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Abstract: Problem statement: Financial time series were usually large in size, unstructured and of 
high dimensionality. Since, the illustration of financial time series shape was typically characterized by 
a few number of important points. These important points moved in zigzag directions which could 
form technical patterns. However, these important points exhibited in different resolutions and difficult 
to determine. Approach: In this study, we proposed novel methods of financial time series indexing 
by considering their zigzag movement. The methods consist of two major algorithms: first, the 
identification of important points, namely the Zigzag-Perceptually Important Points (ZIPs) 
identification method and next, the indexing method namely Zigzag based M-ary Tree (ZM-Tree) to 
structure and organize the important points. Results: The errors of the tree building and retrieving 
compared to the original time series increased when the important points increased. The dimensionality 
reduction using ZM-Tree based on tree pruning and number of retrieved points techniques performed 
better when the number of important points increased. Conclusion: Our proposed techniques 
illustrated mostly acceptable  performance in tree operations and dimensionality reduction comparing 
to existing similar technique like Specialize Binary Tree (SB-Tree). 
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INTRODUCTION 

 
 Financial time series including stock prices, 
exchange rates and dollar indices are exhibited as a 
sequence of observed data that are generated 
chronologically. As financial time series are usually 
large in size, unstructured and of high dimensionality, 
the method to locate the time series of interest is a 
nontrivial problem. Mining these data is usually taken 
high costs. Indexing these financial time series is one of 
the possible solutions to increase the processing 
performance (Basu and Meckesheimer, 2007). 
 The illustration of the financial time series shape is 
typically characterized by a few important points within 
the multi-resolution views (Fu et al., 2008). These 
important points represent the trend movement changes 
of up and down directions which are formed in a zigzag 
manner in a specific view. A zigzag movement can be 
considered as a zigzag feature, which is observed by 
filtering out random noise. A zigzag feature 

demonstrates the past performance trends and only the 
most important changes. Most of the uses of a zigzag 
feature in technical analysis are related to the 
identification of reversal patterns, price-retracement 
measures and counting of corrective waves. 
 In this study, we have proposed a financial time 
series indexing approach. Indeed, we have also 
proposed a method for identifying the important zigzag 
points in multi-resolution, namely the Zigzag-
Perceptually Important Points (ZIPs) identification 
method. Furthermore, by using our proposed Zigzag-
based M-ary Tree (ZM-Tree), we were able to index 
these important zigzag points. 
 
Related study: 
Indexing a time series: Indexing a time series is 
necessary for several researches on similarity searching 
(Denton et al., 2009). A fast subsequence matching 
technique that allows similarity search among time 
series of different sizes is proposed in (Agrawal et al., 
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1993). They extracted a time-series feature and divided 
it into several subsequences by using a sliding window. 
Each subsequence was represented by a Minimum 
Bounding Rectangle (MBR), which was further indexed 
and stored using an ST-index. Furthermore, Lin et al. 
(2003) proposed a new method based on Piecewise 
Aggregate Approximation (PAA) (Yi and Faloutos, 
2000; Bhansali and Ippoliti, 2005), known as 
Symbolic Aggregate Approximation (SAX). SAX 
allows a time series of arbitrary length s to be reduced 
to equi-length segmented time series p by using PAA 
where p<<s and then symbolizes the PAA 
representation into a discrete string. SAX was later 
improved as indexable SAX or iSAX and indexed for 
mining terabyte-sized time series (Shieh and Keogh, 
2008). However, the above-mentioned approaches of 
indexing focus on dividing a time series into several 
subsequences without concentrating on the important 
points that are represented in the financial time series. 
 Important points are very significant as well as 
nontrivial in financial time series analysis (González-
Concepción et al., 2009). Ali (2006) introduced the 
Perceptually Important Points (PIPs) identification 
method for using in patterns matching of financial 
applications.  Later, Fu et al. (2008) proposed a method 
to index PIPs more structurally by means of the tree 
data structure known as the Specialized Binary Tree 
(SB-Tree), which provided the benefits of efficient 
computation of cumulative new data points, retrievals 
and access. Unfortunately, the representation of 
important points in a time series was not in the zigzag 
form. Smadi and Mjalli (2007) proposed a Landmark 
Model that relies on human spatial memory. The 
Landmark Model produced a zigzag compressed time 
series. The model was observed to collect the greatest 
important points in a time series with a specific 
Minimal Distance/Percentage Principle (MD/PP) that 
has its own intuitive meaning. For example, if a stock 
trader trades once for a week (5 business days) and 
regards a 10% gain or loss as significant, then MD is set 
to 5 and PP is set to 10. The Landmark Model 
represents a time series that filters out the noise and 
retains only the significant important points underlying 
the specific MD/PP. For querying the Landmark 
sequence, they recommended that the Landmark 
sequence must be more similar to a string sequence, 
rather than a multidimensional sequence; thus, string 
indexing is more suitable than the use of R-tree. Similar 
concepts regarding the identification of important 
points can be found in studies conducted in (Pratt and 
Fink, 2002; Fink and Pratt, 2003). They compressed a 
time series by selecting some of the minima and 
maxima or important points of peaks and troughs and 

