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 11 

Abstract 12 

The high-throughput capacities of the Illumina sequencing platforms and the possibility to label 13 

samples individually have encouraged a wide use of sample multiplexing. However, this practice 14 

results in read misassignment (usually <1%) across samples sequenced on the same lane. Alarmingly 15 

high rates of read misassignment of up to 10% were reported for the latest generation of lllumina 16 

sequencing machines. This may make future use of the newest generation of platforms prohibitive, 17 

particularly in studies that rely on low quantity and quality samples, such as historical and 18 

archaeological specimens. Here, we rely on barcodes, short sequences that are ligated to both ends 19 

of the DNA insert, to directly quantify the rate of index hopping in 100-year old museum-preserved 20 

gorilla (Gorilla beringei) samples. Correcting for multiple sources of noise, we identify on average 21 

0.470% of reads containing a hopped index. We show that sample-specific quantity of misassigned 22 

reads  depend on the number of reads that any given sample contributes to the total sequencing 23 
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pool, so that samples with few sequenced reads receive the greatest proportion of misassigned 24 

reads. Ancient DNA samples are particularly affected, since they often differ widely in endogenous 25 

content. Through extensive simulations we show that even low index-hopping rates lead to biases in 26 

ancient DNA studies when multiplexing samples with different quantities of input material.  27 

Keywords 28 

Read misassignment, next generation sequencing, ExAmp chemistry, multiplexing, museum 29 

specimens, index switching  30 
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1| Introduction 31 

Multiplexing samples for sequencing is common practice in genomic studies (Craig et al. 2008; Meyer 32 

& Kircher 2010; Smith et al. 2010). During multiplexing, samples are individually labelled with unique 33 

identifiers (indices) that are embedded within one (single indexing) or both (dual indexing) 34 

sequencing platform-specific adapters (Meyer & Kircher 2010; Kircher et al. 2012). The samples are 35 

subsequently pooled into a single DNA library and sequenced on the same lane, greatly reducing per 36 

sample sequencing cost. Following sequencing, computational demultiplexing based on the sample-37 

specific indices enables the assignment of sequenced reads to the respective sample of origin. In 38 

recent years, the output from sequencing platforms has increased dramatically, making multiplexing 39 

the recommended standard sequencing workflow on the latest generation of Illumina platforms (e. g. 40 

NovaSeq) (Illumina Inc.). However, ever since multiplexing approaches were introduced, low rates of 41 

read misassignment across samples sequenced on the same lane have been reported on all Illumina 42 

platforms (Kircher et al. 2012; Nelson et al. 2014; Renaud et al. 2015; Wright & Vetsigian 2016; 43 

D’Amore et al. 2016). Read misassignment is the result of reads carrying an unintended index and 44 

consequently being erroneously attributed to the wrong sample. Processes resulting in read 45 

misassignment, i.e. presence of reads with an incorrect index, are numerous. The effect of 46 

sequencing errors that can convert one index sequence into another is well known and has led to 47 

series of recommendations for designing highly distinct indices (Meyer & Kircher 2010). Jumping PCR 48 

during bulk amplification of library molecules that carry different indices can generate chimeric 49 

sequences and should be avoided (Meyerhans et al. 1990; Odelberg et al. 1995; Carlsen et al. 2012; 50 

Esling et al. 2015). Similarly, cross-contamination of indexing adapters during oligonucleotide 51 

synthesis or laboratory work can lead to reads obtaining an unintended index. Additionally, cluster 52 

misidentification due to “bleeding” of indices into neighbouring clusters have been reported on all 53 

high throughput sequencing platforms (Kircher et al. 2012; Nelson et al. 2014; Renaud et al. 2015; 54 

Mitra et al. 2015; Wright & Vetsigian 2016; D’Amore et al. 2016; Vodák et al. 2018). For the latest 55 

Illumina platforms with patterned flow cells and ExAmp chemistry (e.g. Hiseq X and NovaSeq), it has 56 
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been suggested that read misassignment is caused by the presence of free-floating indexing primers 57 

in the final sequencing library (Illumina Inc. 2017; Sinha et al. 2017). Such free-floating molecules can 58 

appear if sequencing libraries are not stored properly and become fragmented, or if the final 59 

sequencing libraries retain non-ligated indexing primers due to inefficient clean-up and size selection 60 

