


Abstract—As one of most popular technologies, audio

fingerprinting has recently attracted much attention in music

retrieval systems. In music retrieval methods based on audio

fingerprints, a large database is required in order to compare

the fingerprints extracted from the query. In other words, the

efficient search method has to be developed. In this paper, we

propose a method for index compression using a compressed

suffix array. Taking advantage of the fact that the repetitive

characters occur frequently in higher bits of the sorted audio

fingerprint data, the proposed method compresses the index by

encoding the 8-bit data sequences by Run Length Encoding.

Vertical Code is also used to compress the array, wherein the

positions of the sorted data are stored. Four sets of music

databases are used in experiments to evaluate the effectiveness

of the proposed method. The experimental results show that the

proposed method, compared with the conventional method,

only needs 30% of the space of an audio fingerprints database

for a music database consisting of 8000 songs, and around 80%

of the index space for a database of 1000 songs. Moreover, the

entire space cost is reduced to around 60%, compared with the

method based on the suffix array.

Index Terms—Audio fingerprint, compressed suffix array,

index compression, run length encoding, vertical code.

I. INTRODUCTION

A music retrieval system enables users to easily obtain
information about an unknown song such as song name, artist
and album [1], [2]. Most music retrieval systems adopt audio
fingerprinting proposed by Haitsma and Kalker [3]. The
audio fingerprint is a feature used to identify the song.
Information for an unknown music clip can be derived by
using audio fingerprints together with a music information
database. Moreover, audio fingerprints are not only used to
retrieve music, but also for copyright protection of music,
such as detecting the distribution of copyright-infringing
songs on the Internet.

A music query can start at any time from the original song,
which requires a large search space. Thus a fast and efficient
retrieval method is demanded. A few works have been
developed on the audio fingerprinting searching method,
including a method using a hash table [3], [4] and a
tree-structured representation of fingerprints [5]. The method

Manuscript received March 9, 2013; revised June 24, 2013.
Qingmei Xiao, Kazuyuki Matsumoto and Kenji Kita are with the

Department of Information Science and Intelligent Systems, the University
of Tokushima, Tokushima, Japan (e-mail: hanmay510122@gmail.com,
matumoto@is.tokushima-u.ac.jp, kita@is.tokushima-u.ac.jp).

Xin Luo is with the School of Computer Science and Technology,
Donghua Universtiy, Shanghai, (e-mail: China rashin.lx@gmail.com).

Yasushi Yokota is with Doi Hospital, Emihe, Japan (e-mail:
yokota@is.tokushima-u.ac.jp).

using a suffix array [6] has also been proposed. In the
method based on the suffix array, the space cost increases in
proportion to the growing music database. In this paper, we
proposed a method to reduce the space cost by compressing
the index of the database.

The paper is organized as follows: Section II outlines
music retrieval based on audio fingerprints. We review a fast
Hamming space search method [7] based on a suffix array in
Section III, and propose a space-saving method based on a
compressed suffix array in Section IV. We evaluate the
proposed method in Section V. Finally, the conclusions and
future work are given in Section VI.

II. MUSIC RETRIEVAL BASED ON AUDIO FINGERPRINTS

As a kind of message digest (one-way hash function),
audio fingerprinting converts an audio signal into a relatively
compact representation by using acoustical and perceptual
characteristics of the audio signals. For the message digesting
methods mainly used for authentication and digital signatures
(e.g., MD5), slight difference in the original objects will turn
to completely different hash values. In other words, two hash
values mapped from an original audio signal and a corrupted
one respectively are totally different, which is the reason why
the retrieval performance for “corrupted” queries decreases
drastically. However, in audio fingerprinting, similar inputs
are hashed to similar hash values.

Music retrieval based on audio fingerprinting involves
some key problems: 1) which type of audio fingerprints to
use, 2) how to define the distance between two fingerprints,
and 3) how to retrieve from a huge database. We review these
problems next.

