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ABSTRACT. On a Morse decomposition of an invariant set in a flow there are partial 
orderings defined by the flow. These are called admissible orderings of the Morse 
decomposition. The index filtrations for a total ordering of a Morse decomposition 
are generalized in this paper with the definition and proof of existence of index 
filtrations for adInissible partial orderings of a Morse decomposition. 

It is shown that associated to an index filtration there is a collection of chain 
complexes and chain maps called the chain complex braid of the index filtration. 
The homology index braid of the corresponding admissible ordering of the Morse 
decomposition is obtained by passing to homology in the chain complex braid. 

Introduction. In the classical Morse theory a gradient flow of a function defined 
on a manifold is examined. The function is assumed to have finitely many critical 
points. The statement of Morse theory then relates the dimensions of the unstable 
invariant manifolds of these critical points to algebraic invariants of the whole 
manifold. 

In Conley [1] and Conley and Zehnder [2] these ideas are extended to a setting 
where the manifold is replaced with a compact invariant set S in a locally compact 
local flow in a Hausdorff space with a flow. The critical points are replaced with a 
collection M of mutually disjoint compact invariant subsets of S. The gradient 
structure is replaced with a total order that is defined on M and respected by the 
flow on the complement, in S, of the union of the sets in M. 

The collection M is called a Morse decomposition of S. The total order on Mis 
called an admissible (total) ordering of the Morse decomposition. Associated to an 
admissible ordering of a Morse decomposition there is a distinguished collection of 
compact invariant subsets of S. This collection, which includes the Morse decom-
position, is called the collection of Morse sets of the admissible ordering. Using an 
index filtration for an admissible ordering of a Morse decomposition Conley and 
Zehnder [2] exhibit algebraic relationships between the Conley indices of the 
associated Morse sets. 
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194 ROBERT FRANZOSA 

In this paper we generalize these ideas by extending the definition of an admissi-
ble ordering of a Morse decomposition to include partial orders. This extension is 
significant because for each Morse decompositon there is an extremal partial (i.e., 
not necessarily total) order that serves as an admissible ordering. This admissible 
ordering is called the flow-ordering of the Morse decomposition. 

In our setting the above described algebraic relations associated to an admissible 
ordering of a Morse decomposition take the form of a collection containing the 
homology of the Conley index of each Morse set, flow-defined maps between these 
homology complexes, and braid diagrams depicting relationships between these 
maps. This collection is called the homology index braid of the admissible ordering. 
For a given Morse decomposition the homology index braid of the flow-ordering 
contains the homology index braid of each other admissible ordering, and therefore 
yields the maximal amount of algebraic information under consideration for the 
Morse decomposition. We refer to the homology index braid of the flow-ordering as 
the homology index braid of the Morse decomposition. 

As in [2], the algebraic relations (i.e., the elements of the homology index braid) 
associated to an admissible ordering of a Morse decomposition are defined via an 
index filtration for the admissible ordering. The main focus of this paper is to 
generalize the index filtrations for admissible total orderings (Conley and Zehnder 
[2]) by defining and proving the existence of index filtrations for admissible 
orderings that are partial orders. 

We begin with a discussion of partial orders in §1. In §2 we study properties of 
Morse decompositions and admissible orderings. In §3 we define and prove the 
existence of index filtrations for an admissible ordering of a Morse decomposition. 
The homology index braid of an admissible ordering of a Morse decomposition and 
the related chain complex braid of an index filtration are introduced in §4. In §5 we 
present a simple example illustrating the theory discussed in §§2 through 4. 

Besides Conley [1] and Conley and Zehnder [2], the works of Kurland [6-8] are 
important references for the index theory presented here. Recently, Salamon [9] has 
simplified the proofs of many of the results contained in all of these references. 

1. Partial orders. In this section we present the necessary background material 
from partial orders. Most of the results described in this section are given without 
proof since the proofs are all simple consequences of the definitions. 

DEFINITION 1.1. A. A partial order on a set P is a relation < on P that satisfies: 
(l) the relation 'TT < 'TT never holds for 'TT E P, 
(2) if 'TT < 'TT' and 'TT' < 'TT", then 'TT < 'TT". 

B. A total order on a set P is a partial order on P that also satisfies: 
(3) for each 'TT, 'TT' E P, either 'TT < 'TT' or 'TT' < 'TT. 

e. An ordered set is a set P on which there is a partial order. A totally ordered set 
is a set P on which there is a total order. 

Note. What we call a partial order is sometimes referred to as a strict partial order. 
For the remainder of this section let P be an ordered set with a partial order <. 

If Q is a subset of P, then < induces a partial order on Q called the restriction of 
< to Q. 
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INDEX FILTRATIONS FOR MORSE DECOMPOSITIONS 195 

If 7T, 7T' E P, and neither 7T < 7T' nor 7T' < 7T, then we say that 7T and 7T' are 
noncomparable. 

DEFINITION 1.2. A. An interval in < is a subset Ie P for which 7T, 7T' E I and 
7T < 7T" < 7T' together imply that 7T" E I. We denote the set of intervals in < by 
I( <). 

B. An attracting interval in < is a subset Ie P for which 7T E I and 7T' < 7T 

together imply that 7T' E I. We denote the set of attracting intervals in < by A( <). 
The reason for the choice of the term "attracting" in definition 1.2.B becomes 

clear in the next section. For each 7T E P the set {7T} is an interval; we denote this 
simply by 7T. 

PROPOSITION 1.3. A. A( <) c I( <). 
B. <I> and P are in I( <), and if 11, 12 E I( <), then 11 n 12 E I( <). 
C. <I> and P are in A( <), and if 11, 12 E A( <), then 11 U 12 and 11 n 12 are in 

A( <). 

In what follows we use < to denote both the partial order on P and the usual 
order on the integers. There should be no confusion. 

DEFINITION 1.4. An adjacent n-tuple of intervals in < is an ordered collection 
(/1,12 , ••• , In) of mutually disjoint subsets of P satisfying 

(1) U7=1 Ii E I( <), 
(2) 7T E I)' 7T' Elk' j < k imply 7T' -t.. 7T. 

We denote the collection of adjacent n-tuples of intervals in < by In( <). Note 
that I 1( <) = I( <). If (/, J) is an adjacent pair (i.e. 2-tuple) of intervals, then we 
usually denote the interval I U J by IJ. If (J, 1) and (/, J) are both adjacent pairs 
of intervals, then we say that I and J are noncomparable. If (/1' ... , In) E In( <) 
and U7=Ji = I, then we call (/1' ... ' In) a decomposition of I. 

Justification for the use of the term "intervals" in Definition 1.4 is described in 
the following proposition. 