(Illumina Inc. 2017). These free-floating primers can anneal to the pooled library molecules and 61 

become extended by the DNA polymerase before the rapid exclusion amplification on the flow cell, 62 

creating a new library molecule with an erroneous index (Figure 1). We refer to this particular 63 

process of generating misassigned reads as index hopping. The reported rate of read misassignment 64 

on Illumina platforms that rely on the traditional bridge amplification for cluster generation is low 65 

(<1%) (Kircher et al. 2012; Nelson et al. 2014; Wright & Vetsigian 2016)  and therefore this source of 66 

error has been readily ignored.  However, on the latest Illumina patterned flow cell platforms with 67 

ExAmp chemistry, the reported rate of read misassignment ranges from 0% to 10% (Illumina Inc. 68 

2017; Sinha et al. 2017; Owens et al. 2018; Griffiths et al. 2018; Vodák et al. 2018), with  Illumina 69 

quoting  a read misassignment rate of up to 2% (Illumina Inc. 2017). 70 

As a consequence of conflicting results, the prevalence and severity of read misassignment on the 71 

latest Illumina platforms remain unclear. This is partly due to the difficulties of reliably identifying 72 

misassigned reads in sequencing experiments, particularly when pooling similar samples types (e.g. 73 

multiple individuals from the same population that have high sequence similarity). The use of dual 74 

indexing allows for the filtering of the majority of reads that show signs of read misassignment 75 

(Kircher et al. 2012). However, since indices can potentially be switched at both ends of the molecule 76 

and the number of available indices is limited, it remains difficult to directly quantify read 77 

misassignment rates on these platforms. Consequently,  the so far reported rates off index-hopping 78 

have been estimated using indirect methods (Sinha et al. 2017; Owens et al. 2018; Griffiths et al. 79 

2018; Vodák et al. 2018).  80 
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The reported high rates of index-hopping are especially worrisome for studies involving sequencing 81 

data obtained from degraded samples such as ancient and historical specimens, since in most cases 82 

such studies rely on low-coverage genomic data (Shapiro & Hofreiter 2014). Inferences are therefore 83 

often based on subtle differences between limited sets of polymorphic sites, so that even small 84 

quantities of misassigned sequencing reads can potentially lead to erroneous conclusions.  It is thus 85 

crucial to distinguish genuine sample-derived endogenous DNA fragments from false signals 86 

(Skoglund et al. 2014).   87 

The purpose of this study is two-fold. First, we aim to directly quantify the rate of index-hopping on 88 

the Illumina patterned flow cell platforms for a standard ancient DNA library. To this end, we make 89 

use of inline barcodes, short unique seven base pair sequences ligated to both ends of the DNA 90 

fragments (Rohland & Reich 2012), in combination with the indexed primers that are traditionally 91 

used for sample identification. The barcodes become part of the sequencing read and thus allow for 92 

accurate identification of the read origin, even in the presence of index hopping. Therefore, the 93 

amount of index hopping can be directly quantified by identifying reads with wrong barcode-index 94 

combinations. Second, we aim to identify and characterize biases resulting from index-hopping in 95 

pooled ancient DNA libraries that may impact downstream analyses typical for ancient DNA research. 96 

To achieve this, we simulate ancient DNA sequencing libraries under different rates of index-hopping 97 

and quantify the impact of misassigned reads on population genomic inferences by performing a set 98 

of standard genome-wide analyses.   99 
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2| Methods  100 

2.1| Library preparation 101 

DNA extracts from seven historical eastern gorilla (Gorilla beringei) samples were turned into 102 

sequencing libraries as described in (van der Valk et al. 2018) (see supplementary material). All 103 

library preparation steps except indexing PCR were performed in a dedicated ancient DNA laboratory 104 

to minimize contamination. Briefly, 20 μl DNA extract was used in a 50 μl blunting reaction together 105 

with USER enzyme treatment to remove uracil bases resulting from aDNA damage (Briggs et al. 106 

