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Masao Fukushima

Abstract

Instead of assuming the distribution of return series, Engle and Manganelli (2004) propose a

new Value-at-Risk (VaR) modeling approach, Conditional Autoregressive Value-at-Risk (CAViaR),

to directly compute the quantile of an individual asset’s returns which performs better in many

cases than those that invert a return distribution. In this paper we explore more flexible CAViaR

models that allow VaR prediction to depend upon a richer information set involving returns on an

index. Specifically, we formulate a time-varying CAViaR model whose parameters vary according

to the evolution of the index. The empirical evidence reported in this paper suggests that our time-

varying CAViaR models can do a better job for VaR prediction when there are spillover effects

from one market or market segment to other markets or market segments.
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1 Introduction

Although the existing models for calculating Value-at-Risk (VaR) employ dif-
ferent methodologies, they can be generally classified into two broad categories:
indirect-VaR approach and direct-VaR approach. The first category includes
the classical parametric approach, nonparametric approach, and semiparamet-
ric approach, all following a common structure which can be summarized in
three steps: 1) mark to market, 2) estimate the distribution of the asset return,
and 3) compute VaR by inverting the distribution function. The difficulty of
this category of approaches lies in the second step because financial returns
usually exhibit volatility clustering (high autocorrelation), significant kurtosis
(peaked and fat tailed), marginal skewness (time-varying nature) and, in the
case of indexes, autocorrelation of returns. Consequently, the indirect methods
for computing VaR based on the inverse distribution function of returns are
usually criticized by both academic researchers and practitioners (The VaR
methodology has a theoretical limitation in that it is not a coherent risk mea-
sure in the sense of Artzner et al. (1999) since it does not meet the requirement
of subadditivity. However, due to its conceptual intuition, i.e., it reduces the
risk associated with any kind of assets to just a number (amount in terms
of a currency), which can be well understood by regulators, board members,
and other interested parties, VaR is still the most extensively used analytical
concept for risk management. Moreover, Danielsson et al. (2005) argue that
some of the arguments against VaR may not be that important in practice).

The second category of VaR prediction, direct-VaR approach, is the dy-
namic quantile regression approach. This methodology does not require any
assumption about the distribution of returns, but instead directly computes
the quantile using regression techniques. This approach has been pioneered
by Engle and Manganelli (2004). In their paper, they propose the Conditional
Autoregressive VaR (CAViaR), which is based on the characteristics of volatil-
ity clustering of financial returns. (CAViaR is also a semiparametric approach
from the perspective of parameter estimation.) Moreover, Manganelli and
Engle demonstrate that the CAViaR model outperforms most of the indirect-
VaR methodologies in general when tackling fat-tailed data through Monte
Carlo simulation. With respect to empirical studies, Kouretas and Zarangas
(2005) employ the CAViaR model to measure the market risk of five major
equity markets, six blue chip stocks from the Athens Exchange, and six major
company stocks listed on the New York Stock Exchange (NYSE). Bao et al.
(2006) and Kuester et al. (2006) compare CAViaR and alternative approaches
for univariate VaR forecasts with different data and evaluation criteria. Table
1 summarizes the number of individual stocks and equity indexes and their
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trading location in other studies of CAViaR.

Table 1: Summary of the number of individual stocks and equity indices, and
their trading location in studies of CAViaR

Study Assets

Engle and Manganelli (2004)
Two stocks from the New
York Stock Exchange and S&P 500

Kouretas and Zarangas (2005)
Six stocks from the New York Stock Exchange,
Six stocks from the Athens Exchange,
CAC40, FTSE100, NIKKEI225,
NASDAQ, and FTSE20

Bao et al. (2006)

Indonesia Jakarta Stock Exchange Composite
Price Index, Korea Stock Exchange Composite
Price Index, Malaysia Kuala Lumpur Stock,
Exchange Composite Index,
Taiwan Weight Index
Thailand S.E.T. Price Index

Kuester et al. (2006) NASDAQ Composite Index

The problem of model stability has been an important issue for many re-
searchers. In practice, the model parameters are estimated from real data,
which are often prone to structural changes due to regime shifts or critical so-
cial events. For example, to investigate the performance of VaR models for five
East and Southeast Asian market indices in different environments (these mar-
kets suffered from the financial crisis of 1997-1998), Bao et al. (2006) consider
three out-of-sample evaluation periods (before-crisis, crisis, and after-crisis),
and find that (1) risk forecasts with CAViaR would yield poorer results dur-
ing the crisis period than during tranquil periods and (2) none of the four
CAViaR specifications is satisfactory in the crisis period. Because it is a dy-
namic regression model, the CAViaR model requires considerable precision of
parameter estimation to describe the characteristics of the risky asset.

Based on daily return data on the NASDAQ Composite Index, Kuester et
al. (2006) also provide empirical evidence (1) confirming none of the CAViaR
specifications performs well overall using unconditional and conditional tests
for the predictive performances of VaR, and (2) explaining the phenomena
of poor out-of-sample performance as the sample data comprise two highly
volatile years, which presumably result in a deterioration of the overall perfor-
mance of CAViaR. All these facts suggest that the constant-parameter CAViaR
model developed by Engle and Manganelli (2004) may lose some capability
when dealing with data that are subject to exogenous influence and spillover
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effects. The time-varying nature of the model parameters has been addressed
in a number of papers. Venkataraman (1997) assumes the real return series
follows a mixture distribution of two dummy normal distributions with bi-
nominal jumps from one distribution to another. Guidolin and Timmermann
(2003), as well as Li and Lin (2004), propose a model in which the parameters
change as a Markov switching process.