A. Audio Fingerprints Extraction

Audio fingerprint extraction employs the signal
characteristics of the music data. One of the most popular
audio fingerprint extraction algorithms proposed by Haitsma
and Kalker [3] uses the sign of energy difference between
frequency bands as a feature.

The audio fingerprint extraction algorithm in [3] performs
as follows. First, segment the input music into overlapping
frames for each 0.37 seconds, and then divide each frame into
33 non-overlapping frequency bands. Next, extract 32-bit
sub-fingerprint by determining the 32 signs of energy
difference between two successive frequency bands of each
frame.

The sub-fingerprints are calculated as follows: let E(n, m)
be the power of frequency band m of frame n, then the m-th
bit of frame n, F(n, m), is determined as:

 𝐹 𝑛, 𝑚 =
 1

if

 𝐸𝐷 𝑛, 𝑚 > 0

0

if
 𝐸𝐷 𝑛, 𝑚 ≤ 0

 1

Qingmei Xiao, Narumi Saito, Kazuyuki Matsumoto, Xin Luo, Yasushi Yokota, and Kenji Kita

Index Compression for Audio Fingerprinting Systems
Based on Compressed Suffix Array

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

455DOI: 10.7763/IJIET.2013.V3.317

Narumi Saito is with OPTPIA Co., Ltd., Tokushima, Japan (e-mail:
saito-narumi@iss.tokushima-u.ac.jp).

mailto:hanmay510122@gmail.com

where
 𝐸𝐷 𝑛, 𝑚 = 𝐸 𝑛, 𝑚 − 𝐸 𝑛, 𝑚 + 1 − 𝐸 𝑛 − 1, 𝑚 −

 𝐸𝑛−1, 𝑚+1 (2)

Haitsma and Kalker has demonstrated that the sign of

energy difference between frequency bands was effective for
identifying music, and was also robust against various
“corrupted” inputs such as compressed or delayed music. The
Haitsma and Kalker algorithm can be implemented by simple
arithmetic, while maintaining compact representation for
generated audio fingerprints.

B. Distance between Audio Fingerprints

The sub-fingerprint is a 32-bit feature extracted from a
frame of an input music, and the information contained in one
sub-fingerprint is not enough to identify the audio. Thus, a
fingerprint block, which is a sequence of sub-fingerprints and
contains sufficient information, is used for matching audio
sub-fingerprints. A fingerprint block consisting of 256
sub-fingerprints was used in the experiments in [3].

Bit error rate is used as the distance between two
fingerprint blocks. For the sub-fingerprints extracted from
audio clips A and B, let FA(n, m), FB(n, m) be the m-th bit of
frame n respectively. The bit error rate of fingerprint block
BER(A, B) of length N is formally defined as:
 𝐵𝐸𝑅 𝐴, 𝐵 =

 [𝐹𝐴 𝑛, 𝑚 ^𝐹𝐵(𝑛, 𝑚)32𝑚=1]𝑁𝑛=1

32𝑁 3

BER(A, B) is the error rate per bit. The operator ^ denotes
bitwise operation XOR (exclusive or). The numerator in (3)
calculates the Hamming distance between two fingerprint
blocks.

C. Audio Fingerprints Searching

Audio music retrieval methods based on audio
fingerprinting usually follows this process below. First,
extract fingerprint blocks from query music and each song in
the database respectively. For each song in database and
query music, quite a number of fingerprint blocks with
different starting positions of frame can be extracted. And
then music retrieval becomes a problem to find the
fingerprint block in the database whose error bit rate with the
fingerprint block derived from the query is the smallest.

One problem of the method based on audio fingerprinting
is the quite huge searching space [8]-[11]. For example,
distance calculations for a fingerprint database containing
10,000 songs would be several to several dozen times as large
as 250 million by brute-force search taking account of
matching the fingerprint blocks. Many methods have been
developed over the past few years to reduce the number of
calculations [12]-[15]. However, these methods encounter a
drawback of rapid growing size of hash table as the bit error
rates between the query and songs in the database increases.