2010). DNA fragments within each sample were then ligated to a unique combination of incomplete, 107 

partially double-stranded P5- and P7-adapters, each containing a unique seven base pair sequence 108 

(Rohland et al. 2015) (Table S1). We refer to these as the P5 and P7 barcodes from here on. All 109 

barcode sequences were at least three nucleotides apart from each other to ensure high certainty 110 

during demultiplexing and avoid converting one barcode into another through sequencing errors 111 

(Rohland et al. 2015) (Table S1). To increase the complexity of the pooled sequencing library, one 112 

sample (sample 7) was split in two fractions, each of which received a different barcode combination 113 

(Table 1).  114 

 Indexing PCR was performed for 10 cycles using a unique P7 indexing primer for each sample, as in  115 

(Meyer & Kircher 2010) (Table S1). We refer to the unique sequence added during the indexing PCR 116 

as the P7 index. As with the barcodes, all index sequences differed by at least three base pairs from 117 

each other (Table S1). Indexing PCR for sample 7 was performed in a single reaction combining both 118 

fractions of this sample. Following the indexing PCR, each DNA fragment contained three unique 119 

identifiers: the P5 and P7 barcodes directly ligated to the ends of the DNA fragments, and the P7 120 

index contained within the Illumina sequencing adapter (Figure 1). Sample libraries were cleaned 121 

using MinElute spin columns, fragment length distribution and concentrations were measured on the 122 

Bioanalyzer. We then pooled all seven sample libraries in a ratio of 2:1:2:1:1:1:2 for samples 1 to 7, 123 

and performed two rounds of AMPure XP bead clean-up, using 0.5X and 1.8X bead:DNA ratio, 124 
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respectively. We confirmed that indexing primers were successfully removed during clean-up by 125 

running the final library on a Bioanalyzer (Figure S1). The pooled library was sequenced on three 126 

HiSeqX lanes that were part of independent runs with a 5% phiX spike-in, at the Science for Life 127 

Laboratory in Stockholm.  128 

2.2| Data processing 129 

All reads were demultiplexed based on their unique indices using Illumina’s bcl2fastq (v2.17.1) 130 

software with defaults settings, allowing for one mismatch per index and only retaining “pass filter” 131 

reads (Illumina Inc.). All unidentified reads, i.e. reads containing indices not used in our experiment, 132 

were retained and subjected to the same filtering steps as assigned reads (see below). We removed 133 

adapter sequences using AdapterRemoval V2.1.7 with standard parameters (Schubert et al. 2016). 134 

Due to the fragmented nature of DNA in historical samples, we could subsequently merge the reads, 135 

requiring a minimal overlap of 11bp and allowing for a 10% error rate. The merging of reads allowed 136 

us to obtain sequencing information for the complete DNA molecule and thus to accurately identify 137 

the barcodes on both ends of the DNA fragment (P5 and P7 barcodes, respectively, Figure 1).  138 

Unmerged reads and reads shorter than 29 basepairs were removed. To increase certainty, we only 139 

retained reads with error-free P5 and P7 barcodes and an average quality score of at least 30 using 140 

prinseq V0.20.4 (Schmieder & Edwards 2011).  141 

2.3| Disentangling cross-contamination from index hopping 142 

Low rates of cross-contamination of barcodes and indexes can be expected, even if strict measure 143 

are followed during library preparation, such as the use of clean-room facilities (Kircher et al. 2012). 144 

This can result in reads containing a wrong index-barcode pair and could be falsely interpreted as 145 

evidence for index hopping. Since the inline barcodes used in this experiment are unaffected by 146 

index-hopping (Figure 1), we can accurately estimate the rate of barcode cross-contamination as the 147 

fraction of reads containing a P5-P7 barcode pair that was not used during library preparation. In rare 148 

cases, barcode cross-contamination results in a read with a valid barcode pair (e.g. a barcode 149 
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combination that was intendedly used during library preparation) and thereby remain undetected in 150 

our estimate. However, since we used every barcode only once, the proportion of reads resulting 151 

from such an event is several orders of magnitude lower than the fraction of reads containing an 152 

invalid barcode pair and does therefore not significantly affect any of our estimates (see 153 

supplementary material).  154 

As the Illumina HiSeq X platform did not support a dual-indexing design at the time of this 155 

experiment, the rate of index cross-contamination could not be estimated using invalid index pairs. 156 

