
Journal of Computer Science 6 (12): 1389-1395, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Chawalsak Phetchanchai, Department of Computer Science, Faculty of Science and Technology,
 Suan Dusit Rajabhat University, Bangkok, Thailand, 10300

1389

Index Financial Time Series Based on Zigzag-Perceptually Important Points

1Chawalsak Phetchanchai, 2Ali Selamat, 3Amjad Rehman and 2Tanzila Saba

1Department of Computer Science, Faculty of Science and Technology,
Suan Dusit Rajabhat University, Bangkok, Thailand, 10300

2Department of Software Engineering, Faculty of Computer Science and Information Systems,
University Technology Malaysia, 81300 Skudai, Johor, Malaysia

3 Department of Computer Science, Faculty of Computer Science and Information Sciences
Al-Imam Muhammad ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia

Abstract: Problem statement: Financial time series were usually large in size, unstructured and of
high dimensionality. Since, the illustration of financial time series shape was typically characterized by
a few number of important points. These important points moved in zigzag directions which could
form technical patterns. However, these important points exhibited in different resolutions and difficult
to determine. Approach: In this study, we proposed novel methods of financial time series indexing
by considering their zigzag movement. The methods consist of two major algorithms: first, the
identification of important points, namely the Zigzag-Perceptually Important Points (ZIPs)
identification method and next, the indexing method namely Zigzag based M-ary Tree (ZM-Tree) to
structure and organize the important points. Results: The errors of the tree building and retrieving
compared to the original time series increased when the important points increased. The dimensionality
reduction using ZM-Tree based on tree pruning and number of retrieved points techniques performed
better when the number of important points increased. Conclusion: Our proposed techniques
illustrated mostly acceptable performance in tree operations and dimensionality reduction comparing
to existing similar technique like Specialize Binary Tree (SB-Tree).

Key words: Financial time series indexing, important points, ZM-Tree, time series

INTRODUCTION

 Financial time series including stock prices,
exchange rates and dollar indices are exhibited as a
sequence of observed data that are generated
chronologically. As financial time series are usually
large in size, unstructured and of high dimensionality,
the method to locate the time series of interest is a
nontrivial problem. Mining these data is usually taken
high costs. Indexing these financial time series is one of
the possible solutions to increase the processing
performance (Basu and Meckesheimer, 2007).
 The illustration of the financial time series shape is
typically characterized by a few important points within
the multi-resolution views (Fu et al., 2008). These
important points represent the trend movement changes
of up and down directions which are formed in a zigzag
manner in a specific view. A zigzag movement can be
considered as a zigzag feature, which is observed by
filtering out random noise. A zigzag feature

demonstrates the past performance trends and only the
most important changes. Most of the uses of a zigzag
feature in technical analysis are related to the
identification of reversal patterns, price-retracement
measures and counting of corrective waves.
 In this study, we have proposed a financial time
series indexing approach. Indeed, we have also
proposed a method for identifying the important zigzag
points in multi-resolution, namely the Zigzag-
Perceptually Important Points (ZIPs) identification
method. Furthermore, by using our proposed Zigzag-
based M-ary Tree (ZM-Tree), we were able to index
these important zigzag points.

Related study:
Indexing a time series: Indexing a time series is
necessary for several researches on similarity searching
(Denton et al., 2009). A fast subsequence matching
technique that allows similarity search among time
series of different sizes is proposed in (Agrawal et al.,