On the other hand, volatility spillovers play an important role in determin-
ing the model performance. Any VaR model is clearly affected by changes in
the level of volatility. Volatility spillovers are the propagation of significant
volatility changes from one market to another. The autoregressive nature of
the original specification of CAViaR captures volatility clustering effects. How-
ever, it cannot capture volatility spillovers. In this paper, we take a different
approach extending the constant-parameter CAViaR model to a new CAViaR
model where the parameters of an individual risky asset are driven by the
market index return. This model, which we call the index-exciting CAViaR
model, allows the tails of a financial series to follow different stochastic pro-
cesses and it allows VaR to be influenced by the volatility level of the driving
index.

As a good complement to Engle and Manganelli (2004) and contributions
that followed, the model we propose in this paper assumes the parameters
are certain time-varying functions of the market index. The rationale for
our model is that the magnitude and the sign of market returns might sig-
nal situations of market stress and therefore impact risk. Our model is able
to accommodate different processes of tail behavior. The assumption under-
lying our model is that market returns are a good proxy for the local state
of the market in terms of risk. Therefore, our model combines information
from the volatility of the asset/portfolio which is already included in the stan-
dard CAViaR with additional information from the market state. Moreover,
because of the time-varying characteristics, our model can employ one-step-
ahead prediction by updating the parameters immediately according to the
time-varying function rather than re-estimating them. Our contribution in
this paper is twofold. Our first contribution is the introduction of an alterna-
tive to the constant-parameter CAViaR model for researchers who find that
the constant-parameter CAViaR may be limited. Second, we provide empirical
evidence comparing the model we propose and the model proposed by Engle
and Manganelli (2004).

The remainder of this paper is organized as follows. In Section 2, we
provide background information about CAViaR that will be used later in the
paper. An index-exciting time-varying parameter CAViaR model with three
different specifications is provided in Section 3. Empirical results are provided
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in Section 4, where we also compare the predictive performances of both the
constant- and time-varying parameter CAViaR models. In the final section, we
provide concluding remarks. In the appendix, we review criteria for evaluating
predictions made by VaR models.

2 CAViaR

Conceptually, VaR is defined as the maximum potential loss associated with
an individual asset/portfolio for a given probability over a certain investment
horizon. Mathematically, for a given significance level α (usually α = 0.01
or 0.05), let {rt}

T
t=1 be a financial return series associated with one unit of

an investment. Then, VaR at time t, conditional on the information set Ft−1

(σ-field up to time t − 1), is the negative α-quantile of the conditional return
distribution, i.e.,

qt(α) = −F−1
t (α|Ft−1) = − inf

x

{

x ∈ ℜ : P (rt ≤ x|Ft−1) > α

}

, (1)

where Ft(x) = P (rt ≤ x|Ft−1) denotes the conditional distribution function of
the financial return series.

Typically, a VaR prediction using (1) involves the specification of Ft(·). If
the dependent structure of {rt} can be fully described by a certain distribution
Ft(·), VaR can be computed easily. For example, if rt = µt + σtεt follows a
normal distribution with conditional mean µt = E(rt|Ft−1) and conditional
variance σ2

t = E[(rt − µt)
2|Ft−1] ({εt} is independently, identically and nor-

mally distributed (i.i.d.) with zero mean and unit variance), the prediction of
VaR can be obtained by inverting the distribution function:

qt(α) = −[µt + σtΦ
−1(α)],

where Φ(·) is the standard normal distribution function.
In practice, however, most financial returns, especially short-term returns

such as one day or even shorter, exhibit some untractable properties, such
as volatility clustering, significant kurtosis, and marginal skewness. This was
demonstrated more than 40 years ago in the pioneering work of Mandelbrot
(1963) and Fama (1965). To eliminate or at least reduce the difficulties of
computing VaR, Engle and Manganelli (2004), based on the fact that the
volatility of financial returns is highly autocorrelated (clustering), propose a
conditional autoregressive quantile approach which they refer to as CAViaR.
The advantage of their approach is that it does not require any assumption
about the return distribution.
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The basic idea behind CAViaR is to compute directly the conditional α-
quantile of financial returns, which can be described as

qt(α) = β0 + β1qt−1(α) + h(yt−1, qt−1(α)|θ),

where yt−1 ∈ Ft−1, θ is a parameter vector, and h(·) is a function linked to
observable variables that belong to the information set Ft−1, i.e., h(·) measures
the impact of new information rt−1 on VaR.

In this paper, we will focus on the following two specifications of the
CAViaR model:

Symmetric CAViaR : qt(α) = β0 + β1qt−1(α) + β2|rt−1|

Asymmetric CAViaR : qt(α) = β0 + β1qt−1(α) + β2(rt−1)
+ + β3(rt−1)

−

The characteristics and significance of the above two CAViaR specifications
for practical risk management are described in Engle and Manganelli (2004),
Kouretas and Zarangas (2005), and references therein. We address here that
the two specifications above can accommodate different stochastic processes
in the tail of financial returns and can also deal with non-i.i.d. processes.

3 Index-Exciting CAViaR

The motivation for developing new estimation techniques for these models is
that they are the favored econometric tools for many researchers who wish to
characterize co-movement in macroeconomic variables. Dynamic factor models
have the advantage over observable index models, such as weighted aggregates,
that one does not need to take a stand on the weighting scheme used in ag-
gregation.

Instead of estimating the entire distribution of a financial return series, the
CAViaR model computes the conditional quantile directly by simple recur-
sive iterations, which exhibit some theoretical advantages compared with the
traditional indirect approaches. However, CAViaR also faces some challenges
when it is being implemented in practice. Specifically, as a regression model,
CAViaR assigns the same weight to each observation and the estimation of
the model’s parameters may depend heavily on the length of the samples.