PROPOSITION 1.5. If (/1' ... ' In) E In( <), and p, q E {1, ... , n} with p :::;; q, then 
U7_ p Ii E I( <). In particular, for each p E {l, ... , n}, Ip E I( <). 

PROOF. Suppose 7T, 7T' E U7=p Ii' and 7T < 7T" < 7T'. Since U7=1 Ii is an interval, it 
follows that there exists c E {1, ... , n} such that 7T" E Ie. If 7T E Ia and 7T' E Ib , 

then p :::;; a :::;; c :::;; b :::;; q by property 2, Definition 1.4. Therefore 7T" E U{=p Ii. 0 
The following two propositions describe some useful properties of adjacent 

n-tuples of intervals. 

PROPOSITION 1.6. Assume J E I( <). Then there exist intervals K E A( <) such 
that (K\J, J) is a decomposition of K. Moreover, under such circumstances K\J E 

A( <). 

PROOF. K = {7T E P I there exists 7T' E J with 7T :::;; 7T'} is an example. 0 

PROPOSITION 1.7. Assume (/1' ... ' In) E In( <), and p, q E {1, ... , n} with p :::;; q. 
If 1':= U7=p Ii' then 

A. (/1' ... ' Ip_1' I', I q+ 1, ••. , In) E Im( <) where m = n + p - q. 
B. (/p' ... ' Iq) E Ir( <) where r = q - p + 1. 
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196 ROBERT FRANZOSA 

An immediate consequence of Proposition 1.7 is the fact that if (1, J, K) is an 
adjacent triple (i.e. 3-tuple) of intervals, then (1, J), (J, K), (1J, K), and (1, JK) are 
all adjacent pairs of intervals. 

DEFINITION 1.8. A partial order < * on P is called an extension of < if 'TT' < 'TT 

implies 'TT' < * 'TT. If < * is also a total order, then it is called a linear extension of 
<. 

PROPOSITION 1.9. A. If I E I( <), and < I is the restriction of < to I, then 
In( < I) C In( <) for each n. 

B. If < * is an extension of < , then In( < *) c In( <) for each n. 

2. Morse decompositions. Let f be a Hausdorff topological space on which there 
is a flow. We assume the reader is familiar with the concepts of invariant sets, 
w-limit sets, w*-limit sets (a-limit sets), and attractor-repeller pairs as defined in [1]. 

Let S be a compact invariant set in f. If SI and S2 are compact invariant subsets 
of S, then C(S2' SI; S):= {y E Slw(y) C SI and w*(y) c S2} is called the set of 
orbits connecting S2 to SI in S. We usually write C(S2' SI) when the set S is clear 
from context. 

If A c S is an attractor, then we denote its complementary repeller by A *. If 
(A, A*) is an attractor-repeller pair in S, then S decomposes (see [1]) into the union, 
A U C(A*, A) U A* = S. This decomposition is generalized (in [1] and Definition 
2.1 below) via the Morse decompositions of S. 

Assume < is a partial order on a finite set P. 
DEFINITION 2.1. A « -ordered) Morse decomposition of S is a collection M(S) 

= {M( 'TT)} 'IT E p of mutually disjoint compact invariant subsets of S such that if 
yES \ U'lTE P M( 'TT), then there exist 'TT < 'TT' with y E C(M( 'TT'), M( 'TT». 

We usually write M for M(S), however it is important to note that the definitions 
below do not only depend on the collection of sets M, but also on the invariant set, 
S, of which M is a Morse decomposition. 

Assume M = {M( <)}w E P is a < -ordered Morse decomposition of S. For 
notational convenience we set C( 'TT', 'TT) = C( M( 'TT'), M( 'TT ». The following proposi-
tion is an immediate consequence of Definition 2.1. 

PROPOSITION 2.2. If < 1 is a partial order on P, then M is also a < I-ordered 
Morse decomposition of S if and only if C( 'TT', 'TT) =F 0 implies 'TT <1 'TT' for each 'TT' =F 'TT 

in P. 

The partial order < on P induces an obvious partial order on M. This partial 
order on M is also denoted by < and is called an admissible ordering of M. 

The flow on S defines a natural partial order < F on P. < F is defined by setting 
'TT' < F 'TT if and only if there exists a sequence of distinct elements of P: 'TT' = 
'TTo, ... , 'TTn = 'TT, such that C( 'TTi , 'TTi - 1) =F 0 for each j = 1, ... , n. With the aid of 
Proposition 2.2 it is easy to see that < F is a partial order on P, and M is a 
< F -ordered Morse decomposition of S. The admissible ordering < F of M is 
called the flow-ordering of M. < F is an "extremal" admissible ordering of M 
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relative to S by 

PROPOSITION 2.3. Every admissible ordering of M is an extension of the flow-order-
ingof M. 

PROOF. Suppose 7T' < F 7T. Then there exists a sequence: 7T' = 7TO' ••• , 7Tn = 7T, such 
that C( 7Tj , 7Tj - l ) "* 0 for each j = 1, ... , n. By Proposition 2.2, 7Tj _ 1 < 7Tj for each 
j = 1, ... , n; therefore 7T' < 7T, and the result follows. D 

Now, for each I E I( <) define 

M(I) = ( U M(7T)) u( U C(7T',7T)). 
wEl '1I",'1TEI 

We call M(I) a Morse set of the admissible ordering < of M. The collection of 
Morse sets of the admissible ordering <, {M(I) I I E I( <)}, is denoted by 
MS( <). 

Propositions 1.9 and 2.3 imply MS( <) c MS( < F); i.e., the collection of Morse 
sets of the flow-ordering of M contains the Morse sets associated to the other 
admissible orderings of M. Therefore we call MS( < F) the Morse sets of M, and we 
denote this collection by MS(M). 

To simplify notation we set C(/', /) = C(M(/,), M(I)) for /' and I in I( <). 
Clearly the Morse sets are invariant sets; if I is an attracting interval, then M(I) 

has another important property. Specifically, 

PROPOSITION 2.4. If I E A( <), then M(I) is an attractor in S. 