J. Computer Sci., 6 (12): 1389-1395, 2010

1390

1993). They extracted a time-series feature and divided
it into several subsequences by using a sliding window.
Each subsequence was represented by a Minimum
Bounding Rectangle (MBR), which was further indexed
and stored using an ST-index. Furthermore, Lin et al.
(2003) proposed a new method based on Piecewise
Aggregate Approximation (PAA) (Yi and Faloutos,
2000; Bhansali and Ippoliti, 2005), known as
Symbolic Aggregate Approximation (SAX). SAX
allows a time series of arbitrary length s to be reduced
to equi-length segmented time series p by using PAA
where p<<s and then symbolizes the PAA
representation into a discrete string. SAX was later
improved as indexable SAX or iSAX and indexed for
mining terabyte-sized time series (Shieh and Keogh,
2008). However, the above-mentioned approaches of
indexing focus on dividing a time series into several
subsequences without concentrating on the important
points that are represented in the financial time series.
 Important points are very significant as well as
nontrivial in financial time series analysis (González-
Concepción et al., 2009). Ali (2006) introduced the
Perceptually Important Points (PIPs) identification
method for using in patterns matching of financial
applications. Later, Fu et al. (2008) proposed a method
to index PIPs more structurally by means of the tree
data structure known as the Specialized Binary Tree
(SB-Tree), which provided the benefits of efficient
computation of cumulative new data points, retrievals
and access. Unfortunately, the representation of
important points in a time series was not in the zigzag
form. Smadi and Mjalli (2007) proposed a Landmark
Model that relies on human spatial memory. The
Landmark Model produced a zigzag compressed time
series. The model was observed to collect the greatest
important points in a time series with a specific
Minimal Distance/Percentage Principle (MD/PP) that
has its own intuitive meaning. For example, if a stock
trader trades once for a week (5 business days) and
regards a 10% gain or loss as significant, then MD is set
to 5 and PP is set to 10. The Landmark Model
represents a time series that filters out the noise and
retains only the significant important points underlying
the specific MD/PP. For querying the Landmark
sequence, they recommended that the Landmark
sequence must be more similar to a string sequence,
rather than a multidimensional sequence; thus, string
indexing is more suitable than the use of R-tree. Similar
concepts regarding the identification of important
points can be found in studies conducted in (Pratt and
Fink, 2002; Fink and Pratt, 2003). They compressed a
time series by selecting some of the minima and
maxima or important points of peaks and troughs and

dropping the other points. The intuitive idea is to
discard the minor fluctuations and retain the major
minima and maxima. The compression rate is
controlled using a parameter R, which is always >1; an
increase in R leads to the selection of fewer points. In
addition, they also developed a technique for indexing
compressed series, which supports the retrieval of series
similar to a given pattern by considering their major
inclines that are upward and downward segments of the
series. However, these techniques do not illustrate the
data structure as being well-organized and store the
identified important points.

Perceptually important points identification
method: The concept of Perceptually Important Points
(PIPs) identification is based on the importance of data
points (Ali, 2006). This importance is defined by the
domination of a data point on the shape of the time
series. A data point that has a greater domination on the
overall shape of the series is considered to be more
important.
 For a given time series T, all the data points, t1, t2,
t3....... tm in T will go through the PIP identification
process. Initially, the first two PIPs are collected from
the first and the last points of T. The next PIP will be
the point in T with the greatest distance to the first two
PIPs. Subsequently, the fourth PIP will be the point in T
with the greatest distance to its two adjacent PIPs,
either between the first and second PIPs or between the
second and the last PIPs. The process of locating the
PIPs continues until all the points in T are attached to a
list. To calculate the distance to the two adjacent PIPs,
three data point importance evaluation methods have
been proposed. Fu et al. (2008) introduced three
methods to evaluate the importance of the PIPs in a
time series, namely Euclidean Distance (PIP-ED),
Perpendicular Distance (PIP-PD) and Vertical Distance
(PIP-VD), as shown in Fig. 1.

Fig. 1: PIP measurements

J. Computer Sci., 6 (12): 1389-1395, 2010

1391

 PIP-ED ((p1p3, p3p2) calculates the sum of the
Euclidean distance of the test point to its adjacent
important points; PIP-PD (p3pv) calculates the
perpendicular distance between the test point and the
line connecting the two adjacent PIPs and PIP-VD
(p3pv) calculates the vertical distance between the test
point and the line connecting the two adjacent PIPs.