III. FAST HUMMING SPACE SEARCH BASED ON SUFFIX

ARRAY

Reference [7] has given a fast Hamming space search
method for audio fingerprinting systems. The fast Hamming
space searching holds the index to the sub-fingerprints

sequence that is similar to a suffix array in order to keep
high-speed searching in sub-fingerprints database.

The Hamming space search method reduces the searching
space greatly by multiplexing the queries of the
sub-fingerprint sequence instead of expanding the database.
Sub-fingerprints are extracted by shifting the query into
frames. Multiplexed sub-fingerprints with slight differences
used for query multiplexing can be obtained as the starting
position of a frame varies with time due to the great similarity
between the overlapping sub-fingerprints in the sequence of
sub-fingerprints.

is the j-th SSF in sorted order.

The search process, as shown in Fig. 1, can be summarized
in the following phases: 1) extract the sub-fingerprint
sequence FP from query music; 2) for all SSFs of query
music, find candidate positions where the sub-fingerprints
obtained from the query locate in the database by performing
a binary search on array S; 3) assign to candidate position the
start position of the FP, and calculate the Hamming distance
(bit error rate) between FP and the fingerprint block (128
sub-fingerprints) corresponding to the SSF; 4) finally, output
the top n songs as final results.

Fig. 1. Overview of scheme of SSF search.

In the binary search on array S, most similar SSFs can be

found by checking the neighborhood positions of the
searched block in array S. An index size that is proportional
to the length of the sub-fingerprint sequence in the database
enables the memory/storage required to be much less than
that required by conventional methods such as the method
based on random permutations [16].

First song
fingerprints

Second song
fingerprints …………

SSF2 SSF3

FP1 FP2 FP3 FP4 FP5 ……… FPi FPi+1 FPi+2 …… FPn

……… ……
…

SSFi

...
Binary search

...

96 bits

Query clip

3 2

SSF1

i

……

SSFn-2

FP

Last song
fingerprints

n-2 … … … … … … … …

… … …

010 … … … … … … … … 110

Sorted positions
S

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

456

Usually, one sub-fingerprint does not contain sufficient
information for music identification, so a sequence of
sub-fingerprints (SSF) is employed for matching. Suppose
FP = (FP1, FP2, …, FPn) be the sub-fingerprints obtained
from all the songs in a database, many m-length SSFs (m is
set to be 3 in [5]) can be derived by changing the starting
position of the fingerprint, and the i-th sub-fingerprint
sequence is defined as SSFi = (FPi, FPi+1,…, FPi+m-1). Then,
all the SSFs are sorted by value and their positions are stored
in a suffix array SA = SA1, SA2, …, SAn-m+1. Array SA contains
the indexes to FP, and satisfies the following:

SAj =i iff SSFi = (FPi, FPi+1,…, FPi+m-1) (4)

IV. MUSIC RETRIEVAL BASED ON COMPRESSED SUFFIX

ARRAY

A. Index Compression

We use a compressed suffix array for index compression
because the index has the same structure as the suffix array
[14]. The proposed method first compresses sub-fingerprints
extracted from the database in sorted order, and keeps the
compressed data. That is, use FP'= FP'[0],…, FP'[n] (FP'[i]
= FP' [SA[i]]) to replace FP. And then segment FP' into
pieces in an interval of M1. In other words, FP'= FP'0,…,
FP'n/M1 can be derived from FP'k= FP'[M1×k];
FP'[M1×k+1],…, FP'[M1×(k+1)-1]―the block of FP. This is
because the required restoration is performed instantaneously
during searching.

In addition, for each segmented block FP'k, suppose each
sub-fingerprint (32 bits) is in unit of 8 bits, and we perform
Run-Length Encoding (RLE) for 8-bit bytes data sequences
[17]-[19]. RLE is an encoding technique wherein a series of
repetitive data symbols are compressed into a shorter code,
which indicates the length of a code and the data being
repeated. The 8-bit sequence is arranged because the values
of bits in the upper side are likely to be the same since FP' is
the sorted.

