
Index Selection in Relational Databases

Sunil Choenni* Henk Blanken* Thiel Chang**

*Department of Computer Science, University of Twente
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

Abstract

Intending to develop a tool which aims to support
the physical design of relational databases can not be
done Without considering the problem of index selec-
tion. Generally the problem is split into a primary and
secondary index selection problem and the selection is
done per table. Whereas much attention has been paid
on the selection of secondary indices relatively less is
known about the selection of a primary indez and the
relation between them. These are exactly the topics of
this paper.

1 Introduction
At the University of Twente in cooperation with

the G.A.K. a tool is being developed which aims to
support the physical design of relational databases [2].

A problem of considerable interest in the physical
design of databases is the selection of a good set of
indices. Indices can be considered as auxiliary files
that allow to retrieve tuples satisfying certain selec-
tion predicates without having to examine the whole
relation. On the other hand, updating the database
causes an index to be updated to remain consistent
with the new database state. So, an index speeds up
retrieval and slows down maintenance.

In general two types of indices can be distinguished:
primary and secondary indices. In the case of a pri-
mary index, the tuples in the relation are ordered on
the indexed attribute. This is not the case for a sec-
ondary index.

The aim of index selection is to find an optimal
or near-optimal set of indices consisting of at most
one primary index and zero or more secondary indices.
Because the choice of a primary index influences the
choice of the secondary index set and conversely, solv-
ing the problem in a naive way requires for r relations
an exploration of ni= ni2ni-1 + 2ni sets, in which ni
is the number of attrikutes in the i-th relation.

As far as we know two strate 'es or combinations of
these strategies are frequently %lowed to reduce the
complexity of the index selection problem. First, the
selection of indices are determined per relation. The
eventual1 solution is achieved by the union of the 90-
lutions oreach relation [3, 61.
Second, selection of indices is split into a primary and
a secondary index selection problem. In some papers

**Department of Research and Development, G.A.K.
P.O. Box 8300, NL-1005 CA Amsterdam, The Netherlands

it is assumed that the primary index has been chosen
already and they pay only attention to the problem of
secondary index selection [l, 3, 61. These approaches
ignore the cost due to the existence of a primary in-
dex. In other papers [5, 11 candidate primary indices

candidate primary index which is considered as given
the determination of the set of secondary indices takes
place. Finally the best index set is chosen.

While the first strategy is analysed extensively and
has been theoretical founded in [lo] such an analysis is
missing for the remaining strategy. The second strat-
egy assumes a certain order in designing an index set
namely first the primary index is selected and then
the secondary index set is selected. On the first sight
an alternative for the second strategy is to select first
the secondary index set and then the primary index.
In which order primary and secondary index selection
should be performed is one of the topic of this p%
per. .As far as we know such a theoretical study is still
missing.

Through the years several more or less advanced
cost models have been developed on basis of which the
selection of secondary indices took place, see among
others 1, 6, 111. For the selection of a primary index

uation of some of these heuristics is anot er topic of
this paper.

are determined on basis o I heuristics. Then, for each

h. general I y some heuristics are applied [5, 9 The eval-

2 Primary and secondary indices.

This section is devoted to the relation between a
primary index and secondary indices. Indices are sup-
posed to be organized often as B+-trees. Each node
in the tree coincides with a page. The leaf level con-
sists of {key,TID-list} pairs for every unique value
of the indexed attribute(s). Figure l(a) represents
a rimaxy index on the column name of a relation
RP name, age, residence, Moodgroup) and figure l(b) a
secondary index on the column bloodgroup of R. In
general the processing of a query roughly consists of
two steps; first the number of tuples which satisfies
possibly the WHERE clause of a query is determined;
then these tuples are retrieved [3]. Since a primary in-
dex may be considered as a special kind of a secondary
index the optimizer may treat a primary index and
secondary indices as same in processing the first step.
In the second step it may use the ordening property

491
0-818&4212-2/93 $03.00 8 1993 IEEE

I

WJ)

Figure 1: (a Represents a rimary index on attribute

index on attribute bloodgroup of R
name of reation 1' R and 6) represents a secondary

of the primary index if at least both types of indices
may be used. The following example illustrates this.

