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compression of files of information retrieval systems. With this 
application in mind, bounds on the average codelength of an 
alphabetical code were studied. 

The major results of this correspondence are as follows. 

1) A necessary and sufficient condition for the existence of a 

2) An upper bound for Lopt (the average codelength of the 
binary alphabetical code was given. 

optimal alphabetical code) was given. 

This upper bound shows the redundancy of the optimal alpha- 
betical code in comparison with the Huffman code. 

Though this correspondence presents a theoretical bound on 
Lopt, the redundancy of the optimal alphabetical code varies 
with the distribution of probabilities. To verify the efficiency of 
the code in practice, the author encoded the descriptors 
(keywords) of the ERIC thesaurus. There are 8696 descriptors 
(the average length of a descriptor is about 17 characters), and 
the alphabet size of the source symbols is 39 (26 capital letters, 
10 numeric characters, 2 symbols, and a space character). In this 
preliminary experiment, L,, and Lop, are 4.254 bits and 4.423 
bits, respectively. The redundancy of the optimal alphabetical 
code is about 5 percent in comparison with the Huffman coding, 
which shows the usefulness of the alphabetical code. 
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Absfract -A number system is developed for the conversion of natural 
numbers to the codewords of the Gray code G(n,  k )  of length n and 
weight k ,  and vice versa. As an application sharp lower and upper 
bounds are derived for the value of li - j l ,  where i and j are indices of 
codewords gi and gj of G ( n , k )  such that they differ in precisely 2m 
bits. 
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I. INTRODUCTION 

A n  n-bit Gray code is an ordered sequence of all 2” n-bit 
strings (codewords) such that successive codewords differ by the 
complementation of a single bit. A Gray code is an example of 
an ordered code. In this correspondence, the term Gray code 
stands for the so-called binary-reflected Gray code G(n), n 2 1 
(cf. e.g., [11]). 

Gray codes are used to minimize the number of erroneous 
bits in bit strings, when transmitted as analog signals (cf. [l]). In 
fact when bit strings are Gray-coded a one-level error in the 
analog signal causes an error in one bit. More generally the 
minimum analog error required to generate m bit errors is equal 
to [2m/31, as was shown by Yuen in [12]. In [3], Cavior proved 
that the maximum analog error corresponding to m-bit errors 
equals 12” -2m/3]. So one has sharp bounds for the separabil- 
ity of the code G(n). 

Apart from the use made of Gray codes in transmitting 
information, they also play a role in a number of other mathe- 
matical disciplines, such as the theory and construction of mini- 
mal-change algorithms to produce various combinatorial objects 
like permutations, combinations and partitions [2], [4], [ll], the 
analysis of odd-even merging [6], and the theory behind some 
mathematical puzzles [7]. 

In many of these applications the question arises of convert- 
ing a natural number (written in its decimal representation) to 
its Gray code representation or vice versa of converting a Gray 
codeword to the integer it represents. If we denote a codeword 
of G(n) by g ,  and let the index i run through the ordered set of 
integers 0,1,. . . ,2“ - 1, these questions are equivalent to asking 
for nonrecursive rules that describe the bijective mapping be- 
tween i and g , .  We refer to this topic as the problem of the 
index system of G(n). Actually the aforementioned minimum 
and maximum analog errors are sharp bounds for li - j l ,  where i 
and j are indices of codewords g ,  and g, such that these words 
differ in precisely m bits. 

In general this problem exists for any ordered code. A solu- 
tion in the case of G(n)  can easily be found (cf. [51, 111, ch. 51). 
It appears that for the description of the mapping i g ,  the 
binary number system is the appropriate number system for 
expressing the values of the index i. In [lo] Mansour presents a 
related set of rules, using a weighting system for the bit posi- 
tions of a codeword. 