For example, given that the segmentation interval M1 (M1
= 8) of sub-fingerprint FP having been sorted, the FP'0 can be
expressed as shown in (5).

Fetch only values of the highest bits from (5) and we can

get

FP'0(0, 3), FP'0(1, 3),…, FP'0(7, 3)
=00, 00, 00, 00, 00, 00, 00, 00. (6)

which becomes (7) after performing Run Length Encoding
since the repetitive characters of “00” occurs 8 times.

00, 00, 08. (7)

Similarly, the next bit is shown as in (8) and the same
encoded data as in (7) by Run Length Encoding.

FP'0(0, 2), FP'0(1, 2),…, FP'0(7, 2)
=00, 00, 00, 00, 00, 00, 00, 00. (8)

The other two bits are shown in (9) and (12), and their

encoded data as in (10) and (12) respectively by Run Length
Encoding.

FP'0(0, 1), FP'0(1, 1),…, FP'0(7, 1)
=00, 00, 00, 00, 01, 01, 11, 11. (9)

00, 00, 04, 01, 01, 02, 11, 11, 02. (10)

FP'0(0, 0), FP'0(1, 0),…, FP'0(7, 0)
=00, 00, 01, 01, 01, 01, 01, 11. (11)

00, 00, 02, 01, 01, 05, 11. (12)

Subsequently, consider (7), (10), and (12) as 8-bit data

sequences, and they can be expressed as (13) after being
packed to 32-bit data. Additionally, FP'0 becomes (13) by
Run Length Encoding. The bigger the size of database, the
longer the Run (a series of repetitive characters) Length will
be and subsequently the compression efficiency increases.
FP'= FP'0, …, FP'n/M1 is retained as the sub-fingerprints of the
database.

FP''0= 00, 00, 08, 00,

 00, 08, 00, 00,
 04, 01, 01, 02, (13)
 11, 11, 02, 00,
 00, 02, 01, 01,
 05, 11.

Since the order of original database has been lost, we use ѱ

[i], as shown in (14) to represent the order.
 𝑖 = 𝑆𝐴−1[𝑆𝐴[𝑖] + 1] if 𝑆𝐴[𝑖] ≠ 𝑛

0 if 𝑆𝐴 𝑖 = 𝑛

Using ѱ [i], the sequence the same as the database

represented by FP[SA[i]], FP[SA[i]+1], …, FP[SA[i]+j] is

replaced by FP' [i], FP' [ѱ[i]], …, FP' [ѱ j[i]] wherein [ѱ j[i]]

indicates the j-th repetitive characters of i= ѱ [i]. ѱ [i] is

possible to be compressed since it is a partially monotonous
increase. The reason for a partial monotonous increase is that,
if there are repetitive values, the sorted order is determined
according to the next and subsequent values.

 Vertical Code, a code that represents a smaller value in a

smaller size, is used for the difference of ѱ during

compression of ѱ[i]. As the difference of ѱ[i], d[i] is shown as

in (15). If d[i] < 0, it is always monotonically increasing with
the growth of n.
 𝑑 𝑖 = ѱ 𝑖 −ѱ 𝑖 − 1 − 1 if 𝑖 ≠ 0

0 if 𝑖 = 0

Divide ѱ[i] into blocks in an interval of M2. In other words,

use block ѱ0, …, ѱ n/M2 for ѱk = ѱ[M2×k], …, ѱ[M2×(k+1)-1].

The first block data ѱ[M2×k] is stored in ѱ'k as a sampling.

This is because the restore is required, as well as FP', to be
performed instantly when searching.