Example 1 Let P name, address, education) be a re-

uration of P consists of a secondary index set A =
{education} and a primary index on name. The se-
lectivity factors' (sf) of the indexed attributes are
sf,,,, = m, sfeducation = 6 and a page contains 20
tuples (pl) . Let us consider the following query w:
SELECT address FROM P
WHERE name = 'xxxx' AND education ='zzzz'
Applying below mentioned formula' to estimate the
number of tuples (nt which satisfies the WHERE

n t W ((~ u n a m e)) = mp* n sfa, * d w (a j) l (1)

in which np is the cardinality of P and d w (a j) = 1 if
aj appears in the WHERE clause otherwise d w (a j) =

dfc.j .

The number of pages accesses (NPA) required to

lation consisting o \ 4000 tuples. The storage config-

1

clause of query w ye1 d s nt = 5.

a j E { A U n o m e }

1 -

'The selectivity factor is the reciprocal of the number of

'We assume that the attributes are mutually independent
different values of an attribute.

and that the values are uniformly distributed.

fetch nt tuples from p pages is computed by:
nt if nt 5 f

P
NPA(nt ,p) = { if E < nt 5 2p

if $p < nt
The order property of the primary index implies that
the tuples satisfying the predicate name = 'xxxx'
are distributed over np*2amc = 7 pages. Then
NPA(5,7) = 4.

This example illustrates how primary and secondary
indices can be used to decrease the processing costs of
a query. These indices have to be kept up to date; the
costs involved in updating the indices are called the
maintenance costs. The update of a primary index is
more expensive than the update of a secondary index.
The update costs of a secondary index are indepen-
dent of other existing indices. The update cost of a
primary index is dependent of all existing indices since
since all secondary indices should be adapted [4].

3 General cost models
We will develop a cost model for index selection to

prove the dependency between primary and secondary
index selection. For this purpose we make some rea-
sonable assumptions.

We deal with relational databases which are stored
on an external paged memory. The frequency of tuple
insertions and tuple deletions is such that the total
number of tuples of each relation remains constant in
two consecutive choices of index set. Furthermore, the
attributes are mutually independent and the values
are uniformly distributed.

For a given value a of an attribute aj, use of an in-
dex produces a list of tuple identifiers (TIDs). These
TIDs allow direct retrieval of the stored tuples pos-
sessing the value a for attribute aj..

The number of page accesses will be taken as cost
factor and pages contain only tuples of one relation.

Before going into details we introduce a list of sym-
bols in Table 1.

Load on a relation
The following 4 operations (each divided in several
steps) are distinguished on a database.

1. Select the relevant tuples.
2. Output the relevant tuples.

1. Select the relevant tuples.
2. Update the value of the specified attributes.
3. Place the tuples on the proper location.
4. Update the relevant indices.

1. Select the relevant tuples.
2. Remove the tuples.
3. Update the relevant indices.

1. Select the location to store the tuple.

0 Query:

0 Update:

0 Deletion:

0 Insertion of a tuple:

492

21, ..., an = attributes of a relation
nR = cardinality of relation R
p l = page length in number of tuples
np =
W = workload
w1 ..., wn = operations of a workload
fwi = frequency of operation w;
s f a i = selectivity factor of attribute a,
A = unspecified secondary index set
C,,(A, w) = access cost to A for processing w
Cma(aj) = maintenance cost of a secondary index aj

Cmp(aj,A) = maintenance cost of a primary index on
a j taking into account the secondary index set A

Cmpp(aj) = Cmp(aj, 0)
nt,(A) = # tuples to be retrieved in processing w

Creta(nt(A), p) = retrieving costs of nt(A) tuples

Cretp(ap, w) = retrieving costs in processing w

= # pages required to store relation R

with A

from p pages

using primary index ap

Table 1: List of used symbols

2. Insert the tuple.
3. Update the relevant indices.

We concentrate on cost factors that influence index
selection. Since the output of a query is independent
of the index set, this step can be ignored.

The first step of an update, a deletion or an in-
sertion is analogous to the first step of a query. The
updating of specified attributes in an update as well
as the insertion and deletion of tuples (step 2) take an
amount of time which is independent of the existing
set of indices.

The third step of an update becomes significant if
the primary index is updated. In this case the tuples
which are hit by the update have to be moved to an-
other location. This means that the location has to
be selected which is comparable with the first step. In
the case secondary indices are updated this step can
be neglected because the tuples will not be moved.

The last step of the operations (updating indices)
depends of course on the selected indices.