In this correspondence we are concerned with the subcode 
G(n,  k )  of G(n)  consisting of those words of G(n) with precisely 
k 1-bits, 0 < k < n. We call this code the constant weight Gray 
code of length n and weight k .  Like G(n),  this code is also of 
minimal-change type in the sense that each codeword differs in 
precisely two bits from its successor (cf. [ll]), and is also used in 
algorithms to produce combinatorial objects [2]. In particular we 
are interested in the index system of G(n, k )  considered on its 
own, i.e., after (rehumbering the codewords by the ordered set 
of integers 0,1,. * . , - 1 we shall derive rules in Section IV 
that describe the mapping between i and g , .  It appears that the 
appropriate number system for expressing the values of i is a 
number system (cf. Section III), which shows some resemblance 
to the binomial number system mentioned in [81, [91, and which 
is used for the index system of the lexicographic code L ( n , k )  in 
[ 5 ,  Ch. 51. The code L ( n , k )  consists of the same codewords 
as G(n, k )  but arranged in lexicographic order. Its relation- 
ship with the binomial number system is briefly discussed in Sec- 
tion 11. 
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In Section V, we discuss an application of the index system of 
G(n, k), analogous to the results of Yuen and Cavior. We derive 
sharp lower and upper bounds for the value of li - j l ,  where i 
and j are the indices of codewords g j  and gj of G(n, k)  such 
that they differ in precisely 2m bits. 

11. PRELIMINARIES 

The n-bit Gray code G(n) is usually denoted as a 2"xn-matrix 

r go 1 

where 

g, = g,,-1g,,-z . . .  g,, 
is the ith codeword, 0 I i I 2" - 1, with bits g,,, 0 I j I n - 1. 
For the definition of G(n) and for elementary properties we 
refer to [ll, ch. 51. Among other things it is proved there that, if 
(b,b,-, . . .  blbo)z is the binary representation of the index i, 
one has 

(2) 

g,, = b,,, + b,(mod2), 0 I j <  n,  (3) 

or, written more concisely, 

(4) 

where @ stands for the exclusive-or-operation. 
The inverse mapping is given by 

n - 1  

b, = g,,(mod2), 0 I j < n. (5) 
1 =, 

In Section IV we shall exploit a property concerning the relative 
order of two codewords of G(n),  which is an immediate conse- 
quence of (5). We formulate this property as a lemma. 

Lemma: Let g, and g, be two codewords of G(n), and let the 
bit with index k be the first bit from the left in which these 
codewords differ or, more specifically, 

g,, = g,,, 1 = k + 1, k +2; * . , n - 1, 

gik > gjk' 

Then I > j if Cy:;, lg,l is even and i < j if Cy::+ g,, is odd. 
The subcode G(n, k)  is defined as the (:) X n-submatrix of 

G(n) consisting of all codewords with exactly k 1-bits, 0 < k I n. 
(For a recursive definition of G(n, k) we refer to [ll].) As was 
already announced in the Introduction, we renumber the rows 
of G(n, k)  by the ordered set of integers 0,l; . ., (l) - 1. Two 
successive codewords of G(n, k), which are indicated by g, and 
g,+l with respect to the new index values differ in exactly 2 bits, 
or stated in terms of the Hamming distance 

Since all codewords have constant weight we have in general for 
two arbitrary words g, and g, that 

d( gi, g,) = 2m, (7) 
The integer m is called the Johnson distance between g, and g,. 

Finally we discuss the index system for L(n, k) that will serve 
as a guiding principle for deriving the index system of G(n, k ) .  
Basic to the index system of L(n, k) is the following property of 
binomial coefficients (cf. [5,  problem 241). 

