = 0 for all h′ ∈ ⋃i−1

k=1 Hk, since this v is

not used to the construction of H1,H2, . . . , Hi−1. So, we have to show that b
(h′)
v = 0

for all h′ ∈ Hi. h′ ∈ Hi is written by the form φ(h′[1], v′, ∗) for h′[1] ∈ Hi−1 and
v′ ∈ V2,i−1. From the construction, we see v �= v′, since Hi does not contains both
elements of the form φ(h1, v, ∗) and φ(h2, v, ∗) (h1 �= h2). Then h′ is written by the
linear sum of V2 \V2,i−1∪{v′}, which does not contains the term of v (The 2-almost
smooth divisors in V2 \V2,i−1 are used the construction of H1,H2, . . . , Hi−1.). Thus

we have b
(h′)
v = 0. �

Lemma 10. Let G be a non-empty subset of H. Then there exists some
g ∈ G and some v ∈ V2 satisfying
1) b

(g)
v �= 0 and

2) b
(g′)
v = 0 for all g′ ∈ G \ {g}.

Proof. h ∈ H is written by the form φ(h[1], h[2], ∗) with h[1] ∈ Hi1, h[2] ∈
Hi2. Put d(h) := max(i1, i2). Take g ∈ G whose d = d(g) is maximal; i.e., d =
d(g) ≥ d(g′) for any g′ ∈ G. g is written by the form φ(g[1], g[2], ∗) with g[1] ∈
Hd1 , g[2] ∈ Hd2 and max(d1, d2) = d. Without loss of generality, we can assume
d = d1 ≥ d2 = d′; i.e. g[1] ∈ Hd, g[2] ∈ Hd′ and d ≤ d′. Let g′ ∈ G \ {g}. g′ is also
written by the form φ(g′[1], g′[2], ∗). Then we see that g[1] �= g[2], g[1] �= g′[1], and
g[1] �= g′[2], since form the construction of H, any 2 elements of the form φ(e1, f, ∗),
φ(e2, f, ∗), φ(f, e3, ∗), and φ(f, e4, ∗) (f and ei’s are distinct) are not in H. Thus,
we have g[2], g′[1], g′[2] ∈ ⋃d

k=1 Hk \ {g[1]}. From the previous lemma, there exists
some v ∈ V2 satisfying
1) b

(g[1])
v �= 0, b

(g[2])
v = 0 and

2) b
(g′[1])
v = b

(g′[2])
v = 0 for any g′ ∈ G \ {g}.

Since g′ is written by the linear sum of g′[1] and g′[2], we see that b
(g′)
v = 0. Similar-

ly, since g is written by the linear sum of g[1] and g[2], we see that b
(g)
v �= 0. �

Now, return to the proof of Lemma 8.

Proof. Take G := {h ∈ H | γh �= 0}. Then we see easily sv =
∑

g∈G γgb
(g)
v .

Applying the previous Lemma, there exists some v ∈ V2 and some g ∈ G satisfying
1) b

(g)
v �= 0 and

2) b
(g′)
v = 0 for any g′ ∈ G \ {g}.

Thus we have sv = γgb
(g)
v �= 0. �

304 K. Nagao

11. Finding discrete log

In the previous section, we found {sv} such that
∑

svv ≡ 0 mod |Jq|. In the
Part 2 of the algorithm, we computed (αv, βv) such that

v = αvD1 + βvD2.

So, we have

∑
v∈V1∪V2

sv(αvD1+βvD2) =

(∑
v∈V1∪V2

svαv

)
D1+

(∑
v∈V1∪V2

svβv

)
D2 ≡ 0 mod |Jq|.

So, −(∑v∈V1∪V2
svαv

)/(∑
v∈V1∪V2

svβv

)
mod |Jq| is required discrete log. Since

{sv} contains non-zero elements (Lemma 8), the probability
∑

v∈V1∪V2
svβv =

0 mod |Jq| is 1/|Jq| and can be omitted.

