
Index reduction for differential-algebraic equations by

minimal extension∗

Peter Kunkel † Volker Mehrmann ‡

May 7, 2003

Abstract

In this paper a new index reduction technique is discussed for the treat-
ment of differential-algebraic systems for which extra structural informa-
tion is available. Based on this information reduced derivative arrays are
formed and instead of using expensive subspace computations the index
reduction is obtained by introducing new variables.

The new approach is demonstrated for several important classes of
differential-algebraic systems, where the structural information is avail-
able. These include multibody systems and circuit simulation problems.

The effectiveness of the new approach is demonstrated via numerical
examples.
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1 Introduction

In this paper we study general over- and under-determined nonlinear
differential-algebraic systems of the form

F (t, x, ẋ) = 0, (1)

with F ∈ C(I × Dx × Dẋ, Rm), I ⊆ R (compact) interval, Dx, Dẋ ⊆ R
n open.

(Here Ck(S, Rm) denotes the k times continuously differentiable functions from
a set S to R

m).
For such general systems of differential-algebraic equations recently a new

theoretical analysis has been presented with a general existence and uniqueness
theory, see [15, 16, 17, 19, 20, 21]. In particular, a general index concept
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has been introduced, the strangeness index µ, which generalizes other index
concepts as given, e. g. in [4, 10, 14, 28] to systems that are over- or under-
determined. Based on the new theoretical analysis also new numerical methods
have been introduced in [17, 19, 20, 22] that allow to solve general over- and
under-determined systems of arbitrary strangeness index.

The basic idea of the general approach is to consider the original system
together with a sufficient number of its derivatives (as a derivative array, see
[5]) and to derive locally at every integration step a system of strangeness
index 0 that has the same solution set as the original system but contains all
the information on the manifold in which the dynamics of the system takes
place.

In particular, the derived system consists of two parts, a purely algebraic sys-
tem describing the manifold of constraints and a differential part describing the
dynamics on this manifold. Since all constraints are included it is guaranteed
that all the algebraic equations that describe the manifold are satisfied up to
the accuracy that is used to solve these equations and hence a drift from the
solution manifold is avoided. Note that index reduction methods that do not
use all constraints of the system or introduce additional parameters work with
a larger set of differential equations than the actual dynamics consists of and
may therefore change the stability properties of the original problem. Since in
our approach we work with the full set of constraints, instabilities as they are
described in [24] do not occur.

In the general case of under- or overdetermined problems (1) the derived
system of strangeness index 0 cannot be overdetermined since we must assume
consistence of the equations. The resulting possibly underdetermined problem
can be treated by all integration methods that work for systems of differentiation
index 1, combined with special techniques to deal with possible non-uniqueness,
see [18, 20, 21]. In principle, this approach provides a uniform framework for
the analysis and numerical solution of differential-algebraic systems. But as
is common for general approaches, the computational complexity for this new
approach is substantial and makes it in general not feasible for medium or large
scale problems, even with its modifications for the use on parallel computers,
see [3].

The reason for the high computational complexity is that from the derivative
array (which is a system of (µ + 1)m equations, where µ is the strangeness
index) certain nullspaces of the Jacobians and associated projectors onto these
nullspaces have to be computed at every integration step. This makes the
general method impracticable for large scale problems.

Many practical applications, however, lead to systems of equations with a
particular structure that is not reflected in the general approach. It is the
topic of this paper to study how the knowledge of extra structure can be used
to derive methods that are applicable for higher index systems but are also
competitive for medium or large scale problems.

The main ideas that we present in this paper rely on structural information
about the equations that lead to high index. This extra information is used
to create a reduced size derivative array, so that the computational effort per
integration step is highly reduced. But even with these improvements, the

2



general technique would still not be competitive for large scale problems. Even
for the reduced size derivative array local nullspace computations are required
that may be prohibitive due to the large storage requirements and arithmetic
complexity. To deal with this difficulty we modify another index reduction
concept that was introduced in [25]. The basic idea of this approach is to
introduce new variables, so called dummy derivatives to reduce the index. In
[25] the necessary decisions, which equations to differentiate and which new
variables to introduce, is based on the Pantelidis algorithm [27]. This algorithm
is a purely combinatorial method and hence well suited for large scale problems,
but it has two major disadvantages. First of all it only produces generic results
that may be very sensitive in the neighborhood of non-generic points, and
secondly it has recently been shown that it can produce wrong results in certain
circumstances [30]. But even if these problems would not occur, the approach
of [25] may lead to bigger systems than necessary. We will demonstrate this in
Section 3 and introduce a modification of the idea of dummy derivatives that
we call index reduction by minimal extension.

In Section 4 we discuss the specific structures arising in the simulation of
electrical circuits [11, 12, 34]. The dimension of these problems is typically
very large and only few components contribute to a higher index. For these
systems, recently a detailed (mainly combinatorial) analysis of different circuit
elements and the network topology and their contribution to higher index has
been given in [8, 11, 12, 34].

Using this structural information it is possible to determine those equations
(and there are typically only very few) that lead to a higher index. These tech-
niques provide an inexpensive way to analyze specific circuit models and give
indicators, where numerical integration methods may have stability problems
[11, 12]. We also show how the structural information can be used to perform
the index reduction by minimal extension.

Another major class of differential-algebraic systems arises in the simulation
of multi-body systems. In this well studied area [7, 32] index reduction based on
structural information is well known. The combination of the general methods
of [20] with knowledge about the structural properties and their use in industrial
simulation packages has recently been discussed in [1]. In Section 5 we will
briefly discuss this topic and compare the index reduction by minimal extension
with other stabilization techniques in multi-body system dynamics [4, 7, 9].

In Section 6 we demonstrate the effectiveness of the index reduction via min-
imal extension with some numerical tests.

2 Preliminaries

The concepts for differential-algebraic equations (DAEs) have changed substan-
tially in recent years. For this reason we recall some of the terminology and
some of the previous results that are necessary for the understanding of the
new approach.

Definition 1 A function x : I → R
n is called a solution of (1) if x ∈ C1(I, Rn)

and x satisfies (1) pointwise. It is called a solution of the initial value problem
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consisting of (1) and
x(t0) = x0, (2)

if x is a solution of (1) and satisfies (2). An initial condition (2) is called
consistent if the corresponding initial value problem has at least one solution.

As basis for the existence of solutions and the numerical methods, in [19,
20, 21], hypotheses have been formulated that lead to an index concept, the
so-called strangeness index, which generalizes the concept of the differentiation
index [4]. Let us briefly recall this concept and assume for convenience that all
functions are sufficiently smooth.

As in [19], we introduce a nonlinear derivative array, see also [5, 6], of the
form

Fℓ(t, x, ẋ, . . . , x(ℓ+1)) = 0, (3)

which stacks the original equation and all its derivatives up to level ℓ in one
large system, i. e.,

Fℓ(t, x, ẋ, . . . , x(ℓ+1)) =











F (t, x, ẋ)
d
dt

F (t, x, ẋ)
...

dℓ

dtℓ
F (t, x, ẋ)











. (4)

Here partial derivatives of Fℓ with respect to selected variables p from
(t, x, ẋ, . . . , x(ℓ+1)) are denoted by Fℓ;p, e. g.,

Fℓ;x =
∂

∂x
Fℓ, Fℓ;ẋ,...,x(ℓ+1) =

[

∂

∂ẋ
Fℓ . . .