0 I m I min (k ,  n - k} . 

If k is any integer 21, then any nonnegative integer n can 
uniquely be represented as 

n = ( :) + ( + . . .  + ( : ) , 
with 

a k > a k - l >  . ' .  > n , 2 0 .  

tion of the digits a k ,  ak- , ,  . . .  a , ,  respectively. First one chooses 
For a proof we refer to [9]. Implicit in this proof is the construc- 

ak as large as possible such that s n .  Then one chooses 

a k P l  as large as possible such that (E':;) I n - ( y  ), etc. This 
property provides us with a number system for nonnegative 
integers, for any fixed value of k, usually called the binomial 
number system. With respect to this number system (for some 
fixed value of k), we write 

(:) 

n = ( a , a , _ , ~ . . a , ) .  ( 9 )  

bk,bk-,; ' . ,bl ,  andwith n - l r b , > b , - , >  . . .  > b 1 2 0 .  We 

Lbk=  ( 0 . .  . oox . . . . . . . . . . . .  . . .  X}, 
L,'_, = ( 0 . .  . () lo. .  . .()ox . . . . . .  . . .  X ) ,  

Now let 1 be a codeword of L(n,  k )  with ones in positions 

introduce the following classes of codewords: 

bk b k - l  bl  

LbI = ( 0 . .  .010..  . .010.. . .OX. .. x}. 
For each codeword of class Lb,, k 2 i r 1, one has to choose 

precisely i crossmarked places to fill in i ones, whereas the 
remaining places have to be filled in with zeros. It is obvious 
that the number of codewords in L(n, k )  that precede 1 is equal 
to 

ILb,l+ l L b k - l l +  ' '  ' + ILbll. ( 10) 

Hence, if the word O " - & l k  E L(n,k) has index 0 we have for 
the lexicographic index ind,(l) that 

The inverse problem of converting an index n to the corre- 
sponding codeword of L(n, k )  amounts to expressing n in the 
binomial number system by means of the earlier mentioned 
construction of the digits a k , a k - l , ' .  . , a l .  

111. THE ALTERNATING BINOMIAL NUMBER SYSTEM 

In this section we introduce another binomial number system, 
based on the following theorem. 

Theorem I: Let k be any integer 2 1. Any nonnegative inte- 
ger n,  if k is even, and any positive integer n,  if k is odd, can be 
uniquely represented as 

. . .  f (:), 
with 

U k  > U & l >  U k - 2  > .. .  > a12 1. 

Proof: We distinguish between the cases of k is even and k 
is odd. Let k be even and n 2 0. First we show the existence of 
such a representation. 
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Choose a, as small as possible such that > n. Then (: 1 

Choose a k _  I as small as possible such that ( lk:;) 2 n,. Then 
a k - , < a k  and 

Choose a k - 2  as small as possible such that (l'~;) > n2.  Then 
a k P 2  < a k - , .  Continue with 

in the same fashion until one has 

Choose al = n k P l .  Then we have 

with 
a k > a k p l > a k - 2 >  . . .  > a , 2 1 .  

Let k be odd and n > 0. 
Choose a, as small as possible such that 

Continue with choosing the a, ,  k - 1 2 i 2 1, as small as possible 
such that (1') 2 n k - r  if i is odd, and (1'j > nk- ,  if i is even, as 
in the k is even case. Since n > 0, we finally have nk - > 0 and 
so we can choose al = n k - ,  with a,  2 1 .  

We end up with 

. . .  + ( a ; ) ,  

and 

ak > a , - ,  > > . . .  > a,  2 1. 

Hence, in all cases we have proved the existence of a represen- 
tation as stated in the theorem. 

To prove the uniqueness of this representation we assume 
that 

b,>b,-,> . . .  > b , > 1  

is any representation of n satisfying the requirements of the 
theorem. Then we shall show that b is the smallest integer such 
that (:) 2 n, if k is odd, and 

Assume that this is not the case. From the assumption it 
follows that 

> n, if k is even. (: 1 

or 

(',-I ) - (  b k - 2 ) +  . . .  (:) 2 (:I-( bkil) = i b k - ' ) ,  k -1 
k - 1  k - 2  

However, 

( ' k - I ) - (  b k - 2 ) +  . . .  T(:) 
k - 1  k - 2  

< ( ' k - , ) + (  b k - 2 ) +  . . .  +(:I 
k - 1  k - 2  .( bk-l )+(bk- l - l )+  . . .  + ( b k - l - k + 2  

k - 1  k - 2  1 

If 6, 2 b,- +2,  the last expression is less than ( :Il') and we 
have a contradiction. The remaining case is when 6, = b k - ,  + 1. 
Since now 

the assumption yields 

. . .  
f ( j -5 0. 