Cost function for secondary index selection.
Let us elaborate the first step of a load operation.

To determine the selection cost of relevant tuples the
following actions have to be performed:

1. Access all indices corresponding to attributes
specified in the query; this gives a list TIDs per
index.

2. Intersect the lists in order to determine the TIDs
of the tuples that satisfy the conjunction of the
conditions on the attributes an index exists for.

3. Retrieve the tuples according to the result of the
previous action.

4. Discard the tuples not satisfying the condition on
the attributes without an index (false drops).

The total selection cost of the relevant tuples is the
sum of the costs resulting from actions 1 and 3 since
the actions 2 and 4 take place in main memory. The
cost of step 1 for an operation w and an index set A
is given by C,,,(A, w) .

The cost of action 3 depends on the # tuples (nt)
which has to be retrieved and the # pages from which
these tuples have to be retrieved (see example 1). The
tuples have to be retrieved from np pages. The # tu-
ples which has to be retrieved depends of course on
the operation w and the index set A; this will be de-
noted as nt,(A). The cost of retrieving nt, A tuples
from np pages will be denoted as Creta(ntw[A], np).

To determine the cost of step 4 of an operation
we assume that I is the insertion frequency, D the
deletion frequency on a relation and U j the a j value
update frequency. Let i c j be the insertion cost for
placing the pair {key,TID after the last pair that has
the same key value and h j be the deletion cost of a
pair {key,TID} or insertion cost of the same pair with
any TID. The maintenance cost of a secondary index
a j (C,, (cyj)) becomes:

For more details w.r.t C,, we refer to [8 .
tion w (?,) of a workload W the cost of processing W
with a secondary index set A is given by:

C m 6 (& j) = I * i c j + D * &j + U j * 2 * &j

Takin into account the frequencies o I each opera-

CFS(A1 W) = C m a (a j) +
a j E A

fw * (Cacc(Aiw) + creta(ntw(A)inp))
W E W

Note, that C,,,,(,\A),np) 5 nP and Crets(nRinP) =
np. For more detai s w.r.t CFS we refer to [3].

Cost function for primary index selection.
We derive a cost function assuming that each oper-

ation of a workload is resolved by the primary index
or by a sequential scan. The secondary index set is
assumed to be empty. Performing step 1 of a load
operation with a primary index ap entails the actions:

1. Access the primary index.
2. Retrieve tuples satisfying the selection criteria.
3. Discard the tuples not satisfying the condition on

The total cost of selecting the relevant tuples is the
sum of the first two actions since action 3 takes place
in main memory. The cost of accessing the primary
index cyp for resolving an operation w is given by
Cacc(cyp,w). Assuming that w can be resolved by
ape the # tuples which has to be retrieved in action
2 is nR * sfa, . The cost of retrieving the tuples is

, in which pl is the page length.
The third step of an update operation becomes rel-

evant if an update is performed in which the primary
index (ap) is involved. This entails cost due to the
movement of the tuples to another location. Before

the remaining attributes (false drops).

nR*bfPp

G e t p (0 p i W) = Pl

493

moving the tuples the proper location has to be se-
lected which requires nR;fQp page accesses.

The last step of an update, deletion and insertion
requires an adjusting of the primary index. Updating
the primary index requires U, * 2 * dc, page accesses.
The cost involved with insertions and deletions are
I * ic, respectively D * +. So, the maintenance cost
of a primary index a, (Cmpp(ap)) is:

The cost function for primary index selection becomes:
Cmm(a,) = I * ic, + D * dc, + U,(nR*6fQ ,r ‘ + 2 * d c ,)

CFP(a,, W) = Cmpp(Q,>+

in which &(a,) = 1 if a, is used in processing w oth-
erwise &(a,) = 1.

Cost function for index selection
Assuming that the processing of the selection part

of an operation will be done with minimal cost we
derive a cost function for index selection. As a con-
sequence a primary index and secondary indices will
be used in combination if both are available (see ex-
ample 1). Further once a secondary index set and
a primary index are available they have to be main-
tained. An update of a primary index entails an ad-
justing of all secondary indices. So, the maintenance
cost of a primary index with a non-empty index set A
is: Cmp(ap, A) = Cmpp(ap) + I * C a j E A icj+

The general cost function for index selection becomes:

6fQp

* E a j EA dei + * E a EA *

CF(A, ~ p , W) = c m a (a j) + c m p (a p t A)+
ajEA

C fw * (Cacc(A U ~ p , W) + (2)
wEW

Proposition 1 The problem of primary and sec-
ondary index selection are dependent.