To improve CAViaR prediction, an alternative approach is to develop a
time-varying parameter model, which has been extensively discussed in the
time series literature. If volatility is influenced by other indexes, the perfor-
mance of a VaR prediction model may be improved by using a richer infor-
mation set involving returns on itself or an index available at the time of the
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forecast. On the other hand, the evolution of individual asset returns may be
linked to the total market, i.e., the risk of an individual asset is related to the
market index which tracks the performance of a specific “basket” of financial
assets considered to represent a particular market or sector.

This modeling strategy takes into consideration “volatility spillover effects”
which describe how a change in volatility in given markets might “spill over,”
that is affect other markets. The existence of volatility spillovers is described
in the literature. For example, Ng (2000) documents how changes in volatility
in the Japan and the U.S. markets propagate to six related Pacific Basin
markets. From a modeling point of view, spillover effects are described by a
causal relationship between those markets that drive volatility and the markets
that are affected.

Therefore, adding additional information into the CAViaR model, we ob-
tain the time-varying CAViaR model:

qt(α) = β0(Ωt−1) + β1(Ωt−1)qt−1(α) + h(yt−1, qt−1(α)|θ(Ωt−1)),

where Ωt−1 is the information set that consists of Ft−1 and the information of
market index up to time t − 1. In this paper, the market index information
represents the index return series.

Corresponding to Section 2, we consider the following two time-varying
CAViaR specifications:

Time-varying symmetric CAViaR

qt(α) = β0(γt−1) + β1(γt−1)qt−1(α) + β2|rt−1|; (2)

Time-varying asymmetric CAViaR

qt(α) = β0(γt−1) + β1(γt−1)qt−1(α) + β2(rt−1)
+ + β3(rt−1)

−; (3)

Models (2) and (3) are not specified yet because we do not know the spec-
ifications of β0(·) and β1(·). In the following, we consider two types of formu-
lations on them:

Threshold time-varying specification

βi(γt−1) = aiI(|γt−1| < ζ) + biI(|γt−1| ≥ ζ), i = 0, 1,

Linear time-varying specification

βi(γt−1) = ai + bi|γt−1|, i = 0, 1,

6 Studies in Nonlinear Dynamics & Econometrics Vol. 14 [2010], No. 2, Article 1

http://www.bepress.com/snde/vol14/iss2/art1

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



Compared with the constant-parameter CAViaR model, the parameters to
be estimated in our time-varying CAViaR specifications remain consistent and
asymptotically normal. This allows us to follow Engle and Manganelli (2004)
by adopting the linear and non-linear quantile techniques to estimate them;
that is,

β̂ = argminβ∈ℜk

{

1

R

R
∑

t=1

[α − I(rt < −qt(α))][rt + qt(α)]

}

,

where k is the dimension of the parameters such as ai, bi, ci (depending on the
specifications of βi) and R is the size of in-samples to estimate the parameters.
This regression technique has a tractable property in that it does not require
any assumption about the entire distribution of the error terms. Moreover, we
can easily conduct various hypothesis tests on the quantile models.

We can expect that the performance of our model will depend on the pres-
ence of spillover effects and on the correct choice of the index from which
volatility “spills over.” Of course, each specification of our CAViaR models
with time-varying parameters requires estimating a larger number of param-
eters than the constant-parameter CAViaR model. Therefore, we can expect
that for each sample data there is a trade off between increased model accu-
racy due to the time-varying coefficient and the risk of overfitting data. This
issue could be resolved in-sample with criteria such as the Akaike criterion or
Schwartz’s Bayesian Information Criterion (BIC). In this paper, we avoid in-
sample model selection criteria and we compare directly out-of-sample model
performance.

4 Empirical Results

Ideally, a good model should have stable parameters over time, so that it does
not need to be re-estimated very often. A model with this feature would very
likely have a good performance out-of-sample, which is what practitioners are
interested in. It is generally too ambitious to expect that financial models
remain stable over long periods of time. A more reasonable alternative is
to assume that models change slowly so that they can be estimated over a
moving window of sufficient length and eventually be reused for some time
before parameters need to be re-estimated. In our test, we estimate and test
models over the period 11/7/1994 to 9/30/2008. In this period there are 3,500
daily returns. We use moving windows 1,000 days long (i.e., four years), and
we keep models constant for the following 250 days (i.e., one year) before re-
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estimating. Therefore, in total, we estimate models 10 times in the period
considered.

Our dataset is formed by six indexes available on the website of Kenneth
French constructed based on size (market capitalization) and book-to-market
value ratio. The exciting index is the value-weighted return on all NYSE,
AMEX, and NASDAQ stocks, also available on Kenneth French’s website.

Clearly we cannot expect that the six indexes be all equally influenced by
the index. Therefore, we can expect that performance will vary from index to
index. For testing performance, we use the framework set forth in Berkowitz,
Christoffersen, and Pelletier (2009).

In our dataset, the tail percentile of the VaR prediction is set at θ = 1%
and 5%, which yield one-sided 99% and 95% VaRs. This is quite far in the
tail but is typical of the VaR forecasts used at banks (Berkowitz and O’Brien,
2002)

Violations of the VaR should occur randomly over time and should not be
clustered over time. If it can be predicted that volatility will be increasing
in the near future, then the model used to compute the VaR should take this
information into account and adjust the VaR accordingly. In other words, if
the model used to compute VaR is correctly specified, then violations should
only happen because of unpredictable events.