MATERIALS AND METHODS

Zigzag-perceptually important point identification
method: For a time series T = {t1, t2, t3....... tm}, where
m is the number of time instances, the main idea of ZIP
algorithm is to collect the important points that
influence the zigzag shape of the time series. These
important points are collected from a time series by
evaluating the distance of the point to its adjacent
important points.
 The selected data point importance evaluation is
based on the Vertical Distance (VD) (González-
Concepción et al., 2009). However, in our case, we
made some modifications in the VD measurement to
evaluate their zigzag states by removing the absolute
function according to the sign of the VD for the later
evaluation of their Zigzag Turning Signals (ZTS) (‘+’ if
VD is less than 0 or ‘–’ if VD is more than 0). The
modified function of VD can be depicted as follows:

v 1
z v v 3 1 2 1 3

2 1

x x
VD(p ,p) y y (y (y y)) y

x x

−= − = + − −
−

Where:
(x1, y2) and (x2, y2) = The coordinates of the points at

the start and end of a segment
or p1 and p2, respectively

p3 (x3, y3) = A point whose VD is
determined by comparing it
with p1 and p2

pv (xv, yv) = A projection of p3 on the line
connecting p1 and p2

 The following is the algorithm for the identification
of ZIPs.

Algorithm 1: ZIP Identification:

 Input: sequence T[1..m]
 Output: ZIPList S[1..n]
 Begin

Set S[1] = T[1], S[2]=T[m];
Repeat until all segments are marked as ‘N’
 Begin

 Select Point p of a segment that it is-
 not marked as ‘N’; with maximum-

 distance to the adjacent ZIPs in S.
 Assign ZTS to p
 If ZTS of p equals to one of its-
 adjacent ZIPs then
 Select point q of this subsequence-
 with maximum distance to -p
 and an adjacent point in S
 Assign ZTS to q
 If ZTS of q equals to one of its-
 adjacent ZIPs or q is not available
 Mark this segment as ‘N’
 Else
 Add p, q and their ZTSs to S
 End
 Else
 Add p and its ZTS to S
 End
 End
 End

Zigzag-perceptually important point identification
method: To represent the ZIP identification process,
we have illustrated each step of the method graphically.
The empirical example is a synthetic data sequence
with 17 data points. Figure 2 depicts the steps of ZIP
identification, Table 1 shows the ZIP list arranged
based on their importance level collected using ZIP
identification process of Algorithm 1.

Time series indexing: To structurally organize the
important points, indexing technique of financial time
series based on ZIP identification is presented. The
ZIPs collected from the ZIP identification method have
been used to construct the tree data structure. The
constructed tree is a type of M-ary tree known as the
ZM-Tree. The ZM-Tree follows the M-ary Tree
constraints with some additional constraints. The
followings are discussions about the ZM-Tree.

 (a) (b)

 (c) (d)

Fig. 2: Steps of ZIP identification process

J. Computer Sci., 6 (12): 1389-1395, 2010

1392

Table 1: ZIP LIST from ZIP-identification process
Level ZIP y VD ZTS
0 1 0.50 n/a n/a
0 17 0.00 n/a n/a
1 9 1.00 0.75 -
2 6 0.21 -0.60 +
2 15 0.53 0.28 -
2 13 0.41 -0.28 +
3 2 0.18 -0.26 +
3 3 0.46 0.27 -
3 7 0.80 0.33 -
3 8 0.63 -0.27 +
3 10 0.86 -0.16 +
3 11 0.71 0.22 -
4 4 0.25 -0.13 +
4 5 0.39 0.16 -
0 5 10.00 15 20

The ZM-tree structure: The proposed ZM-tree is a
type of incomplete M-ary tree, where M indicates the
number of available children for each node, which is
equal to 3. The ZM-tree is an ordered tree in which:

• The nodes hold 1-2 distinct keys
• The keys in each node are sorted
• A node with k elements has k+1 subtrees, where

the subtrees may be empty
• The ith subtree of a node [v1,..... vk], 0<i<k, may

hold only values v in the range of vi<v<vi+1 (v0 is
assumed to be equal-infinity and vk+1 is assumed to
be equal + infinity)

 Furthermore, the ZM-Tree comprises constraints
and information additional to those for the M-ary tree.
The root contains exactly two keys of the ZIPs from
level-zero important points and each node has one or two
key (s) depending on the number of retrieved ZIPs on
that iteration level. The information stored in each key
comprises ZIP and ZTS (placed over the key block).

