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INDEX ESTIMATES FOR FREE BOUNDARY MINIMAL

HYPERSURFACES

LUCAS AMBROZIO, ALESSANDRO CARLOTTO AND BEN SHARP

Abstract. We show that the Morse index of a properly embedded free boundary minimal
hypersurface in a strictly mean convex domain of the Euclidean space grows linearly with
the dimension of its first relative homology group (which is at least as big as the number
of its boundary components, minus one). In ambient dimension three, this implies a lower
bound for the index of a free boundary minimal surface which is linear both with respect to
the genus and the number of boundary components. Thereby, the compactness theorem by
Fraser and Li implies a strong compactness theorem for the space of free boundary minimal
surfaces with uniformly bounded Morse index inside a convex domain. Our estimates also
imply that the examples constructed, in the unit ball, by Fraser-Schoen and Folha-Pacard-
Zolotareva have arbitrarily large index. Extensions of our results to more general settings
(including various classes of positively curved Riemannian manifolds and other convexity
assumptions) are discussed.

1. Introduction

Given (Ωn+1, g) a smooth Riemannian manifold with boundary, we shall be concerned
here with certain global properties of free boundary minimal hypersurfaces Mn ⊂ Ωn+1,
namely hypersurfaces that are critical points of the area functional when the boundary ∂M
is not fixed (like in Plateau’s problem) but subject to the sole constraint ∂M ⊂ ∂Ω. Due
to their self-evident geometric interest (which can be traced back at least to Courant [3]),
these variational objects have been widely studied and a number of existence results have
been obtained via surprisingly diverse methods (see, among others, [4,9–11,17–20,28,30] and
references therein). Free boundary minimal hypersurfaces also naturally arise in partitioning
problems for convex bodies, in capillarity problems for fluids and, as has significantly emerged
in recent years, in connection to extremal metrics for Steklov eigenvalues for manifolds with
boundary (see primarily the works by Fraser-Schoen [7–9] and references therein). From an
analytic perspective, it should also be mentioned that their boundary regularity has been
the object of extensive investigations (let us mention, for instance, [12, 14–16]).

The results we are about to present regard the comparison between the Morse index and
the topology of free boundary minimal hypersurfaces. Roughly speaking, the index is a
non-negative integer measuring the maximal number of distinct deformations that locally
decrease the area to second-order (subject to the aforementioned constraint ∂M ⊂ ∂Ω). On
the other hand, we shall describe the topology of a manifold with boundary by means of
its (real) homology groups. As is well-known, in the most basic case of orientable surfaces
with boundary the topological type can be completely described by means of two numbers,
namely the genus and the number of boundary components of the surface in question.

There are some general results about the geometry and topology of stable (= index zero)
and index one compact free boundary minimal surfaces in general three-manifolds whose
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boundary satisfies some convexity assumption. For example, it is known that stable compact
two-sided free boundary minimal surfaces in mean convex domains of three-manifolds with
non-negative scalar curvature must be topological disks or totally geodesic annuli (see for
example [2]). Moreover, Cheng, Fraser and Pang showed in the same article that there exists
an explicit upper bound on the genus and the number of boundary components of index
one compact two-sided free boundary minimal surfaces in such manifolds. Related results
about the topology of free boundary volume-preserving stable CMC surfaces in strictly mean
convex domains of the three-dimensional Euclidean space were obtained by Ros in [22].

On the other hand, Fraser and Schoen [9] have proven that if Mn ⊂ Bn+1 (the unit ball
in R

n+1) then either Mn is a flat disk (whose index is one) or its Morse index is at least
n+ 2. We also remark that some interesting results on the index of free boundary minimal
submanifolds of higher codimension have been proven in [5] and [9], Theorem 3.1. In this
paper, we apply the techniques developed in [1] (but see also [22]) to prove a general lower
bound for the index of free boundary minimal hypersurfaces in terms of topological data of
the hypersurface in question.

For the sake of simplicity, in this introduction we shall state our results in the special
case of domains of the Euclidean space, while the corresponding extensions to Riemannian
manifolds satisfying certian curvature conditions are postponed to the last section of this
paper (see Theorem 9, Theorem 10 and related comments).

Our first main result is the following.

Theorem A. Let Ωn+1 be a strictly mean convex domain of the (n+1)-dimensional Euclidean
space, n ≥ 2. Let Mn be a compact, orientable, properly embedded free boundary minimal
hypersurface in Ω. Then

index(M) ≥
2

n(n+ 1)
dimH1(M,∂M ;R).