∂

∂x(ℓ+1)
Fℓ

]

.

A corresponding notation is used for partial derivatives of other functions.
In order to discuss existence and uniqueness of solutions we need the solution

set of the derivative array Fµ for some integer µ. We denote this set as

Lµ = {zµ ∈ I × R
n × R

n × . . . × R
n | Fµ(zµ) = 0}. (5)

The following hypothesis was introduced in [20], see also [17, 19].

Hypothesis 1 Consider a general system of nonlinear differential-algebraic
equations (1). There exist integers µ, r, a, d, and v such that Lµ is not empty,
and the following properties hold:

1. The set Lµ ⊆ R
(µ+2)n+1 forms a manifold of dimension (µ + 2)n + 1− r.

2. We have
rankFµ;x,ẋ,...,x(µ+1) = r (6)

on Lµ.

3. We have

corankFµ;x,ẋ,...,x(µ+1) − corank Fµ−1;x,ẋ,...,x(µ) = v (7)

on Lµ, where the corank is the dimension of the corange and
corank F−1;x = 0 by convention.
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4. We have
rankFµ;ẋ,...,x(µ+1) = r − a (8)

on Lµ, such that there are smooth matrix functions Z2 and T2 defined on
Lµ of size ((µ + 1)m,a) and (n, n − a), respectively, having full rank and
satisfying

ZT
2 Fµ;ẋ,...,x(µ+1) = 0, rankZT

2 Fµ;x = a, ZT
2 Fµ;xT2 = 0 (9)

on Lµ.

5. We have
rankFẋT2 = d = m − a − v (10)

on Lµ such that there is a smooth matrix function Z1 defined on Lµ of
size (m,d) with ZT

1 FẋT2 having full rank.

The smallest possible µ in Hypothesis 1 is called the strangeness index of (1).
Systems with vanishing strangeness index are called strangeness-free and sys-
tems with m = n and v = 0 are called regular.

If F is sufficiently smooth and satisfies Hypothesis 1 with µ, r, a, d, v, then
every solution of (1) also solves a reduced problem consisting of d differential
and a algebraic equations and under some further assumptions the converse
also holds, see [20].

The results in [20] directly lead to methods for the numerical solution of over-
or under-determined systems of the form (1). To compute a consistent initial
value at time t0, i. e., a value x0 that satisfies the algebraic constraints, we must
solve

Fµ(t0, x0, ẋ0, . . . , x
(µ+1)
0 ) = 0 (11)

for (x0, ẋ0, . . . , x
(µ+1)
0 ). The classical approach to solve such systems is the

Gauß-Newton method, see, e. g., [26]. To perform an integration step from t0
to t1 = t0 + h, using for example a BDF-discretization method, we combine
the equation Fµ(zµ) = 0, which implies that the algebraic constraints are ful-
filled, with the discretized differential equations. Denoting by Dhx a BDF-
discretization of ẋ (see, e. g., [4]), we obtain

Fµ(t1, x1, ẋ1, . . . , x
(µ+1)
1 ) = 0, (12)

ẐT
1 F (t1, x1,Dhx1) = 0, (13)

where Ẑ1 is a fixed approximation to Z1 introduced in Hypothesis (1). This

system is solved for (x1, ẋ1, . . . , x
(µ+1)
1 ) using again the Gauß-Newton method.

See [20] for more details.
Analyzing this approach we see that the computational effort in each step of

this procedure (apart from the necessary function evaluations) has two parts,
the determination of the approximation Ẑ1 to Z1 and the solution of the system
consisting of (13) and (12).

In contrast to this, a direct substitution of ẋ by Dhx1 in (1) seems a lot less
expensive, in particular for large scale systems with structure. However, it is
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well known that for systems of strangeness index larger than 0 (differentiation
index larger than 1 if defined) numerical stability problems may arise or this
approach may not work at all, see [4, 14, 13, 33].

But if extra information is available, as for example in multi-body system
dynamics or circuit simulation, then we should be able to use this extra infor-
mation to simplify the computationally expensive parts in the general procedure
and thus avoid the numerical problems arising in the direct discretization. We
will discuss two modifications in this direction.

The first modification is the identification of equations that have to be differ-
entiated and added to the system. By definition the complete derivative array
is used to determine Z1 or a suitable approximation Ẑ1, and to perform the
next integration step in (12). If, however, the structure of the problem allows
to identify the equations that have to be differentiated, then we do not have
to work with the complete derivative array but with a (possibly much) smaller
system that replaces Fµ in (12). This smaller system is called reduced derivative
array in the following.

To obtain this reduced derivative array, let Πj be a (smooth) matrix function
of size (pj,m) with pointwise orthogonal columns such that

Πj(t, x, ẋ)T F (t, x, ẋ) = 0 (14)

describes the equations that are responsible for strangeness index j but not for
higher strangeness index.

Here the important assumption is that these projectors are easily available
due to the special structure of the problem. We discuss this for circuit simula-
tion in Section 4 and for multi-body systems in Section 5.

The reduced derivative array

F r
µ(t, x, ẋ, . . . , x(µ+1)) = 0 (15)

is given by the original equation (1) together with all equations

dl

dtl
(Πj(t, x, ẋ)T F (t, x, ẋ)) = 0, j = 1, . . . , µ, l = 1, . . . , j. (16)

While the system that has to be solved in (12) consists of (µ + 1)m equations,
system (15) only consists of m + p1 + 2p2 + . . . + µpµ equations, which in many
applications is much smaller, see Sections 4 and 5.

The reduced derivative array not only allows to reduce the computational
effort in the solution of (12) but it also reduces the complexity of computing the
projector Z1 or an approximation to it, since we can replace the determination
of Z2 and T2 from the Jacobian of Fµ by corresponding computations from the
smaller Jacobian of F r

µ . But even with the reduction of computational work
due to a reduced derivative array, the computation of these projectors may
still be infeasible for large scale systems. Therefore, we also discuss another
modification which avoids the computation of Z1 by introducing a minimal
number of new variables that lead to an index reduction.

We may summarize the two modifications in the general procedure in the
following algorithmic framework.
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Algorithm (Index reduction by minimal extension)
Consider a system of differential-algebraic equations of the form (1).

1. Identify the equations that are responsible for a strangeness index larger
than 0.

2. Differentiate all equations that are responsible for strangeness index j,
but not for higher strangeness index, j times and stack all these equations
together with the original system to obtain a reduced derivative array.

3. Identify the minimal number of new variables that have to be introduced.

4. Introduce new variables to obtain the minimally extended strangeness-free
system.

This algorithmic framework is feasible, in particular for large scale problems,
only if the two identification steps 1. and 3. can be performed without large
computational effort, i. e., for example if structural information can be used.
We will discuss these two identification steps for several general classes of prob-
lems in Section 3 and then for circuit simulation and multi-body dynamics in
Sections 4 and 5.

