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The problem of determining power integral bases in algebraic number
fields is equivalent to solving the corresponding index form equations. As
is known (cf. Győry [25]), every index form equation can be reduced to
an equation system consisting of unit equations in two variables over the
normal closure of the original field. However, the unit rank of the normal
closure is usually too large for practical use. In a recent paper Győry [27]
succeeded in reducing index form equations to systems of unit equations in
which the unknown units are elements of unit groups generated by much
fewer generators. On the other hand, Wildanger [32] worked out an efficient
enumeration algorithm that makes it feasible to solve unit equations even if
the rank of the unit group is ten. Combining these developments we describe
an algorithm to solve completely index form equations in quintic fields. The
method is illustrated by numerical examples: we computed all power integral
bases in totally real quintic fields with Galois group S5.

1. Introduction. Let K be an algebraic number field of degree n with
ring of integers ZK . It is a classical problem in algebraic number theory to
decide if K admits power integral bases, that is, integral bases of the form
{1, α, α2, . . . , αn−1}. If {1, ω2, . . . , ωn} is any integral basis of K, then

DK/Q(ω2X2 + . . .+ ωnXn) = (I(X2, . . . , Xn))2DK
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where DK denotes the discriminant of the field K, and I(X2, . . . , Xn) is a
form of degree n(n − 1)/2 in n − 1 variables with integer coefficients. This
form is called the index form corresponding to the above integral basis. As
is known, α = x1 +ω2x2 + . . .+ωnxn ∈ ZK generates a power integral basis
of K if and only if x1 ∈ Z and (x2, . . . , xn) is a solution of the index form
equation

(1) I(x2, . . . , xn) = ±1 in x2, . . . , xn ∈ Z.
Hence the problem of determining all power integral bases in K is equivalent
to solving this equation.

The first effective upper bounds for the solutions of index form equations
were derived by Győry [25] by means of Baker’s method. As a consequence,
it was shown in [25] that up to translation by elements of Z, there are
only finitely many generators of power integral bases in a number field, and
effective bounds were given for the heights of these generators. Several gen-
eralizations and improvements were later established; for references see [26],
[6], [4] and [28]. The best known bounds can be found in [27]. Unfortunately
these general bounds are much too large for practical applications.

Using Baker’s method and reduction algorithms Gaál and Schulte [23]
determined all power integral bases in cubic number fields of small discrimi-
nant. The quartic fields were considered by Gaál, Pethő and Pohst in a series
of papers (cf. e.g. [15]–[19]). Efficient algorithms were given for special quar-
tic fields, and a general approach is described in [18] and [19] for arbitrary
quartic fields. Independently, by algebraic means Koppenhöfer [30] devel-
oped a similar method for quartic fields. A special family of cyclic quintic
fields was studied by Gaál and Pohst [21]. The problem of power integral
bases in sextic fields with quadratic subfields was investigated by Gaál [8],
[9] and Gaál and Pohst [20]. Higher degree number fields that are composits
of two subfields were considered in Gaál [12], and an application of these
ideas to fields of degree 9 being composits of cubic fields can be found in
Gaál [14]. For a survey on this topic see [10], [11], [13]. Note that utilizing
the subfield structure of the fields under consideration and the correspond-
ing factorization of the index form, in the above mentioned papers the index
form equation was always reduced to simpler types of diophantine equations
of lower degree and in a fewer number of variables. In these investigations
several types of Thue equations play an important role (cf. [11]).

Using the general approach of Győry [25], the index form equation (1)
can be reduced to an equation system consisting of unit equations in two
variables, where the unknown units belong to the normal closure of the
field K. Further, applying Baker’s method, a bound can be obtained for
the absolute values of the exponents of the fundamental units in the rep-
resentations of the unknown units. For concrete equations the next step is
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to reduce this bound by using the LLL algorithm. The reduction algorithm
being very efficient, a crucial problem in the resolution of these unit equa-
tions is to test the extremely large number of possible “small” exponents
with absolute values under the reduced bound. Even if the reduced bound
is moderate (< 100), the direct enumeration is almost hopeless whenever
the number of exponents is greater than 4. Using this approach Klebel [29]
solved relative index form equations in normal extensions of low degree over
imaginary quadratic fields. Further, Smart [31] and recently Wildanger [32]
gave ideas how to diminish the number of unit equations to be solved by
using the action of the Galois group on these equations. By means of this
method Smart [31] solved index form equations in sextic fields having an
imaginary quadratic subfield.

Wildanger [32] has recently worked out a very efficient method for the
enumeration of the “small” values of the exponents in a unit equation. This
is based on the ellipsoid method of Fincke and Pohst [5]. This enabled him
to solve index form equations in normal fields of degree 8, 10, 12, 16, 18 and
22 whose unit ranks do not exceed 10.