In the above inequality, H1(M,∂M ;R) denotes the first relative homology group with real
coefficients. The dimension of this homology group can be explicitly computed in terms of
the homology groups of Mn and ∂M (see Lemma 4). In particular, we obtain an estimate
for the index in terms of the number of boundary components.

Corollary B. Let Ωn+1 be a strictly mean convex domain of the (n + 1)-dimensional Eu-
clidean space, n ≥ 3. Let Mn be a compact, orientable, properly embedded free boundary
minimal hypersurface in Ω with r ≥ 1 boundary components. Then

index(M) ≥
2

n(n+ 1)
(r − 1).

In the case of free boundary minimal surfaces (n = 2), the estimate also involves the genus
of the surface (Lemma 5) and can in fact be upgraded to the more general scenario when
the ambient domain is only weakly mean convex. This requires an ad hoc argument, and
exploits a result of Ros [21].

Theorem C. Let Ω3 be a mean convex domain of the three-dimensional Euclidean space.
Let M2 be a compact, orientable, properly embedded free boundary minimal surface in Ω with
genus g and r ≥ 1 boundary components. Then

index(M) ≥
1

3
(2g + r − 1).
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Let us remark that the conclusion of Theorem C coincides with the one obtained by Ros
and Vergasta [23] in the special case of index one free boundary minimal surfaces in strictly
convex domains of R3 (notice that there are no stable free boundary minimal surfaces in
such domains). Furthermore, by following the computations of Savo [25] and in the sole case
of strictly convex bodies, the conclusion of Theorem C has been obtained independently by
Sargent in [24]. Again under a strict convexity condition, Sargent obtained the conclusion
of our Theorem F, stated below, when α = 0.

Remark D. The above theorem can be used to understand the behaviour of the index of
some known examples of free boundary minimal surfaces constructed in the unit ball in R

3.
In particular, the examples constructed by Fraser and Schoen [9], which have genus zero and
an arbitrary number of boundary components, and the examples constructed by Folha, Pacard
and Zolotareva [4], which have genus one and an arbitrarily large number of boundary com-
ponents, have their Morse indices growing linearly with the number of boundary components.

Another corollary that can be deduced from the above estimate is a compactness theorem
for free boundary minimal surfaces with bounded index in strictly convex domains. In
fact, Fraser and Li proved that in those domains the set of compact, properly embedded
free boundary minimal surfaces with uniformly bounded genus and number of boundary
components is strongly compact (Theorem 1.2 in [6]). In particular, our index estimate
shows that the following statement is actually equivalent to their compactness result.

Corollary E. Let Ω3 be a compact domain in R
3 whose boundary is strictly convex. Then

any sequence {M2
i } of compact, properly embedded free boundary minimal surfaces in Ω that

has uniformly bounded index has a subsequence converging smoothly and graphically to a
compact properly embedded free boundary minimal surface M2 in Ω.

Lastly, we shall present here a variation on Theorem A which holds true for (strictly)
two-convex domains of the Euclidean space. Let us recall that, if the second fundamental
form II∂Ω is defined with respect to the outward unit normal of ∂Ω then two-convexity
is equivalent to the requirement that the sum of any two eigenvalues of II∂Ω be strictly
positive. For this class of domains, we prove the following:

Theorem F. Let Ωn+1 be a strictly two-convex domain of the (n+1)-dimensional Euclidean
space. Let Mn be a compact properly embedded free boundary minimal hypersurface of Ω.
Then, for any α ∈ [0, 1] we have

index(M) ≥
2

n(n+ 1)
(αdimH1(M,∂M ;R) + (1− α)dimHn−1(M,∂M ;R))

hence, as a special case

index(M) ≥
1

n(n+ 1)
(dimH1(M,∂M ;R) + dimHn−1(M,∂M ;R)) .

Remark G. All the main results in this paper (with the sole exception of Corollary E,
which relies on the compactness statement by Fraser and Li), including those in Section 6,
actually hold for properly immersed free boundary minimal hypersurfaces. The necessary
modifications to our proofs are of purely notational character.
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The paper is organised as follows: some preliminary facts are recalled in Section 2 (concern-
ing the Morse index for free boundary minimal hypersurfaces) and in Section 3 (concerning
some Hodge-theoretic aspects for manifolds with boundary), while the core of our approach
(following [1]) is presented in Section 4 and Section 5, the latter devoted to completing the
proofs of Theorem A, Theorem C and Theorem F. The case of general ambient manifolds
with special cases of particular interest is presented in Section 6.