PROOF. By induction on the order of the Morse decomposition M. If M is a one 
set Morse decomposition, then the result obviously holds. Assume the result is true 
for Morse decompositions of order n - 1, and let M have order n. Assume I is in 
A( <) and 8 is a minimal element of I. We claim that M( 8) is an attractor in S. Let 
U be a compact S-neighborhood of M( 8) disjoint from Uw E P\8 M( 7T). If y E 

U\M(8), then w*(y) c UwEP\8M(7T); so w*(y) ct U. It follows (see [1]) that the 
maximal invariant set in U (i.e., M( 8)) is an attractor in S. M(P \ 8) is the repeller 
complementary to M( 8) in S. The collection {M( 7T) 17T E P \ 8} is a < *-ordered 
Morse decomposition of M(P\8), where < * is the restriction of < to P\8. 
1\ 8 is an attracting interval in < *; therefore, by induction, M(I\ 8) is an 
attractor in M( P \ 8). M( P \ /) is the repeller complementary to M(I \ 8) in 
M(P\8). M(P\8) is a repeller in S, and M(P\/) is a repeller in M(P\8); 
therefore (see [1]) M(P \ /) is a repeller in S. M(I) is the attractor complementary 
to M(P \ /) in S, and the result follows. D 

By Proposition 1.3 it follows that the collection of attractors {M( /) I I E A( <)} 
contains cp and S and is closed under intersections and unions. This collection is an 
example of an attractor filtration in S, where 

DEFINITION 2.5. An attractor filtration in S is a finite collection d of attractors 
in S satisfying 

(1) cp, SEd, 
(2) if AI' A2 Ed, then Al U A z, Al n A2 Ed. 
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198 ROBERT FRANZOSA 

We set AF«)= {M(I)IIEA«)}, and we call this collection the attractor 
filtration of the admissible ordering < of M. 

Proposition 1.6 states that if J E I( <), then there exist K, IE A( <) such that 
(I, J) is a decomposition of K. This implies that the Morse set M(J) is the 
intersection of an attractor M(K) and a repeller M(I)*. Since attractors and 
repellers are compact invariant sets, it follows that Morse sets are compact invariant 
sets. As a consequence of this we can restrict Morse decompositions to Morse sets, 
and we can coarsen Morse decompositions using Morse sets. More specifically, 

PROPOSITION 2.6. If I E I( <), then 
A. {M( 'IT) I 'IT E I} is a < rordered Morse decomposition of M(I), where < I is 

the restriction of < to 1. 
B. {M( 'IT) I 'IT E P \ I} U {M(I)} is a Morse decomposition of S. 

As an easy consequence of Proposition 2.6 we have 

COROLLARY 2.7. If (I, J) E I 2 ( <), then (M(I), M(J» is an auractor-repeller 
pair in M(IJ). 

3. Index filtrations. We assume the reader is familiar with the concepts of local 
flows, isolated invariant sets, and isolating neighborhoods as defined in [1]. Let 
Xc r be a locally compact metric local flow, and assume S is an isolated compact 
invariant set in X. 

Given Z eYe r, we call Z positively invariant relative to Y if y E Z and 
y . [0, t] c Y together imply that y . [0, t] c Z. By a compact pair (Nl' No) we mean 
an ordered pair of compact spaces with No c N1. 

DEFINITION 3.1. A compact pair (Nl' No) in X is called an (X-)index pair for S if 
(1) S c intx(N1 \ No), and S is the maximal invariant set in clx(N1 \ No), 
(2) No is positively invariant relative to N1, 

(3) y E Nl and y . R + ft. Nl imply that there is a t ~ ° such that y . [0, t] C Nl 
and y. t E No. 

Note. Property 1 implies cl x(N1 \ No) is an isolating X-neighborhood of S. 
Properties 2 and 3 imply No acts as an "exit set" for N1; i.e., orbits leaving Nl do so 
through No. 

If (Nl' No) is an X-index pair for S, we call the pointed quotient space Nl/No an 
(X-)index space for S. 

In [1] Conley proves the existence of index pairs for isolated invariant sets, and 
furthermore proves that if (Nl' No) and (N{, No) are X-index pairs for an isolated 
invariant set in X, then there is a flow-defined homotopy equivalence between the 
index spaces Nl/No and N{/No. 

Thus, associated to the isolated invariant set S there is a homotopy type of a 
pointed space h(S), and if (Nl' No) is an X-index pair for S, then the homotopy 
type of the pointed space Nl/No is equal to h(S). h(S) is called the Conley index of 
S (relative to X). 

Note. All of the index theory that we present here is defined relative to the local 
flow; e.g., if S is an isolated invariant set in the local flows X and X', then the 
Conley index of S relative to X may not be equal to the Conley index of S relative 
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to X'. From now on we assume that the local flow X is fixed, and we omit references 
to X in the definitions that follow. 

Assume (A, A *) is an attractor-repeller pair in S. 

LEMMA 3.2. If N is an isolating neighborhood of S, and Nf is a compact X-neighbor-
hood of A disjoint from A * and contained in N, then Nf is an isolating neighborhood of 
A. 

Note. The roles of A* and A can be reversed in Lemma 3.2, and therefore we have 
an analogous result for A*. Also note that such sets Nf can always be found, and 
thus A and A * are isolated invariant sets. 

PROOF. We need to show that A is the maximal invariant set in N f • Let T denote 
the maximal invariant set in Nf; then AcT c S. If y E S\A, then w*(y) c A*; 
therefore since A * n Nf = 0, it follows that w*( y) n Nf = 0. Thus y (/:. T, and 
this implies that A = T. 0 ;c. 

With the following proposition the idea of an index pair for S is generalized to 
that of an index triple for (A, A*). 

PROPOSITION 3.3. Assume No c NI C N2. If (NI' No) is an index pair for A, and 
(N2' No) is an index pair for S, then (N2' NI) is an index pair for A*. 

Note. We call such a triple (N2' NI, No) an index triple for the attractor-repeller 
pair (A, A*) in S. Conley [1] introduces the idea of index triples; Kurland [7] 
establishes the existence. 

PROOF. Assume y E NI and y. [0, t] C N2 • We show that y. [0, t] C NI, and 
therefore NI is positively invariant relative to N2 • If Y . [0, t] n No = 0, then since 
(NI' No) is an index pair, it follows that y . [0, t] C NI. Suppose y . [0, t] n No =1= 0. 
Set t f = min { s > ° I y . S E No}. Since (NI' No) is an index pair, y' [0, tf] C NI. 
(N2' No) is an index pair, y' t f E No, and y. [tf, t] c N2; therefore y . [tf, t] c No 
C NI . Hence y . [0, t] C NI . 

H y E N2 and y . R+ct N2, then since (N2' No) is an index pair and No c NI, 
there exists t > ° such that y . [0, t] C N2 and y . t E NI . 