3 Index reduction by minimal extension

In the previous section we have discussed that the computation of the projector
Z1 in (13) is a serious computational bottleneck. As an alternative to the
removal of equations from (1), we may increase the number of variables by
introducing new variables in the reduced derivative array (15), so that this
leads to a new system of strangeness index 0. In general such an approach
needs about the same computational effort as the computation of Z1 and then
leads to a larger system in each integration step. But with extra information
available this approach may become feasible for large scale problems. The
idea of introducing new variables to reduce the index is not new, see [2, 25]
or stabilization techniques in multi-body system dynamics [7, 9]. Our new
approach, however, leads to a minimal extension and is therefore preferable for
large scale systems.

As a motivation and to understand the principle of minimal extension, we
begin with linear systems with variable coefficients.

3.1 Linear systems in condensed form

To illustrate the procedure of index reduction by minimal extension, let us first
consider linear systems with variable coefficients

E(t)ẋ = A(t)x + f(t), (17)

with E,A ∈ C(I, Rm,n). It was shown in [15] that under some constant rank
assumptions there exist nonsingular matrix valued functions P ∈ C(I, Rm,m)
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and Q ∈ C1(I, Rn,n) such that the transformed system (with x(t) = Q(t)y(t))

P (t)E(t)Q(t)ẏ = (P (t)A(t)Q(t) − P (t)E(t)Q̇(t))y + P (t)f(t)

has the form (without arguments)













Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0





















ẏ1

ẏ2

ẏ3

ẏ4









=













0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0





















y1

y2

y3

y4









+













g1

g2

g3

g4

g5













, (18)

where the fourth block column has size u and the fifth block row has size v.
It follows immediately from the results in [15] that system (18) has strangeness

index 0 if and only if s = 0 and it has strangeness index 1 if and only if
rankA14 = rank[A12 A14]. It is then obvious that the equations that have to be
differentiated to reduce the index of the system are exactly given by the fourth
block row of this system.

Differentiating these equations and adding the derivatives to the system we
obtain the reduced derivative array

















Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Is 0 0 0

























ẏ1

ẏ2

ẏ3

ẏ4









=

















0 A12 0 A14

0 0 0 A24

0 0 Ia 0
Is 0 0 0
0 0 0 0
0 0 0 0

























y1

y2

y3

y4









+

















g1

g2

g3

g4

g5

ġ4

















. (19)

In the general approach [15, 17, 20] we would now compute nullspaces and
transformations of the two system matrices of this reduced derivative array and
after this remove some equations to obtain a new system with the same solution
set as (18). In view of the discussed complexity problems, the idea of minimal
extension is to introduce a minimal number (here s) new variables to reduce
the index. In this special case we replace every occurrence of ẏ1 in (19) by the
new variable y5 and obtain the extended system

















0 0 0 0 0
0 Id 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





























ẏ1

ẏ2

ẏ3

ẏ4

ẏ5













=

















0 A12 0 A14 −Is

0 0 0 A24 0
0 0 Ia 0 0
Is 0 0 0 0
0 0 0 0 0
0 0 0 0 −Is





























y1

y2

y3

y4

y5













+

















g1

g2

g3

g4

g5

ġ4

















.

(20)
It is easy to see that if (y1, . . . , y5) solves (20) then (y1, . . . , y4) solves (19) and
conversely if (y1, . . . , y4) solves (19) then (y1, . . . , y4, ẏ1) solves (20).

The following lemma shows when this system of size (m + s, n + s) has
strangeness index 0.
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Lemma 2 The differential-algebraic system in condensed form (18) has
strangeness index 1 if and only if the extended system (20) has strangeness
index 0.

Proof. As in [15] we compute matrices Z, T whose columns span the left and
right nullspace, respectively, of the coefficient of ẏ. A possible choice is

Z =

















Is 0 0 0 0
0 0 0 0 0
0 Ia 0 0 0
0 0 Is 0 0
0 0 0 Iv 0
0 0 0 0 Is

















, T =













Is 0 0 0
0 0 0 0
0 Ia 0 0
0 0 Iu 0
0 0 0 Is













.

Then let the columns of

V =













V11 0
0 0
0 0
0 Iu

−V11 0













with V T
11A14 = 0 span the left nullspace of ZT AT and let

T ′ =













0
Id

0
0
0













complete T to a nonsingular matrix.
It follows that V T ZT AT ′ = 0 if and only if V T

11A12 = 0, which is equivalent
to rank(A14) = rank([A12 A14]), i. e., that the system has strangeness index 1.

We have seen that the introduction of new variables reduces the index of the
system. Since from the theory of [15, 17] there are at least s couplings between
algebraic and differential equations which must be removed, any smaller exten-
sion would still have at least one coupling and hence can not be strangeness-free.
Thus, we have the following lemma.

Lemma 3 Suppose that the differential-algebraic system in condensed form
(18) has strangeness index 1. Then the minimal number of new variables that
have to be introduced in the reduced derivative array (19) so that the extended
system has strangeness index 0 is s.

Remark 1 At this point we can already formulate a general principle how
to obtain a minimally extended system from a given DAE. Having detected a
variable, say w, in a purely algebraic condition that also occurs in differentiated
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form (as ẇ) in a different part of the system (as, e. g., y1 in (18)) it is clear
that this coupling contributes to a higher index. Eliminating the crucial variable
(namely ẇ) with the help of the differentiated algebraic condition can be seen as
the basic step towards a reduced problem that has the same size (and the same
solution set) as the original problem. The basic step for the construction of a
corresponding minimally extended system on the other side is given by adding
the differentiated algebraic condition to the given problem and replacing the
crucial variable (still ẇ) by a new one (setting, e. g., z = ẇ). Since elimination
of the new variable would simply result in the same system as for the basic
step towards a reduced problem, the solutions of the extended system only
differs in the additional component due to the introduction of a new variable.
This general principle will also show up in the following sections, even when we
treat nonlinear problems. The critical step will only be to identify the crucial
variables.

As we have already discussed in the introduction, the concept of introducing
new (dummy) variables to reduce the index of a system is not new, it has
originally been introduced in [25] although in a different and not necessarily
minimal way. To see this let us study the following example from [25].

Example 1 Consider the second order differential-algebraic system

x1 + x2 + u1(t) = 0,
x1 + x2 + x3 + u2(t) = 0,
ẋ3 + x1 + x4 + u3(t) = 0,

2ẍ1 + ẍ2 + ẍ3 + ẋ4 + u4(t) = 0,

where u is a given forcing function. If we write this system as first order system
with x5 = ẋ1, x6 = ẋ2 and x7 = ẋ3, we obtain the system





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 2 1 1









































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7





















=





















0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 0 0 0 0 0
1 1 1 0 0 0 0
−1 0 0 −1 0 0 0
0 0 0 0 0 0 0









































x1

x2

x3

x4

x5

x6

x7





















+





















0
0
0
u1

u2

−u3

−u4





















.