Acknowledgements: The authors would like to thank Ivaldo Nunes, Fernando Codá Marques
and André Neves for their interest in this work. L. A. is supported by the ERC Start
Grant PSC and LMCF 278940 and would like to thank the Scuola Normale Superiore where
part of this project was completed. This article was done while A. C. was an ETH-ITS
fellow: the outstanding support of Dr. Max Rössler, of the Walter Haefner Foundation and
of the ETH Zürich Foundation are gratefully acknowledged. B.S. would like to thank the
ETH-FIM for their hospitality and excellent working environment during the completion of
this project. B.S. was partially supported by the Scuola Normale Superiore (Commissione
Ricerca, Progetto Giovani Ricercatori).

2. The index of free boundary minimal hypersurfaces

Let (Ωn+1, g) be a smooth, orientable Riemannian manifold with boundary ∂Ω. We say
that a compact, connected, embedded hypersurface Mn in Ωn+1 is properly embedded if it
has no interior points touching ∂Ω, i.e., M ∩ ∂Ω = ∂M . Throughout this paper, we always
tacitly assume that Mn is itself orientable (hence, equivalently, two-sided) and choose a unit
vector field N normal to Mn (the one-sided case can be dealt with as in [1], Section 2). Let
us remark that this is always the case if Ωn+1 is simply-connected (e. g. for convex domains
in R

n+1). We shall denote by ν the outward pointing conormal of ∂M , i.e., the unique unit
vector field on ∂M that is tangent to Mn, normal to ∂M and points outside Mn.

When considering the area functional restricted to this class of hypersurfaces, the allowed
variations are produced by flows ψt of vector fields X on Ωn+1 that are tangent to ∂Ω. The
first variation formula of area for such an admissible variation is given by

d

dt |t=0
|ψt(M)| =

∫

M

HMg(N,X)dµ+

∫

∂M

g(ν,X)dσ.

It follows that critical points are minimal (HM = 0) and intersect ∂Ω orthogonally (ν ⊥
∂Ω). The last condition is known as the free boundary property of Mn.

Given any smooth function φ on Mn, there exists an admissible vector field X such that
X = φN on Mn (see for example [19], Section 2). The second variation of area at a free
boundary minimal hypersurface Mn along the flow of the vector fields considered above
defines the quadratic form

QM(φ, φ) :=
d2

dt2 |t=0
|ψt(M)| =

∫

M

|∇Mφ|2 − (RicΩ(N,N) + |A|2)φ2dµ−

∫

∂M

⟨DNν,N⟩φ2dσ.

In the above formula, RicΩ denotes the Ricci tensor of Ω, A denotes the second funda-
mental form of Mn and D the covariant derivative in (Ω, g). Notice that, since Mn is free
boundary, N is tangent to ∂Ω and the term ⟨DNν,N⟩ is precisely the second fundamental
form II∂Ω of the boundary of the domain with respect to ν applied to the vector field N .
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The quadratic form QM is called the index form of the free boundary minimal surface
Mn. The index of Mn is defined as the index of QM , that is, the maximal dimension of a
linear subspace V in C∞(M) such that QM(φ, φ) < 0 for all φ in V \ {0}. The index can be
computed analytically in terms of the spectrum of a second order differential operator with
Robin boundary conditions. More precisely, integration by parts gives

QM(φ, φ) = −

∫

M

φLM(φ)dµ+

∫

∂M

φ

(

∂φ

∂ν
− II∂Ω(N,N)φ

)

dσ

where LM = ∆M +RicΩ(N,N)+ |A|2 is the Jacobi operator ofMn. The boundary condition

∂φ

∂ν
= II∂Ω(N,N)φ

is an elliptic boundary condition for LM , therefore there exists a non-decreasing and diverging
sequence λ1 ≤ λ2 ≤ . . . ≤ λk ↗ ∞ of eigenvalues associated to a L2(M,dµ)-orthonormal
basis {φk}

∞
k=1 of solutions to the eigenvalue problem

{

LM(φ) + λφ = 0 on Mn,
∂ϕ
∂ν

− II∂Ω(N,N)φ = 0 on ∂M.
(∗)

The index of the free boundary minimal hypersurface Mn is then equal to the number of
negative eigenvalues of the system (∗) above (see more details in [26], [2] and [19], Section
2).

The solutions of (∗) have a standard variational characterization: If Vk denotes the sub-
space spanned by the first k eigenfunctions for the above problem, then the value of the next
eigenvalue λk+1(LM) equals the minimum of QM on the L2(M,dµ) orthogonal complement
of Vk. i.e.,

λk+1(LM) = min
ϕ∈V ⊥

k
\{0}

QM(φ, φ)
∫

M
φ2dµ

.