Therefore, we relied on the fact that of the 40 indices that are routinely used in our laboratory only 157 

seven were implemented in this experiment (Table S2). Assuming a relatively equal rate of cross-158 

contamination between all 40 indexes, we estimated index cross-contamination as the fraction of 159 

reads containing any of the 33 indices that were not deliberately included during our experiment.  160 

We then determined the raw rate of index hopping as the fraction of reads showing an index-161 

barcode combination not used during the library preparation. We accounted for the possibility of 162 

barcode and index cross-contamination resulting in the same barcode-index combination by 163 

subtracting the contamination estimates obtained above from the raw value of index hopping. All 164 

statistical analyses were performed in R 2.15.3 (Team R Core 2016) (see supplementary material).  165 

2.4| Simulations of aDNA sequence libraries  166 

To quantify downstream biases resulting from index-hopping during pooled sequencing, we 167 

simulated ancient DNA sequencing libraries with different endogenous content under varying rates 168 

of index hopping. First, four “template” genomes were simulated to serve as seeds for four 169 

populations, popA, popB, popC and popD, respectively, by using chromosome 1 of the gorilla 170 

reference (removing all N nucleotides) (Gordon et al. 2016). The population divergence was set as 171 

follows: popA – popB: 20.000 years, popC – popD: 20.000 years and popA/popB – popC/popD: 172 

200.000 years (Figure 3b) and we introduced random mutations at a rate of 1.67 ∙ 10-9 per base per 173 

year (corresponding to the estimated gorilla mutation rate (Besenbacher et al. 2018)). We then 174 
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simulated thirty individuals for each population, using the “template” genomes as a starting point 175 

and introducing on average 5 ∙ 10-7 random mutations per base (corresponding to all individuals 176 

within each population sharing a common ancestor on average 300 years ago). We did not simulate 177 

any admixture between the populations. Next, each individual genome was converted into an 178 

ancient DNA sequence library (fastq-format), with insert size normally distributed around 50bp and 179 

endogenous content of either 0.133%, 0.398%, 1.33%, 3.98%, 13.26% or 39.78% to mimic 180 

characteristics often observed in ancient DNA studies. The levels of endogenous content were 181 

chosen to result in commonly observed genome coverages of ancient DNA samples (see below). The 182 

non-endogenous reads consisted of fastq-reads simulated using the PhiX-reference genome (NCBI 183 

nucleotide ID: NC_001422) as template. We then simulated sequencing output of equimolar pooled 184 

libraries as would be obtained from sequencing the pools on four NovaSeq6000 runs (flow cell-type 185 

S4, expected output 8-10 billion reads per run). The expected output of ~40 billion reads thus 186 

consisted of a random sample of ~333 million fastq-reads from each of the 120 simulated sequencing 187 

libraries (30 individuals x 4 populations). Index-hopping was simulated by giving each read a 188 

predefined probability of randomly hopping into another sample, using the following rates: 0.0%, 189 

0.1%, 0.5%, 1%, 5% and 10%, reflecting the levels of index-hopping reported in the literature. We did 190 

not simulate indels/deletions, PCR duplications, sequencing errors, and post-mortem DNA damage, 191 

since we specifically aimed to address the biases resulting from index-hopping. Our final simulated 192 

data thus consisted of six datasets of 120 simulated ancient DNA libraries with varying endogenous 193 

content obtained from four different populations, with a different level of index-hopping in each of 194 

the six datasets. 195 

To analyse the simulated data, we aligned all reads per individual to the gorilla reference 196 

chromosome 1 (Gordon et al. 2016) (note that in our simulations this reference represents the 197 

ancestral state for each site) using bwa-mem on default parameters (Li & Durbin 2009). The obtained 198 

coverage for the simulated individuals was 0.1X, 0.3X, 1X, 3X, 10X or 30X, depending on the sample’s 199 

endogenous content (note that the levels of endogenous content were chosen to result in these 200 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/179028doi: bioRxiv preprint 

https://doi.org/10.1101/179028
http://creativecommons.org/licenses/by-nd/4.0/


coverages). Next, we employed a pipeline specifically designed for analysing low-coverage genomes 201 

from degraded DNA sources. We obtained genotype likelihoods for each individual using angsd 202 