Computing the form (18) for this system we obtain d = 2, a = 1, s = 2 and
the strangeness index µ = 1. It follows that the minimally extended system is
a first order system of 9 equations. In contrast to this, the system obtained by
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introducing dummy derivatives as in [25] is a second order system of 9 equations,
which can be rewritten as a first order system of 10 equations, since only one
variable occurs with second derivative.

A similar index reduction procedure by minimal extension can also be applied
to systems in normal form that have strangeness index higher than 1. Since
this approach becomes very technical, see also [15], we present here only the
case of a uniquely solvable system in normal form (18) that has no redundant
equations and strangeness index µ = 2. Permute this form by exchanging the
first two block rows and columns to








Id0 0 0 0
0 Is0 0 0
0 0 0 0
0 0 0 0

















ẏ1

ẏ2

ẏ3

ẏ4









=









0 0 0 A14

A21 0 0 A24

0 0 Ia0 0
0 Is0 0 0

















y1

y2

y3

y4









+









g1

g2

g3

g4









. (21)

Then determine (locally) permutations Π,Ψ such that

ΠT A24Ψ =

[

Ã25 Ã26

Ã35 Ã36

]

and Ã25 is invertible with rank Ã25 = rankA24. Multiplying the second and
last block row from the left by

V2 =

[

I 0

−Ã35Ã
−1
25 I

]

ΠT

and making the change of variables

[

z2

z3

]

= V2y2, z5 = ΨT

[

I Ã−1
25 Ã26

0 I

]

y4

we obtain a transformed system













Id0 0 0 0 0 0
0 Is0,1 0 0 0 0
0 0 Is0,2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





























ż1

ż2

ż3

ż4

ż5

ż6

















=

















0 0 0 0 Ã15 Ã16

Ã21 0 0 0 Ã25 0

Ã31 0 0 0 0 0
0 0 0 Ia0 0 0
0 Is0,1 0 0 0 0
0 0 Is0,2 0 0 0

































z1

z2

z3

z4

z5

z6

















+

















h1

h2

h3

h4

h5

h6

















. (22)

This system has strangeness index µ = 2 if and only if s0 6= 0, the matrix
functions Ã31 and ÃT

16 have full row rank s1 = s0,1 and Ã31Ã16 is nonsingular.
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Note that we have assumed that there are no redundant equations and that
the system is uniquely solvable. Hence, there (locally) exists a permutation
matrix Π1 such that the leftmost columns C1 of C = [ C1 C2 ] = Ã31Π1 form a
nonsingular matrix function of size (s1, s1).

This information is sufficient to determine the equations that have to be
differentiated and the variables that have to be replaced. Partitioning

z1Π1 =

[

z11

z21

]

,

adding the equations

ż2 = −ḣ5, ż3 = −ḣ6, 0 = CΠT
1 ż1 + ĊΠT

1 z1 + ḣ3 + ḧ6

and introducing the new variables z7 = ż2, z8 = ż3, z9 = ż1,1, we obtain a system
of strangeness index 0. Note that this is again a minimal extension, since we
have added s0 + s1 equations and variables and it follows from the theory in
[15] that in this case this is the number of couplings between differential and
algebraic equations that have to be removed.

Looking in detail at the index reduction process described in [15] it follows
how to proceed if the strangeness index is larger than 2 or if the system is not
uniquely solvable.

In this section we have seen that for systems in condensed form (18) we can
avoid the computational effort of transforming the system into an equivalent
system of the same size with lower index if we introduce a minimal number of
new variables. But typically a system is not in the condensed from (18) and
also it is computationally expensive to compute this form [17], in particular,
for large scale systems.

3.2 Linear semi-explicit systems

If the system under consideration is linear and semi-explicit then the index re-
duction by minimal extension is also easily performed if the algebraic equations
that lead to the higher index can be identified.

Consider the regular linear semi-explicit system E(t)ẋ = A(t)x + f of m =
m1 + m2 equations in m unknowns

[

Im1 0
0 0

] [

ẋ1

ẋ2

]

=

[

A11(t) A12(t)
A21(t) A22(t)

] [

x1

x2

]

+

[

f1(t)
f2(t)

]

(23)

with sufficiently smooth matrix functions Aij and strangeness index µ = 1.
Suppose further that we can identify the equations that lead to a strangeness
index larger than 0. If the computational effort is feasible then this can for
example be done by determining the rank a of A22 and by determining (locally)
permutation matrices Π and Ψ such that, with the change of variables y = ΨT x,
the system

ΠT EΨẏ = ΠT A(t)Ψy + Πf

12



can be written as (renaming the blocks in A and leaving off arguments)









Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0

















ẏ1

ẏ2

ẏ3

ẏ4









=









A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

















y1

y2

y3

y4









+









g1

g2

g3

g4









, (24)

where the matrix functions A33 of size (a, a) and Ã41 = A41 − A43A
−1
33 A31 of

size (s, s) are nonsingular. If we multiply the system by









Is 0 0 0
0 Id 0 0
0 0 Ia 0

0 0 −A43A
−1
33 Is









from the left then the resulting system is









Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0

















ẏ1

ẏ2

ẏ3

ẏ4









=









A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

Ã41 Ã42 0 0

















y1

y2

y3

y4









+









g1

g2

g3

g̃4









, (25)

with Ã42 = A42 −A43A
−1
33 A32 and g̃4 = g4 −A43A

−1
33 g3. Note that the diagonal

block Ã44 vanishes by construction of A33.
We then add the derivative of the last block row of (25) to the system and

introduce new variables for ẏ1, i. e., in the permuted system (24) we set ẏ1 = y5

and obtain the minimally extended system













0 0 0 0 0
0 Id 0 0 0
0 0 0 0 0
0 0 0 0 0

0 Ã42 0 0 0

























ẏ1

ẏ2

ẏ3

ẏ4

ẏ5













=













A11 A12 A13 A14 −Is

A21 A22 A23 A24 0
A31 A32 A33 A34 0
A41 A42 A43 A44 0

− d
dt

Ã41 − d
dt

Ã42 0 0 −Ã41

























y1

y2

y3

y4

y5













+













g1

g2

g3

g4

− d
dt

g̃4













.(26)

Note that neither the permutation nor the block elimination have to be carried
out, they are just needed to identify the equations that have to be differentiated
and the variables that have to be replaced. Again for large scale problems
such a procedure would be feasible only if s is much smaller than m and the
computation of Ã41, Ã42 and g̃4 can be carried out easily.

We have the following result.

Lemma 4 The semi-explicit system (23) has strangeness index 1 if and only
the extended system (26) has strangeness index 0.
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Proof. Eliminating Ã42 in the last row on the left hand side of system (26) by a
block elimination from the left, we see that (26) has strangeness index 0 if and
only if the matrix

B =









A11 A13 A14 −Is

A31 A33 A34 0
A41 A43 A44 0

− d
dt

(Ã41) − A42A21 −A42A23 A42A24 −Ã41









is nonsingular. Recall that A33 and Ã41 are square nonsingular, so B is non-
singular if and only if the matrix

C =

[

A13 + Ã−1
41 A42A23 A14 + Ã−1

41 A42A24

A33 A34

]

is nonsingular. Considering the transformed system (25) we see that C is non-
singular if and only if (25) and hence the original system has strangeness index 1.