We now show that A* c int x(N2 \ NI). We claim that A* n NI = 0. Then since 
A* eSc int x(N2 \ No), it follows that A* c intX<N2 \NI). To prove the claim 
assume A* n NI =1= 0 and let y E A* n NI. y. R+c A* C N2, and since NI is 
positively invariant relative to N2, it follows that y . R+c NI . Y . R+c A* n NI ; 

therefore w(y) c A* n NI. A* n No = 0; therefore w(y) n No = 0, and it fol-
lows that w(y) c clx(NI \ No)· But A is the maximal invariant set in clx(NI \No) 
and w (y) n A = 0; contradiction. So A * n NI = 0, and therefore A * c 
int x(N2 \NI )· 

Last, we show that A * is the maximal invariant set in cl x< N2 \ NI ). A c int x NI ; 

therefore A n cl x( N2 \ NI ) = 0. Also, cl x( N2 \ NI ) is a compact X-neighborhood 
of A* contained in the isolating neighborhood cl x (N2 \No) of S. Thus, Lemma 3.2 
implies that A* is the maximal invariant set in cl x(N2 \ NI ). 0 

Recall that P is an ordered set with partial order < and M = {M( 'Tf)} 7T E P is a 
< -ordered Morse decomposition of S. 
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Each Morse set in MS(M) is the intersection of an attractor and a repeller in S. 
Attractors and repellers in S are isolated invariant sets, and intersections of isolated 
invariant sets are isolated invariant sets. Therefore each Morse set in MS(M) is an 
isolated invariant set. 

We now extend the idea of an index triple for an attractor-repeller pair to that of 
an index filtration for an admissible ordering of a Morse decomposition. 

DEFINITION 3.4. An index filtration for the admissible ordering < of M is a 
collection of compact sets N = {N(I)} I E A( <) satisfying 

(1) for each IE A( <), (N(I), N(cp» is an index pair for the attractor M(I) E 

AF«), 
(2) for each 11,12 E A( <), N(II n 12) = N(Il) n N(I2) and N(II U 12) = N(Il) 

U N(I2). 
Now assume %= {N(I)}lEA«) is an index filtration for the admissible order-

ing < of M. Property 1 in Definition 3.4 insures that in % there is an index pair 
for each attractor M(I) E AF( <). In Proposition 3.5.A below we prove that in % 
there is an index pair for each Morse set M(J) E MS( <). 

PROPOSITION 3.5. Assume J E I( <). 
A. If (I, J) is a decomposition of an attracting interval K E A( <), then 

(N(K), N(I» is an index pair for M(J) E MS( <). 
B. If (Ii' J) is a decomposition of an attracting interval Ki E A( <) for i = 1, 2, 

then N(Kl)\N(Il) = N(K2)\N(I2). 

PROOF. A. Property 2 of Definition 3.4 implies N( cp) c N( I) c N( K); property 1 
of Definition 3.4 implies that (N(I), N(cp» and (N(K), N(cp» are index pairs for 
M(I) and M(K), respectively. By Corollary 2.7, (M(I), M(J» is an attractor-re-
peller pair in M(K). Therefore Proposition 3.3 implies that (N(K), N(I» is an 
index pair for M(J). 

B. Let K:= Kl n K 2, 1:= II n 12. I, K E A( <), and (I, J) is a decomposition 
of K. It is enough to show that N(K)\N(I) = N(Kl)\N(Il). Note that Kl = K 
U II and K n II = I; therefore, by property 2, Definition 3.4, N(Kl ) = N(K) U 
N(Il) and N(K) n N(Il) = N(I). These equalities imply N(Kl ) \ N(Il) = 
N(K)\N(Il) = N(K)\N(I). 0 

Now if M(J) E MS( <), then Propositions 1.6 and 3.5.A imply that in % there 
exists an index pair (N(K), N(I» for M(J). If (N(Kl ), N(Il» and (N(K2), N(I2» 
are two such index pairs, then, as usual, there is a flow-defined homotopy equiva-
lence between the index spaces N(Kl)/N(Il) and N(K2 )/N(I2). However, as a 
result of Proposition 3.5.B ,it follows that these index spaces are homeomorphic by a 
homeomorphism induced by the identity map on N(K2)\N(I2) = N(Kl)\N(Il). 
The importance of this fact is brought out in §4. 

The remainder of this section is devoted to the proof of the existence of index 
filtrations. 

DEFINITION 3.6. If A is an attractor in an isolated invariant set, and N is an 
isolating neighborhood of the invariant set, then we set B(A, N) = {y E N I y . R-
eN and w*(y) c A}. 
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B(A, N) is the set of orbits in N that flow to the attractor A in backward time. In 
[7] Kurland shows (with slightly different notation than ours) that if A and N are as 
in Definition 3.6, then B(A, N) is compact. 

The following lemma provides an important step in the proof of the existence of 
index filtrations. 

LEMMA 3.7. Assume A and N are as in Definition 3.6. If V is a f-neighborhood of 
B(A, N), then there is a compact N-neighborhood Z of B(A, N) such that Z c V and 
Z is positively invariant relative to N. 

Note 1. Conley [1] proves Lemma 3.7 for the case where A is the maximal 
invariant set in N. Using Conley's result, Kurland [7-proof of Proposition 2.3] 
proves the general case stated here. 

Note 2. With A, N, Z as in Lemma 3.7, the facts that A C intxN and 
A C intNZ imply that A C intxZ. 

Now, order the elements of P: 'lT1' 'lT2' 'lT3"'" 'lTn' so that 'IT) < 'lTk implies that 
j < k. Note that the total order induced on P is a linear extension of <. Set 
Pk = {'lT1, ... , 'lTk } and r: = P \ Pk • Pk E A( <); therefore M(Pk ) is an attractor in 
S. Let < k be the restriction of < to Pk ; then M k := {M( 'lTJ Ii = 1, ... , k} is a 
< cordered Morse decomposition of M(Pk ). 

For each k define Lk = {'IT E PI 'lTk 1;,. 'IT} and Hk = {'IT E P I 'IT 1;,. 'lTd. Note that 
Lk E A«), and M(Lk) is the maximal attractor in AF«) disjoint from M('lTk)' 
Similarly, M(Hk ) is the maximal repeller in S contained in MS( <) and disjoint 
from M('lTd. 

Assume (N1' No) is an index pair for S, and set N = clAN1 \ No)· 
Weare now ready to prove the existence of an index filtration for the admissible 

ordering < of M. 

THEOREM 3.8. For each k = 1, ... , n, there exists a collection f(Jk = {C; L=l, ... , k of 
compact subsets of N such that for each i, j E {I, ... , k} the following hold: 

(1) C; is an isolating neighborhood of M( 'IT;), 
(2) C; n B(M(LJ, N) = 0, 
(3) If 'IT; and 'IT) are noncom parable, then C; n C) = 0, 
(4) If N(I):= No U (U", E I CJ, then the collection JVk := {N(I) I I E A( < k)} is 

an index filtration for the admissible ordering < k of M k' 

Note 1. The case k = n in Theorem 3.8 establishes the existence of an index 
filtration for the admissible orderirig < of M. 