Similarly, divide d[i] into blocks in an interval of M2. That
is, use block d0, …, d n/M2 for dk = d [M2×k], …,
d[M2×(k+1)-1]. First, obtain the bit mask MSB[k] which is
required in representation of data in the block from the
maximum value of d[i]. Moreover, store the value of q-th bit
of the binary representation of d [M2×k+p] in the p-th bit of Vk
[q]. In other words, the size of the Vk (the maximum value of
q for each Vk) equals MSB[k]. By a multiple of 8 M2, Vk[q] can
be processed in bytes.

For example, suppose M2 = 8 and d0 in decimal is d0 = 1, 0,
1, 2, 3, 2, 1, 0. All the values can be expressed in 2-bit data
since the maximum value of d0 is 3. Convert d0 to a 2-bit

FP'0= 00 00 00 00,
 00 00 00 00,
 00 00 00 01,

 00 00 00 01, (5)
 00 00 01 01,
 00 00 01 01,
 00 00 11 01,
 00 00 11 01.

ѱ

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

457

(14)

(15)

binary number d0 = 01, 00, 01, 10, 11, 10, 01, 00, and then we
can derive V0[0] = 0101 0101, V0[1]= 0011 1000 for V0=

V0[0], V0[1].

Instead of ѱ [i], indexes can be compressed by maintaining

the V = V1, …, Vn/M2 and MSB= MSB[1], …, MSB[n/ M2],
which are obtained through the above process.

B. Index Restoration

We elaborate the restoration of the index ѱ. The restoration

is performed by using ѱ' (a sampling of ѱ). As stated above, ѱ

which represents the order of data in the sorted

sub-fingerprints SFP, can be expressed by ѱ ' and the

difference d as shown in (16).

= ѱ′ 𝑖′ + 𝑗′ + 𝑑 𝑀2 × 𝑖′ + 𝑘 𝑗 ′𝑘

C. Search Based on Compressed Suffix Array

The music retrieval method based on a suffix array
performs a binary search by using sub-fingerprints FP

extracted from all songs in the database and a suffix array SA

wherein the sorted positions of the sub-fingerprints
sequences with a length of 3 are stored. The proposed method
is based on a compressed suffix array that performs a binary
search directly on SFP—the FP which have been sorted in
advance.

The search method based on compressed suffix array is to

find, from the FP' [i], …, FP' [ѱ j[i]], the sub-fingerprints
block that has the smallest error bit rate with the
sub-fingerprints block extracted from the query music. The
process can be divided into three stages as follows
 For the sub-fingerprints sequence with a length of 3

derived from query Q as in (17), perform a binary search
on the sub-fingerprints sequence with a length of 3
derived from the database as in (18). The same as used
in the existing methods, the bit-error is used to evaluate
the similarity.

Qi, i+2 = Q[i], Q[i + 1], Q[i + 2]

SFP j, j+2 = SFP[j], SFP[ѱ[j]], SFP[ѱ 2 [j]]

 For SFP j, j+2 explored above, calculate the degree of

similarity in sub-blocks fingerprint. That is, calculate bit
error rate of Qi, i+127 and SFPj, j+127 since the length of the
block fingerprint is 128. The music data that contain
SFPj, j+127 will be selected as candidates if the bit error
rate is below the threshold value.

 Arrange the candidates in order of the bit error rate, and
then output the music with lower bit error rates as the
results.

V. EXPRIENTS AND RESULTS

We carried the experiments to evaluate both the method
based on the suffix array and that on the compressed suffix
array. The music database and audio fingerprints used in the
experiments are the same for both methods.

Just like the method based on suffix array, the
Haitsma-Kalker algorithm was used for fingerprints
extraction in our experiments, however, there were some
different points: 1) the length of each frame is 1.024 seconds,
2) 32 milliseconds for frame shift, 3) an improved Hamming
window; and 4) the length of sub-fingerprints block is 128.