Recently Győry [27] has refined his general approach [25] by reducing
the index form equation (1) to a system of unit equations in which the
unknown units are elements of unit groups having much fewer generators.
Therefore the number of “small” exponents to be tested can be considerably
diminished.

The combination of the above mentioned new approach of Győry [27]
with a variant of Wildanger’s enumeration method described by Gaál and
Pohst [22] makes it feasible to solve index form equations in quintic fields.
The possible Galois groups of quintic fields are C5 (the cyclic group), D5

(the dihedral group of order 10), M20 (the metacyclic group of degree 5),
A5 and S5 (cf. [2]). By a theorem of Gras [24] the index form equation (1)
has no solution for quintic K having cyclic Galois group, except for the
case when K is the maximal real subfield of the 11th cyclotomic field. The
orders of the groups C5 and D5 do not exceed 10, hence in these cases the
Wildanger’s algorithm can be applied to solve the index form equation.

In the present paper we consider the most difficult cases, that is, quintic
fields with Galois groups M20, A5 or S5. Also, to make the presentation
simpler we restrict ourselves to the most interesting case of totally real fields.
In Sections 2–6 we describe our algorithm for the resolution of index form
equations. As an illustration of our method we calculate in Section 7 all
solutions of index form equations in two totally real quintic fields with Galois
group S5.

2. Reduction to unit equations. We now apply the general method
of Győry [27] to reduce index form equations in quintic fields to appropri-
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ate systems of unit equations. A suitable representation (4) of the integer
elements that makes the formulas simpler was formerly used e.g. by Gaál,
Pethő and Pohst [18].

LetK be a totally real quintic field with Galois groupM20, A5 or S5, with
ring of integers ZK and discriminant DK . Let ξ be an integral generator of
K with conjugates ξ(1) = ξ, ξ(2), . . . , ξ(5) over Q. We write K(i) for Q(ξ(i)).

For any primitive integral element ϑ of K we denote by

I(ϑ) = (ZK : Z[ϑ])

the index of ϑ. Then

(2) DK/Q(ϑ) = I(ϑ)2DK .

For d = I(ξ) we have d · ZK ⊆ Z[ξ]. Let {1, ω2, ω3, ω4, ω5} be an integral
basis of K, where

ωi =
ai0 + ai1ξ + . . .+ ai4ξ

4

d
for i = 2, . . . , 5

with rational integers aij . Denote by I(X2, . . . , X5) the corresponding index
form. For each solution (x2, . . . , x5) ∈ Z4 of the index form equation

(3) I(x2, . . . , x5) = ±1

consider ϑ = x2ω2 + . . .+ x5ω5. We can write ϑ as

(4) ϑ =
y0 + y1ξ + . . .+ y4ξ

4

d
with y0, y1, . . . , y4 ∈ Z. In our algorithm we are going to determine y1, . . . , y4.
The corresponding x2, . . . , x5 can be easily determined by using the above
representations of ω2, . . . , ω5.

Consider the linear forms

lij(Y ) = (ξ(i) − ξ(j))Y1 + . . .+ ((ξ(i))4 − (ξ(j))4)Y4

for distinct i, j with 1 ≤ i, j ≤ 5. It follows from (2) and (4) that ϑ repre-
sented in the form (4) generates a power integral basis in K if and only if
y = (y1, . . . , y4) satisfies the equation

(5)
∏

1≤i,j≤5
i 6=j

lij(y) = d18DK/Q(ξ) in y ∈ Z4.

Consider the subfield Li,j = Q(ξ(i) + ξ(j), ξ(i)ξ(j)) of K(i)K(j). The
groups M20, A5 and S5 are doubly transitive. Hence the field K(i)K(j) is
of degree 5 · 4 = 20 over Q. The elements of Li,j remain fixed under the
action (i, j) → (j, i) of the Galois group, thus Li,j is a proper subfield of
K(i)K(j). Since Q(ξ(i), ξ(j)) is a quadratic extension of Li,j , in our case Li,j
is of degree 10 over Q. (Note that in our examples in Section 7 we had
Li,j = Q(ξ(i) + ξ(j)) = Q(ξ(i)ξ(j)).)
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Denote by λ(i,j) the conjugate of any λ = λ(1,2) ∈ L1,2 corresponding to
ξ(i) + ξ(j), ξ(i)ξ(j) (1 ≤ i < j ≤ 5) and for simplicity let λ(j,i) = λ(i,j). It
follows from (4) that

δ =
d(ϑ(1) − ϑ(2))
ξ(1) − ξ(2)

is an integer in the field L1,2. In view of (4), equation (5) can be written in
the form ∏

1≤i<j≤5

δ(i,j) = ±d9.