Proof Note, CF({} ,a , ,W) = CFP(a,,W) and

0.

The problem of index selection may be formulated
now as: determine a, and A such that equation (2) U
minimal which is a tough task. Heuristic methods to
optimize equation (2) is the topic of the next section.

4 Methods for index selection
We compare two heuristic methods both aiming to

optimize the cost function CF. In these methods the

order of primary index selection and secondary index
selection plays a role. We start with a definition of
sub-optimal index configurations. Then the heuristic
method will be presented and compared.

Definition 1 Let (Ap , a,) be an index configuration
consisting of a primary index a, and a secondary
index set A,. The index configuration (a,, A,)
is sub-optimal w.r.t. a, iff Vi CF(A,, a,, W) 5
CF(Ai, a,, W)

Heuristic method 1
This method assumes that first the primary index

is selected and then the secondary indices are selected.
For all attributes a, we evaluate C F ((} , a,, W) and
the a, with the lowest cost is chosen as primary index.
Then the primary index is filled in equation (2) and
optimized. This boils down on the selection of an opti-
mal set of secondary indices given the primary index.
Proposition 2 describes the output of the algorithm.
The proof of the proposition is trivial
Proposition 2 Heuristic method 1 will lead to a sub-

optimal index configuration.
To find the optimal solution we have to explore a num-
ber of sub-optimal solutions which is equal to the num-
ber of attributes of the relation. Because the selection
of secondary indices is a laborious task this will be gen-
erally infeasible. So, it is desired that the sub-optimal
solution has to be close to the optimal solution.

Intuitively heuristic method 1 divides the workload
in two parts. The choice of the primary index means
that a part of the workload is processed efficiently with
this index. The selection of secondary indices will be
mainly based on the decrease of the processing cost
of the remaining part of the workload taking into ac-
count the previous part of the workload. In general
there will be relatively not much to gain by the addi-
tion of a secondary index set to the part of the work-
load which is solved already by the primary index a,.
The maximal ain which can be achieved per opera-
tion is np * sLp - 1. In practice np * sfap will be
small. So, operations which are resolved already by
a primary index will weakly or will not benefit at all
of the addition of a secondary index set. This means
that the gain achieved by a primary index is hardly
dependent of a secondary index set.

The success of this method depends on the choice
of the primary index. If the choice will be ood the
eventually index configuration will be good. (Example
2 shows the drawback of choosing the attribute which
yields the lowest cost in processing the workload as
primary index.

Example 2 Suppose a workload consisting of 5 o p
erations on a relation R. The cost required to process
each operation if a primary index is allocated on a1
respectively a2 as well as the maintenance cost of each
primary index Cmpp is given in the following table.

494

It is clear that according the table a2 will be chosen as
primary index. But the prospects that the costs will be
decrease further by the addition of a secondary index
set is worse starting from a2 than starting from (XI.

Starting from a2 a decrease of the cost can be achieved
probably from at most two workload parts while start-
ing from a1 a cost reduction can be achieved from at
most four workload parts. As a conse uence it may
occur that the sub-optimal pair (A1,aa will be bet-
ter than (A z , a ~) , in other words the rocessing cost
of the workload with the air (A1,alfmay be lower
than with the pair (Az, a$. 0

Heuristic method 2
We first determine an optimal secondary index set

Aqt assuming no primary index. For this purpose
several algorithms are known [l, 3, 61. Then equation
(2) is optimized further by choosing the attribute as
the primary index which causes the greatest decrease
of the function. Proposition 3 describes the output of
the algorithm. For the proof we refer to [4].

Proposition 3 Heuristic method 2 will not necessar-
ily lead to a sub-optimal solution.

To find the sub-optimal solution w.r.t. aopf we have
to optimize the function CF again considenng the pri-
mary index aOpf.

For the optimal solution we have to explore a num-
ber of sub-optimal solutions which is equal to the num-
ber of possible secondary index sets. Because the num-
ber of second index sets is exponential with the
number of a t t x u t e s of a relation this strategy is in-
feasible. So, it is desired that the proposed solution
has to be close to the optimal solution.