Under the 1996 Market Risk Amendment to the Basle Accord effective in
1998, qualifying financial institutions have the freedom to specify their own
model to compute their VaR. It thus becomes crucially important for regulators
to assess the quality of the models employed by assessing the forecast accuracy
— a procedure known as backtesting. The accuracy of a set of VaR forecasts
can be assessed by viewing them as one-sided forecasts. A violation of VaR is
defined as occurring when the ex post return is lower than the VaR.

In our test we compare the performance of the constant-parameter CAViaR
model with our index-exciting CAViaR model. As expected, the results are
mixed. Our explanation is that the different indexes we consider are sub-
ject to different spillover effects. When spillover effects are not significant,
the additional parameterization of the index-exciting CAViaR model penal-
izes performance. Our results are summarized in Tables 2-7.

Following the Berkowitz, Christoffersen, and Pelletier framework, perfor-
mance is evaluated along the dimensions of conditional coverage and indepen-
dence tests. It should be kept in mind that VaR violations are rare events
especially with α = 0.01 on the average.

Tables 2-7 present p-values associated with the tests. Setting the confidence
level at 95%, as typically done, models where p-values are systematically below
0.05 have to be considered problematic. From the tables, we can see that
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our model outperforms the standard CAViaR model in cases where portfolios
are formed with small cap stocks or large cap with low book-to-marketratios
stocks. This is reasonable because small cap stocks are those most subject
to spillover effects. Figures 1-4 exhibit the evolution of β0 and β1 of the AS-
and SAV-CAViaR models at the 1% level for the small capitalization and low
book-to-market ratio stocks (figures for other cases are available upon request).
Clearly, our time-varying CAViaR models have different parameters with the
constant-CAViaR models. This can readjust the VaR prediction more quickly
and flexibly in response to vagaries in the market risk.

5 Conclusion

In this paper, we developed an index-exciting parameter CAViaR model whose
parameters vary according to the evolution of the index. The empirical evi-
dence reported in this paper suggests that our time-varying CAViaR models
can do a better job of VaR prediction when there are spillover effects from one
market or market segment to other markets or market segments.
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Table 2: Portfolio formed with small capitalization and low book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0116 0.0411 0.0000 0.0000 0.4330 0.4092 0.5231 0.5569 0.0000 0.0025
Threshold 0.0152 0.0443 0.0000 0.0000 0.0152 0.6086 0.0461 0.5725 0.0000 0.0000
Linear 0.0160 0.1101 0.0000 0.0000 0.0055 0.2600 0.0113 0.4275 0.0000 0.0000

SAV 5%
Constant 0.0504 0.1465 0.1301 0.0117 0.9270 0.8818 0.9849 0.8827 0.1327 0.9989
Threshold 0.0540 0.1543 0.0014 0.0000 0.3647 0.0886 0.1556 0.0652 0.0012 0.0378
Linear 0.0556 0.1494 0.0005 0.0001 0.2066 0.2386 0.2249 0.2129 0.0008 0.2366

AS 1%
Constant 0.0216 0.0432 0.0000 0.0000 0.0000 0.1225 0.0000 0.2692 0.0001 0.0000
Threshold 0.0204 0.0434 0.0000 0.0000 0.0000 0.1449 0.0000 0.2973 0.0360∗ 0.0000
Linear 0.0284 0.1851 0.0000 0.0000 0.0000 0.0430 0.0000 0.1492 0.0000 0.0000

AS 5%
Constant 0.0640 0.1497 0.0013 0.0000 0.0020 0.6723 0.0079 0.6777 0.1808 0.0129
Threshold 0.0668 0.1516 0.0003 0.0000 0.0002 0.1554 0.0004 0.1817 0.2802 0.0022
Linear 0.0616 0.1503 0.0114∗ 0.0000 0.0101∗ 0.1988 0.0160∗ 0.2269 0.2603 0.0525∗∗

Note: In our test, we use the data from Ken French website and test models over the period 11/7/1994 to 9/30/2008. In this period there are 3,500 daily

returns. We use moving windows 1,000 days long and keep models constant for the following 250 days before re-estimating. α̂ is the empirical violation

of VaR prediction (Eq: (6)), Q̂ is the empirical loss (Eq: (7)), DQHit and DQV aR is the dynamic quantile test without and with VaR lagged terms

(Eq: (11)), p-LRuc is the unconditional coverage test (Eq: (5)), p-LRind is the independent test (Eq: (8)), p-LRcc is the conditional coverage test (Eq:

(9)), p-LB1 is the autocorrelation test with lags 1 (Eq: (12)), p-LB5 is the autocorrelation test with lags 5 (Eq: (12)), p-Lrduration is the duration test

(Eq: (13)). “Constant” represents the constant-parameter CAViaR model, “Threshold” represents the index-exciting threshold CAViaR model, “Linear”

represents the index-exciting linear CAViaR model, SAV represents the symmetric CAViaR model, AS represents asymmetric CAViaR model. * means our

model is not significant whereas the constant-parameter CAViaR model is significant at the 1% level. ** means our model is not significant whereas the

constant-parameter CAViaR model is significant at the 5% level.
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Table 3: Portfolio formed with small capitalization and median book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0172 0.0338 0.0000 0.0000 0.0010 0.2198 0.0022 0.3811 0.0000 0.0003
Threshold 0.0108 0.0318 0.6830∗∗ 0.3439∗∗ 0.6915∗∗ 0.4425 0.6882∗∗ 0.5848 0.4821∗∗ 0.5193∗∗

Linear 0.0092 0.0310 0.3249∗∗ 0.1427∗∗ 0.6836∗∗ 0.5133 0.7433∗∗ 0.6421 0.0933∗∗ 0.2616∗∗