This is just a norm equation in L1,2 over Q. Hence there exist an integer γ
of norm ±d9 and a unit η in L1,2 such that

(6) δ(i,j) = γ(i,j)η(i,j)

for any i, j with 1 ≤ i < j ≤ 5. Note that the following computations must
be performed for a complete set of non-associate elements of norm ±d9.

For any distinct i, j, k we have

(7) lij(Y ) + ljk(Y ) + lki(Y ) = 0.

Putting

α(ijk) =
γ(i,j)(ξ(i) − ξ(j))
γ(i,k)(ξ(i) − ξ(k))

,

we deduce from (4), (6) and (7) that

(8) α(ijk) η
(i,j)

η(i,k)
+ α(kji) η

(k,j)

η(k,i)
= 1.

Unit equations of this type were considered in [25], [31] and [32] as equa-
tions in the normal closure of K or in K(i)K(j)K(k), and the corresponding
unknown units η(i,j)/η(i,k), η(k,j)/η(k,i) were represented in a system of fun-
damental units of that field. In the present situation, if e.g. the Galois group
of K is S5, then the number of fundamental units is 5 · 4 · 3− 1 = 59. As we
shall see below, the new approach of [27] requires much fewer generators.

Denote by {ε1, . . . , ε9} a set of fundamental units in L1,2. Then there
are rational integer exponents a1, . . . , a9 such that

η(i,j) = ±(ε(i,j)
1 )a1 . . . (ε(i,j)

9 )a9

for any (i, j) (1 ≤ i < j ≤ 5). Introduce

(9) ν
(ijk)
h =

ε
(i,j)
h

ε
(i,k)
h

(h = 1, . . . , 9), µ(ijk) =
9∏

h=1

(ν(ijk)
h )ah

and

(10) β(ijk) = α(ijk)µ(ijk).
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Then the unit equation (8) can be written in the form

(11) β(ijk) + β(kji) = 1

or

(12) α(ijk)(ν(ijk)
1 )a1 . . . (ν(ijk)

9 )a9 + α(kji)(ν(kji)
1 )a1 . . . (ν(kji)

9 )a9 = 1.

In view of our construction we have only 9 generators for both unknown
units, with the same exponents a1, . . . , a9.

We note that the column vectors of the 60 by 9 matrix

(13) (log |ν(ijk)
h |) 1≤i,j,k≤5

1≤h≤9

are linearly independent, where all distinct indices i, j, k between 1 and 5
are considered. This follows by using the facts that all 9th order minors of
the 10 by 9 matrix

(log |ε(i,j)
h |) 1≤i<j≤5

1≤h≤9

are different from zero and that the sum of the row vectors of this matrix is
the zero vector.

In [27] it was shown in full generality that, in contrast to the arguments
of [25], [31] and [32], it suffices to deal with some (in [27] well defined) unit
equations of shape (8) only, which come from relations of the form (7) having
the property σ(ξ(i)) = ξ(i), σ(ξ(j)) = ξ(k) for some element σ of the Galois
group. In our case this holds for each i, j, k, since the Galois group is doubly
transitive. Further, in this case it is enough to solve a single unit equation,
say equation (12) for i = 1, j = 2, k = 3. Indeed, if (12) is already solved
in a1, . . . , a9 for this choice of i, j, k, then we consider the system of linear
equations

(14) l1j(y) = ±(ξ(1) − ξ(j))γ(1,j)(ε(1,j)
1 )a1 . . . (ε(1,j)

9 )a9

in y = (y1, . . . , y4) for j = 2, 3, 4 and 5. These linear equations are conjugate
to each other over Q. The linear forms l1j(Y ), j = 2, . . . , 5, being linearly
independent, (14) enables us to determine the unknowns y = (y1, . . . , y4)
from the exponent vectors (a1, . . . , a9), and hence (3) can be completely
solved.