(Korneliussen et al. 2014), filtering reads below mapping quality of 30 (-minMapQ 30), a flag above 203 

255 (-remove_bads 1) and removing reads with multiple hits (-uniqueOnly 1). We then only 204 

considered genotypes with a likelihood ratio test statistic of minimum 24 (-SNP_pval 2e-6) using the 205 

samtools genotype model (-GL 1).  206 

2.5| Inferring population genomic statistics from simulated data 207 

We used Principal Components Analysis, Admixture and D-stats (ABBA-BABA test) to reconstruct 208 

population divergence under different levels of index-hopping. Principal Components Analysis was 209 

run using PCAngsd with default parameters and 200 EM iterations for computing the population 210 

allele frequencies (Fumagalli et al. 2013). Individual admixture proportion were obtained using 211 

NgsAdmix (Skotte et al. 2013) at default parameters and using K = 4 (number of ancestral clusters). 212 

Pairwise D-stats of the format (popA,popB,popC,ancesteral) were calculated for each possible pair of 213 

individuals in popA and popB by sampling a random allele at each site (htsbox pileup -R -q 30 -Q 30 -s 214 

1, https://github.com/lh3/htsbox), using a high coverage (30X) individual from popC as the third 215 

ingroup and the ancestral allele (reference allele) at each site as the outgroup. Standard-deviations 216 

and resulting Z-scores (the number of standard deviations of D from 0) were obtained using a 217 

jackknife approach with blocksize of 2Mb.   218 
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3| Results 219 

3.1| Empirical data 220 

3.1.1| Barcode and index cross-contamination 221 

Since our sequencing libraries were made from degraded historical samples and thus contained a 222 

large proportion of short DNA fragments (Figure S1) the majority of reads could be confidently 223 

merged for all three sequencing runs (95.3% SE ± 1.0%). This allowed us to accurately infer both 224 

barcodes at the read ends. After all filtering steps (Methods), the final dataset contained 89.3% SE ± 225 

1.9% of the original sequence reads.  226 

We estimate the average level of barcode cross-contamination across all three runs at 0.0276% SE ± 227 

0.0026 (see methods, Table 1, Table S3, Figure S2), with different rates observed between samples 228 

(global chi-square test, P<10
-15

). Assuming that adapter ligation of barcodes is unbiased with respect 229 

to the barcode sequence (Rohland et al. 2015), this low percentage of cross-contamination will lead 230 

to a negligible fraction of reads (1.09 ∙ 10
-8

%, see supplementary material) with a barcode pair that 231 

wrongly appear as having undergone index hopping. The rate of index cross-contamination was 232 

estimated at 0.124% SE ± 0.0023 (Table S4), by quantifying the fraction of reads containing indices 233 

that were not intentionally used in our experiment (see Methods, Table S2).  234 

3.1.2| The rate of index hopping 235 

Index hopping will not affect the barcodes that are directly ligated to the DNA fragments. Therefore, 236 

it can be readily distinguished from barcode cross-contamination by identifying reads containing an 237 

incorrect combination between an index and a barcode pair. Across all three sequencing runs, we 238 

detected a low proportion of such reads (mean=0.594%, SE ± 0.0434%, Table 1). However, we 239 

estimate that ~0.124% of these reads are a result of index and barcode cross-contamination (see 240 

above). Therefore, the corrected rate of index hopping in our experiment across all three sequencing 241 

runs is ~0.470% SE ± 0.044. The proportion of hopped reads differed significantly among samples 242 
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(chi-square test, P<10-15) and was positively correlated with the number of sequenced reads per 243 

sample (Pearson’s r = 0.96, P = 0.0005, Figure 2). This suggests that in multiplexed sequencing runs, 244 

the samples with higher number of sequenced reads will serve as the dominant source of hopped 245 

reads. Even though the overall rate of index hopping is low, samples with proportionally few 246 

sequenced reads are thus considerably more affected by index hopping. In our experiments, this 247 

resulted in 2.49% SE ± 0.29% of hopped reads in the sample with the lowest number of sequenced 248 

reads (Table S4, S5, Figure 2).  249 

We find that the rate of index hopping differed significantly by read length and slightly by GC content 250 