The node structure and contents: There are three
types of nodes available in ZM-Tree: a single-key node,
a double-key node and a root node. A single-key node
is a node that contains only one key, which holds the
available two children at the left and right subtree. A
double-key node is a node that contains two ordered
keys, which holds the available three children at left,
middle and right subtree. Lastly, a root node is a special
kind of a double-key node, which holds only the
available one child at the middle key, while the left and
right keys are set to null. A node can be a single-key
node or a double-key node based on the collected ZIPs
of a subsegment at the specific level.
 Each node contains a key or keys depending on its
type. However, each key also comprises some
necessary information; e.g., a key’s ZTS and its VD.

ZTS is placed on the top of the corresponding key of
each node, except the root node, in which there is no
ZTS. On the other hand, VD is stored in a key structure
along with a key value, which is necessary for tree
pruning or tree-retrieval activities.

Tree construction: To build a ZM-Tree, first, all the
ZIPs are collected and maintained in a sequential ZIPs
list. The root of the tree is created by reading the first
two ZIPs from the ZIPs list and storing them in the root
node. Subsequently, all the other ZIPs are read and put
to the appropriate nodes and positions. The algorithm
for creating a ZM-Tree can be illustrated as follows:

Algorithm 2: Insert a new key to the ZM-tree:

 cur ← root of the tree;
 prev ← null;
 IF (root is null) THEN
 root ← create a new TreeNode(newKey);
 ELSE
 pos ← seek_position(root, newKey);
 IF(pos is the tree root) THEN
 IF (newKey.zip < pos.key(1).zip) THEN
 pos.key(1) ← pos.key(1);
 pos.key(2) ← newKey;
 ELSE
 pos.key(2) ← newKey;
 END IF
 ELSE
 IF (pos.key(2) is null) THEN
 IF (pos.key(2).level equals to newKey.level)
 THEN
 IF (newKey.zip < pos.key(1).zip) THEN
 pos.key(2) ← pos.key(1);
 pos.key(1) ← newKey;
 ELSE
 pos.key(2) ← newKey;
 END IF
 ELSE
 IF (newKey.zip < pos.key(1).zip) THEN
 pos.left ← new TreeNode(newKey);
 ELSE
 pos.right ← new TreeNode(newKey);
 END IF
 END IF
 ELSE
 IF (newKey.zip < pos.key(1).zip) THEN
 pos.left ← new TreeNode(newKey);
 ELSE IF (newKey.zip < pos.key(2).zip)
 THEN
 pos.middle ← new TreeNode(newKey);
 ELSE

J. Computer Sci., 6 (12): 1389-1395, 2010

1393

 pos.right ← new TreeNode(newKey);
 END IF
 END IF
 END IF
 END IF
 RETURN root;
End Insert

Algorithm 3: Seek a position in a ZM-Tree for
inserting a new key:

 cur ← root;
 prev ← null;
 REPEAT WHILE cur < > null
 BEGIN
 prev ← cur;
 IF (cur is root) THEN
 IF (cur.key(1) is null) THEN
 cur ← cur.key(1);
 ELSE IF (cur.key(2) is null) THEN
 cur ← cur.key(2);
 ELSE
 cur ← cur.middle;
 END IF
 ELSE
 IF (cur.key(2) is null) THEN
 IF (cur.key(2).level equals to
 newKey.level) THEN
 cur ← cur.key(2);
 ELSE
 IF (newKey.zip < cur.key(1).zip) THEN
 cur ← cur.left;
 ELSE
 cur ← cur.right;
 END IF
 END IF
 ELSE
 IF (newKey.zip < cur.key(1).zip)
 THEN
 cur ← cur.left;
 ELSE IF (newKey.zip < cur.key(2).zip)
 THEN
 cur ← cur.middle;
 ELSE
 cur ← cur.right;
 END IF
 END IF
 END IF
 END
 RETURN prev;
End Seek_position

Fig. 3: ZM-tree representation of ZIPs from Table 1

Example of tree construction: To illustrate the tree
construction, the ZIPs from Table 1 are used. The
constructed ZM-Tree is shown as Fig. 3.