Algorithm 9. Computing λ

Input: V1, V2, {αv, βv}, {sv}
Output: Integer λ mod |Jq| s.t. D1 = λD2

1: return −(∑v∈V1∪V2
svαv

)/(∑
v∈V1∪V2

svβv

)
mod |Jq|

Note that the cost of this part is O(g2q1+k(log q)2).

12. Cost estimation and optimization

In this section, we will estimate the cost and the required storage of the main
algorithm under the assumption of

k =
1

log q
.

First, remember that m = O
(

1
gk

)
= O

(
log q

g

)
(Lemma 7). By a direct computation,

we have

r = r(k) =
g − 1 + k

g
= 1− 1

g
+

1
g log q

,

and

q2r = q2− 2
g × exp

(
2
g

)
= O

(
q2− 2

g
)
.

From our cost estimation, the cost of the routine except Part 2 and Part 5 is
written by the form

O(ga(log q)bqc) a, b ≤ 4, c ≤ 1 + k.

Index Calculus Attack for Jacobian of Hyperelliptic Curves 305

On the other hands, the cost of the routine Part 2 and Part 5 is written by

O(g2(g − 1)! (log q)3q2r) and O(mg3(log q)2q2r).

From the definion of r, we see 1 + k < 2r and the cost of the whole parts can be
estimated by

O(g2(g − 1)! (log q)3q2r) = O
(
g2(g − 1)! (log q)3q2− 2

g
)
.

Similarly, we see that the required storage (dominant part is Part 2 and Part 7,
since 1 + k > 1 > (1 + r)/2 from the definition of r) is

O(gq1+k log q) = O(gq1+k log q) = O(gq exp(1) log q) = O(gq log q).

13. Conclusion

Thériault presented a variant of index calculus for the Jacobian of hyperelliptic
curve of small genus, using almost smooth divisors. Here, we improve Thériault’s
result, using 2-almost divisors and propose an attack for DLP of the Jacobian of
hyperelliptic curves of small genus, which works O

(
q2− 2

g +ε
)

running time.

Acknowledgment. The author would like to thank Professor Kazuto Matsuo
in Institute of Information Security for useful comments and fruitful discussions,
Professor Lisa Bond in Kanto-Gakuin University for English writing. The author
also would like to thank the referees and the editor for useful coments and pointing
out several mistakes.

References

[1] M. Adleman, J. DeMarrais and M.-D. Huang, A subexponential algorithm for discrete log-
arithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves
over finite fields. Algorithmic Number Theory, ANTS-I, LNCS, 877, Springer-Verlag, 1994,
28–40.

[2] C. Diem, An Index Calculus Algorithm for Plane Curves of Small Degree. Algorithmic
Number Theory—ANTS VII, LNCS, 4076, Springer-Verlag, 2006, 543–557.

[3] A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algo-
rithms. Acta Arith., 102 (2002), 83–103.

[4] P. Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves. Euro-
crypt 2000, LNCS, 1807, Springer-Verlag, 2000, 19–34.

[5] P. Gaudry, E. Thomé, Thériault and C. Diem, A double large prime variation for small
genus hyperelliptic index calculus. Math. Comp., 76 (2007), 475–492.

[6] R. Granger and F. Vercauteren, On the Discrete Logarithm Problem on Algebraic Tori.
Advances in Cryptology, CRYPTO 2005, LNCS, 3621, Springer-Verlag, 2005, 66–85.

[7] B.A. LaMacchia and A.M. Odlyzko, Solving large sparse linear systems over finite fields.
Crypto ’90, LNCS, 537, Springer-Verlag, 1990, 109–133.

[8] N. Thériault, Index calculus attack for hyperelliptic curves of small genus. ASIACRYPT
2003, LNCS, 2894, Springer-Verlag, 2003, 75–92.

[9] D.H. Wiedemann, Solving sparse linear equations over finite fields. IEEE Trans. Inform.
Theory, 32 (1986), 54–62.