3.3 Nonlinear semi-explicit systems

In this subsection we consider uniquely solvable nonlinear semi-explicit systems
of strangeness index µ = 1 of the form

ẋ = f(x, y, z),

0 = g(x, y), (27)

0 = h(x), (28)

with m1,m2,m3 rows in f, g, h, respectively. We assume that the Jacobians
gy and hxfz are invertible, which means that the equations h(x) = 0 represent
the equations that lead to a strangeness index µ = 1.

In this situation the reduced derivative array is

ẋ = f(x, y, z),

0 = g(x, y),

0 = h(x),

0 = hx(x)ẋ. (29)

To perform the minimal extension, select m3 variables x2 of x such that the
partial derivative hx2 is (locally) invertible and split the fourth equation in (29)
as

hx1(x1, x2)ẋ1 + hx2(x1, x2)ẋ2 = 0. (30)

Replacing every occurrence of the variables x2 by the new variables w = ẋ2, we
have rewritten system (29) as

ẋ1 = f1(x1, x2, y, z),

14



0 = f2(x1, x2, y, z) − w,

0 = g(x1, x2, y),

0 = h(x1, x2),

hx1(x1, x2)ẋ1 = −hx2(x1, x2)w. (31)

Lemma 5 The semi-explicit system (28) has strangeness index µ = 1 if and
only the extended system (31) has strangeness index µ = 0.

Proof. In the present case the characteristic values r, a, d, and v of Hypothesis 1
do not depend on the point where we linearize. Thus, we may ignore the
condition Lµ 6= ∅ of Hypothesis 1.

Elimination of the derivative ẋ1 in system (31) via the first block row yields
the equivalent system

ẋ1 = f1(x1, x2, y, z),

0 = f2(x1, x2, y, z) − w,

0 = g(x1, x2, y),

0 = h(x1, x2),

0 = −hx2(x1, x2)w − hx1(x1, x2)f1(x1, x2, y, z). (32)

This system has strangeness index 0 if and only if the matrix (without argu-
ments)









f2;x2 f2;y f2;z −I

gx2 gy 0 0
hx2 0 0 0

−hx1f1;x2 −hx1f1;y −hx1f1;z hx2









(33)

is invertible, which is the case if and only if the matrices gy, hx2 and
[

f2;z −I

−hx1f1;z −hx2

]

are invertible. This is exactly the condition for the original system to have
strangeness index µ = 1.

3.4 Hessenberg Systems

Another important class of systems for which we obtain reduced derivative ar-
rays and a minimal extension without much computational effort are Hessenberg
systems, see [4]. In the linear case, a Hessenberg system has the form

















I 0 0 . . . 0
0 I 0 . . . 0

0 0
. . .

...
... . . . . . . I 0
0 . . . . . . 0 0































ẋ1

ẋ2
...

ẋr−1

ẋr















=

15



















B11 B12 . . . . . . B1,r

B21 B22 . . . B2,r−1 0

0 B32
. . . B3,r−1 0

... 0
. . .

...
...

0 . . . 0 Br,r−1 0































x1

x2
...

xr−1

xr















+















f1

f2
...

fr−1

fr















, (34)

with Br,r−1Br−1,r−2 · · ·B2,1B1,r nonsingular.
Hessenberg systems are uniquely solvable and have differentiation index r,

see [4], and hence according to [17] for r > 0 strangeness index r − 1.
For r = 2 the Hessenberg system (34) of size (m,m) has the form

[

Im1 0
0 0

] [

ẋ1

ẋ2

]

=

[

B11 B12

B21 0

] [

x1

x2

]

+

[

f1

f2

]

, (35)

with B21B12 invertible. Here, from the structure, we see that a transformation
to the normal form (18) would lead to s = m − m1. Let Π1 be a permutation
matrix such that (locally) the first s columns of B21Π1 form a nonsingular
matrix. Multiplying the first row of (35) by ΠT

1 , setting y3 = x2, and performing
the change of variables

[

y1

y2

]

= ΠT x1

with y1 of size s we obtain a system of the form





Is 0 0
0 Im1−s 0
0 0 0









ẏ1

ẏ2

ẏ3



 =





A11 A12 A13

A21 A22 A23

A31 A32 0









y1

y2

y3



 +





g1

g2

g3



 , (36)

with A31 nonsingular. This system has strangeness index µ = 1 if and only if
A31A13 + A32A23 is nonsingular.

In this way we have identified the last block row of (36) as the equations that
have to be differentiated to obtain the reduced derivative array and that we
should introduce the new variables y4 = ẏ1. We obtain the minimally extended
strangeness-free system









0 0 0 0
0 Im1−s 0 0
0 0 0 0
0 A32 0 0

















ẏ1

ẏ2

ẏ3

ẏ4









=









A11 A12 A13 −Is

A21 A22 A23 0
A31 A32 0 0

−Ȧ31 −Ȧ32 0 −A31

















y1

y2

y3

y4









+









g1

g2

g3

−ġ3









. (37)

That this system has strangeness index 0 follows directly from the nonsingular-
ity of the matrix





A11 A13 −Is

A31 0 0

−Ȧ31 − A32A21 −A32A23 −A31



 .
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By this construction we see that for Hessenberg systems of strangeness index
1 the equations that have to be differentiated are clear and to identify the new
variables we only have to identify linear independent columns in the block B21.

For r = 3 a linear Hessenberg system has the form





Im1 0 0
0 Im2 0
0 0 0









ẋ1

ẋ2

ẋ3



 =





B11 B12 B13

B21 B22 0
0 B32 0









x1

x2

x3



 +





f1

f2

f3



 , (38)

with B32B21B13 nonsingular. In this case we (locally) determine permutation
matrices Π1,Π2 such that in

B32Π2 =
[

A53 A54

]

, ΠT
1 B13 =

[

A15

A25

]

, B32B21Π1 =
[

Â31 Â32

]

the matrices A53 and Â31 are square and nonsingular. Multiplying the first
block row of (38) by ΠT

1 and second block row by ΠT
2 , setting y5 = x3, and

performing the change of variables

[

y1

y2

]

= ΠT
1 x1,

[

y3

y4

]

= ΠT
2 x2

with y1 of size s1 and y3 of size s2 we obtain the transformed system













Is1 0 0 0 0
0 Id1 0 0 0

0 0 Is2 0 0
0 0 0 Id2 0

0 0 0 0 0

























ẏ1

ẏ2

ẏ3

ẏ4

ẏ5













=













A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 0
A41 A42 A43 A44 0

0 0 A53 A54 0

























y1

y2

y3

y4

y5













+













g1

g2

g3

g4

g5













. (39)

In this system we have that the matrix

C = B32B21B13 = (B32Π2)(Π
T
2 B21Π1)(Π

T
1 B13)