Basic tree operations:
Retrieval: To retrieve a time series from the ZM-tree,
the data points are retrieved according to their
importance.
 The retrieval process starts from the root to their
leaves, recursively. The steps of the retrieval process
can be depicted as follows:

• The first two important points stored in the root are

retrieved and put in the sorted heap
• The levels of importance and VDs of the children

nodes are determined. The children nodes are
retrieved in an ordered manner from left to right.
Hence, the nodes may comprise one or two keys
and in this case, all the keys in a node must be
retrieved at the same time

• The retrieval can be done recursively until the
maximum number of the required ZIPs is reached
or until the last node is retrieved

Tree pruning: In mining of financial time series,
dimensionality reduction is very important in many
tasks; e.g., pattern matching and stock trading.
Dimensionality reduction aims to preserve the nature of
the shape of the time series by using a minimum
number of outstanding important points. A few
numbers of important points representing a time series
may cause a very large number of errors. However, an
increasing number of important points may result in a
decrease in the number of errors. Fu et al. (2008)
proposed two methods of dimensionality reduction
using SB-Tree. The first method is based on tree
pruning method, in which the less important points are
filtered according to a specified threshold VD value.

J. Computer Sci., 6 (12): 1389-1395, 2010

1394

The second method is an error threshold approach, in
which the time series is compressed based on
determining the error of the representation, when
compared with the original time series.

RESULTS

 For evaluation of our proposed methods; ZIP
identification, indexing and time series dimensionality
reduction, the experiments were implemented with Java
programming language performed on IBM compatible
PC (Windows XP Professional, CPU Intel Pentium IV
1.7 GHz, RAM: 512 MB). Our data set was the daily
close price stock index time series of Stock Exchange
of Thailand (SET) collected between January 4, 1999
and July 31, 2006. The indexing performance was
evaluated by examining the data set, by measuring the
CPU cost against the number of ZIPs. The various
numbers of ZIPs employed to build the tree show that
the increase in the number of ZIPs causes a linear
increase in the time to build the tree, as can be seen in
Fig. 4. Similarly, the CPU cost of tree retrievals appear
linearly increase when the number of retrieved ZIPs
increase or the tree height increase as shown in Fig. 5
and Fig. 6 respectively.

Fig. 4: CPU cost of tree construction against number of

ZIPs

Fig. 5: CPU cost of tree retrieval against the numbers

of retrieved ZIPs

 Finally, we investigated the task of dimensionality
reduction by using the tree-pruning approach. The
increasing of pruning threshold causes the error
increase instantly (Fig. 7). The comparison of the errors
of dimensionality reduction demonstrated that the costs
of dimensionality reduction in ZM-Tree and SB-Tree
approaches are very high when using a very few
number of important points and the number of errors
decreases quickly when the number of important points
is increased. The graph shown in Fig. 8 indicates a
slight decline when the number of important points is
>12. Furthermore, the examples of the comparison of
reconstructed time series of the retrieved important
points with their original time series are illustrated in
Fig. 9 which shows its zigzag shape movement time
series.

Fig. 6: CPU cost of the tree retrievals against the tree-

height level

Fig. 7: Tree-pruning thresholds and their errors

Fig. 8: Comparison of dimensionality reduction errors
between ZM-tree and SB-tree

 (a) (b)

Fig. 9: Comparison of dimensionality reduction errors

for (a) ZM-Tree and (b) SB-Tree

J. Computer Sci., 6 (12): 1389-1395, 2010

1395

DISCUSSION

 Our study experimental results show that the
proposed technique of financial time series indexing
using ZM-Tree illustrates in acceptable performance
comparing the similar existing technique like SB-Tree.
Furthermore, ZM-Tree represents the reconstructed
time series in zigzag manners which are useful in the
works of pattern mining.