SAV 5%
Constant 0.0576 0.1201 0.1095 0.0044 0.0883 0.6242 0.2076 0.6323 0.3956 0.2877
Threshold 0.0672 0.1251 0.0000 0.0000 0.0002 0.8234 0.0008 0.8217 0.0037 0.0003
Linear 0.0640 0.1195 0.0004 0.0000 0.0020 0.6723 0.0079 0.6777 0.0536 0.0128

AS 1%
Constant 0.0248 0.0362 0.0000 0.0000 0.0000 0.6354 0.0000 0.6561 0.0225 0.0000
Threshold 0.0192 0.0333 0.0001 0.0000 0.0000 0.9348 0.0002 0.9339 0.0185 0.0000
Linear 0.0208 0.0318 0.0000 0.0000 0.0000 0.9350 0.0000 0.9358 0.0036 0.0000

AS 5%
Constant 0.0720 0.1204 0.0000 0.0000 0.0000 0.3578 0.0000 0.3745 0.0837 0.0000
Threshold 0.0648 0.1178 0.0012 0.0001 0.0011 0.1096 0.0014 0.1371 0.2087 0.0082
Linear 0.0676 0.1195 0.0000 0.0000 0.0001 0.0610 0.0001 0.0848 0.0254 0.0012

Note: The notation is provided in Table 2.
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Table 4: Portfolio formed with small capitalization and high book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0168 0.0353 0.0000 0.0000 0.0018 0.2308 0.0038 0.3924 0.0007 0.0006
Threshold 0.0168 0.0360 0.0000 0.0000 0.0018 0.2308 0.0038 0.3924 0.0000 0.0007
Linear 0.0156 0.0345 0.0000 0.0000 0.0093 0.2661 0.0183∗ 0.4277 0.0001 0.0009

SAV 5%
Constant 0.0600 0.1137 0.1328 0.1614 0.0259 0.4922 0.0661 0.4787 0.7413 0.1096
Threshold 0.0692 0.1180 0.0000 0.0000 0.0000 0.0786 0.0000 0.0613 0.0335 0.0002
Linear 0.0668 0.1160 0.0000 0.0000 0.0002 0.0414 0.0001 0.0281 0.0297 0.0016

AS 1%
Constant 0.0264 0.0400 0.0000 0.0000 0.0000 0.5311 0.0000 0.5629 0.0001 0.0000
Threshold 0.0324 0.4340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Linear 0.0240 0.0393 0.0000 0.0000 0.0000 0.6512 0.0000 0.6327 0.0002 0.0000

AS 5%
Constant 0.0728 0.1146 0.0000 0.0000 0.0000 0.7062 0.0000 0.7099 0.2441 0.0000
Threshold 0.0708 0.1130 0.0000 0.0000 0.0000 0.0694 0.0000 0.0921 0.2094 0.0000
Linear 0.0732 0.1218 0.0000 0.0000 0.0000 0.6428 0.0000 0.6372 0.0155 0.0000

Note: The notation is provided in Table 2.
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Table 5: Portfolio formed with large capitalization and low book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0168 0.0370 0.0000 0.0000 0.0018 0.7372 0.0074 0.7216 0.0000 0.0000
Threshold 0.0200 0.0393 0.0000 0.0000 0.0000 0.0968 0.0000 0.0412 0.0000 0.0000
Linear 0.0160 0.0369 0.0000 0.0000 0.0055 0.6723 0.0195∗ 0.6475 0.0000 0.0000

SAV 5%
Constant 0.0868 0.2874 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Threshold 0.0624 0.5897 0.0000 0.0000 0.0061 0.0000 0.0000 0.0000 0.0000 0.0000
Linear 0.0428 1.3374 0.0000 0.0000 0.0907∗∗ 0.2703∗∗ 0.1302∗∗ 0.2374∗∗ 0.0000 0.0000

AS 1%
Constant 0.0176 0.0382 0.0000 0.0000 0.0006 0.2092 0.0012 0.3699 0.0032 0.0001
Threshold 0.0204 0.0387 0.0000 0.0000 0.0000 0.3923 0.0000 0.3368 0.0004 0.0000
Linear 0.0200 0.0375 0.0000 0.0000 0.0000 0.9997 0.0001 0.9997 0.0641∗∗ 0.0000

AS 5%
Constant 0.0652 0.1282 0.0000 0.0000 0.0008 0.3691 0.0025 0.3875 0.0004 0.0000
Threshold 0.0484 0.1280 0.0690∗∗ 0.0096 0.7122∗∗ 0.1743 0.3712∗∗ 0.2142 0.0729∗∗ 0.0034
Linear 0.0532 0.1250 0.0026 0.0005 0.4673∗∗ 0.6610 0.6974∗∗ 0.6683 0.0010 0.0020

Note: The notation is provided in Table 2.