A. Experimental Conditions

Music data The database contained 8, 000 songs in mp3
format from CDs or the Internet. There were many genres in
the database such as pop, classical, and folk music. An index
of the number of each song was created. In our experiments,
we selected three sets of music from the database,
corresponding to 1000 songs, 2000 songs and 4000 songs.
Then the indexes of each set were created, in order to obtain
the rate of change on the size and the time.

Compression setting The segmentation interval M2 for

both the order of data ѱ that have been sorted and the

difference d was assigned a value of 32, that is M2 =32. This
was because the length of the sub-fingerprints was 32. Assign
the segmentation interval M1 a value of 32 similarly for

sorted sub-fingerprints SF, and the same value for the

sampling interval M3 of the SA’s sampling SAs in order to

obtain the song number.

B. Data Size

Subsequently, we are to compare the proposed method for
index compression based on a compressed suffix array with
that on a suffix array. The size of the index data and the size
of the sub-fingerprint are to be described separately.

Size of sub-fingerprint The proposed method first sorted
the fingerprints FP and then encoded the sorted FP by RLE.
The size of sub-fingerprint is shown in Table I.

TABLE I: SIZE OF SUB-FINGERPRINTS

Songs Conventional
method (MB)

Proposed
method (MB)

Compression
rate (%)

1000 30.0 13.2 44.0

2000 58.1 23.3 40.1

4000 123.4 45.5 36.9

8000 255.5 84.6 33.1

The compression rate in Table I was determined by (19).

The compression rate got higher as the number of songs
increased. This is probably because that the Run (a series of
repetitive characters) Length got longer as the
sub-fingerprints increased.

Compression rate

 =
Data size in proposed method

 Data size in conventional method)
× 100%

Size of indexes The proposed method stored ѱ by Vertical

Code in order to obtain the order of data SFP. Table II shows

the size of SA and ѱ. The size of the data ѱ for SA would

increase with the increase in the number of songs in the
database. That is, the compression efficiency became poor

ѱ [i]

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

458

(16)

In (16), i'= i/M2, j'= i mod M2. In addition, ѱ[i]= ѱ[i] mod n

in the case of ѱ [i] > n. As the sum of d[i'] from 1 to j', 𝑑[𝑀2 × 𝑖′ + 𝑘]𝑗 ′𝑘=1 uses MASK = {(1<< j') | ((1<< j')-1) -1},

and it turns into {popcount(𝑉 ′[𝑘]&𝑀𝐴𝑆𝐾) << 𝑘}𝑀𝑆𝐵[𝑖′]𝑘=0
wherein MASK indicates the MASK from 1 to j' and
popcount(x) indicates the number of bit valued 1 in the data x.
The “|” denotes OR operation, “&” denotes AND operation

and “<<” represents left shift operation. We can get [i] from

ѱ, V and MSB through the above process.

(17)

(18)

(19)

ѱ

with the increase in the database. If the types of
sub-fingerprint were increased by increasing the number of
music, the adjacent data would not necessarily be the same
even it existed in the sorted data. In other words, the
monotonically increasing portion reduced, which was the
cause of the deterioration in compression efficiency.

Total data size The total data size is shown in Table III.
The compression rate achieved, in general, about 60% for
each song in the database. In addition, the compression rate
got slightly higher with the increase in the number of music.
This is due to the height of the compression rate of the
sub-fingerprint.

TABLE III: TOTAL DATA SIZE

Songs Conventional
method (MB)

Proposed
method (MB)

Compression
rate (%)

1000 59.5 37.3 62.7

2000 115.1 71.4 62.0

4000 244.7 150.8 61.6

8000 506.9 306.7 60.5

C. Search Time

During the search, the songs used as queries are the same
as the database, and had the same length as the original songs.
In this section, we use the results of a query per 10 seconds.
That is, for a query of Sq seconds, the search time per 10
seconds can be denoted by Ss /Sq×10 music for [s] if the
search takes Ss seconds.

Table IV shows the average search time for each song in
all sets of music data. Slow-down factor (SLF) indicates the
multiple of the time taken by the proposed method, compared
with the conventional method. That is, the smaller SLF is, the
faster the proposed method. SLF was determined by (20).