For odd k ,  this is obviously a contradiction because b k - 2  > b k - 3  

the equality sign holds, in which case bj = j ,  1 5 j s k - 2.  How- 
ever, then we have n =  ( bl-i) and b, is the smallest possible 

integer such that > n. We conclude that in all cases b, = a k .  

Similarly we can show that bi = ai ,  k - 1 2 i 2 1. 
Hence, the representation derived in the first part of the 

The contents of Theorem 1 allow us to represent the positive 
integers in a unique way, for any fixed value of k .  Moreover, if k 
is even, we can represent 0 as well. We shall call this type of 
representation the alternating binomial number system (for the 
chosen k-value) and we shall write 

> . . .  > b ,  2 1. For even k,  we have also a contradiction, unless 

(2 )  
proof is unique. 0 

. . .  n = ( a k a , - ,  a , ) , .  (12)  
We remark that implicit in the proof of Theorem 1, there is an 
algorithm to determine the digits a k , a k - , ;  . . ,a , .  

IV. THE INDEX SYSTEM FOR G(n, k )  

Let g be a codeword of G ( n , k )  with ones in positions 
b k , b k - , ; . . , b l ,  and n - 1 2 b k > b k - l >  . . .  > b 1 2 0 .  We in- 
troduce the following classes of codewords 

bk b k - l  bl - ( 0 . .  . O x . .  . . . . . . . . . . . . . .  . x } ,  G 
bk - 

Gb,_, = (0 .  . .  010.  .. .Ox . . . . . . . . . . .  x }  , 

G - ( 0 . .  . ( ) I O . .  .()IO.. . ox . . . . . .  .}. 
bi - 

The argument follows that given for the classes Lb, in Section 
111. One has to choose i crossmarked places in the codewords of 
Gb, to fill in i ones, k 2 i 2 1. Since all codewords of G(n, k )  are 
also words of G(n) and since their relative order does not 
change when we restrict ourselves to the subcode G(n, k) ,  we 
can apply the lemma of Section 11. This proves that the number 
of codewords of G(n,  k )  preceding g is equal to 

IGb,l- IGb,_,l+ ' * .  f IGbiI+ E k .  (13) 
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Here E ,  = 0 if k is even and E ,  = - 1 if k is odd, since 
otherwise the codeword g itself would be counted as a word 
preceding g.  It follows that, if the word O"-"lk  E G(n, k)  has 
index 0, the Gray index indG(g) satisfies 

k - 1  

= (b, + lb,- + 1 . * 1 b, + l ) A  + E , .  (14) 

The inverse problem of converting an index n to the corre- 
sponding codeword of G(n, k )  amounts to expressing n - E ,  in 
the alternating binomial system by means of the construction of 
the digits ak,ak-l,~~~,al in the proof of Theorem 1. The 
positions b,, b,- ,,. . . , b, of the k nonzero entries in the code- 
word then follow immediately by taking b, = a, - 1, k > i > 1. 