Some objections can be made to this method. In
determining the secondary index set some operations
may play a bigger role than they would have deserved
if there would be a primary index. This is due to the
fact that the gain achieved by a secondary index is
strongly dependent of the choice of the primary index.
This will be shown in the following example.

Example 3 P(name, address, birthdute, education)
is a relation consisting of 4000 tuples. The selectivity

Suppose that secondary index se&tion for a work-
load W results into A = (birth-date} and consider the
following query E E W:
SELECT address FROM P
WHERE name = 'xxxx' AND birth - date = 'yyyy'
Solvin the query with A requires at most 100 page ac-
ce- $neglecting the access cost to the index) which is
better than a sequential scan. So, this query has sup-
ported the index set A. Suppose that optimizing the
function CF (given A) results into a primary index on
name. Solving the query with the primary index com-
bined with the secondary index set requires at most
4 page accccesses3. So, z has supported the choice of
the primary index on name. Solving the query which

factors Of the attributes are: Sfname = 6, SfaddVess =
s f b i r t h - d a t e = Sfeducat ion = and Pl = 20- 1 1

3T0 estimate the # tuples satisfying z we use (1).

only the primary index requires at most 7 page ac-
cesses. So, the secondary index set reduces the cost
actually with 3 or 4 page accesses if the primary index
is available while it provides a cost reduction of 100
page accesses if the primary index lacks. Without the
primary index z will support the secondary index set
stronger than in the case the primary index exists. I7

Comparing the heuristic methods
Heuristic method 1 leads to a suboptimal solution

which is not the case for heuristic method 2. In princi-
ple we may obtain a sub-optimal solution with heuris-
tic method 2 but this entails a considerable additional
complexity. Moreover, there is no arantee that the
achieved sub-optimal solution will E better than the
sub-optimal solution achieved by heuristic method 1.

Another observation is that a secondary index set
hardly influences the gain achieved by a primary index
while the primary index strongly influences the gain
which ma be achieved by a secondary index set. This
is a justizcation to select first the primary index and
then the secondary index set because once a primary
index is chosen the selection of secondary indices can
be done independently for the part of the workload
which is not resolved by the primary index.

On basis of these observations we can conclude that
the first heuristic method is better. However, a good
choice of a primary index is crucial as has been shown
in example 2.

5 Primary index selection heuristics

should take the following into account:
Good heuristics for determining candidate indices

0 Retrieval costs of the total workload using the

0 Maintenance costs of the candidate index.
0 Prospects for possibly further decrease of the

Finding heuristics which take the last item into ac-
count is hard. We try to incorporate this item in ex-
isting heuristics knowing this is a hard task. First,
we evaluate some well-known heuristicis in the view
of performance.

One well-known heuristic is to choose the logical
key of a relation as primary index. Because this at-
tribute is unique it has a great selectivity. Further-
more, logical keys are more or less static. This may be
profitable if the operations in the workload make use
of the attribute. However, the heuristic does not take
the workload into account which may lead to unpre
dictable results. Another heuristic is used in the first
heuristic method of the previous section: choose the
attribute which causes the lowest cost in processing
the workload as primary index. This heuristic takes
the maintenance costs as well as the gain achieved due
to the decrease of the retrieval costs into account. We
attempt to extend this heuristic such that it is able

candidate index.

costs in processing the workload.

495

to take rather the prospects for possibly further re-
duction of the processing cost of the workload into
account.

Let ap be a candidate primary index and WO, =
(201, wz, ..., w,} the operations of the workload which
can not be resolved by ap. For each w; E W.,, we
determine the secondary index set (A;) which yields
the maximal gain g;. This information will be stored
as the triple (w;, A;, g;). In practice database adminis-
trators can produce these secondary index sets uickl
for single operations on basis of heuristicsl7, 9f

C,,,.(A;l) and EL1 g; is an pessimistic estimation for
the furt er decrease of the costs. We apply the follow-
ing technique to make a choice for a primary index.

We take the union of all the A;k for which holds
that g; > 0 resulting in a set A,. Then we pro-
cess the original workload with the index configuration
(A,, ap). This has the following advantages. First the
maintenance cost of indices which are counted more
than once can be filtered out. Suppose we have for
example the triples (w;, {a, b } , g i) and (WZ, {a, c},gj)
in which g;, gj > 0. In determining g; as well as
gj the maintenance cost of allocating an index on at-
tribute b is taken into account while it is sufficient to
take this cost only once into account.