TABLE IV: AVERAGE SEARCH TIME

Songs Previous
method (s)

Proposed
method (s)

SLF

1000 0.001 0.012 12.0

2000 0.001 0.012 12.0

4000 0.002 0.016 8.0

8000 0.003 0.017 5.7

Table IV also shows that the proposed method took more

time for search, which may be due to the data structure.
However, the Slow-down factor tended to decrease with the
increase of songs in database.

VI. CONCLUSIONS

In this paper, we have presented a method of index
compression using a compressed suffix array. The
experimental results show that this method can save much
space. Our method took more time for search. However, the

multiples of search time tended to decrease with the increase
of songs in database. Our future work will focus on the use of
a large-scale database in order to enhance the retrieval speed.
The application of the music database for music to be
searched will be also considered in the future

REFERENCES

[1] Shazam. [Online]. Available: http://www.shazam.com/.
[2] Gracenote. [Online]. Available: http://www.gracenote.com/.
[3] J. Haitsma and T. Kalker, “Highly robust audio fingerprinting system,”

in Proc. 3rd International Conference on Music Information Retrieval

(ISMIR 2002), 2002, pp.107-115.
[4] A. L. Wang, “An Industrial-Strength Audio Search Algorithm,” in

Proc. the 4th International Conference on Music Information

Retrieval (ISMIR 2003), 2003, pp. 7-13.
[5] M. Miller, M. Rodriguez, and I. Cox, “Audio fingerprinting: Nearest

neighbour search in high dimensional binary spaces,” Journal of VLSI

Signal Processing, vol. 41, no. 3, pp.285-291, 2005.
[6] U. Manber and G. Myers, “Suffix arrays: a new method for on-line

string searches,” 1st ACM-SIAM symposium on Discrete algorithms,
1990.

[7] Q. Xiao, M. Suzuki, and K. Kita, “Fast Hamming space search for
audio fingerprinting systems,” in Proc. 12th International Society for

Music Information Retrieval Conference (SIMIR 2011), 2011,
pp.133-138.

[8] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. the 30th Annual ACM

Symposium on Theory of Computing, 1998, pp.604–613.
[9] D. Fragoulis, G. Rousopoulos, T. Panagopoulos, C. Alexiou, and C.

Papaodysseus, “On the automated recognition of seriously distorted
musical recordings,” IEEE Transactions on Signal Processing, vol. 49,
no. 4, pp. 898–908, 2001.

[10] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. the 34th Annual ACM Symposium on Theory of

Computing, 2002, pp. 380–388.
[11] A. Wang, “An industrial-strength audio search algorithm,” in Proc.

4th International Conference on Music Information Retrieval (ISMIR

2003), 2003, pp. 7-13.
[12] R. Gonzalez, S. Grabowski, V. Makinen, and G. Navarro, “Practical

implementation of rank and select queries,” in Proc. 4th International

Workshop on Experimental and E_cient Algorithms (WEA 2005),
2005, pp.27-38.

[13] C. Bandera, A. M. Barbancho, L. J. Tardón, S. Sammartino, and I.
Barbancho, “Humming method for content-based music information
retrieval,” in Proc. 12th International Society for Music Information

Retrieval Conference (ISMIR 2011), 2011, pp. 49-54.
[14] P. J. O. Doets and R. L. Lagendijk, “Extracting quality parameters for

compressed audio from fingerprints,” in Proc. 6th International

Conference on Music Information Retrieval (ISMIR 2005), 2005,
pp.498-503.