Note 2. Theorem 3.8 is proved by induction on k. We build up the collections f(Jk 
by adding sets; i.e., f(Jk is formed from f(Jk-1 by adding a set Ck. One can verify 
that the Ck constructed in the proof of Theorem 3.8 has the property that (Ck , Ck n 
(U7':}CJ) is an index pair for M('lTk)' Thus, to the "complex" U7.:lc; we "glue" a 
set Ck that is an isolating neighborhood of M( 'lTk), and this gluing is done so that Ck 
attaches to U7.:} C; in an exit set for Ck • Ck is constructed so that if i < k and 
'IT; 1;,. 'lTk' then C; n Ck = 0 (i.e., property 3 in Theorem 3.8 is satisfied). This insures 
that property 2 in Definition 3.4 is satisfied by the index filtration constructed from 
the sets. Furthermore, Ck is constructed so that (by satisfying property 2 in Theorem 
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3.8) a set Cm with k < m and 7Tk -t. 7Tm can be added satisfying Ck n Cm = 0 (i.e., 
so that property 3 in Theorem 3.8 can be satisfied at the mth stage of construction). 

PROOF OF THEOREM 3.8. By induction on k. 
Assume k = 1. We construct C1. M( 7T1) and M(L 1) are disjoint attractors in S. 

Therefore B(M(7Tl),N) and B(M(L1),N) are disjoint compact sets. It is easy to 
verify that B( M( 7T1), N) and M( HI) are disjoint. Let VI be a r -neighborhood of 
B(M( 7T1), N) disjoint from B(M(Ll)' N) and M(H1). By Lemma 3.7 there exists a 
compact N-neighborhood C1 of B(M( 7T1), N) such that C1 C VI and C1 is posi-
tively invariant relative to N. Set ~l = {C1 }. 

We claim that ~l satisfies properties 1-4. Property 3 follows trivially. Property 2 
follows because C1 C VI and VI n B(M(Ll)' N) = 0. To see that C1 is an 
isolating neighborhood of M( 7T1) note that M( HI) is the repeller complementary to 
M( 7T1) in S and C1 n M(H1) = 0. Furthermore M( 7T1) C int XCI and C1 is con-
tained in the isolating neighborhood N of S; therefore Lemma 3.2 implies C1 is an 
isolating neighborhood of M( 7T1). Finally, to verify property 4 we prove that 
(C1 U No, No) is an index pair for M(7T1). M(7T1) C S and (N1, No) is an index pair 
for S; therefore M( 7T1) n No = 0. Since M( 7T1) C int XCI' it then follows that 
M(7T1) C intX«Cl U No)\No). M(7T1) C clX«Cl U No)\No) C C1, and C1 is an 
isolating neighborhood of M( 7T1). Therefore M( 7Tl) is the maximal invariant set in 
cl x« C1 UNo) \ No). No is positively invariant relative to C1 U No because No is 
positively invariant relative to Nl and No c C1 UNo C N1. Last, suppose y E C1 U 
No and y. R+ct. C1 U No. If t:= max{sIY' [O,s] c Cd, then the positive invari-
ance of C1 relative to N implies that t = max{ sly' [0, s] eN}. N = cl x(Nl \ No) 
and (N1, No) is an index pair, therefore y' t E No. Thus, y . [0, t] C C1 U No and 
y . 1 E No. It follows that (C1 U No, No) is an index pair for M( 7T1), and %1 = {C1 

U No, No} is an index filtration for the admissible ordering < 1 of MI' The case 
k = 1 is complete. 

Now assume the result is true for k - 1, and let ~k-l = {C;};=l, .... k-l be a 
collection satisfying properties 1-4. We construct Ck , set ~k = ~k-l U {Cd, and 
prove the collection ~ k satisfies properties 1-4. 

N(Pk- 1) = No U (U7.:l C;). Induction and Proposition 3.3 imply that 
(N1, N(Pk- 1), No) is an index triple for the attractor-repeller pair 
(M(Pk- 1), M(P"t-l»' Thus, M(Pk- 1) c intx(N(Pk_1)\No)' Let U be an S-open 
attractor neighborhood of M(Pk- 1). M(Pk- 1) = nl~oclsU' [t, 00). It follows that 
there exists t' > 0 such that U· [t', 00) c intx(N(Pk_1)\No). U· [1',00) is an 
S-open neighborhood of M(Pk- 1). Let U' c intx(N(Pk_1)\No) be X-open and 
such that U' n S = U· [1',00). Set Tk = N\ U'. clx(Nl \N(Pk- 1» c Tk, and by 
Lemma 3.2 it follows that Tk is an isolating neighborhood of M(P"t-l)' Further-
more, note that if a E S \ Tk, then a . R+n Tk = 0. 

It is easy to see that M(7Td is an attractor in M(Pk*-l)' M(L k) is an attractor in 
S, and M( 7Tk) n M(Lk) = 0.1t follows that Bk := B(M( 7Tk), Tk) and B(M(Lk)' N) 
are disjoint compact sets. 

If i < k and 7T; 1:. 7Tk, then M(7Tk) c M(L;). Since Tk c N, it follows that Bk c 
B(M(L;), N). By induction C; n B(M(L;), N) = 0; therefore Bk and C; are 
disjoint compact sets. 
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It is easy to see that Bk and M(Hk) are disjoint compact sets. 
Let Vk be a f-neighborhood of Bk disjoint from B(M(Lk ), N), M(Hk), and each 

Ci for which i < k and 'TTi 1:. 'TTk. By Lemma 3.7 there exists a compact neighborhood 
Ck of Bk in Tk such that Ck c Vk and Ck is positively invariant relative to Tk. 

We claim that the collection ~k = {Ci L~l"k satisfies properties 1-4. Properties 
2 and 3 follow easily by induction and the construction of Ck . To see that Ck is an 
isolating neighborhood of M( 'TTk ) note that M(Hd contains the repeller complemen-
tary to M('TTd in M(Pk*-l)' and Ck n M(Hk) = 0. Since M('TTk) C intxCk and Ck 
is contained in the isolating neighborhood Tk of M(Pt-l)' Lemma 3.2 implies that 
Ck is an isolating neighborhood of M( 'TTk)' It remains to show that..#'k is an index 
filtration for the admissible ordering < k of M k • 

If 11, 12 E A( < k)' then it easily follows that N(Il) U N(I2) = N(Il U 12), and 
with the aid of property 3 one can readily see that N(Il) n N(I2) = N(Il n 12)' 
Thus, we need to show that if IE A( < k), then (N(I), N(cf») is an index pair for 
M(I). Note that N(cf» = No. 