3. Application of Baker’s method. Now we apply Baker’s method to
the unit equation (12). Taking logarithms for each distinct i, j, k we obtain

a1 log |ν(ijk)
1 |+ . . .+ a9 log |ν(ijk)

9 | = log |µ(ijk)|.
Consider the above equations (for each distinct i, j, k) as a system of linear
equations in a1, . . . , a9. As we have seen above, the column vectors of the
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matrix consisting of the coefficients of a1, . . . , a9 are linearly independent.
Hence we can select nine triples (i, j, k) such that the left hand sides of the
corresponding linear equations are linearly independent. Let M be the 9
by 9 matrix composed of these coefficients. Denote by (i0, j0, k0) the triple
(i, j, k) for which |log |µ(ijk)|| attains its maximum. Then, by multiplication
by the inverse of M we can express the variables a1, . . . , a9 and we conclude
that

A = max
1≤h≤9

|ah| ≤ c1|log |µ(i0j0k0)||

where c1 is the row norm of M−1, that is, the maximum sum of the abso-
lute values of the elements in the rows of M−1. Note that the nine equa-
tions should be selected so that c1 becomes as small as possible. Now if
|µ(i0j0k0)| < 1 then log |µ(i0j0k0)| ≤ −A/c1, and if |µ(i0j0k0)| > 1 then the
same holds for µ(i0k0j0) = 1/µ(i0j0k0). Hence we conclude that |µ(i0j0k0)| is
small for a certain triple (i0, j0, k0). For simplicity we omit the subindices
in the following, that is, we assume

log |µ(ijk)| ≤ −A/c1.
Set c2 = |α(ijk)|. Then, using the inequality |log x| ≤ 2|x − 1| holding for
|x− 1| < 0.795, we deduce from (12) that

(15) |log |α(kji)|+ a1 log |ν(kji)
1 |+ . . .+ a9 log |ν(kji)

9 ||
= |log |α(kji)µ(kij)|| ≤ 2 · |1− |α(kji)µ(kij)||
≤ 2 · |1− (α(kji)µ(kij))| = 2 · |α(ijk)µ(ijk)| ≤ 2c2 exp(−A/c1),

provided that the right hand side is < 0.795, but in the opposite case we
get a much better estimate for A. In our examples the terms in the above
linear form in logarithms were linearly independent over Q, and applying
the estimates of Baker and Wüstholz [1] we obtained a lower estimate

|log |α(kji)|+ a1 log |ν(kji)
1 |+ . . .+ a9 log |ν(kji)

9 || > exp(−C0 logA)

with a large constant C0. This inequality, compared with the upper bound
(15), implies an upper bound for A, that was about 1082, 1083 in our exam-
ples. Note that if in the above linear form log |α(kji)| is linearly dependent
over Q on the other terms, then we can reduce the number of variables in
the form.

4. Reduction of the bounds. For a triple (k, j, i) of distinct indices
1 ≤ k, j, i ≤ 5, consider the lattice L spanned by the columns of the 11 by
10 matrix



386 I. Gaál and K. Győry




1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1
C log |α(kji)| C log |ν(kji)

1 | . . . C log |ν(kji)
9 |




where the constant C will be specified later. Denote by b1 the first vector
of the LLL reduced basis of L. Now Lemma 1 of Gaál and Pohst [22] yields
the following:

Lemma 1. If A = max |ah| < A0 and

(16) |b1| >
√

11 · 29/2A0

then for all solutions of the inequality

|log |α(kji)|+ a1 log |ν(kji)
1 |+ . . .+ a9 log |ν(kji)

9 || ≤ 2c2 exp(−A/c1)

we have

A ≤ c1(logC + log(2c2)− logA0).

Note that if in the above linear form the terms are linearly dependent
over Q then we have to use Lemma 1 of [22] for a lower dimensional lattice
and we can reduce the number of variables.

We have to perform the reduction procedure for all possible triples
(k, j, i). Since (k, j, i) and (k, i, j) give the same linear form, this yields 30
cases to consider.

We apply the above Lemma 1 in 4–5 steps to reduce the bounds obtained
by Baker’s method. In each step we take as A0 the previous bound (initially
the Baker’s bound), apply Lemma 1 and get a smaller bound. To ensure (16)
we have to define C large enough, usually A10

0 is suitable. The reduction is
very efficient in the first and second step, when the new bound is about the
logarithm of the previous bound, and after 4–5 steps the new bound does not
yield an improvement any more. The final reduced bounds in our examples
were about 130–200. It was especially hard to perform the first reduction
step, where we had to take C = 10900 and we had to use an accuracy of
1300 digits. For more details and CPU times see the last section.

5. Final enumeration. In this section we use the construction of Gaál
and Pohst [22], which is in fact a variant of Wildanger’s method [32]. Note
that Wildanger solved unit equations where the generators of the groups
are fundamental units of a field. In our case, the units are composed of
ν

(ijk)
1 , . . . , ν

(ijk)
9 , hence the situation is much more complicated.

For a triple I = (i, j, k) of distinct indices 1 ≤ i, j, k ≤ 5 set

β(I) = β(ijk), α(I) = α(ijk)
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and

ν
(I)
h = ν

(ijk)
h for h = 1, . . . , 9.