dropping the other points. The intuitive idea is to 
discard the minor fluctuations and retain the major 
minima and maxima. The compression rate is 
controlled using a parameter R, which is always >1; an 
increase in R leads to the selection of fewer points. In 
addition, they also developed a technique for indexing 
compressed series, which supports the retrieval of series 
similar to a given pattern by considering their major 
inclines that are upward and downward segments of the 
series. However, these techniques do not illustrate the 
data structure as being well-organized and store the 
identified important points. 
 
Perceptually important points identification 
method: The concept of Perceptually Important Points 
(PIPs) identification is based on the importance of data 
points (Ali, 2006). This importance is defined by the 
domination of a data point on the shape of the time 
series. A data point that has a greater domination on the 
overall shape of the series is considered to be more 
important. 
 For a given time series T, all the data points, t1, t2, 
t3....... tm in T will go through the PIP identification 
process. Initially, the first two PIPs are collected from 
the first and the last points of T. The next PIP will be 
the point in T with the greatest distance to the first two 
PIPs. Subsequently, the fourth PIP will be the point in T 
with the greatest distance to its two adjacent PIPs, 
either between the first and second PIPs or between the 
second and the last PIPs. The process of locating the 
PIPs continues until all the points in T are attached to a 
list. To calculate the distance to the two adjacent PIPs, 
three data point importance evaluation methods have 
been proposed. Fu et al. (2008) introduced three 
methods to evaluate the importance of the PIPs in a 
time series, namely Euclidean Distance (PIP-ED), 
Perpendicular Distance (PIP-PD) and Vertical Distance 
(PIP-VD), as shown in Fig. 1. 
 

 
 
Fig. 1: PIP measurements 
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 PIP-ED ((p1p3, p3p2) calculates the sum of the 
Euclidean distance of the test point to its adjacent 
important points; PIP-PD (p3pv) calculates the 
perpendicular distance between the test point and the 
line connecting the two adjacent PIPs and PIP-VD 
(p3pv) calculates the vertical distance between the test 
point and the line connecting the two adjacent PIPs. 

 
MATERIALS AND METHODS 

 
Zigzag-perceptually important point identification 
method: For a time series T = {t1, t2, t3....... tm}, where 
m is the number of time instances, the main idea of ZIP 
algorithm is to collect the important points that 
influence the zigzag shape of the time series. These 
important points are collected from a time series by 
evaluating the distance of the point to its adjacent 
important points. 
 The selected data point importance evaluation is 
based on the Vertical Distance (VD) (González-
Concepción et al., 2009). However, in our case, we 
made some modifications in the VD measurement to 
evaluate their zigzag states by removing the absolute 
function according to the sign of the VD for the later 
evaluation of their Zigzag Turning Signals (ZTS) (‘+’ if 
VD is less than 0 or ‘–’ if VD is more than 0). The 
modified function of VD can be depicted as follows: 
 

v 1
z v v 3 1 2 1 3

2 1

x x
VD(p ,p ) y y (y (y y ) ) y

x x

−= − = + − −
−

 

  
Where: 
(x1, y2) and (x2, y2) = The coordinates of the points at 

the start and end of a segment 
or p1 and p2, respectively 

p3 (x3, y3) = A point whose VD is 
determined by comparing it 
with p1 and p2  

pv (xv, yv) = A projection of p3 on the line 
connecting p1 and p2 

 
 The following is the algorithm for the identification 
of ZIPs. 
 