(chi-square test, both P<10
-15

, Figure S3). Reads shorter than 90 bp and reads with GC content above 251 

40% showed significantly higher proportion of hopped reads than expected under a random 252 

distribution. 253 

3.2| Simulated data 254 

3.2.1| Effects of index hopping on estimates of sample endogenous content 255 

Ancient DNA studies frequently rely on the screening of a large number of samples by means of 256 

pooled low depth sequencing to identify samples with good DNA preservation and high endogenous 257 

content. Through introduction of endogenous reads into low-quantity samples, index-hopping can 258 

lead to a false signal of DNA preservation. We estimated the endogenous content for each of our 259 

simulated ancient DNA sequencing libraries as the fraction of reads that mapped to the reference 260 

genome under different rates of index-hopping (see Methods). We observed that already at low 261 

rates of index hopping (<1%), the endogenous content of low-quality samples (0.1%-0.4% 262 

endogenous content) was over-estimated (up to ~2-fold higher, Figure 3a). This bias became more 263 

pronounced as rates of simulated index hopping increased and resulted in up to 8-fold higher 264 

estimate of endogenous content. Estimates for samples with higher endogenous content (>3%) were 265 

biased only at high rates of index-hopping (5-10%).  266 
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3.2.2| Index hopping biases population genetic inferences 267 

Principal Components Analysis clearly differentiates the four simulated populations from each other 268 

in the absence of index-hopping (Figure 3c, S4). However, we find that already at a low rate of index-269 

hopping (0.50%, similar to observed in our empirical data), population differences between popA-270 

popB and popC-popD start to disappear. This is caused by the relatively high number of hopped, 271 

wrongly assigned reads in samples with low endogenous content. At extreme levels of index hopping 272 

(10%), even the differences between the highly diverged populations (popA-popB vs popC-popD) 273 

disappears (Figure 3c, S4).  274 

Admixture analysis corroborated the results obtained from PCA. We find that at low rates of index-275 

hopping (0.50%), false signals of shared ancestry between individuals from different populations 276 

start to appear in the low-coverage samples (Figure 3d, S5). At the highest rate of index-hopping 277 

(10%), only the highest quality samples (e.g. 30X) remain unbiased (Figure 3d, S5).  278 

We used ABBA-BABA counts to test if index hopping can lead to erroneous inferences of gene-flow 279 

between the populations. Although the Z-scores become skewed at low rates of index-hopping (<1%) 280 

if samples differ strongly in endogenous content, we only inferred significant deviations from zero at 281 

high rates of index-hopping (>5%) (Figure S6).  282 
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4| Discussion 283 

Using a dual barcoding strategy during library preparation, we show that index hopping occurs on the 284 

Illumina HiSeq X platform, but its rate is low in our ancient DNA library (0.470% SE ± 0.044). Although 285 

multiple sources of error such as jumping PCR, barcode and index cross-contamination, sequencing 286 

errors, and index hopping can result in read misassignment, our experimental design allowed us to 287 

systematically address each of them. Jumping PCR can be eliminated as explanation for wrong index-288 

barcode combinations, since we avoided amplification of pooled libraries from different samples. 289 

However, we show the strong effect of jumping PCR when looking at the rate of wrong barcode 290 

combinations in the only sample with two different barcode pairs that was amplified in a single 291 

indexing reaction (Fig. S2).  We further show that the rate of barcode and index cross-contamination 292 

is very low (0.027% SE ± 0.0026 and 0.124% ± 0.0023, respectively) and therefore not the primary 293 

cause of observed reads with the wrong index-barcode pairs.  294 

Read misassignment is not a novel phenomenon on the Illumina sequencing platforms. Reported 295 

error rates range from 0.1% to 0.582% on the HiSeq 2500 (Kircher et al. 2012; Wright & Vetsigian 296 

2016) and from 0.06% to 0.51% on the MiSeq platforms (Nelson et al. 2014; Renaud et al. 2015; 297 