[15] V. Chandrasekhar, M. Sharifi, and D. A. Ross, “Survey and evaluation
of fingerprinting schemes for mobile query-by-example application,”
in Proc. 12th International Society for Music Information Retrieval

Conference (ISMIR 2011), 2011, pp.801-806.
[16] T. Kurita, “Development of external-noise reduction technologies for

Shinkansen high-speed trains,” Journal of Environment and

Engineering, vol. 6, no. 4, pp. 805-819, 2011.
[17] H. Hermansky, “Perceptual linearpredictive (PLP) analysis speech,”

Journal of the Acostic Society of America, vol. 87, no. 4, 1990.
[18] E. L. Hauck, “Data compression using run length encoding and

statistical encoding,” U.S. Patent 4 626 829, Dec. 2, 1986.
[19] D. Okanohara and K. Sadakane, “Practical Entropy-Compressed Rank

Select Dictionary,” Algorithm Engineering and Ex-periments

(ALENEX 2007), 2007.

Qingmei Xiao was born in Fujian, China, in 1983. She
received the B.S. degree in information management &
information systems from Dalian Polytechnic University,
China, in 2006, and earned a Master degree in Computer
Science & Engineering from Dalian University of
Technology, China, in 2009. She is currently a Ph. D
student studying on music information retrieval system in

the Department of Information Science and Intelligent Systems.

Narumi Saito was born in Tokushima, Japan, in 1989. She received the B.S.
degree and the Master degree, both in Intelligent Information Engineering,
from Faculty of Engineering, the University of Tokushima, Japan, in 2011
and 2013, respectively. She is currently working in OPTPIA Co., Ltd., Japan.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

459

TABLE II: SIZE OF INDEXES

Songs Conventional
method (MB)

Proposed
method (MB)

Compression
rate (%)

1000 29.5 23.2 78.6

2000 57.0 46.3 81.2

4000 121.3 101.4 83.6

8000 251.4 214.1 85.2

SLF =
search time in proposed method

search time in conventional method)
(20)

http://www.shazam.com/
http://www.gracenote.com/
http://ismir2011.ismir.net/papers/PS1-2.pdf
http://ismir2011.ismir.net/papers/PS1-2.pdf

Kazuyuki Matsumoto was born in Tokushima, Japan, in 1980. He received
the B.S. degree in Intelligent Information in March 2003 (a Master degree in
March 2005 and a Ph. D degree in March 2008) from Faculty of Engineering,
the University of Tokushima, Japan. He is currently an assistant professor in
Department of Information Science and Intelligent Systems, the University
of Tokushima. His research interests include Affective Computing, Emotion
Recognition and Natural Language Processing. Mr. Matsumoto is a member
of IPSJ, IEICE and NLP.

Xin Luo was born in Hunan, China, in 1972. He received the M.E. and D.E.
degrees from the Faculty of Engineering, University of Tokushima,
Tokushima, Japan, in 2004 and 2007, respectively. Since 2007, he has been
with the School of Computer Science and Technology, Donghua University,
Shanghai, China. His current research interests include multimedia
information retrieval and pattern recognition.

Yasushi Yokota was born in Tokyo, Japan, in 1956. From 1977 to 1981, he
attended Waseda University, Tokyo, Japan, and left this university without a

 diploma. He graduated from School of Medicine, Akita University, Japan,
in 1987. Mr. Yokota is currently an interventional cardiologist
superintendent of Doi Hospital, Emihe, Japan. His current research interests
include interventional cardiology and medical information retrieval.

Kenji Kita was born in Oita, Japan, in 1957. He received the B.S. degree in
mathematics and the Ph. D degree in electrical engineering, both from
Waseda University, Tokyo, Japan, in 1981 and 1992, respectively. From
1983 to 1987, he worked for the Oki Electric Industry Co. Ltd., Tokyo, Japan.
From 1987 to 1992, he was a researcher at ATR Interpreting Telephony
Research Laboratories, Kyoto, Japan. Since 1992, he has been with the
University of Tokushima, Tokushima, Japan, where he is currently a
Professor in the Department of Information Science and Intelligent Systems.
His current research interests include multimedia information retrieval,
natural language processing, and music recognition. Prof. Kita is a member
of IPSJ, IEICE and NLP.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

460