Algorithm 1: ZIP Identification: 
 
 Input: sequence T[1..m] 
 Output: ZIPList S[1..n] 
 Begin 

Set S[1] = T[1], S[2]=T[m]; 
Repeat until all segments are marked as ‘N’ 
 Begin 

 Select Point p of a segment that it is- 
 not marked as ‘N’; with maximum- 

 distance to the adjacent ZIPs in S. 
 Assign ZTS to p 
 If ZTS of p equals to one of its- 
 adjacent ZIPs then 
 Select point q of this subsequence- 
 with maximum distance to -p 
 and an adjacent point in S 
 Assign ZTS to q 
 If ZTS of q equals to one of its- 
 adjacent ZIPs or q is not available 
 Mark this segment as ‘N’ 
 Else 
 Add p, q and their ZTSs to S 
 End 
 Else 
 Add p and its ZTS to S 
 End 
 End 
 End 

 
Zigzag-perceptually important point identification 
method: To represent the ZIP identification process, 
we have illustrated each step of the method graphically. 
The empirical example is a synthetic data sequence 
with 17 data points. Figure 2 depicts the steps of ZIP 
identification, Table 1 shows the ZIP list arranged 
based on their importance level collected using ZIP 
identification process of Algorithm 1. 

  
Time series indexing: To structurally organize the 
important points, indexing technique of financial time 
series based on ZIP identification is presented. The 
ZIPs collected from the ZIP identification method have 
been used to construct the tree data structure. The 
constructed tree is a type of M-ary tree known as the 
ZM-Tree. The ZM-Tree follows the M-ary Tree 
constraints with some additional constraints. The 
followings are discussions about the ZM-Tree. 

  

 
 (a) (b) 

 

 
 (c)  (d) 

 
Fig. 2: Steps of ZIP identification process 
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Table 1: ZIP LIST from ZIP-identification process 
Level ZIP y VD ZTS 
0 1 0.50 n/a n/a 
0 17 0.00 n/a n/a 
1 9 1.00 0.75 - 
2 6 0.21 -0.60 + 
2 15 0.53 0.28 - 
2 13 0.41 -0.28 + 
3 2 0.18 -0.26 + 
3 3 0.46 0.27 - 
3 7 0.80 0.33 - 
3 8 0.63 -0.27 + 
3 10 0.86 -0.16 + 
3 11 0.71 0.22 - 
4 4 0.25 -0.13 + 
4 5 0.39 0.16 - 
0 5 10.00 15 20 

 
The ZM-tree structure: The proposed ZM-tree is a 
type of incomplete M-ary tree, where M indicates the 
number of available children for each node, which is 
equal to 3. The ZM-tree is an ordered tree in which: 
 
• The nodes hold 1-2 distinct keys 
• The keys in each node are sorted 
• A node with k elements has k+1 subtrees, where 

the subtrees may be empty 
• The ith subtree of a node [v1,..... vk], 0<i<k, may 

hold only values v in the range of vi<v<vi+1 (v0 is 
assumed to be equal-infinity and vk+1 is assumed to 
be equal + infinity) 

 
 Furthermore, the ZM-Tree comprises constraints 
and information additional to those for the M-ary tree. 
The root contains exactly two keys of the ZIPs from 
level-zero important points and each node has one or two 
key (s) depending on the number of retrieved ZIPs on 
that iteration level. The information stored in each key 
comprises ZIP and ZTS (placed over the key block). 
 
The node structure and contents: There are three 
types of nodes available in ZM-Tree: a single-key node, 
a double-key node and a root node. A single-key node 
is a node that contains only one key, which holds the 
available two children at the left and right subtree. A 
double-key node is a node that contains two ordered 
keys, which holds the available three children at left, 
middle and right subtree. Lastly, a root node is a special 
kind of a double-key node, which holds only the 
available one child at the middle key, while the left and 
right keys are set to null. A node can be a single-key 
node or a double-key node based on the collected ZIPs 
of a subsegment at the specific level. 
 Each node contains a key or keys depending on its 
type. However, each key also comprises some 
necessary information; e.g., a key’s ZTS and its VD. 