Let I∗ = {I1, . . . , It} be a set of tuples I with the following properties:

1. if (i, j, k) ∈ I∗ then either (k, i, j) ∈ I∗ or (k, j, i) ∈ I∗,
2. if (i, j, k) ∈ I∗ then either (j, k, i) ∈ I∗ or (j, i, k) ∈ I∗,
3. the vectors

eh =




log |ν(I1)
h |

...
log |ν(It)

h |


 for h = 1, . . . , 9

are linearly independent.

Since the matrix (13) is of rank 9, taking sufficiently many tuples, the
last condition can be satisfied. Note that taking a minimal set of tuples sat-
isfying the above conditions reduces the amount of necessary computations
considerably. Set

g =




log |α(I1)|
...

log |α(It)|


 , b =




log |β(I1)|
...

log |β(It)|


 .

By our notation we have

(17) b = g + a1e1 + . . .+ a9e9.

Denote by Ar the reduced bound obtained in the previous section. Let

logS0 = max
I∈I∗

(|log |α(I)||+Ar|log |ν(I)
1 ||+ . . .+Ar|log |ν(I)

9 ||).

Then in view of our notation (9), (10), for any tuple I = (i, j, k) ∈ I∗ we
have

(18) 1/S0 ≤ |β(I)| ≤ S0.

In our examples we had S0 = 10691 and S0 = 101545, respectively.
The next lemma (cf. Gaál and Pohst [22]) describes how we can replace

S0 by a smaller constant.

Lemma 2. Let 1 < s < S be given constants and assume that

1/S ≤ |β(I)| ≤ S for all I ∈ I∗.
Then either

(19) 1/s ≤ |β(I)| ≤ s for all I ∈ I∗
or there is an I = (i, j, k) ∈ I∗ with

|β(I) − 1| ≤ 1/(s− 1).
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Since our notation is somewhat different from that of [22] we repeat here
the proof of this lemma.

P r o o f. Assume that the tuple (i, j, k) ∈ I∗ violates (19). Then either
1/S ≤ |β(ijk)| ≤ 1/s, which by (11) implies

(20) |β(kji) − 1| ≤ 1/s,

or s ≤ |β(ijk)| ≤ S, whence

|β(jki) − 1| = |β(ikj)| = |1/β(ijk)| ≤ 1/s.

Note that if the tuple (k, j, i) is not in I∗, but (k, i, j) ∈ I∗, then using
β(kij) = 1/β(kji) by (20) we have

|β(kij) − 1| ≤ 1/(s− 1),

and we can proceed similarly if the tuple (j, k, i) is not in I∗, but (j, i, k)
∈ I∗.

Summarizing, the constant S can be replaced by the smaller constant
s if for each t0 (1 ≤ t0 ≤ t) we enumerate directly the set Ht0 of those
exponents a1, . . . , a9 for which

(21) 1/S ≤ |β(I)| ≤ S for all I ∈ I∗ and |β(It0 ) − 1| ≤ 1/(s− 1).

We consider the enumeration of the above set Ht0 in detail, this being the
critical step of the algorithm. Assume that 2 < s < S and set

λp =





1
logS

for p 6= t0, 1 ≤ p ≤ t,
1

log s−1
s−2

for p = t0.

Set

ϕt0(b) =



λ1 log |β(I1)|

...
λt log |β(It)|


 , ϕt0(g) =



λ1 log |α(I1)|

...
λt log |α(It)|




and

ϕt0(eh) =



λ1 log |ν(I1)

h |
...

λt log |ν(It)
h |


 for h = 1, . . . , 9.

Since e1, . . . , e9 are linearly independent, so are the images ϕt0(e1), . . .
. . . , ϕt0(e9) as well, and (17) implies

ϕt0(b) = ϕt0(g) + a1ϕt0(e1) + . . .+ a9ϕt0(e9).
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We deduce from (21) that

|log |β(Ip)|| ≤
{

logS if p 6= t0,

log
s− 1
s− 2

if p = t0.

Consequently, for the norm of the vector ϕt0(b) we have

‖ϕt0(g) + a1ϕt0(e1) + . . .+ a9ϕt0(e9)‖22 = ‖ϕt0(b)‖22(22)

=
t∑

p=1

λ2
p log2 |β(Ip)| ≤ t.

Hence we have shown that for any (a1, . . . , a9) ∈ Ht0 the inequality (22)
holds. This inequality defines an ellipsoid . The lattice points contained in
this ellipsoid can be enumerated by using the algorithm of Fincke and Pohst
[5]. The enumeration is usually very fast, but it is essential that the “im-
proved” version (cf. [5]) of the algorithm should be used, involving LLL
reduction.