D’Amore et al. 2016). It is therefore noteworthy that the fraction of hopped reads as estimated in 298 

our study (0.470%) is similar to that reported for other platforms. However, it markedly differs from 299 

previous estimates for the Illumina platforms with ExAmp chemistry, which are based on sequencing 300 

modern (high quality) DNA and range from 0%  to 2.5%-10% (Sinha et al. 2017; Owens et al. 2018; 301 

Griffiths et al. 2018). Since the sequencing chemistry of the Illumina NovaSeq platform is identical to 302 

that used for the HiSeq X, this platform is likely to be affected at a similar rate as reported here. 303 

We used a standard library preparation protocol for degraded samples, which includes rigorous 304 

removal of free-floating adapters through size selection and cleaning (supplementary methods). This 305 

practice likely resulted in the relative low rate of index hopping in our experiment. As previously 306 
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suggested, strict library clean-up and size selection is thus recommended for multiplexed ancient 307 

DNA sequencing studies. 308 

A so far neglected observation is that the number of hopped reads into each sample is proportional 309 

to the total number of reads contributed by this sample to the pooled sequencing library. Pooling 310 

samples in different quantities leads to a greater proportion of hopped reads into samples with 311 

fewer sequenced reads. In this study, libraries with the lowest number of sequenced reads displayed 312 

up to 3.2% of misassigned reads (Table S5), an order of magnitude higher than the average rate 313 

within a lane. The effect of this skewed rate of index hopping becomes even more severe if the 314 

endogenous content is markedly different between samples. Since the endogenous content is usually 315 

not known beforehand, pooling samples in equimolar quantities can lead to large differences in the 316 

number of endogenous reads between samples. In such cases, even at the rate of index-hopping 317 

reported here, the proportion of false assigned endogenous reads within low quantity samples can 318 

reach rates above 10% (Figure S7), resulting in highly overestimated sample endogenous content 319 

(Figure 3a). This is problematic, as presence of even few reads of interest can lead to further 320 

processing and deep sequencing of an ancient DNA sample deemed to be of importance. 321 

Additionally, we detected a higher rate of index hopping among shorter reads and small differences 322 

in the fraction of index-hopped reads related to read GC-content. This suggests that the annealing of 323 

free floating adapters present in the sequencing libraries does not occur randomly. The underlying 324 

mechanisms are not yet well understood but could be related to differences in the DNA denaturation 325 

temperatures between DNA fragments of different size. Due to the lower denaturation temperature, 326 

short fragments might be occurring at a higher rate in single-stranded conformation and are thereby 327 

more accessible to free floating index primers. Since shorter fragments in ancient DNA libraries often 328 

represent endogenous DNA, whereas longer fragments are mostly environmental contamination 329 

(Green et al. 2010), index-hopping can disproportionally affect the reads of interest in ancient DNA 330 

libraries.  331 
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To further illustrate the effect of index hopping on estimates of endogenous content and population 332 

genomics inferences, we employed simulations that encompass the complete range of reported 333 

index hopping rates and span a distribution of endogenous content typical for ancient DNA studies. 334 

Through simulations, we show that biases due to misassigned reads start to appear at index hopping 335 

rates below 0.5% when analysing samples of low coverage (<3X). As samples with low endogenous 336 

content predominantly act as receivers of hopped reads, inferences of population differentiation 337 

become less clear (Figure 3c) due to many hopped reads being erroneously assigned to low quantity 338 

samples. This also results in the false inference of shared ancestry between individuals from 339 

divergent populations as exemplified by Admixture (Figure 3d). In contrast, the inference of gene 340 

flow between populations through D-statistics is relatively robust to the biases resulting from index-341 

hopping, if the proportion of misassigned reads between the tested samples is similar (Figure S6). In 342 

these cases, both samples contain similar proportions of false alleles from the 3rd ingroup population 343 

and therefore no significant deviation from zero is observed. Nonetheless, if coverage between the 344 

two tested samples is highly different (and thus one of the samples has a higher proportion of 345 

misassigned reads), Z-scores become skewed and might be falsely interpreted as a signal of gene 346 

flow (Figure S6). At the rate of index-hopping reported here (~0.470%), only genomes above 3X 347 