The minimum is attained precisely by eigenfunctions of LM associated to λk+1 and satis-
fying the boundary conditions in (∗).

3. Hodge Theory and Bochner formula for manifolds with boundary

Let (Mn, g) be a compact orientable manifold with non-empty boundary. The Hodge
Theorem asserting the existence of a unique harmonic representative in every de Rham
cohomology class can be extended to this setting when one assumes the appropriate boundary
condition for the harmonic forms. A detailed account on this generalization of Hodge’s
Theorem, including an overview of its historical developments, can be found in [27].

Let d denote the exterior differential on Mn and let d∗ : Ωp(M) → Ωp−1(M) denote the
codifferential defined in terms of the Hodge star operator on (Mn, g) (so that, as a result,
d∗ = (−1)n(p+1)+1 ∗ d∗). We define the sets

Hp
N(M, g) = {ω ∈ Ωp(M); dω = 0, d∗ω = 0 on Mn and iνω = 0 on ∂M}

and
Hp

T (M, g) = {ω ∈ Ωp(M); dω = 0, d∗ω = 0 on Mn and ν ∧ ω = 0 on ∂M}.

In other words, Hp
N(M, g) is the set of harmonic p-forms that are tangential at ∂M and

Hp
T (M, g) is the set of harmonic p-forms that are normal at ∂M .
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Remark 1. On manifolds with boundary, it is no longer true that a solution to the equation
∆pω = (dd∗ + d∗d)ω = 0 is also a solution to both equations dω = 0 and d∗ω = 0. We use
the expression “harmonic form” to call any differential form that is simultaneously closed
and co-closed.

The following lemma will be needed in the proof of our main theorems.

Lemma 2 (Cf. [27], Theorem 3.4.4). Let (Mn, g) be a complete, connected, orientable Rie-
mannian manifold with non-empty boundary ∂M . If a harmonic p-form vanishes identically
on U ∩ ∂Mn ̸= ∅ for some open subset U ⊂M , then it vanishes identically on Mn.

Using the above terminology, the Hodge-de Rham theorem can be stated as follows.

Theorem 3. Let (Mn, g) be a compact orientable manifold with non-empty boundary. For
every p = 0, . . . , n, the set of harmonic p-forms on Mn that are tangential at ∂M is isomor-
phic to the p-th cohomology group of Mn with real coefficients, i.e.,

Hp
N(M, g) ≃ Hp(M ;R).

A proof of Theorem 3 can be found, for instance, in [29] (see Chapter 5, Section 9). An
elementary and elegant proof that H1

N(M, g) is isomorphic to H1(M ;R) is also given in [22],
Lemma 1.

Observe that the Hodge star operator of (Mn, g) gives an isomorphism between Hp
N(M, g)

and Hn−p
T (M, g). Hence, we have the isomorphisms

Hp
T (M, g) ≃ Hn−p

N (M, g) ≃ Hn−p(M ;R) ≃ Hp(M,∂M ;R).

the last following by Poincaré-Lefschetz duality (see, for example, [13], Theorem 3.43).
Once we know that H1

T (M, g) is isomorphic to H1(M,∂M ;R), it is interesting to compute
the dimension of this relative homology group in terms of homology groups of M and ∂M .

Lemma 4. Let Mn be a compact, orientable (connected) n-dimensional manifold with non-
empty boundary ∂M , n ≥ 2. If ∂M has r ≥ 1 boundary components, then

dimH1(M,∂M ;R) = (r − 1) + (dimH1(M ;R)− dimIm(i∗)),

where i∗ : H1(∂M ;R) → H1(M ;R) denotes the map between first homology groups induced
by the inclusion i : ∂M →M .

Proof. The definition of zero-th homology groups immediately yields dimH0(M ;R) = 1,
dimH0(∂M ;R) = r and dimH0(M,∂M ;R) = 0. At that stage, a direct computation involv-
ing the last part of the long exact sequence for the pair (M,∂M),

H1(∂M ;R)
i∗→ H1(M ;R) → H1(M,∂M ;R) → H0(∂M ;R) → H0(M ;R) → H0(M,∂M ;R)

proves the result. □

The following lemma can be proven directly, in a standard fashion, by using the repre-
sentation of a compact surface with boundary as a polygon with identified edges and small
open balls removed.

Lemma 5. Let M2 be a compact, orientable surface with non-empty boundary ∂M . If M
has genus g and r ≥ 1 boundary components, then

dimH1(M,∂M) = 2g + r − 1.
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We finish this section computing the boundary term that appears when performing inte-
gration by parts of the Bochner formula for one-forms in compact manifolds with boundary.