It is important to note that in our examples the vector g was linearly
dependent on e1, . . . , e9 over R, that is, we had

g = r1 · e1 + . . .+ r9 · e9

for certain real numbers r1, . . . , r9. That is, in view of (22) we had to enu-
merate the solutions of the form yh = ah + rh (1 ≤ h ≤ 9) of the ellipsoid

‖y1ϕt0(e1) + . . .+ y9ϕt0(e9)‖22 ≤ t,
and from the values of yh we determined the ah. This made a bit more
complicated the Cholesky decomposition involved in the Fincke–Pohst algo-
rithm.

Applying the above procedure we choose appropriate constants S0 >
S1 > . . . > Sk. In each step we take S = Si, s = Si+1 and enumerate the
lattice points in the corresponding ellipsoids. The initial constant is given
by the reduced bound (18), the last constant Sk should be made as small as
possible, so that the exponents with

(23) 1/Sk ≤ |β(I)| ≤ Sk for all I ∈ I∗

can be enumerated easily. Observe that the set (23) is also contained in an
ellipsoid, namely, by (17) we have in Rt

(24) ‖g + a1e1 + . . .+ a9e9‖22 = ‖b‖22 ≤ t · (logSk)2.

In our examples we had S0 = 10691, resp. S0 = 101545. Then we took S1 =
1050, S2 = 1020, S3 = 108, S4 = 106, S5 = 105, S6 = 104, S7 = 2500, S8 =
500, S9 = 100. For more details and CPU times see the last section.
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6. Sieving and test. As we shall see in the last section, by the enumer-
ation of the ellipsoids the number of exponent vectors (a1, . . . , a9) we have
to consider is still very large. Hence it seems to be economical to insert a
very simple modular test to eliminate almost all of these vectors.

We calculated a prime p, relatively prime to DK , such that the defining
polynomial f(x) of the generating element ξ splits completely mod p, i.e.,

f(x) ≡ (x− r1)(x− r2)(x− r3)(x− r4)(x− r5) (mod p)

with rational integers r1, . . . , r5. Hence r1, . . . , r5 can be indexed so that for
a certain prime ideal ℘ in ZK lying above p and for any i (1 ≤ i ≤ 5) we
have

ξi ≡ ri (mod ℘).

Then we can calculate integers m(ijk), n
(ijk)
h (h = 1, . . . , 9) for each triple

(i, j, k) of distinct indices 1 ≤ i, j, k ≤ 5 with

α(ijk) ≡ m(ijk) (mod ℘)

and
ν

(ijk)
h ≡ n(ijk)

h (mod ℘) (1 ≤ h ≤ 9).
Then equation (12) implies

m(ijk)(n(ijk)
1 )a1 . . . (n(ijk)

9 )a9 +m(kji)(n(kji)
1 )a1 . . . (n(kji)

9 )a9 ≡ 1 (mod p),

a congruence which is very easy and fast to test even for large exponents.
In our computations only very few exponent vectors survived this test, and
usually they were solutions of (12). As we mentioned in Section 2, in our
situation it is sufficient to solve equation (12) for i = 1, j = 2, k = 3.

7. Numerical examples. Using our algorithm we computed all power
integral bases in two totally real quintic fields with Galois group S5. The
method was implemented in Maple and was run on a 133Mhz Pentium PC.
The defining polynomials, integral bases and fundamental units were com-
puted by the KANT package [3]. In this section we detail our computational
experiences.

Example 1. Consider the totally real quintic field K = Q(ξ) where ξ is
defined by the polynomial

f(x) = x5 − 5x3 + x2 + 3x− 1.

This field has discriminant DK = 24217 = 61 · 397, Galois group S5, and

(25) ω1 = 1, ω2 = ξ, ω3 = ξ2, ω4 = ξ3, ω5 = ξ4

is an integral basis. The element ξ(1) + ξ(2) is defined by the polynomial

g(x) = x10 − 15x8 + x7 + 66x6 + x5 − 96x4 − 7x3 + 37x2 + 12x+ 1.