The second advantage is that triples for which hold
g; = 0 may contribute still to the decrease of the pro-
cessing cost. Suppose we have a triple (WI, {}, 0) and
that processin Wk with the best index set would result
into (w~,{~,~f,-4). But suppose that A, 2 {b , c }
then gk mll become positive and will contribute to
the decrease of the processing cost.

For the choice of a primary index we determine for
each attribute % the index configuration pair (A%, a;).
Then we process the original workload with the pair
(A,, ai) resulting into an estimation for the processing
cost EPC. The attribute which yields the lowest cost
for EPC will be chosen as primary index.

This may be a way to take possibly prospects for
further decrease of the processing cost w.r.t. a work-
load roughly into account.

Note, 9; = np - (Gcc(A;, w;) + Ctets(%i(Ai, np)) +

6 Conclusions

In developing a tool which aims to support the de-
sign of physical databases the problem of index selec-
tion is of considerable interest. Solving the problem
in an analytical way is a tough task. Therefore, we
adopt the idea to split the problem into a primary
and secondary index selection problem. Because these
problems are mutually dependent the question raises
in which order primary and secondary index selection
should be performed. We explored this question and
conclude that primary index selection should precede
secondary index selection. The motivation is that
secondary index selection hardly influence the gain
achieved by a primary index. So, we can be sure that
the contribution to the decrease of the processing cost
due to a primary index will be about the same in-
dependent of what the secondary index set will be.

This is not the case starting from a secondary index
set. Another advantage to precede primary index se-
lection by secondary index selection is that it always
will lead to a sub-optimal solution. This is not the
case starting with secondary index selection.

However, starting from a primary index restricts
the number of possible secondary index sets which
seems to be pleasant. But the drawback is that start-
ing from an arbitrary primary index may lead to a sub-
optimal index configuration which may be unsatisfac-
tory. Therefore, the selection of a primary index has
to be done carefully. We evaluated several heuristics
for primary index selection. All the heuristics select
a primary index without taking into account the con-
sequence of the choice for possibly further reduction
of the processing cost. We extend one of the heuristic
such that it takes rather the prospects for further re-
duction of the processing cost into account in making
a choice for a primary index.

References

Barcucci, E., A., Pinzani, R., Sprugnoli, R., Optimal
Selection of Secondary Indexes, IEEE TSE, Vol. 16,

Choenni, R., Blanken, H.M., Chang, S.C., A Frame-
work for a Tool for Physical Database Design, in Proc.
Computing Science in the Netherlands ’92, pp. 96-107.
Choenni, R., Blanken, H.M., Chang, S.C., Reducing
the Complexity in the Selection of an Optimal Set of
Secondary Indices, accepted for publication.
Choenni, R., Blanken, H.M., Chang, S.C., On the
Selection of Indices in Relational Databases, Memo-
randa 92-72, University of Twente, 15p (1992).
Finkelstein, S., Schkolnick, M., Tiberio, P., Physical
Database Design for Relational Databases, in ACM

Ip, M.YX., Saxton, L.V., Raghavan, V.V., On the
Selection of an Optimal Set of Indexes, in IEEE TSE,

Fbzen, S., Shasha, D., A Framework for Automating
Database Design, in Proc. Int. Conf. VLDB, pp. 401-
411, (1991).
Schkolnick, M., Tiberio, P., Estimating the cost of
updates in a Relational database, in ACM TODS,
Vol.10, No.2, pp. 163-179 (1985).
Walraven, H.G., KOFDO: Een kennissysteem voor
ondersteuning van het fysiek database ontwerp, Mas-
ter thesis, University of Twente, 88p (1990).
Whang, K., Wiederhold, G., Sagalowicz, D., Separa-
bility - An approach to physical database design, in
Proc. Int. Conf. VLDB , pp. 487-500 (1981).
Whang, K., Index selection in relational databases, in
Foundations of Data Organization, Ghosh, S., Kam-
bayashi, Y., Tanaka, K., (eds), pp. 487-500, (1987).

NO. 1, pp. 32-38 (1990).

TODS, Vol. 13, NO. 1, pp. 91-128 (1988).

Vol. SE9, NO. 2, pp. 135-143 (1983).