ZTS is placed on the top of the corresponding key of 
each node, except the root node, in which there is no 
ZTS. On the other hand, VD is stored in a key structure 
along with a key value, which is necessary for tree 
pruning or tree-retrieval activities. 
 
Tree construction: To build a ZM-Tree, first, all the 
ZIPs are collected and maintained in a sequential ZIPs 
list. The root of the tree is created by reading the first 
two ZIPs from the ZIPs list and storing them in the root 
node. Subsequently, all the other ZIPs are read and put 
to the appropriate nodes and positions. The algorithm 
for creating a ZM-Tree can be illustrated as follows: 
 
Algorithm 2: Insert a new key to the ZM-tree: 
 
 cur ← root of the tree; 
 prev ← null; 
 IF (root is null) THEN 
 root ← create a new TreeNode(newKey); 
 ELSE 
 pos ← seek_position(root, newKey); 
 IF(pos is the tree root) THEN 
 IF (newKey.zip < pos.key(1).zip) THEN 
 pos.key(1) ← pos.key(1); 
 pos.key(2) ← newKey; 
 ELSE 
 pos.key(2) ← newKey; 
 END IF 
 ELSE 
 IF (pos.key(2) is null) THEN 
 IF (pos.key(2).level equals to newKey.level) 
 THEN 
 IF (newKey.zip < pos.key(1).zip) THEN 
 pos.key(2) ← pos.key(1); 
 pos.key(1) ← newKey; 
 ELSE 
 pos.key(2) ← newKey; 
 END IF 
 ELSE 
 IF (newKey.zip < pos.key(1).zip) THEN 
 pos.left ← new TreeNode(newKey); 
 ELSE 
 pos.right ← new TreeNode(newKey); 
 END IF 
 END IF 
 ELSE 
 IF (newKey.zip < pos.key(1).zip) THEN 
  pos.left ← new TreeNode(newKey); 
 ELSE IF (newKey.zip < pos.key(2).zip) 
 THEN 
 pos.middle ← new TreeNode(newKey); 
 ELSE 
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 pos.right ← new TreeNode(newKey); 
 END IF 
 END IF 
 END IF 
 END IF 
 RETURN root; 
End Insert 

 
Algorithm 3: Seek a position in a ZM-Tree for 
inserting a new key: 
 
 cur ← root; 
 prev ← null; 
 REPEAT WHILE cur < > null 
 BEGIN 
 prev ← cur; 
 IF (cur is root) THEN 
 IF (cur.key(1) is null) THEN 
 cur ← cur.key(1); 
 ELSE IF (cur.key(2) is null) THEN 
 cur ← cur.key(2); 
 ELSE 
 cur ← cur.middle; 
 END IF 
 ELSE 
 IF (cur.key(2) is null) THEN 
 IF (cur.key(2).level equals to 
 newKey.level) THEN 
 cur ← cur.key(2); 
 ELSE 
 IF (newKey.zip < cur.key(1).zip) THEN 
 cur ← cur.left; 
 ELSE 
 cur ← cur.right; 
 END IF 
 END IF 
 ELSE 
 IF (newKey.zip < cur.key(1).zip) 
 THEN 
 cur ← cur.left; 
 ELSE IF (newKey.zip < cur.key(2).zip) 
 THEN 
 cur ← cur.middle; 
 ELSE 
 cur ← cur.right; 
 END IF 
 END IF 
 END IF 
 END 
 RETURN prev; 
End Seek_position 

 
 

Fig. 3: ZM-tree representation of ZIPs from Table 1 
 
Example of tree construction: To illustrate the tree 
construction, the ZIPs from Table 1 are used. The 
constructed ZM-Tree is shown as Fig. 3. 
 