Lemma 6. Let (Mn, g) be a compact, orientable Riemannian manifold with boundary.

(1) Let ω ∈ H1
T (M, g) be a harmonic one-form on Mn that is normal at the boundary.

Then
∫

M

|∇Mω|2 +RicM(ω, ω)dµ = −

∫

∂M

H∂M |ω|2dσ.

(2) Let ω ∈ H1
N(M, g) be a harmonic one-form on Mn that is tangential at the boundary.

Then
∫

M

|∇Mω|2 + RicM(ω, ω)dµ = −

∫

∂M

A∂M(ω♯, ω♯)dσ.

Proof. Since ω is harmonic, the Bochner formula for one-forms gives

0 = ⟨(dd∗ + d∗d)ω, ω⟩ = −⟨∆Mω, ω⟩+RicM(ω, ω).

Integrating by parts, we have
∫

M

|∇Mω|2 +RicM(ω, ω)dµ =

∫

∂M

g(∇M
ν ω, ω)dσ

where ν is the outward pointing unit conormal of ∂M .
In order to prove our first assertion (part (1)), let {T1, . . . , Tn−1} be a local orthonormal

frame on ∂M , so that {T1, . . . , Tn−1, ν} is an orthonormal basis of the tangent space of Mn

at the points p in ∂M where the frame is defined. Since by assumption

0 = d∗ω = −divMω = −
n−1
∑

i=1

g(∇M
Ti
ω, Ti)− g(∇M

ν ω, ν),

and ω = λν on ∂M for some smooth function λ on ∂M , we have

g(∇M
ν ω, ω) = λg(∇M

ν ω, ν) = −λ
n−1
∑

i=1

g(∇M
Ti
ω, Ti) = −λ2

n−1
∑

i=1

g(∇M
Ti
ν, Ti) = −H∂M |ω|2.

Concerning part (2), we have

g(∇M
ν ω, ω) = g(∇M

ν ω
♯, ω♯) = (∇M

ν ω)(ω
♯) = (∇M

ω♯ω)(ν) = g(∇M
ω♯ω

♯, ν)

where the third equality relies on the fact that dω = 0, hence assuming iνω = 0 on ∂M we
get

g(∇M
ω♯ω

♯, ν) = −g(ω♯,∇M
ω♯ν) = −A∂M(ω♯, ω♯)

so that in the end g(∇M
ν ω, ω) = −A∂M(ω♯, ω♯) and the conclusion follows. □

4. The test functions obtained from harmonic one-forms

Let Ω be a domain in R
n+1 with smooth boundary ∂Ω. Following the notations of [1], let us

denote by {θ1, . . . , θn+1} a fixed orthonormal basis of Rn+1. Given a compact, free boundary
minimal hypersurface Mn in Ω, we want to compute the index form on the functions ⟨N ∧
ω♯, θi ∧ θj⟩ for 1 ≤ i < j ≤ n + 1, where N is the unit normal vector field along Mn and
ω ∈ H1

N(M, g) is a harmonic one-form on Mn that is normal at ∂M .
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Proposition 7. Let Ω be a domain in R
n+1 whose boundary has mean curvature H∂Ω and

second fundamental form II∂Ω with respect to the outward normal ν. Let Mn be a compact,
orientable free boundary minimal hypersurface in Ω.

(1) Given a harmonic one-form ω on Mn that is normal at the boundary ∂M , let

uij = ⟨N ∧ ω♯, θi ∧ θj⟩, i, j = 1, . . . , n+ 1, i < j,

denote the coordinates of N ∧ ω♯ with respect to some orthonormal basis {θij}i<j of
Λ2

R
d. Then

∑

1≤i<j≤n+1

Q(uij, uij) = −

∫

∂M

H∂Ω|ω|2dσ.

(2) Given a harmonic one-form ω on Mn that is tangential at the boundary ∂M and
using the same notations, then

∑

1≤i<j≤n+1

Q(uij, uij) = −

∫

∂M

(II∂Ω(N,N)|ω|2 + II∂Ω(ω♯, ω♯))dσ.

Proof. Since Ω is flat, the index form of Mn is given by

Q(φ, φ) =

∫

M

|∇Mφ|2 − |A|2φ2dµ−

∫

∂M

II∂Ω(N,N)φ2dσ.

Following the computations in [1], section 3, we have
∑

1≤i<j≤n+1

Q(uij, uij) =

∫

M

|D(N ∧ ω♯)|2 − |A|2|N ∧ ω♯|2dµ−

∫

∂M

II∂Ω(N,N)|N ∧ ω♯|2dσ.