=
[

A53 A54

]

[

A31 A32

A41 A42

] [

A15

A25

]

= A53A31A15 + A54A41A15 + A53A32A25 + A54A42A25

is nonsingular. We differentiate the equation

A53y3 + A54y4 + g5 = 0

and insert the third and fourth equation of (39) to get

Â31y1 + Â32y2 + (Â33 + Ȧ53)y3 + (Â34 + Ȧ54)y4 + ĝ3 = 0,
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where Â3,i = A5,3A3,i + A5,4A4,i for i = 1, 2, 3, 4 and ĝ3 = A53g3 + A54g4 + ġ5.
Then we add the derivatives of these two equations to the system and introduce
new variables y6 = ẏ3, y7 = ẏ1. In this way we obtain the minimally extended
system

























0 0 0 0 0 0 0
0 Id1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 Id2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −A54 0 0 0

0 −Â32 0 −Â34 − Ȧ54 0 0 0













































ẏ1

ẏ2

ẏ3

ẏ4

ẏ5

ẏ6

ẏ7





















=





















A11 A12 A13 A14 A15 0 −Is1

A21 A22 A23 A24 A25 0 0
A31 A32 A33 A34 0 −Is2 0
A41 A42 A43 A44 0 0 0
0 0 A53 A54 0 0 0

0 0 Ȧ53 Ȧ54 0 A53 0
d
dt

Â31
d
dt

Â32 ∗ ∗ 0 Â33 + Ȧ53 Â31









































y1

y2

y3

y4

y5

y6

y7





















+





















g1

g2

g3

g4

g5

ġ5
d
dt

ĝ3





















.

Here we denote by ∗ a block in the matrix that is not relevant for the index of
the system.

This system has strangeness index 0, since, if we eliminate the last two rows
in the coefficient of ẏ by multiplying the system from the left by the matrix





















Is1 0 0 0 0 0 0
0 Id1 0 0 0 0 0
0 0 Is2 0 0 0 0
0 0 0 Id2 0 0 0
0 0 0 0 Is2 0 0
0 0 0 A54 0 Is2 0

0 Â32 0 Â34 + Ȧ54 0 0 Is1





















,

then in the coefficient of y we obtain the relevant submatrix

S =













A11 A13 A15 0 −Is1

A31 A33 0 −Is2 0
0 A53 0 0 0

A54A41 ∗ 0 A53 0

∗ ∗ Â32A25 ∗ Â31













,

obtained by projecting from the left and right by matrices whose columns span
the left and right nullspace of the coefficient of ẏ. Using the identity in the
second row to eliminate the other elements and, since A53 is nonsingular, the
nonsingularity of S is equivalent to the nonsingularity of





A11 A15 −Is1

Â31 0 0

∗ Â32A25 Â31




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and this is equivalent to the nonsingularity of Â31 and C.
How to proceed for Hessenberg systems with r > 3 is then canonical. For

nonlinear Hessenberg systems the analysis proceeds analogously.

4 Application to circuit simulation

In this section we discuss the application of reduced derivative arrays and min-
imal extension in the context of circuit simulation. In several recent papers,
a detailed analysis has been given, which influence specific elements and their
combination have on the index, for a survey see [11, 12]. Furthermore in [8, 34]
topological methods have been derived to analyze from the network topology
which equations are responsible for higher index and projectors are determined
(in a purely combinatorial way) to filter out these equations from the system.
We will briefly review these results here, so that we can produce the reduced
derivative array. After this we discuss the identification which new variables
have to be introduced for the circuit simulation applications. We discuss, in
particular, the modified nodal analysis and the charge oriented modified nodal
analysis. Denoting by e the node potentials, by jL and jV the currents through
inductances and voltage sources, respectively, by i and v the functions describ-
ing the current and voltage sources, respectively, by r the function describing
the resistances, and finally by qC and φL the functions describing the charges
of the capacitances and the fluxes of the inductances, respectively, one obtains
from the modified nodal analysis (MNA), see, e. g., [11], a quasi-linear system
of differential-algebraic equations of the form

0 = AC
dqC(AT

Ce, t)

dt
+ ARr(AT

Re, t) + ALjL +

AV jV + AIi(A
T e,

dq(AT
Ce, t)

dt
, jL, jV , t),

0 =
dφL(jL, t)

dt
− AT

Le,

0 = AT
V e − v(AT e,

dqC(AT
Ce, t)

dt
, jL, jV , t), (40)

where the incidence matrix A containing the information on the topology of the
circuit is split as

[

AC AL AR AV AI

]

, with AC , AL, AR, AV and AI describing
the branch current relation for capacitive, inductive, resistive branches and
branches for voltage sources and current sources, respectively.

For the conventional MNA the vector of unknown variables consists of all
node potentials e and all branch currents jL, jV of current-controlled elements.
Introducing new functions

C(u, t) =
∂qC(u, t)

∂u
, L(j, t) =

∂φL(j, t)

∂j
,

and the notation

qt(u, t) =
∂q(u, t)

∂t
, φt(j, t) =

∂φ(j, t)

∂t
,
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the system is reformulated as

0 = ACC(AT
Ce, t)AT

C

de

dt
+ ACqt(A

T
Ce, t) + ARr(AT

Re, t) + ALjL +

AV jV + AIi(A
T e,C(AT

Ce, t)AT
C

de

dt
+ ACqt(A

T
Ce, t), jL, jV , t),

0 = L(jL, t)
jL

dt
+ φt(jL, t) − AT

Le,

0 = AT
V e − v(AT e,C(AT

Ce, t)AT
C

de

dt
+ ACqt(A

T
Ce, t), jL, jV , t). (41)

In the charge oriented MNA the vector of unknowns is extended by the
charges q of capacitances and the fluxes φ of inductances, and the original
voltage-charge and current-flux equations are included in the system yielding

0 = AC
dq

dt
+ ARr(AT

Re, t) + ALjL + AV jV + AI i(A
T e,

dq

dt
, jL, jV , t),

0 =
dφ

dt
− AT

Le,

0 = AT
V e − v(AT e,

dq

dt
, jL, jV , t),

0 = q − qC(AT
Ce, t),

0 = φ − φL(jL, t). (42)

In [8, 11, 12, 34] a detailed analysis of the differentiation index and other
properties of these systems have been given. In particular, it has been shown
how a purely topological analysis can be used to determined the higher index
equations. In this way it is possible to derive the reduced derivative array
without extra computational effort. Furthermore, also the identification of the
minimal extension can be obtained from this information as we will discuss
now.

In [8] the following projectors were introduced. The projector onto
kernel AT

C was denoted by QC , that onto kernelAT
V QC by QV −C , that

onto kernelAT
RQCQV C by QR−CV , that onto kernel QT

CAV by Q̄V −C and,
furthermore, the product of these projectors was denoted by QCRV =
QCQV −CQR−CV . In abuse of the notation in [8] we use the same terms to
denote the full-rank parts of these projectors, i.e., to denote projection matri-
ces whose columns span the corresponding spaces. In this way in the following
equations we avoid unnecessary equations of the form 0 = 0. These constant
projection matrices can be obtained by purely topological analysis of the net-
work at essentially no computational cost.