Assume IE A( < k)' If 'TTk $. I, then IE A( < k-l)' and by induction it follows 
that (N(I), N(cf») is an index pair for M(I). Now assume 'TTk E I. Set J = 1\ 'TTk, 
1* = P \ I, and J * = P \ J. J E A( < k-l)' By induction it follows that 
(N(J),N(cf») is an index pair for M(J). Set E'= {i1'TTiEPk-l\J} and E= 
U i E E'Ci, By definition, N(Pk- l ) = E U N(J). One can easily verify that E n M(I) 
= 0. 

To show that (N(I), N(cf») is an index pair for M(I) we first show that 
M(I) C intx(N(I)\N(cf»). Clearly M(I) n N(cf» = cf>; so it is enough to show that 
M(I) C int xN(I). Assume y E M(I). Note that M(I) eSc int XNl c Tk U 

intxN(Pk_ l ). We consider two cases: y E intxN(Pk_ l ) and y E Tk. In the former 
case, since M(I) n E = 0 and intxN(Pk _ l ) c E U intxN(J), it follows that 
y E intxN(J) c intxN(I). Now consider the latter case, y E Tk. yES n Tk, and 
since a E S\ Tk implies a . R+n Tk = 0, it follows that y' R-c Tk. So w*(y) C 

M(Pk*-l)' This and the facts that y E M(I) and M(Pt-l) n M(I) = M('TTd imply 
w*(y) c M('TTk)' Thus Y E B k. Since Ck is an Tk-neighborhood of B k, it follows that 
there is an X-neighborhood W of y such that W n Tk c Ck • Y E int XNl and 
y $. E; therefore we may further assume that We int XNl and W n E = 0. We 
claim that We N(I). Given the claim, it then follows that y E int x N(I) and the 
proof that M(I) c int x< N(I) \ N( cf») is complete. To prove the claim note that 
N(I) = C k U N(J). If f3 E W\ Ck, then f3 $. Tk; therefore We Nl implies f3 E 

N(Pk - l ). However, N(Pk- l ) = N(J) U E and W n E = 0; thus f3 E N(J). It 
follows that We Ck U N(J) = N(I) and the proof of the claim is complete. 

We now show that M(I) is the maximal invariant set in clx(N(I)\N(cf»). 
(M(I), M(I*» is an attractor-repeller pair in S. We claim that 

M(/*) nclAN(I)\N(cf») = 0. 

To see this, note that clx(N(I)\N(cf») c N(J) U C k • Proposition 3.3 implies that 
(Nl' N(J), N(cf») is an index triple for the attractor-repeller pair (M(J), M(J*». 
Therefore M(J*) c intx(Nl \N(J», implying that M(J*) n N(J) = 0. Since 
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M(I*) c M(J*), it then follows that M(I*) n N(J) = 0. Ck C Vb M(I*) C 

M(Hk ), and Vk n M(Hk ) = 0 together imply that M(I*) n Ck = 0. Thus, 
M(I*) n (N(J) U Ck ) = 0, completing the proof of the claim. Now, M(I*) n 
clx(N(I)\N(t/») = 0, M(I) C intxclAN(I)\N(t/»), and clx(N(I)\N(t/») is 
contained in the isolating neighborhood cl x (NI \No) of S; therefore Lemma 3.2 
implies that M(I) is the maximal invariant set in clx(N(I)\N(t/»). 

N( t/» is positively invariant relative to N(I) because N( t/» is positively invariant 
relative to N1 and N(t/» C N(I) C N1. 

Now suppose that y E N(I) and y. R+ct N(I). We show that there exists t ? ° 
such that y . [0, t] C N(I) and y. t E N(t/». If y E N(J), then y. R+ct N(J), and 
therefore there exists t? ° such that y . [0, t] c N(J) c N(I) and y. t E N(t/». If 
y $ N(J), then y E Ck . Let t*:= max{sIY· [O,s] c Cd. Then y. [O,t*] c Ck • Ck 

is positively invariant relative to Tk, cl x (NI \N(Pk-1» c Tk, and (Nl' N(Pk- 1» is 
an index pair; therefore there is a t1, ° ~ tl ~ t*, such that y. tl E N(Pk- 1). 

Ck n E = 0 and N(J) U E = N(Pk - 1 ) then imply that y. tl E N(J). Now, as 
above, there exists t2? ° such that (y . t1)· [0, t 2] c N(J) and (y . t1)· t2 E N(t/». 
Set t = tl + t 2. Then y. [0, t] C Ck U N(J) = N(I) and y . t E N(t/». 

Thus, (N(I), N(t/») is an index pair for M(I), and the proof of Theorem 3.8 is 
complete. D 

4. The algebraic index theory. As is mentioned in §3, if (Nl' No) and (N{, N~) are 
index pairs for S, then there exist flow-defined homotopy equivalences between the 
index spaces NI/No and N{/N~. The details of the definition of the flow-defined 
homotopy equivalences can be found in [1, 6], and therefore we do not pursue this 
matter here. However, we do point out that if N1 \ No = N{ \ N~, then the flow-
defined homotopy equivalence between NI/No and N{IN~ is the homeomorphism 
induced by the identity on Nl \ No = N{ \ N~. Also, in [1, 6] it is proved that the 
collection, 5 (S), consisting of the index spaces NIl No and the homotopy classes of 
the flow-defined maps between these index spaces, is a connected simple system in 
the category of pointed spaces and homotopy classes of maps. 

For the discussion that follows assume a coefficient module is fixed. Given a 
topological space Z, let C( Z) represent the singular chains of Z with coefficients in 
the module, and let H*(Z) represent the corresponding homology complex. Similar 
notation is used for pairs of spaces A c Z. 

Define H(S), the homology index of S, to be equal to the homology of the Conley 
index of S; i.e., H(S) = H*(h(S». Note that if N1/No is in 5(S), then via the 
connected simple system there is a natural identification between H(S) and 
H*(N1/No)· 

Assume (N2' N1, No) is an index triple for the attract or-repeller pair (A, A*) in S. 
There exist inclusion induced maps on index spaces 
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and induced chain maps 
i P 

(4.1) C(Nl/No) ~ C(NJ.lNo) ~ C(NJ.lNl) 

Note that pi = 0 in (4.1), and therefore p defines a chain map 
p: C(NJ.lNo, Nl/No) ~ C(NJ.lNl) 

205 

PROPOSITION 4.1. The induced homology map p: H*(NJ.lNo, Nl/No) ~ H*(N2/Nl ) 
is an isomorphism. 