Clearly, |N ∧ ω♯| = |ω|. Moreover, since the ambient curvature is identically zero,

|D(N ∧ ω♯)|2 = |∇Mω|2 − |A(ω♯, ·)|2 + |A|2|ω|2

and the Gauss equation for the minimal hypersurface Mn reads RicM(ω, ω) = −|A(ω♯, ·)|2.
The resulting formula is

(4.1)
∑

1≤i<j≤n+1

Q(uij, uij) =

∫

M

|∇Mω|2 +RicM(ω, ω)dµ−

∫

∂M

II∂Ω(N,N)|ω|2dσ.

By part (1) of Lemma 6,
∑

1≤i<j≥n+1

Q(uij, uij) = −

∫

∂M

(

H∂M + II∂Ω(N,N)
)

|ω|2dσ.

The free boundary assumption implies that, at each point p in ∂M , if we denote by
{T1, . . . Tn−1} an orthonormal basis of Tp∂M so that {T1, . . . , Tn−1, N} is an orthonormal
basis of Tp∂Ω, then

H∂M + II∂Ω(N,N) =
n−1
∑

i=1

⟨∇M
Ti
ν, Ti⟩+ II∂Ω(N,N) =

n−1
∑

i=1

⟨DTi
ν, Ti⟩+ II∂Ω(N,N)

=
n−1
∑

i=1

II∂Ω(Ti, Ti) + II∂Ω(N,N) = H∂Ω.
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The first conclusion follows. Similarly, the proof of part (2) can be completed by combining
equation (4.1) with Lemma 6, part (2), and noting that A∂M(ω♯, ω♯) = II∂Ω(ω♯, ω♯) by virtue
of the free boundary property of Mn. □

5. Proof of the main results

We are now ready to present the proof of our main results, starting with Theorem A.

Proof. Fix {θ1, . . . , θn+1} an orthonormal basis of Rn+1. Let us assume that Mn has index
k, and denote by {φq}

∞
q=1 an L2(M, dµ) orthonormal basis of eigenfunctions of the Jacobi

operator of Mn satisfying the Robin boundary conditions (∗). Let Φ denote the linear map
defined by

Φ : H1
T (M, g) → R

n(n+1)k/2

ω 7→
[∫

M
⟨N ∧ ω♯, θi ∧ θj⟩φqdµ

]

,

where, 1 ≤ i < j ≤ n+ 1 and q varies from 1 to k. Clearly,

dimH1
T (M, g) ≤ dimKer(Φ) +

n(n+ 1)

2
k

Since H1
T (M, g) ≃ H1(M,∂M ;R) (as a consequence of Theorem 3), the result will follow

once we analyse the dimension of the kernel of the map Φ.
Let ω be an element of the kernel of the map Φ. This means that all functions uij = ⟨N ∧

ω♯, θi∧θj⟩ are orthogonal to the first k eigenfunctions, namely φ1, . . . , φk. Since index(M) =
k, we must have

Q(uij, uij) ≥ λk+1

∫

M

u2ijdµ ≥ 0 for all 1 ≤ i < j ≤ n+ 1,

by the variational characterization of the eigenvalues for problem (∗). In particular, by
Proposition 7, we have

0 ≤
∑

1≤i<j≤n+1

Q(uij, uij) = −

∫

∂M

H∂Ω|ω|2dσ.

Since H∂Ω > 0, the above inequality happens only if |ω| vanishes identically on ∂M . But
then ω = 0 on M , by Lemma 2. Hence, if the domain is strictly mean convex, Φ has trivial
kernel, and the conclusion follows.

□

We shall now comment on the proof of Theorem F for two-convex domains in R
n+1. Under

this slightly stronger condition we work with test functions derived from forms ω ∈ H1
N(M, g).

The process of obtaining an index estimate onMn, given part (2) of Proposition 7, is almost
identical to the proof of Theorem A so we leave the details to the reader. The direct result
is the following assertion:

Theorem 8. Let Ωn+1 be a strictly two-convex domain of the (n+1)-dimensional Euclidean
space, n ≥ 2. Let Mn be a compact, orientable properly embedded free boundary minimal
hypersurface of Ω. Then

index(M) ≥
2

n(n+ 1)
dimHn−1(M,∂M ;R).
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Clearly, since any strictly two-convex domain is also strictly mean convex, we can take
linear combinations of our estimates in Theorem A and Theorem 8 to obtain Theorem F.