The field L1,2 = Q(ξ(1) + ξ(2), ξ(1)ξ(2)) is generated by % = ξ(1) + ξ(2) only.
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An integral basis of L1,2 is

{1, %, %2, %3, %4, %5, %6, %7, %8,

(9 + 27%+ 43%2 + 20%3 + 37%4 + 5%5 + 32%6 + 3%7 + 26%8 + %9)/47}
and the discriminant of L1,2 is DL1,2 = 613 · 3973. The coefficients of the
fundamental units of L1,2 with respect to the above integral basis are

(21, 107, 192, −5, −120, −40, 84, 20, 30, −60)
(16, 99, 139, −56, −113, −7, 56, 9, 14, −30)
(10, 4, 65, 197, 85, −110, 56, 34, 50, −90)
(21, 35, 196, 346, 94, −206, 129, 66, 97, −177)
(0, −53, −31, 200, 145, −90, 14, 24, 35, −60)
(8, 24, 40, 33, −1, −27, 25, 10, 15, −28)

(15, 13, 118, 248, 78, −143, 84, 45, 66, −120)
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(4, 19, 42, 0, −26, −8, 17, 4, 6, −12)

Note that the element ξ(1)ξ(2) has coefficients

(−26,−26,−197,−410,−130, 238,−140,−75,−110, 200)

in the above integral basis of L1,2.
Baker’s method gave the bound A0 = 1082 forA. This bound was reduced

according to the following table:

Step A0 C New bound

I 1082 10900 3196
II 3196 1055 205
III 205 1043 163
IV 163 2 · 1040 153
V 153 2 · 1035 133

In the first reduction step we had to use 1300 digits accuracy, in the following
steps 100 digits were enough. As mentioned before, we had to perform the
reduction in 30 possible cases for the indices (k, j, i). The CPU time for the
first step was about 10 hours. The following steps took only some minutes.
The final reduced bound 133 gave S0 = 10691 (cf. (18)) to start the final
enumeration.

For the final enumeration we used the set of 15 ellipsoids defined by

I∗ = {(1, 2, 3), (2, 1, 3), (3, 1, 2), (1, 2, 4), (2, 1, 4), (4, 1, 2), (1, 2, 5),

(2, 1, 5), (5, 1, 2), (1, 3, 4), (3, 1, 4), (4, 1, 3), (3, 4, 5), (4, 5, 3), (5, 3, 4)}.
Parallel to the enumeration we used sieving modulo p = 3329, which was

suitable since

f(x) ≡ (x+ 1752)(x+ 1067)(x+ 1695)(x+ 379)(x+ 1765) (mod 3329).
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In the following table we summarize the final enumeration using the el-
lipsoid method. In the table we display S, s, the approximate number of
exponent vectors (a1, . . . , a9) enumerated in the 15 ellipsoids, and the num-
ber of the exponent vectors that survived the modular test. The last line
represents the enumeration of the single ellipsoid (24).

Step S s Enumerated Survived

I 10691 1050 0 0
II 1050 1020 0 0
III 1020 1010 15 · 5000 94
IV 1010 108 15 · 1900 39
V 108 106 15 · 30000 532
VI 106 105 15 · 30000 563
VII 105 104 15 · 72000 1413
VIII 10000 2500 15 · 50000 946
IX 2500 500 15 · 66000 1300
X 500 100 15 · 53000 1032
XI 100 0 1792512 2135

Steps I–II were very fast, then III–IV took about one hour, V–X about
two hours each. The last step XI was again very time consuming, taking
about 8 hours of CPU time. We believe that using a finer splitting of the
interval the CPU time can be slightly improved, but at least 8 hours of CPU
time is necessary.

From the surviving exponent vectors we calculated the solutions of the
index form equation corresponding to the basis (25):

(x2, x3, x4, x5)

= (0, 1, 0, 0), (0, 2, 1,−1), (0, 4, 0,−1), (0, 5, 0,−1),

(1,−5, 0, 1), (1,−4, 0, 1), (1,−1, 0, 0), (1, 0, 0, 0),

(1, 1,−2,−1), (1, 4, 0,−1), (2,−1,−1, 0), (2, 4,−1,−1),

(2, 9,−1,−2), (2, 15,−1,−3), (2, 10,−1,−2), (3, 4,−1,−1),

(3, 5,−1,−1), (3, 9,−1,−2), (3, 10,−1,−2), (3, 14,−1,−3),

(3, 18,−2,−4), (4,−1,−1, 0), (4, 0,−1, 0), (4, 5,−1,−1),

(4, 24,−2,−5), (4, 29,−2,−6), (5,−4,−1, 1), (5, 8,−2,−2),

(5, 33,−2,−7), (7, 5,−2,−1), (7, 9,−2,−2), (7, 14,−2,−3),

(9, 18,−3,−4), (11,−13,−2, 3), (12, 27,−4,−6), (17, 28,−6,−6),

(33, 30,−51,−26), (83, 170,−25,−39), (124, 246,−40,−55).
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Note that if (x2, x3, x4, x5) is a solution, then so also is (−x2,−x3,−x4,−x5)
but we list only one of them.