coverage remain largely unbiased, and thus for ancient DNA studies where samples are being 348 

multiplexed, elimination of index-hopping is of great importance. 349 

We show that even with a low rate of index-hopping, such as the one observed in our empirical 350 

study, downstream inferences can become biased if sample qualities are highly different. Therefore, 351 

variation in sample endogenous DNA content are ideally kept to a minimum when sequencing a 352 

sample pool on the same lane. Pre-pooling qPCR quantification of sample DNA (and endogenous 353 

content) can be helpful to balance the sequencing libraries. Additionally, when multiplexed samples 354 

are sequenced to high depth (i.e. across multiple lanes/flowcells), re-pooling could be considered 355 

after the first sequencing run if high variation in (endogenous) read numbers is observed. This is 356 
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especially relevant for the NovaSeq platform, the most powerful sequencing platform currently 357 

available, since it has been specifically designed for the multiplexing of up to hundreds of samples.  358 

We show that in cases where low coverage data is generated or absolutely certainty is required, even 359 

a low remaining rate of misassigned reads can cause severe downstream biases. For such studies we 360 

therefore recommend the use of either short barcoded in-line adapters and/or dual indexing when 361 

preparing pooled libraries for next generation sequencing, independently of sequencing platform. 362 
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 363 

Figure 1: Schematic of index hopping during ExAmp clustering.  A) The library pool, containing 364 

barcoded and indexed library molecules (black: DNA insert, green: P5 and P7 barcodes, orange: P7 365 

index) and free-floating indexing primers, is mixed with ExAmp reagents before loading on the 366 

patterned flow cell. B) Free-floating adapter anneals to the adapter sequence of a library molecule 367 

and C) the library molecule gets extended by the DNA polymerase, forming a new library molecule 368 

with a wrong index. D) The library molecules are denatured, separating the strands, and each library 369 

molecule is allowed to graft onto a nanowell on the patterned flow cell.  370 
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 371 

Figure 2: Proportion of hopped reads per sample out of all hopped reads. Samples in the top row 372 

contribute hopped reads, whereas samples on the left receive hopped reads. Samples with high 373 

number of sequenced reads (e.g. 3 and 7) are also the main contributors of hopped reads. 374 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/179028doi: bioRxiv preprint 

https://doi.org/10.1101/179028
http://creativecommons.org/licenses/by-nd/4.0/


 375 

Figure 3: (A) Index hopping biases estimates of endogenous content. X-axis shows the simulated 376 

sample endogenous content, Y-axis shows the fold-change in the inferred endogenous content 377 

(fraction of mapped reads). Colours depict the simulated rate of index-hopping, which increases from 378 

left to right for each sample. Biases for samples with high endogenous content are minor (note that 379 

these samples appear to “loose” reads that are being assigned to samples of low endogenous 380 

content). However, samples of low quality (low endogenous content) are disproportionally affected by 381 

index hopping, leading to erroneously high estimates of endogenous DNA content. (B) Schematic 382 

representation of the simulated populations and their divergence times. For each populations 30 383 

individuals with different levels of endogenous content are simulated. (C) Effects of index hopping on 384 

inferences of population differentiation: Principal Components Analysis for all individuals under 385 

different rates of index hopping (depicted on the top). Each plot shows all 120 individuals from the 386 

four simulated populations. (D) Effects of index hopping on inferences of individual admixture 387 
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proportion. Each bar is an individual, X-axis depicts sample coverage. Percentage at the right depict 388 

simulated index-hopping rate.  389 
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Table 1: Sequencing statistics and estimates of contamination and index hopping. 390 

Sequencing run Sequencing 

reads after 

quality filtering 

Sequencing reads 

with wrong 

barcode pairs 

Sequencing reads 

with wrong barcode 

pairs (%) 

Sequencing reads 

with wrong index-

barcode combination 

Sequencing reads with 

wrong index-barcode 

combination (%) 

Run 1 316203540 99575 0.0301 1543241 0.488 

Run 2 127766205 42457 0.0315 837926 0.656 

Run 3 429511898 94527 0.0211 2740612 0.638 

Average 291160548 78853 0.028 1707260 0.594 

  391 
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