Then for the conventional MNA (41) the equations that are responsible for
a strangeness index higher than 0 are given by the projected equations (in
the following we omit the arguments of the functions i and v to simplify the
notation, see [8] for a detailed derivation of the exact form of these equations)

0 = QT
CRV (ALjL + AIi( · )),

0 = Q̄V −C(AT
V e − v( · )). (43)
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It follows that the reduced derivative array consists of the equations in (41)
together with the derivatives of (43)

0 = QT
CRV (AL

djL

dt
+ AI

di( · )

dt
),

0 = Q̄V −C(AT
V

de

dt
−

dv( · )

dt
). (44)

To determine the minimal extension we have to find nonsingular matrices
Πe,Πj such that

QT
CRV ALΠ−1

j = [J1 0], Q̄V −CAT
V Π−1

e = [F1 0]

with J1, F1 square nonsingular. These can be obtained with very small computa-
tional effort, since QT

CRV AL and Q̄V −CAT
V are still only incidence-like matrices

(containing topological information on the circuit in form of integers) the com-
putation of Πj , Πe and their inverses is possible with very small computational
effort and very accurately. We partition

j̃L = ΠjjL =

[

j̃L1

j̃L2

]

, ẽL = Πee =

[

ẽ1

ẽ2

]

conformally and introduce new variables

ê1 =
dẽ1

dt
, ĵ1 =

dj̃L1

dt
. (45)

Note that since we add exactly as many equations as needed, the extension
is minimal. We have the following result.

Theorem 6 Let the assumptions of Theorem 2.1 in [8] hold. Then the mini-
mally extended system for the conventional MNA given by the system

0 = ACC(AT
CΠ−1

e ẽ, t)AT
CΠ−1

e

[

ê1
dẽ2
dt

]

+ ACqt(A
T
CΠ−1

e ẽ, t) + ARr(AT
RΠ−1

e ẽ, t) + ALΠ−1
j j̃L +

AV jV + AIi( · ),

0 = L(jL, t)Π−1
j

[

ĵ1
dj̃L2
dt

]

+ φt(Π
−1
j j̃L, t) − AT

LΠ−1
e ẽ,

0 = AT
V Π−1

e ẽ − v( · ),

0 = QT
CRV (ALΠ−1

j

[

ĵ1
dj̃L2
dt

]

+
di( · )

dt
),

0 = Q̄T
V −C(AT

V Π−1
e

[

ê1
dẽ2
dt

]

−
dv( · )

dt
) (46)

is strangeness-free.

Proof. The renaming of the variables gives rise to the same elimination proce-
dure as used in [8] to show that the original problem has differentiation index 2.
Thus, the same proof shows the present claim but without the need of differen-
tiating.
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Remark 2 If the original system has size n and there are n2 equations in (43)
then the extended system has size n + n2. Since typically n2 is much smaller
than n, the extended system is only slightly larger than the original system.

For the charge oriented MNA (42) the equations that are responsible for a
strangeness index higher than 0 are given by the projected equations in (43)
together with the last two equations in (42).

Using the replacements as in (45) and in addition

q̂ =
dq

dt
, φ̂ =

dφ

dt
, (47)

we obtain the following minimally extended system.

0 = AC q̂ + ARr(AT
RΠ−1

e ẽ, t) + ALΠ−1
j j̃L + AV jV + AIi( · ),

0 = φ̂ − AT
LΠ−1

e ẽ,

0 = AT
V Π−1

e ẽ − v( · ),

0 = q − qC(AT
CΠ−1

e ẽ, t),

0 = φ − φL(Π−1
j j̃L, t),

0 = QT
CRV (ALΠ−1

j

[

ĵ1
dj̃L2
dt

]

+
di( · )

dt
),

0 = Q̄T
V −C(AT

V Π−1
e

[

ê1
dẽ2
dt

]

−
dv( · )

dt
),

0 = q̂ − C(AT
CΠ−1

e ẽ, t)AT
CΠ−1

e

[

ê1
dẽ2
dt

]

+ qt(A
T
CΠ−1

e ẽ, t),

0 = φ̂ − L(Π−1
j j̃L, t)Π−1

j

[

ĵ1
dj̃L2
dt

]

+ φt(Π
−1
j j̃L, t). (48)

Remark 3 Obviously, we can use the last two relations to eliminate the just
introduced variables q̂ and φ̂ obtaining just the minimally extended system
(46) for the conventional MNA. Hence, system (48) is strangeness-free as well.
Moreover, from a numerical point of view the reduced problems and minimally
extended systems belonging to the conventional and charge oriented MNA are
the same or at least equivalent (in the sense that the common part of the nu-
merical solution would be same when using the same stepsizes and ignoring
roundoff errors). Concerning efficiency, however, we observe that in the charge
oriented MNA the minimally extended strangeness-free system is often signifi-
cantly larger than the original system.

5 Multi-body systems

A second important class of problems where it is possible to use the structure to
derive the reduced derivative array and the minimally extended strangeness-free
system are the models for mechanical multi-body systems [32]. The approach
that we consider here has been discussed in the context of industrial simulation
codes in detail in [1]. For this reason we present this case only very briefly.
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The classical first order form of a multi-body system, see, e. g., [7, 29], is

ṗ = v,

Mv̇ = f(p, v) − gp(p)T λ,

0 = g(p), (49)

where p are the positions, v the velocities, M is the mass matrix, g(p) describes
the constraints and λ is the associated Lagrange multiplier. Under the usual
assumptions, i. e., that M is positive definite and that the Jacobian gp(p) has
full row rank, this system has differentiation index 3 (or strangeness index 2).

A well-known index reduction technique is given by the Gear-Gupta-
Leimkuhler stabilization [9], that couples the time-derivative of the constraint
equations via further Lagrange multipliers ν into the dynamics and gives the
system of differentiation index 2

ṗ = v − gp(p)T ν,

Mv̇ = f(p, v) − gp(p)T λ,

0 = g(p),

0 = gp(p)v. (50)

It follows that this stabilization also introduces new variables and is therefore
an extended system, but it is not strangeness-free. It is clear that we have
to perform one more differentiation of the constraint equations to obtain the
reduced derivative array as

ṗ = v,

Mv̇ = f(p, v) − gp(p)T λ,

0 = g(p),

0 = gp(p)v, (51)

0 = gpp(p)(v, v) + gp(p)v̇. (52)

To obtain the minimally extended strangeness-free system we (locally) deter-
mine a permutation matrix Π such that for the Jacobian matrix gp(p) we have

gp(p)Π = [G1 G2],

with G2 being square and nonsingular. We then partition

ΠT p =

[

p1

p2

]

, ΠT v =

[

v1

v2

]

conformally and replace every occurrence of ṗ2 by the new variable w1 and
every occurrence of v̇2 by the new variable w2. This gives the extended system

ṗ1 = v1, (53)

w1 = v2, (54)

MΠ

[

v̇1

w2

]

= f(p, v) − gp(p)T λ, (55)

23



0 = g(p), (56)

0 = gp(p)v, (57)

0 = gpp(p)(v, v) + gp(p)Π

[

v̇1

w2

]

. (58)

The following theorem shows that it is strangeness free.