The last part of this section is devoted to the proof of Theorem C. Let us remark that
while for strictly mean convex domains the conclusion would follow at once by combining
Theorem A with Lemma 5, the study of the borderline case when H∂Ω ≥ 0 requires a more
delicate, specific analysis.

Proof. Let us assume, by contradiction, that there exists a compact free boundary minimal
surface M2 in a mean convex domain Ω of R3 such that the opposite inequality holds:

(5.1) index(M) <
1

3
(2g + r − 1).

Adopting the same notation as in the proof of Theorem A, we consider the balancing maps
ΦN : H1

N(M, g) → R
3k and ΦT : H1

T (M, g) → R
3k given by ω 7→

[∫

M
⟨N ∧ ω♯, θi ∧ θj⟩φqdµ

]

,
where k denotes the index of M2.

Clearly,

dimH1
N(M, g) ≤ dimKer(ΦN) + 3k and dimH1

T (M, g) ≤ dimKer(ΦT ) + 3k.

Since dimH1
N(M, g) = dimH1

T (M, g) = 2g+ r− 1 (see Lemma 5) and we are assuming by
contradiction that inequality (5.1) holds, Ker(ΦN) and Ker(ΦT ) must be both non-trivial.
Let ω1 ̸= 0 and ω2 ̸= 0 be non-zero elements in Ker(ΦN) and Ker(ΦT ), respectively.

As in the proof of Theorem A (invoking part (1) of Proposition 7), we have

0 ≤ λk+1

∫

M

|ω1|
2dµ ≤

∑

1≤i<j≤3

Q(uij, uij) = −

∫

∂M

H∂M |ω1|
2dσ.

Since H∂Ω ≥ 0 and ω1 ̸= 0 vanishes on a subset of ∂M with no interior points (by virtue of
Lemma 2), the above inequalities can only happen when H∂Ω vanishes along ∂M , λk+1 = 0,
and each function uij = ⟨N ∧ω♯, θi∧θj⟩ is an eigenfunction of the Jacobi operator associated
to that eigenvalue, i.e., for all i < j = 1, . . . , 3,

∆M⟨N ∧ ω♯
1, θi ∧ θj⟩+ |A|2⟨N ∧ ω♯

1, θi ∧ θj⟩ =0 on M(5.2)

∂

∂ν
⟨N ∧ ω♯

1, θi ∧ θj⟩ − II∂Ω(N,N)⟨N ∧ ω♯
1, θi ∧ θj⟩ =0 on ∂M.(5.3)

At this stage, a similar analysis can be carried out for ω2 ̸= 0 in Ker(ΦT ) and leads to
conclude that any such one-form will necessarily satisfy equations (5.2) and (5.3) above.

Claim 1: M2 is totally geodesic.

Indeed, equation (5.3) for ω1 and ω2 is equivalent to

0 = DνN ∧ ω♯
i +N ∧Dνω

♯
i − II∂Ω(N,N)N ∧ ω♯

i

= DνN ∧ ω♯
i +N ∧ (∇νω

♯
i − II∂Ω(N,N)ω♯

i).

The first term is (dual to) a vector orthogonal to M2, whereas the second is (dual to) a
vector tangent to M2. By linear independence, we conclude that, for i = 1, 2,

N ∧ (∇νω
♯
i − II∂Ω(N,N)ω♯

i) = 0 and DνN ∧ ω♯
i = 0.
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The second equation means that, at boundary points where ω1 ̸= 0, DνN is a vector
parallel to ω♯

1, or equivalently, tangent to ∂M (because ω1 belongs to H1
N(M, g)). Similarly,

at points where ω2 ̸= 0, DνN is a vector parallel to ω♯
2, or equivalently, orthogonal to ∂M

(because ω2 belongs to H1
T (M, g)). As a consequence, DνN = 0 at points of ∂M where

both ω1 and ω2 do not vanish. Exploiting again Lemma 2, we observe that the subset of
∂M where either ω1 or ω2 vanishes contains no open set, because none of these one-forms
vanishes identically. Therefore the complement of that set in ∂M is dense and, by continuity,
we conclude that DνN = 0 everywhere on ∂M .

Thus, ν must be a principal direction at every point of ∂M and the principal curvature
associated to that direction is zero. Since M2 is minimal, both principal curvatures actually
vanish along ∂M . The claim now follows because any two-dimensional minimal surface in
R

3 is either totally geodesic or its second fundamental form vanishes on a discrete set of
points.

Claim 2: ω♯
1, ω

♯
2 are constant, non-zero vectors in R

3.