CONCLUSION

 In this study, we have proposed novel methods of
financial time series indexing by considering their
zigzag movement. The methods consist of two major
algorithms: first, the identification of important points,
namely the ZIPs identification method and next, the
indexing method by applying ZM-Tree. The ZM-Tree
data structure clearly illustrates its acceptable benefits
in dimensionality reduction, when compared with the
SB-Tree. However, future experiments must be carried
out using several sizes of time series and various data
sets, to clearly compare its performance in various
conditions.

REFERENCES

Agrawal, R., C. Faloutsos, A.N. Swami, 1993. Efficient

similarity search in sequence databases. Proceeding
of the 4th Conference on Foundations of Data
Organization and Algorithms, Oct. 13-15,
Springer-Verlag, London, UK., pp: 69-84.

http://portal.acm.org/citation.cfm?id=652239
Ali, A.A., 2006. On optimistic concurrency control for

real-time database systems. Am. J. Applied Sci.,
3: 1706-1710.

 http://www.scipub.org/fulltext/ajas/ajas321706-
1710.pdf

Basu, S. and M. Meckesheimer, 2007. Automatic
outlier detection for time series: An application to
sensor data. Knowl. Inform. Syst., 11: 137-154.
DOI: 10.1007/s10115-006-0026-6

Bhansali, R.J. and L. Ippoliti, 2005. Inverse correlations
for multiple time series and Gaussian random fields
and measures of their linear determinism. J. Math.
Stat., 1: 287-299.
http://www.scipub.org/fulltext/jms2/jms214287-
299.pdf

Denton, A.M., C.A. Besemann and D.H. Dorr, 2009.
Pattern-based time-series subsequence clustering
using radial distribution functions. Knowl. Inform.
Syst., 18: 1-27. DOI: 10.1007/s10115-008-0125-7

Fink, E. and K.B. Pratt, 2003. Indexing of compressed
time series. Data Min. Time Ser. Databases, 1: 51-78.

Fu, T.C., F.L. Chung, R. Luk and C.M. Ng, 2008.
Representing financial time series based on data
point importance. Eng. Applied Artif. Intel.,
21: 277-300. DOI: 10.1016/j.engappai.2007.04.009

González-Concepción, C., M.C. Gil-Fariña and C.
Pestano-Gabino, 2009. The numerical computation
of rational structures and asymptotic standard
deviations in causal time series data. J. Mathe.
Stat., 5: 215-225.
http://www.scipub.org/fulltext/jms2/jms253215-
225.pdf

Lin, J., E. Keogh, S. Lonardi and B. Chiu, 2003. A
symbolic representation of time series, with
implications for streaming algorithms. Proceedings
of the 8th ACM SIGMOD workshop on Research
Issues in Data Mining and Knowledge Discovery,
June 13-13, ACM Press, San Diego, California,
pp: 2-11. DOI: 10.1145/882082.882086

Pratt, K.B. and E. Fink, 2002. Search for patterns in
compressed time series. Int. J. Image Graph., 2: 89-106.

Shieh, J. and E. Keogh, 2008. iSAX: Indexing and
mining terabyte sized time series. Proceeding of
the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Aug.
24-27, ACM Press, Las Vegas, Nevada, USA.,
pp: 623-631. DOI: 10.1145/1401890.1401966

Smadi, M.M. and F.S. Mjalli, 2007. Forecasting air
temperatures using time series models and neural-
based algorithms. J. Math. Stat., 3: 44-48.
http://www.scipub.org/fulltext/jms2/jms23244-48.pdf

Yi, B.K. and C. Faloutos, 2000. Fast time series
indexing for arbitrary Lp norms. Proceedings of
the 26th International Conference on Very Large
Data Bases, Sept. 10-14, Morgan Kaufmann
Publishers Inc., San Francisco, CA., USA.,
pp: 385-394.

 http://portal.acm.org/citation.cfm?id=645926.671689