Theorem 7 Let M be positive definite and let gp(p) have full row rank. Then
the extended system (53)–(58) is strangeness-free.

Proof. Since G2 is square nonsingular we can solve (56) for p2 in terms of p1

and (57) for v2 in terms of p1 and v1. Since M is positive definite and gp(p) has
full row rank, it follows that also H(p) = gp(p)M−1gp(p)T is positive definite
and hence we can use (58) to obtain

λ = H(p)−1(gpp(p)(v, v) + gp(p)M−1f(p, v)).

Finally, the positive definiteness of M implies that we can solve for v̇1 and w2

and it remains an ordinary differential equation in the unknowns p1 and v1.
Thus, the system has strangeness index 0.

Remark 4 If the original system (49) has np dynamical equations and nc

constraints, then the minimally extended strangeness-free system consists of
np + 3nc equations in the same number of unknowns. Since typically the num-
ber of constraints is much smaller than the number of dynamical equations, this
approach is feasible from a complexity point of view, in particular, in view of
the fact that the resulting system is strangeness-free and can be treated by all
integrators for systems of differentiation index 1. We will demonstrate this in
Section 6.

6 Numerical examples

To demonstrate the gain in efficiency that can be obtained when working with
the minimally extended strangeness-free system, we discuss two examples. All
computations were performed on a Sun Ultra-1 workstation under Fortran 77,
using the GNU Fortran compiler.

First consider the system

J + G(u1 − u2) = 0,

C1u̇2 − G(u1 − u2) + C2(u̇2 − u̇3) = 0,

JV − C2(u̇2 − u̇3) = 0,

u1 − V (t) = 0,

u3 − Au2 = 0, (59)

taken from [12], modeling the so-called Miller integrator circuit. For para-
meter values C1 = C2 = 1, A = 1, and G = 1, this system is known to
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have differentiation index 2, hence strangeness index 1. Obviously, the higher
index is caused by the coupling between u3 and u̇3. The minimally extended
strangeness-free system is obtained by adding the differentiated relation u̇3 −
Au̇2 = 0 and replacing u̇3 say by û3. This leads to the system

J + G(u1 − u2) = 0,

C1u̇2 − G(u1 − u2) + C2(u̇2 − û3) = 0,

JV − C2(u̇2 − u̇3) = 0,

u1 − V (t) = 0,

u3 − Au2 = 0,

û3 − Au̇2 = 0. (60)

From this we can get a reduced strangeness-free problem by eliminating û3,
hence

J + G(u1 − u2) = 0,

C1u̇2 − G(u1 − u2) + C2(u̇2 − Au̇2) = 0,

JV − C2(u̇2 − Au̇2) = 0,

u1 − V (t) = 0,

u3 − Au2 = 0. (61)

In Table 1 we present the CPU-times needed for solving these systems with
the code GELDA [22] with tolerance 10−5 and 10−9.

Tolerance standard str.-free reduced str.-free min. ext.

10−5 1.61 0.29 0.42
10−9 7.03 1.27 1.91

Table 1: Runtime in seconds for Miller circuit

We see that much can be gained by using the strangeness-free reduced form,
but the computational effort that is needed for the strangeness-free minimally
extended system is not significantly higher. However, it is in general easier to
get this form than the fully reduced system.

The second example is a multi-body system describing the movement of a
mass point restricted to a parabola under gravity. The equations taken from
[31] have the form

ṗ1 = v1, ṗ2 = v2, ṗ3 = v3,

v̇1 = 2λp1,

v̇2 = 2λp2,

v̇3 = −λ − 1,

0 = p2
1 + p2

2 − p3. (62)
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Here the coupling between p3 and ṗ3 causes a higher index. Differentiating the
constraint once and eliminating the differentiated variables with the help of the
other equations yields

0 = 2p1v1 + 2p2v2 − v3.

Now the coupling between v3 and v̇3 causes a higher index. Differentiating once
more and eliminating gives

0 = 2v2
1 + 4λp2

1 + 2v2
2 + 4λp2

2 + λ + 1.

According to Section 5 a minimally extended strangeness-free system is obtained
by putting the above equations together and replacing ṗ3 and v̇3 say by p̂3

and v̂3. The system then reads

ṗ1 = v1, ṗ2 = v2, p̂3 = v3,

v̇1 = 2λp1,

v̇2 = 2λp2,

v̂3 = −λ − 1,

0 = p2
1 + p2

2 − p3,

0 = 2p1v1 + 2p2v2 − v3,

0 = 2v2
1 + 4λp2

1 + 2v2
2 + 4λp2

2 + λ + 1. (63)

A reduced strangeness-free system is achieved by simply omitting the equations
that involve the variables p̂3 and v̂3. Hence, we have

ṗ1 = v1, ṗ2 = v2,

v̇1 = 2λp1,

v̇2 = 2λp2,

0 = p2
1 + p2

2 − p3,

0 = 2p1v1 + 2p2v2 − v3,

0 = 2v2
1 + 4λp2

1 + 2v2
2 + 4λp2

2 + λ + 1. (64)

In Table 2 we present a comparison of the results obtained when solving these
systems by the code GENDA [23] and with the specialized multi-body code
ODASSL of Führer, see [7], applied to the original system.

Looking at Table 2 we see that much can be gained in the computational
effort when using the analytically produced strangeness-free version and the
minimally extended system is only a factor 2 more expensive. However, the
special solver for multi-body systems is still more efficient, the main reason
being that much fewer factorizations are needed in ODASSL than in the other
solvers. This is due to the fact that the factorization is kept fixed for several
steps, while in GENDA a new factorization is determined at every step. Even
though it is preferable to use a special code like ODASSLXS if the structure is
known, we have demonstrated that the general purpose code GENDA can be
made almost as efficient as the well established code ODASSL.
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ODASSL
GENDA
standard

GENDA
str.-fr. reduced

GENDA
str.-fr. min. ext.

steps 4536 5136 5201 5326
calls DRES 13097 20352 10402 10652

factorizations 1351 5136 5201 5326
fails error test 2 0 0 0
fails conv. test 0 0 0 0
runtime (sec) 0.07 2.97 0.52 0.93

Table 2: Comparison of different formulations computed with GENDA and
ODASSL. Tolerance RTOL=ATOL=10−9

7 Conclusion

We have discussed index reduction methods for large scale differential-algebraic
systems, where the structure of the problem can be used to identify the equa-
tions of the systems that are responsible for higher index. In order to avoid
expensive subspace and rank computations, new variables are introduced that
extend the system size in a minimal way leading to a system that is strangeness-
free (or if defined of differentiation index 1).

We have demonstrated this new approach for circuit simulation and for multi-
body systems, and we have given numerical examples that show the effectiveness
of the approach.
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