This is a consequence of the previous claim and the equations (5.2), which are satisfied
by ω1 and ω2 as argued before. In fact, in view of Lemma 1 in [21], ω1 and ω2 belong to the
vector space

{ω ∈ Ω1(M); there exists a constant vector T ∈ R
3 such that ω = ⟨T,−⟩}.

Since M2, being totally geodesic, is contained in a plane (necessarily orthogonal to the con-
stant vector N), this space has dimension two and is in fact equal to the set of one-forms
ω ∈ Ω1(M) that can be written as ω = ⟨T,−⟩ for some T ∈ R

3 orthogonal to N . The claim
follows.

Using the above claims, we conclude in particular that ∂M is a collection of closed planar
curves, each one tangent everywhere to the constant non-zero vector ω♯

1 in R
3, which is a

contradiction. Theorem C follows.
□

6. General ambient manifolds

In this section we state the most general result one can obtain by using the approach
developed in [1] combined with the computations presented in this paper (in particular:
Lemma 6 and Proposition 7). Given (Ωn+1, g) a smooth, orientable Riemannian manifold
with boundary and an isometric embedding thereof into some Euclidean space Rd (of possibly
large dimension), and given a compact, properly embedded two-sided free boundary minimal
hypersurface Mn in (Ωn+1, g), we use as test functions for the index form the coordinates of
N∧ω♯, ω inH1

T (M, g), with respect to a fixed orthonormal basis of Λ2
R

d. The index estimate
will follow as soon as a pinching condition involving the intrinsic and extrinsic geometry of
the manifold (Ωn+1, g) can be verified.

Theorem 9. Let (Ωn+1, g) be a Riemannian manifold with boundary that is isometrically
embedded in some Euclidean space R

d. Let Mn be a compact, orientable properly embedded
free boundary minimal hypersurface of (Ωn+1, g).
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Assume that for every non-zero vector field X on Mn,

∫

M

[

trM(RmΩ(·, X, ·, X)) + RicΩ(N,N)|X|2
]

dµ+

∫

∂M

H∂Ω|X|2dσ

>

∫

M

[

(|IIΩ(·, X)|2 − |IIΩ(X,N)|2) + (|IIΩ(·, N)|2 − |IIΩ(N,N)2|)|X|2
]

dµ

where RmΩ denotes the Riemann curvature tensor of Ωn+1, IIΩ denotes the second funda-
mental form of Ωn+1 in R

d and N is a local unit normal vector field on Mn.
Then

(6.1) index(M) ≥
2

d(d− 1)
dimH1(M,∂M ;R).

The computations presented in [1] show that the above pinching condition is verified in
any strictly mean convex domain inside the ambient manifolds considered there. In partic-
ular, the index estimate above holds true for all compact properly embedded free boundary
minimal hypersurfaces in strictly mean convex domains of the compact rank one symmetric
spaces (round spheres and projective spaces over R,C,H and the Cayley plane endowed with
their canonical metrics). Also, let us explicitly remark that our method allows to obtain an
effective index estimate for free boundary minimal hypersurfaces in strictly mean convex
domains of flat tori.

We can of course also consider the generalization of Theorem 8 (hence of Theorem F) to
two-convex domains in Riemannian manifolds. The corresponding statement is as follows:

Theorem 10. Let (Ωn+1, g) be a Riemannian manifold with boundary that is isometrically
embedded in some Euclidean space R

d. Let Mn be a compact, orientable properly embedded
free boundary minimal hypersurface of (Ωn+1, g).

Assume that for every non-zero vector field X on Mn,

∫

M

[

trM(RmΩ(·, X, ·, X)) + RicΩ(N,N)|X|2
]

dµ+

∫

∂M

II∂Ω(N,N)|X|2 + II∂Ω(X,X) dσ

>

∫

M

[

(|IIΩ(·, X)|2 − |IIΩ(X,N)|2) + (|IIΩ(·, N)|2 − |IIΩ(N,N)2|)|X|2
]

dµ

where RmΩ denotes the Riemann curvature tensor of Ωn+1, IIΩ denotes the second funda-
mental form of Ωn+1 in R

d, II∂Ω denotes the second fundamental form of ∂Ω in Ω, and N
is a local unit normal vector field on Mn.

Then for any α ∈ [0, 1]

(6.2) index(M) ≥
2

d(d− 1)
(αdimH1(M,∂M ;R) + (1− α)dimHn−1(M,∂M ;R)) .

Once again, the above theorem applies, as a special case, if Ωn+1 is a domain with strictly
two-convex boundary inside any of the Riemannian manifolds considered in [1].
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