PROOF. With the identification (N2/No)/(Nl/No) = N2/Nl, the inclusion induced 
homology map E: H*(NJ.lNo, Nl/No) ~ H*«NJ.lNo)/(Nl/No)) is the homology 
map p. Kurland [7-proof of Lemma 3.4] shows that there is a closed neighborhood U 
of Nl/No in NJ.lNo such that Nl/No is a weak deformation retract of U. A 
straightforward algebraic topology argument then yields that E, and therefore p, is 
an isomorphism. 0 

As a result of Proposition 4.1 it follows that associated to the sequence of chain 
maps (4.1) there is a long exact homology sequence 

i p a 
.. , ~ H*(Nl/No) ~ H*(NJ.lNo) ~ H*(N2/Nl ) ~ H*(Nl/No) ~ ... 

Now let (N{, N{, N~) be another index triple for (A, A*). Kurland [7, 8-appendix] 
shows that there exist index triples (L~, L~, L~), i = 1, 2, 3, for (A, A*) such that 
diagram (4.2) below is commutative, where each vertical map is an inclusion induced 
homotopy equivalence representing the appropriate homotopy class of maps in the 
corresponding connected simple system. 

i p 
Nl/No ~ N2/No ~ N2/Nl 

~ ~ ~ 

Li!Lb 
i 

LVLb 
p 

LVL\ ~ ~ 

i i i 
(4.2) LilL~ 

i 
L~/L~ 

p 
L~/Li ~ ~ 

~ ~ ~ 

LilL~ 
i 

L~/L~ 
p 

L~/Li ~ ~ 

i i i 

N{/N~ 
i p 
~ N{/N~ ~ N{/N{ 

If we now pass to homology in diagram (4.2) and then compose the resulting 
vertical homology isomorphisms, we obtain 

i p a 
~ H*(Nl/No) ~ H*(N2/No) ~ H*(N2/Nl ) ~ H*(Nl/No) ~ ... 

1= 1= 1= 1= 
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where each vertical isomorphism is induced by the appropriate homotopy class of 
maps in the respective connected simple system. 

Thus, there is defined a long exact sequence 
;(A.S) p(S,A) il(A*,A) 

(4.3) ... --+ H(A) --+ H(S) --+ H(A*) --+ H(A)--+ 

This exact sequence is called the homology index sequence of the attractor-repeller 
pair (A, A*). 

The map a(A*, A) in (4.3) provides information about the set of orbits connecting 
A and A* in S; for example 

PROPOSITION 4.2 (CF. [7, COROLLARY 3.3]). If a(A*, A) =F 0, then C(A*, A) =F 0. 

Proposition 4.2 is an immediate consequence of the following 

PROPOSITION 4.3. If C(A*, A) = 0, then (A*, A) is also an attractor-repeller pair 
in S, and p(S, A)i(A, S) = id I H(A). 

PROOF. (A*, A) is obviously also an attractor-repeller pair in S; in fact {A*, A} is 
a Morse decomposition of S with trivial flow-ordering. With obvious notation, let 
{N(S),N(A*),N(A),N(q,)} be an index filtration for the flow-ordering of this 
Morse decomposition. Consider the following commutative diagram of index spaces 
and inclusion induced maps between them. 

(4.4) ;7' 
N(A)/N(q,) 

N(S)/N(q,) 
\op 

N(S)/N(A*) 

(N(A),N(q,)) and (N(S),N(A*)) are both index pairs for A, and as a result of 
Proposition 3.5.B, it follows that the horizontal map in diagram (4.4) is the 
homeomorphism induced by the identity on N(A)\N(q,) = N(S)\N(A*). Thus, 
diagram (4.4) yields the following commutative diagram of maps between homology 
indices 

i(A,S) 7' 

H(A) 

H(S) 

id 
--+ 

\0 p(S,A) 

H(A) 

Recall that P is an ordered set with partial order < and M = {M( 'IT)}., E P is a 
< -ordered Morse decomposition of S. For each J E I( <) set H(J) equal to the 
homology index of the Morse set M(J); i.e. H(J) = H(M(J)). Let ,Af'= 
{N(I)}IEA«) be an index filtration for the admissible ordering < of M. Assume 
J E I( <), and for i = 1, 2, 3, (J, I;) is a decomposition of K; E A( <). For each i, 
(N(K;), N(I;)) is an index pair for M(J). By Proposition 3.S.B we have a commuta-
tive diagram of homeomorphisms on index spaces 

(4.5) 
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where each homeomorphism is induced by the identity on N(Ki)\N(Ii)' Thus, 
there is a commutative diagram of chain complexes and chain maps that are 
isomorphisms 

(4.6) ""/ 
C(N(K2)/N(J2)) 

,= 
C(N(K3)/N(J3)) 

It follows that a chain complex C%(J), which is naturally identified with those in 
diagram (4.6), is defined. Let H%(J) denote the homology of C%(J). The index 
spaces and the homotopy classes of the maps between them in diagram (4.5) are 
contained in the connected simple system J(M(J». The identifications that are 
made in defining C%(J) are essentially the same as those that are made in defining 
H(M(J» = H(J), except that in defining C%(J) they are made on the chainlevel 
and on a subset of J(M(J», while in defining H(J) they are made on the 
homology level and on all of J(M(J». Therefore we are justified in making the 
identification H%(J) = H(J). 

If (I, J) E I 2( <), then (M(I), M(J» is an attractor-repeller pair in M(IJ), and 
if (N{, N{, Nd), i = 1,2, are index triples defined by.AI for (M(I), M(J», then it is 
easy to see that the following diagram commutes: 

(4.7) 
C(Nl!Nn 

1"" 
C(N12/Nn 

i 
~ 

i 
~ 

C(N21/Nn 

1= 
c(Nl/No2) 

p 
~ 

p 
~ 

c(Nl/Nl) 

1"" 
c(Nl/Nn 

where the vertical chain maps are of the same type as those in diagram (4.6). Thus 
the maps i and p in diagram (4.7) induce chain maps ., 

(4.8) 

Since pi = 0 in diagram (4.7), it follows that p(IJ, J)i(I, IJ) = O. Furthermore, 
since the maps p in diagram (4.7) define chain maps p: C(N{jNd, N{jNd) ~ 
C(N{/N{) and these chain maps induce homology isomorphisms, it follows that 
p(IJ, J) defines a chain map p: C%(IJ)/im[i(I, IJ)] ~ C%(J) that induces a 
homology isomorphism. Thus, associated to the sequence of chain maps (4.8) there is 
a long exact homology sequence, and with a justification similar to the one used 
above in making the identification H%(J) = H(J), we can identify this homology 
sequence with the homology index sequence of the attractor-repeller pair 
(M(I), M(J», 

i(l, lJ) p(lJ,J) a(J,!) 
... ~ H(J) ~ H(JJ) ~ H(J) ~ H(J) ~ ... 