Example: In the following, all codewords of the code G(6,4) 
are listed arranged in Gray order: 

001111 110011 11 1001 
011011 110110 101011 
011110 110101 101110 
011101 111100 101101 
010111 111010 10011 1. (15) 

According to (14), the index of the word 110101 is equal to 
(65311, = (:) - (:) + ( i )  - ( i )  = 7. Conversely, suppose one 
wants to know the codeword with index 11 in G(6,4). First we 
choose a4  as small as possible such that > 11. We find 

a 4 = 6 .  Next we choose a 3  as small as possible such that 

( y )  > ( 4 6 )  - 11 and find a3 = 4. Since ( l) - ( :) + 11 = 0 it now 
follows immediately that a 2  = 2  and a , = 1  (remember that 
always a ,  2 i, k 2 i 2 1, as a consequence of the inequalities that 
have to be satisfied by the a , ) .  So 11 = (6421), that corresponds 
to the codeword 101011. 

By a similar argument, we could derive the index of g in 
G(n). Instead of the binomial coefficients in (141, we would have 
powers of 2 since the number of nonzero entries is not fixed any 
more in a class Gb,. Some elementary manipulations with se- 
quences of powers of 2 would then lead to the expression (5).  

(3 

V. BOUNDS FOR DISTANCES IN G(n, k) 

In this section we present tight lower and upper bounds for 
the value of li - j l ,  where i and j are the indexes of g, and g, 
that have a Hamming distance of 2m (cf. Section 11). 

Theorem 2: Let g, and g, be codewords of G(n, k), n > k > 0, 
such that d(g, ,g , )= 2m, 0 < m I min(k,n - k}. 

1) The value of li - j l  is minimal for the pair of codewords 

g, = 0"-~-"1~-"101001100110~~~, 

g, = 0"-~-"1~-"010110011001 . . . . i 
i 

2) The value of li - j l  is maximal for the pair of codewords 

g, = 10"-~-"0011001100~ . . I,-", 

g, = 00"-~-"1100110011 * .  .I,-". 

We only give the outlines of a proof. Let g, and g, be code- 
words as indicated in Theorem 2. If gil = gjr, we say that g, and 

g, have the lth bit in common. Our proof now consists of the 
following steps. 

a) The value of li - j l  does not increase if one shifts common 
bits to the' left in g, and g,. 

b) Let k = m and n = 2m. If j > i and if j - i is minimal, 
then the codewords have the form g, = log, and g, = Olg,, 
with g ,  and E, E G(2m - 2, m - 1) and d(g,, E,) = 2m - 2. 

c) Let k = m  and n=2m.  If j - i  is maximal, then the 
codewords have the form g, = log, and g, = Olg,, with E, 
and g 1 ~ G ( 2 m - 2 , m - 1 )  and d(gf ,g , )=2m-2.  

d) Using b) and c) and applying induction to m, we can now 
prove that Theorem 2 is true for G(2m,m), m > 0. Part 1) 
of Theorem 2 follows by a). 
If g, and g, are of the type g, = f o g ,  and g, = f lg ,  and if 
g,, = O f g ,  and g,, = lfg,, then 12- j'l > li - j l .  
If j > i and if g, = 12, and g, = OS,, then j - i increases if 
one shifts common 0-bits in g ,  and in g, to the left and 
common 1-bits to the right. 
Part 2) of Theorem 2 now follows by using d), e) and f), 
and applying induction to m. 

The calculations necessary to prove a)-c), e), and f) are 
straightforward and only elementary properties of binomial co- 
efficients are involved. However, they are lengthy. For this 
reason they are omitted here and we refer to 1131 for the details. 

We remark that, instead of O n - k - m l k - m  in part 1) of Theo- 
rem 2, we could have taken any other common subword of 
length n -2m with k - m ones. 

Corollary: Let g, and g, be codewords of G(n,  k ) ,  n > k > 0 
and let d(g, ,g1)=2m, O < m ~ m i n ( k , n - k } .  