13Huang et al.: Index-Exciting CAViaR

Published by The Berkeley Electronic Press, 2010

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



Table 6: Portfolio formed with large capitalization and median book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0140 0.0358 0.0000 0.0000 0.0580 0.3187 0.1009 0.4773 0.0000 0.0007
Threshold 0.0208 0.0376 0.0000 0.0000 0.0000 0.1371 0.0000 0.2877 0.0007 0.0000
Linear 0.0156 0.0372 0.0000 0.0000 0.0093 0.2661 0.0183 0.4277 0.0002 0.0035

SAV 5%
Constant 0.0592 0.1175 0.0019 0.0041 0.0400 0.6637 0.1104 0.6573 0.0197 0.0775
Threshold 0.0736 0.1278 0.0000 0.0000 0.0000 0.0406 0.0000 0.0287 0.0000 0.0000
Linear 0.0668 0.1392 0.0000 0.0000 0.0002 0.0788 0.0002 0.0608 0.0000 0.0000

AS 1%
Constant 0.0148 0.0348 0.0001 0.0001 0.0244 0.2916 0.0455 0.4521 0.0199 0.0090
Threshold 0.0176 0.0358 0.0000 0.0000 0.0006 0.2092 0.0012 0.3699 0.0003 0.0000
Linear 0.0192 0.0360 0.0000 0.0000 0.0000 0.9348 0.0002 0.9339 0.0007 0.0000

AS 5%
Constant 0.0588 0.1181 0.2325 0.0789 0.0492 0.8131 0.1406 0.8150 0.7957 0.1253
Threshold 0.0620 0.1208 0.0103 0.0000 0.0079 0.6404 0.0262 0.6334 0.2365 0.0046
Linear 0.0620 0.1192 0.0138 0.0020 0.0079 0.8950 0.0290 0.8943 0.3623 0.0153

Note: The notation is provided in Table 2.
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Table 7: Portfolio formed with large capitalization and high book-to-market ratio stocks

CAViaR α̂ Q̂ DQHit DQV aR p-LRuc p-LRind p-LRcc p-LB1 p-LB5 p-Lrduration
SAV 1%

Constant 0.0140 0.0351 0.0023 0.0047 0.0580 0.3187 0.1009 0.4773 0.0471 0.0263
Threshold 0.0140 0.0406 0.0000 0.0000 0.0580 0.3187 0.1009 0.4773 0.0002 0.0002
Linear 0.0172 0.0412 0.0000 0.0000 0.0010 0.0422 0.0006 0.0075 0.0000 0.0000

SAV 5%
Constant 0.0580 0.1248 0.0003 0.0005 0.0732 0.1167 0.0587 0.0930 0.0006 0.0007
Threshold 0.0812 0.2298 0.0000 0.0000 0.0000 0.0009 0.0000 0.0003 0.0000 0.0000
Linear 0.0828 0.2603 0.0000 0.0000 0.0000 0.0018 0.0000 0.0007 0.0000 0.0000

AS 1%
Constant 0.0200 0.0392 0.0000 0.0000 0.0000 0.1530 0.0000 0.3071 0.1287 0.0000
Threshold 0.0236 0.0412 0.0000 0.0000 0.0000 0.7200 0.0000 0.7329 0.3215 0.0000
Linear 0.0192 0.0362 0.0001 0.0000 0.0000 0.9348 0.0002 0.9339 0.6081 0.0001

AS 5%
Constant 0.0660 0.1346 0.0034 0.0004 0.0005 0.7690 0.0020 0.7716 0.5329 0.0008
Threshold 0.0720 0.1365 0.0000 0.0000 0.0000 0.7703 0.0000 0.7725 0.0671 0.0000
Linear 0.0736 0.1254 0.0000 0.0000 0.0000 0.8950 0.0000 0.8944 0.0391 0.0000

Note: The notation is provided in Table 2.
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Figure 1: Evolution of β0 of the AS-CAViaR model at the 1% level for the small
capitalization and low book-to-market ratio stocks
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Figure 2: Evolution of β0 of the SAV-CAViaR model at the 1% level for the small
capitalization and low book-to-market ratio stocks
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Figure 3: Evolution of β1 of the AS-CAViaR model at the 1% level for the small
capitalization and low book-to-market ratio stocks
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Figure 4: Evolution of β1 of the SAV-CAViaR model at the 1% level for the small
capitalization and low book-to-market ratio stocks
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Appendix: Evaluation of Performance

To assess the predictive performance of the proposed models, in this appendix
we explain the tests we employ for evaluating the predictive quantile perfor-
mance.

When assessing the accuracy of a VaR prediction model, there is always a
general hypothesis required to be satisfied. That is,

E[Ht(α)|Ft−1] = α, (4)

where Ht(α) = I(rt < −qt(α)). If (4) holds, we say the VaR prediction is
efficient with respect to Ft−1. This means Ht(α) is uncorrelated with any
information in Ft−1 up to time t − 1. In this case, the forecast for VaRt

and Ht(α) cannot be improved. There are two implications involved in con-
dition (4): correct unconditional coverage and independence of VaR forecasts
(Christoffersen, 1998; Danielsson and Morimoto, 2000; Bertail et al., 2004; and
Komunjer, 2004).

Unconditional coverage test

Because different methods of computing VaR tend to produce different results
and it is unlikely that estimates from a model will exhibit all the properties of
accurate forecasts for different risky assets at different significant levels, evalu-
ating the accuracy of the models underlying them is necessarily indispensable
for supervisors and regulators. Up to now, many types of criteria and methods
have been developed to assess VaR estimates. In this paper, we use the pro-
portion of failure test proposed by Kupiec (1995). Suppose VaR estimates are
accurate. Then, the event of failure Ht(α) = 1 can be modeled as independent
draws from a binomial distribution with a probability of occurrence equal to
the significance level, that is, α̂ = α. Thus, the likelihood-ratio test statistic
is

LRuc = −2 ln[(1 − α)n−mαm] + 2 ln[(1 − α̂)n−mα̂m] ∼ χ2(1), (5)

where m is the number of violations and

α̂ = m/n =
1

n

T
∑

t=R+1

Ĥt(α). (6)

At the same time, we can also compute the empirical expected loss of VaRt as

Q̂(α) =
1

n

n
∑

t=1

[α − Ĥt][rt + ˆVaRt] (7)
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The main goal of this test is to examine whether the failure rate of a model
is statistically equal to the expected one and therefore to ensure that a financial
institution will not mis-allocate its capital.