Basic tree operations: 
Retrieval: To retrieve a time series from the ZM-tree, 
the data points are retrieved according to their 
importance. 
 The retrieval process starts from the root to their 
leaves, recursively. The steps of the retrieval process 
can be depicted as follows: 
 
• The first two important points stored in the root are 

retrieved and put in the sorted heap 
• The levels of importance and VDs of the children 

nodes are determined. The children nodes are 
retrieved in an ordered manner from left to right. 
Hence, the nodes may comprise one or two keys 
and in this case, all the keys in a node must be 
retrieved at the same time 

• The retrieval can be done recursively until the 
maximum number of the required ZIPs is reached 
or until the last node is retrieved 

 
Tree pruning: In mining of financial time series, 
dimensionality reduction is very important in many 
tasks; e.g., pattern matching and stock trading. 
Dimensionality reduction aims to preserve the nature of 
the shape of the time series by using a minimum 
number of outstanding important points. A few 
numbers of important points representing a time series 
may cause a very large number of errors. However, an 
increasing number of important points may result in a 
decrease in the number of errors. Fu et al. (2008) 
proposed two methods of dimensionality reduction 
using SB-Tree. The first method is based on tree 
pruning method, in which the less important points are 
filtered according to a specified threshold VD value. 
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The second method is an error threshold approach, in 
which the time series is compressed based on 
determining the error of the representation, when 
compared with the original time series. 

 
RESULTS  

 
 For evaluation of our proposed methods; ZIP 
identification, indexing and time series dimensionality 
reduction, the experiments were implemented with Java 
programming language performed on IBM compatible 
PC (Windows XP Professional, CPU Intel Pentium IV 
1.7 GHz, RAM: 512 MB). Our data set was the daily 
close price stock index time series of Stock Exchange 
of Thailand (SET) collected between January 4, 1999 
and July 31, 2006. The indexing performance was 
evaluated by examining the data set, by measuring the 
CPU cost against the number of ZIPs. The various 
numbers of ZIPs employed to build the tree show that 
the increase in the number of ZIPs causes a linear 
increase in the time to build the tree, as can be seen in 
Fig. 4. Similarly, the CPU cost of tree retrievals appear 
linearly increase when the number of retrieved ZIPs 
increase or the tree height increase as shown in Fig. 5 
and Fig. 6 respectively. 

 

 
 
Fig. 4: CPU cost of tree construction against number of 

ZIPs 

 

 
 
Fig. 5: CPU cost of tree retrieval against the numbers 

of retrieved ZIPs 

 Finally, we investigated the task of dimensionality 
reduction by using the tree-pruning approach. The 
increasing of pruning threshold causes the error 
increase instantly (Fig. 7). The comparison of the errors 
of dimensionality reduction demonstrated that the costs 
of dimensionality reduction in ZM-Tree and SB-Tree 
approaches are very high when using a very few 
number of important points and the number of errors 
decreases quickly when the number of important points 
is increased. The graph shown in Fig. 8 indicates a 
slight decline when the number of important points is 
>12. Furthermore, the examples of the comparison of 
reconstructed time series of the retrieved important 
points with their original time series are illustrated in 
Fig. 9 which shows its zigzag shape movement time 
series. 
 

 
 
Fig. 6: CPU cost of the tree retrievals against the tree-

height level 
 

 
 

Fig. 7: Tree-pruning thresholds and their errors 
 

 
 

Fig. 8: Comparison of dimensionality reduction errors 
between ZM-tree and SB-tree 

 

 
 (a)  (b) 

 
Fig. 9: Comparison of dimensionality reduction errors 

for (a) ZM-Tree and (b) SB-Tree 
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DISCUSSION 
 

 Our study experimental results show that the 
proposed technique of financial time series indexing 
using ZM-Tree illustrates in acceptable performance 
comparing the similar existing technique like SB-Tree. 
Furthermore, ZM-Tree represents the reconstructed 
time series in zigzag manners which are useful in the 
works of pattern mining. 

 
CONCLUSION 

 
 In this study, we have proposed novel methods of 
financial time series indexing by considering their 
zigzag movement. The methods consist of two major 
algorithms: first, the identification of important points, 
namely the ZIPs identification method and next, the 
indexing method by applying ZM-Tree. The ZM-Tree 
data structure clearly illustrates its acceptable benefits 
in dimensionality reduction, when compared with the 
SB-Tree. However, future experiments must be carried 
out using several sizes of time series and various data 
sets, to clearly compare its performance in various 
conditions. 
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