N ow suppose that the intervals I and J are noncomparable. Then both 
(M(I), M(J» and (M(J), M(I» are attractor-repeller pairs. Similar to the proof of 
Proposition 4.3, it follows that p(IJ, J)i(J, J1) = id I C%(J). 
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Assume (I, J, K) E 13( <), and set H = {'7T E P \ IJK I there is '7T' E IJK with 
'7T' > '7T}. It follows that HE A( <) and (H, I, J, K) Eli <); therefore HI, HIJ, 
HIJK E A( <). Set No:= N(H), Nl := N(HI), N2 := N(HIJ), N3 := N(HIJK). 
The following diagram of inclusion induced maps between index spaces commutes 

This implies that the following diagram of chain complexes and chain maps 
commutes 

(4.9) 

Passing to homology we obtain the following commutative diagram of homology 
complexes and maps 

(4.10) 

'. ... ... . .. 
.... H(I)..... i a ..,. H(K)1.t' i( ~ H(II)~ )a 
~ ~ 

( 
H(IJK) --e..... ~ H(I) ) 

P p H(JK) a a 
H(K)~ ~ H(I) C a' ) a ~ H(II)~ i 

H(I) ~ ~ H(IJK) .. .,,- ...... . . .. ,..... '. . .. : 

Commutativity of the diagrams which contain a maps follows by the naturality of 
the connecting boundary homomorphisms. 
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Summarizing, for the admissible ordering < of M there is a collection consisting 
of homology indices and maps between homology indices satisfying: 

(1) for each I E I( <) there is a homology index H(1) = H(M(1», 
(2) for each (1, J) E I 2( <) there exist maps i(1, IJ): H(1) -+ H(1J), p(1J, J): 

H(1J) -+ H(J), and 3(J, /): H(J) -+ H(1) which satisfy: 
i p a 

(a) ... -+ H(1) -+ H(1J) -+ H(J) -+ H(1) -+ ... is exact, 
(b) if I and J are noncomparable, then p(1J, J)i(J, JI) = id I H(J), 
(c) if (1, J, K) E I 3( <), then diagram (4.10) commutes. 
We call this collection of homology indices and maps between them the homology 

index braid of the admissible ordering of the Morse decomposition. 
Since every admissible ordering of M is an extension of the flow-ordering < F of 

M, it follows that the homology index braid of < is a subcollection of the 
homology index braid of < F' Therefore we refer to the homology index braid of 
< F as the homology index braid of the Morse decomposition. 

In [4] we condense the information contained in the homology index braid of an 
admissible ordering of M to a collection of matrices of maps between the homology 
indices of the invariant sets M ( 7T) E M. These matrices are called the connection 
matrices of the admissible ordering. Generalizing the manner in which 3(A*, A) 
contains information about C(A, A*), the connection matrices contain information 
about the structure of the sets of connecting orbits C( 7T ' , 7T) for 7T ' , 7T E P. 

Summarizing further, given S, an index filtration for the admissible ordering 
< , there is a collection of chain complexes and chain maps satisfying: 

(1) for each I E I( <) there is a chain complex C."v( I), 
(2) for each (1, J) E I 2 ( <) there are chain maps 

(4.11) 

satisfying: 
(a) p(1J, J)i(1, IJ) = 0, 
(b) the chain map defined by p, p: C."v(1J)/im[i(1, IJ)] -+ C."v(J), induces an 

isomorphism on homology, 
(c) the exact homology sequence associated to sequence (4.11) is the homology 

index sequence of the attractor-repellerpair (M(1), M(J», 
(d) if I and J are noncomparable, then p(1J, J)i(J, J/) = id I C."v(J), 
(e) if (1, J, K) E I 3( <), then diagram (4.9) commutes. 
We call this collection of chain complexes and chain maps the chain complex 

braid of the index filtration. The chain complex braid of an index filtration for an 
admissible ordering of a Morse decomposition has the important property that upon 
passing to homology the chain complex braid induces the homology index braid of 
the admissible ordering of the Morse decomposition. 

S. An example. Consider the following family of ordinary differential equations 
parameterized by the variable (J > 0: 

i = -y, y = -(Jy + x{x - t)(l - x). 
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0<8<8* ~t-~ 

8 = 8* 

FIGURE 1 

The complete set of bounded solutions, S(J, for these equations is shown (along 
with some nearby orbits) for various values of () > 0 in Figure 1. In all cases the set 
S(J is an isolated invariant set and the collection M(J = {M(J(i)} is a Morse 
decomposition of S(J. 

The usual total order on the integers induces an admissible ordering of M(J for 
each O. For () = ()* this admissible ordering is also the flow-ordering. The partial 
order 1 < 2, 1 < 3 induces an admissible ordering of M(J for each () =1= ()*. For 
() > () * this admissible ordering is also the flow-ordering. The partial order 1 < 2 
induces an admissible ordering, which is the flow-ordering, of M(J for () < ()*. 

This example serves to illustrate the fact (which is presented formally in [5]) that 
Morse decompositions and admissible orderings of Morse decompositions continue 
locally under perturbation. Furthermore, this example establishes that the flow-
ordering of a Morse decomposition (even though it does continue to an admissible 
ordering of nearby Morse decompositions) does not necessarily continue to the 
flow-ordering of nearby Morse decompositions. 

To illustrate an example of an index filtration and a homology index braid 
consider the case () = ()* above. Qualitatively this flow can be depicted as in Figure 
2. 

An index filtration for the flow-ordering of the Morse decomposition M = {M( i)} 
is illustrated in Figure 3. 
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The homology index of each Morse set can be computed by choosing appropriate 
index pairs from the index filtration above. For each Morse set the homology index 
is trivial in all dimensions except dimensions one and zero. The following table 
illustrates dimension one (top row) and dimension zero (bottom row) of the 
homology index (with Z2 coefficients) of each Morse set. 
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M(1) M(2) 
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M(3) M(12) 

o 
o 

M(13) M(123) 

To examine the homology index braid of the Morse decomposition we point out 
that there is only one adjacent triple of intervals, (1,2,3), in the flow-ordering, and 
in the corresponding braid diagram all of the nontrivial homology and homology 
maps appear in that part of the braid diagram that we obtain by replacing I, J, and 
K in diagram (4.10) with 1, 2, and 3, respectively, and by starting with dimension 2 
of H(l) in the upper left and dimension 3 of H(3) in the upper right. Thus with an 
appropriate choice of homology generators we obtain 

In [4] we condense this information into the collection of connection matrices of 
the Morse decomposition and indicate how the connection matrices reveal informa-
tion about the structure of the sets of orbits connecting the sets in the Morse 
decomposition. 

It is instructive to compute the homology index braids for the cases () '* () * and 
observe the changes that occur under perturbation from () = ()*. This problem is 
discussed further in [5] where we present the continuation theory for homology index 
braids and connection matrices. 
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