Independence test

The unconditional coverage test can reject a model for both high and low VaR
violations but its power is generally poor especially for high confidence levels.
Actually, a good VaR model must generate independent forecasts, that is, a
violation (Ht(α) = 1) today has no effect on the probability of a violation
tomorrow.

Christoffersen (1998) formulates the test ratio of independence through a
first-order Markov-chain, which is given as a transition matrix

Π =

(

1 − π01 π01

1 − π11 π11

)

,

where πij = P (Ht(α) = j|Ht−1(α) = i), i and j refer to states of violation/non-
violatons.

Under the hypothesis of independence, the test statistic takes the form

LRind = 2 ln

[

(1 − π̂01)
n00π̂n01

01 (1 − π̂11)
n10π̂n11

11

(1 − π̂)n00+n10 π̂n01+n11

]

∼ χ2(1), (8)

where nij indicates the number of value j following i in the VaR violation
sequence, and

π̂01 =
n01

n00 + n01

,

π̂11 =
n11

n10 + n11

,

π̂ =
n01 + n11

n00 + n01 + n10 + n11

,

Conditional coverage test

Unconditional coverage and independence are fundamental properties of an
adequate VaR model, and they can be formalized into a joint property which
is know as conditional coverage, a stronger condition than the previous ones.

Christoffersen (1998) defines a VaR violation sequence to have correct con-
ditional coverage if the violation sequence is identically and independently
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distributed and proposes the following likelihood ratio test that combines the
test statistic of unconditional coverage and the test statistic of independence:

LRcc = LRuc + LRind ∼ χ2(2) (9)

The discussion of joint tests so far might seem to suggest that joint tests
are universally preferable to tests of either the unconditional coverage property
or independence property alone. While joint tests have the property that they
will eventually detect a VaR measure which violates either of these properties,
this comes at the expense of a decreased ability to detect a VaR measure which
only violates one of the two properties. If, for example, a VaR measure exhibits
appropriate unconditional coverage but violates the independence property
then an independence test has a greater likelihood of detecting this inaccurate
VaR measure than a joint test. The joint test is hampered by the fact that one
of the two violations it is designed to detect, namely violations of unconditional
coverage, is actually satisfied by the VaR measure. The fact that one of the
two properties is satisfied makes it more difficult for the joint test to detect
the inadequacy of the VaR measure.

Campbell (2005) analyzes the reduced power of the test of conditional
coverage against separate tests of unconditional coverage and independence.
Separate tests can have better power to detect a VaR model that violates a
specific property, while the joint test of conditional coverage has decreased
ability to detect a model that violates only one of the two conditions and
satisfies the other. The joint test of conditional coverage has a broader scope
of detection but at the loss of some statistical power.

Dynamic quantile test

Christoffersen’s Markov-chain in the independence test has some limitation
because it only considers the first-order dependence in the {Ht(α)} series.
Obviously, it would fail to reject an {Ht(α)} series that does not have first-
order Markov dependence but does exhibit some higher-order dependences and
other backtesting factors.

Engle and Manganelli (2004) propose a linear regression test to test the con-
ditional efficiency hypothesis where the dependent variable is the de-meaned
indicator function at time t, Ht(α)−α, and the independent variables are the
previous elements of the de-meaned VaR violation sequence and the chosen
exogenous variables. Mathematically, this test investigates the regression of
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Ht(α) on Ht−i(α) (i = 1, · · · ,M) and qt(α); that is,

Ht(α) = α0 +
M

∑

i=1

wiHt−i(α) + wM+1qt(α) + ut, (10)

where wi, i = 1, · · · ,M + 1, are regression parameters and

ut =

{

−α, with probability 1 − α,
1 − α, with probability α.

Under the null hypothesis, α0 = α and wi = 0, i = 1, · · · ,M + 1. Denoting
w0 = α0 − α, we rewrite (10) in vector notation as

H − α1 = Xw + u,

where 1 denotes the vector of ones and

X =









1 HM HM−1 · · · H1 qM+1

1 HM+1 HM · · · H2 qM+2

· · · · · · · · · · · · · · · · · ·
1 Hn−1 Hn−2 · · · Hn−M qn









.

Thus, under the null hypothesis, w = 0, Engle and Manganelli (2004) prove

ŵ = (X′X)−1X′(H − α1) ∼ N (0, (X′X)−1α(1 − α)),

and hence propose the following test statistic:

DQ =
ŵ

′X′Xŵ

α(1 − α)
∼ χ2(M + 2). (11)

In the empirical application, we follow Engle and Manganelli (2004) to
explore the dynamic quantile test: DQ in which X contains a constant, four
lagged hits, Ht−1(α), · · · , Ht−4(α), and a contemporaneous VaR estimate, qt(α).

It should be mentioned that there are a large number of VaR backtest-
ing methods for the detection of high-order independence, such as duration-
based test (Christoffersen and Pelletier, 2004) and martingale difference test
(Berkowitz et al., 2005), whereas the DQ test of Engle and Manganelli (2004)
performs best overall with either simulated data or real market data (Berkowitz
et al., 2007).
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Autocorrelation test

From E[(It+1 − α)(It−k − α)] = 0, we can construct an autocorrelation test as

H0 : γk = 0, k > 0,

where γk is the autocorrelation between It+1 − α and It−k − α. A natural
statistic is the Ljung-Box statistic such that

LB(m) = T (T + 2)
m

∑

k=1

γ2
k

T − k
−→ χ2(m) (asymptotically) (12)

Duration test

Christoffersen and Pelletier (2004) formulate the duration-based backtest as
follows. The durations for the test statistic are defined as the times (in days)
between two VaR violations:

Di = ti − ti−1,

where ti denotes the date when the i-th violation occurs. Under independence,
the mean duration is 1/α and the duration function must have no memory.
Christoffersen and Pelletier (2004) suggest the hazard function of the duration
distribution under the null hypothesis to be the exponential function because
it is continuous and memory-free. For the hazard function in the alternative
hypothesis, they choose the hazard of the Weibull distribution. The hazard
function of the Weibull distribution has a closed-form representation:

λW (D) = abbDb−1.