Example 2. Consider now the totally real quintic field K = Q(ξ) where
ξ is defined by the polynomial

f(x) = x5 − 6x3 + x2 + 4x+ 1.

This field has discriminant DK = 36497 (a prime), Galois group S5, and

(26) ω1 = 1, ω2 = ξ, ω3 = ξ2, ω4 = ξ3, ω5 = ξ4

is an integral basis. The element ξ(1) + ξ(2) is defined by the polynomial

g(x) = x10 − 18x8 + x7 + 96x6 − 23x5 − 169x4 + 44x3 + 93x2 − 21x− 11.

An integral basis of the field L1,2 generated by % = ξ(1) + ξ(2) is

{1, %, %2, %3, %4, %5, %6, %7, %8,

(44074 + 62732%+ 54220%2 + 50326%3 + 32569%4 + 35601%5

+ 31671%6 + 29542%7 + 8471%8 + %9)/79083}
and the discriminant of L1,2 is DL1,2 = 364973. The coefficients of the fun-
damental units of L1,2 with respect to the above integral basis are

(456, 651, 564, 527, 340, 367, 328, 307, 88, −821)
(3077, 4375, 3797, 3534, 2273, 2480, 2214, 2066, 592, −5527)
(7000, 9968, 8645, 8026, 5166, 5648, 5040, 4701, 1347, −12577)
(4354, 6185, 5339, 4980, 3222, 3504, 3124, 2917, 836, −7804)
(457, 651, 564, 527, 340, 367, 328, 307, 88, −821)

(3559, 5061, 4378, 4077, 2629, 2867, 2558, 2387, 684, −6386)
(4171, 5937, 5144, 4773, 3075, 3366, 3002, 2799, 802, −7489)
(4642, 6606, 5716, 5308, 3423, 3743, 3338, 3113, 892, −8329)
(151, 212, 182, 176, 115, 120, 107, 101, 29, −270)

Note that the element ξ(1)ξ(2) has coefficients

(−4354,−6185,−5339,−4980,−3222,−3504,−3124,−2917,−836, 7804)

in the above integral basis of L1,2.
Baker’s method gave the bound A0 = 1083 forA. This bound was reduced

according to the following table:

Step A0 C New bound

I 1083 10900 4078
II 4078 1055 263
III 263 1044 214
IV 214 1042 204
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The reduction took about the same CPU time as in Example 1. The final
reduced bound 204 gave S0 = 101545 (cf. (18)) to start the final enumeration.

For the final enumeration we used the set of the same 15 ellipsoids as in
Example 1.

Parallel to the enumeration we used sieving modulo p = 2819, which was
suitable since

f(x) ≡ (x+ 573)(x+ 2401)(x+ 926)(x+ 2266)(x+ 2291) (mod 2819).

In the following table we summarize the final enumeration using the
ellipsoid method. The notation is the same as in Example 1.

Step S s Enumerated Survived

I 101545 1050 0 0
II 1050 1020 0 0
III 1020 1015 0 0
IV 1015 1010 15 · 200 2
V 1010 108 15 · 800 12
VI 108 106 15 · 13000 299
VII 106 105 15 · 13500 288
VIII 105 104 15 · 30000 634
IX 10000 2500 15 · 20000 445
X 2500 500 15 · 28000 624
XI 500 100 15 · 22000 515
XII 100 0 711746 992

Here the necessary CPU time was somewhat less than in Example 1, this
can be seen by looking at the number of vectors tested.

From the surviving exponent vectors we calculated the solutions of the
index form equation corresponding to the basis (26):

(x2, x3, x4, x5)

= (1,−6, 0, 1), (1, 0, 0, 0), (2,−6, 0, 1), (2,−5, 0, 1),

(3,−11, 0, 2), (3,−5, 0, 1), (3, 0,−5, 2), (4,−5,−1, 1),

(4, 0,−3,−1), (4, 5,−1,−1), (6,−6,−1, 1), (6, 15,−2,−3),

(7,−12,−1, 2), (7,−11,−1, 2), (8,−12,−1, 2), (9,−18,−1, 3),

(9,−17,−1, 3), (11,−23,−1, 4), (13,−18,−2, 3), (15,−24,−2, 4),

(16,−23,−2, 4), (19,−41,−2, 7), (31,−46,−4, 8), (53, 62,−14,−13),

(80,−159,−9, 27), (115,−166,−15, 29).

Again, if (x2, x3, x4, x5) is a solution, then so also is (−x2,−x3,−x4,−x5)
but we list only one of them.
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[31] N. P. Smart, Solving discriminant form equations via unit equations, J. Symbolic
Comput. 21 (1996), 367–374.
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