1) The minimal value of Ii - j l  is equal to 
m - 1  

1 = 1  

2) The maximal value of li - j l  is equal to 

Proof: Assume, without restriction of the generality, that 

a) From Part 1 of Theorem 2 and from Section IV, it follows 

j >  i. 

immediately that, if j - i is minimal, we have 

2 m - 6  -(:--;)-( m - 3  ) +  . . .  - ( ; ) + i t )  
2 i - 1  2 m - 2  2 m - 4  2m-5 = (  m - l ) - (  m - l ) + (  m - l ) + (  m - 2 )  

+ ( 2 m - 6 ) +  m - 2  . . .  + ( ; ) + 1  

2 m - 2  2 m - 4  2 m - 6  = (  m - 2 ) + (  m - 3 ) + ( m - 4 ) + . . . + ( ~ ) + 1 .  
b) The proof is analogous to the proof of Part a). 0 

Example: In the case of G(6,4) with m = 2, Part 1) Theorem 
2 yields the pair of codewords g ,  = 111010 and g, = 110101 
having the minimal value for Ii - j l .  This value equals 2 (cf. (15)) 
which is also delivered by Part 2) of the Corollary. Furthermore, 
Part 2 of Theorem 2 provides us with the pair g, = 100111 and 
g, = 011011 for which li - j l  is maximal. This maximal value 
equals 12 according to Part 2) of the Corollary. This result is 
also obvious from (15). 

- I-- 
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Part 1) of the Corollary is analogous to Yuen’s lower bound 
for li - j l  where i and j are the indexes of codewords g ,  and g, 
of G(n),  such that d ( g , ,  g , )  = m (cf. [12]). Part 2) of the Corol- 
lary is analogous to the upper bound for l i - j l  as given by 
Cavior in [3]. 

Remark: The binomial coefficient occurring in Part 1) of the 
Corollary is close to the Catalan number C, = ( 7 ) l f  1. In fact 
we have 
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Marcum Q-Function” 
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In the above paper,’ computational results for P J X ,  Y )  are 
given in Table I. Professor Carl W. Helstrom2 provided me with 
corresponding results using steepest descent integration [ 11. 
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These results indicate that, for parameters near lo9, errors in 
the tabulated values are in the order of lop7. This is much too 
large to be accounted for by accumulated roundoff error. With 
NX and Y near lo7 the error is more reasonable, in the order of 
lo-”, but still larger than expected. The problem is in the large 
parameter calculations of the two exponents “A” in Figs. 1-4. 
A is calculated as a difference between M*ln(Y) and (Y + C ) ,  
in one case, and K ln(Nx) and (Nx + C), in the other. It turns 
out that, for parameters in the order of lo9, each pair of terms 
is large and about equal so that A is a small difference of two 
large numbers. The resulting loss in significant digits noticeably 
affects the accuracy in the final answers in these cases. This 
problem can be largely overcome by combining terms differ- 
ently. We can replace the original terms used to calculate A ,  

A = M In( y) - ( y  + C) 

where, with z = M + 1, we have 

c = ( z  - 1/21 In ( z )  - z +In (G) + J ( Z )  

and 
1 2 53 1170 53 

122+ 5 z +  42z+ 5 3 z +  z ’ 
J ( z )  = ~ - - - - 

by the following rearrangement, 

This substantially reduces the loss in significant digits for A .  
Alternatively one could compute A using quadruple precision 
for even more accurate results. The errors with the adjusted 
calculations for A are in the order of IOW1* for parameters near 
lo9 and for parameters near lo7. Using quadruple preci- 
sion for the calculation of A ,  we obtain yet smaller errors, in the 
order of or better even for parameters as large as 10’. 
This level of error is the limit of accuracy with the double 
precision arithmetic used throughout (except for the calculation 
of A) .  Since there is little or no noticeable effect on the error 
when parameters are below lo7 and virtually all cases of practi- 
cal interest would have values below this, there is little practical 
reason why one should implement these changes if the earlier 
version is already installed. 

Some corrections are as follows. Line 3 of Fig. 4 should read 
XK + e -Nx .  The word “be” on the line below (35) should read 
“by.” Equation (47) should read 

Ys = ’[ 2 ( N -  f )  + (/- 
+ di.li)’]. 
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