The hazard of the exponential function is a special case of the hazard of the
Weibull distribution when b = 1. Thus, it is possible to test the independence
by defining the null hypothesis as:

H0,ind : b = 1,

and the log-likelihood function is

ln L(D|ΩT ) = C1 ln S(D1) + (1 − C1) ln f(D1) +

N(T )−1
∑

i=2

ln(f(Di))

+CN(T ) ln S(DN(T )) + (1 − CN(T ) ln f(DN(T ))),
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where f(·) is the hypothesis specific probability distribution function (PDF),
S(·) is its survival function, Di is the duration of the i-th VaR violation, T is
the total number of violations in the sequences and C1 and CN(T ) are binomial
censor indicators for the first and last duration, respectively. The PDF can be,
for example, the exponential function in the case of the null Weibull hypothesis.
The censor variables C1 and CT indicate whether the series of violations begins
or ends with a violation. If the violation sequence begins with 0 then C1 = 1,
and D1 is the duration until the first violation. If the violation sequence begin
with 1 then C1 = 0, and D1 is the duration until the second violation. If
the violation sequence ends with 0 then CN(T ) = 1, and DN(T ) is the number
of days after the last violation. If the violation sequence ends with 1 then
CT = 0, and DN(T ) is the duration of the last violation. Thus, the likelihood
ratio test statistic for the test of independence is

LRind = 2
[

ln L(D|ΩT ) − ln L(D̂|ΩT )
]

(13)
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Bao, Y., T. Lee, and B. Saltoǧlu (2006): “Evaluating the Predictive Perfor-
mance of Value-at-Risk Models in Emerging Markets: A Reality Check.”
Journal of Forecasting 25, 101-128.

Bertail, P., C. Haefke, D.N. Politis, and H. White (2004): “A Subsampling
Approach to Estimating the Distribution of Diverging Statistics with Ap-
plication to Assessing Financial Market Risk.” Journal of Econometrics

120, 295-326.

Berkowitz, J., P.F. Christoffersen, and D. Pelletier (2009): “Evaluating Value-
at-Risk Models with Desk-Level Data.” Forthcoming in Management Sci-

ence.

Christoffersen, P.F. (1998): “Evaluating Interval Forecasts.” International

Economic Review 39(4), 841-862.

Christoffersen, P.F. (2008): “Backtesting.” Encyclopedia of Quantitative Fi-

nance, R. Cont(ed). John Wiley and Sons.

23Huang et al.: Index-Exciting CAViaR

Published by The Berkeley Electronic Press, 2010

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



Danielsson, J. and Y. Morimoto (2000): “Forecasting Extreme Financial
Risk: A Critical Analysis of Practical Methods for the Japanese Market.”
Monetary and Economic Studies 18(2), 25-48.

Engle, R.F. and S. Manganelli (2004): “CAViaR: Conditional Autoregres-
sive Value at Risk by Regression Quantiles.” Journal of Business and

Economic Statistics 22, 367-381.

Fama, E. (1965): “The Behavior of Stock Prices.” Journal of Business 38(1),
34-105.

Guidolin, M. and A. Timmermann (2006): “Term Structure of Risk under
Alternative Econometric Specifications.” Journal of Econometrics 131,
285-308.

Komunjer, I. (2004): “Quasi-Maximum Likelihood Estimation for Condi-
tional Quantile.” Journal of Econometrics 128, 137-164.

Kouretas, G.P. and L. Zarangas (2005): “Conditional Autoregressive Value-
at-Risk by Regression Quantiles: Estimation Market Risk for Major
Stock Markets.” Working paper, available from http://econ.uop.gr/˜eco-
nsem/index files/CAViaR1.pdf.

Kuester, K., S. Mittnik, and M.S. Paolella (2006): “Value-at-Risk Prediction:
A Comparison of Alternative Strategies.” Journal of Financial Econo-

metrics 4(1), 53-89.

Kupiec, P. (1995): “Techniques for Verifying the Accuracy of Risk Measure-
ment Models.” Journal of Derivatives 3, 73-84.

Li, M.-Y.L. and H.-W.W. Lin (2004): “Estimating Value-at-Risk via Markov
Switching ARCH Models – An Empirical Study on Stock Index Returns.”
Applied Economics Letters 11(11), 679-691.

Mandelbrot, B.B. (1963): “The Variation of Certain Speculative Prices.”
Journal of Business 36(2), 394-419.

Manganelli, S. and R.F. Engle (2004): “A Comparison of Value-at-Risk Mod-
els in Finance.” in G. Szego (eds.), Risk Measures for the 21st Century,
Chichester, UK: Wiley: 123-143.

Venkataraman, S. (1997): “Value-at-Risk for a Mixture of Nomal Distribu-
tions: The Use of Quasi-Bayesian Estimation Techniques.” Economic

Perspectives 21(2), 2-13.

24 Studies in Nonlinear Dynamics & Econometrics Vol. 14 [2010], No. 2, Article 1

http://www.bepress.com/snde/vol14/iss2/art1

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp




