
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

2014 

Index theory for locally compact noncommutative geometries Index theory for locally compact noncommutative geometries 

Alan Carey 
Australian National University 

V Gayral 
Universite de Reims Champagne-Ardenne 

Adam Rennie 
University of Wollongong 

F Sukochev 
University of New South Wales 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 

Carey, Alan; Gayral, V; Rennie, Adam; and Sukochev, F, "Index theory for locally compact noncommutative 

geometries" (2014). Faculty of Engineering and Information Sciences - Papers: Part A. 3444. 

https://ro.uow.edu.au/eispapers/3444 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F3444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F3444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F3444&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/3444?utm_source=ro.uow.edu.au%2Feispapers%2F3444&utm_medium=PDF&utm_campaign=PDFCoverPages


Index theory for locally compact noncommutative geometries Index theory for locally compact noncommutative geometries 

Abstract Abstract 
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the 
present text, we prove the local index formula for spectral triples over nonunital algebras, without the 
assumption of local units in our algebra. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Carey, A. L., Gayral, V., Rennie, A. C. & Sukochev, F. A. (2014). Index theory for locally compact 
noncommutative geometries. Memoirs of the American Mathematical Society, 231 (1085), 1-131. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/3444 

http://ro.uow.edu.au/eispapers/3444
http://ro.uow.edu.au/eispapers/3444
https://ro.uow.edu.au/eispapers/3444


Index Theory for Locally Compact

Noncommutative Geometries

A. L. Carey

V. Gayral

A. Rennie

F. A. Sukochev

Author address:

Mathematical Sciences Institute, Australian National University,

Canberra ACT, 0200 AUSTRALIA

E-mail address: alan.carey@anu.edu.au
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Abstract

Spectral triples for nonunital algebras model locally compact spaces in non-
commutative geometry. In the present text, we prove the local index formula for
spectral triples over nonunital algebras, without the assumption of local units in
our algebra. This formula has been successfully used to calculate index pairings in
numerous noncommutative examples. The absence of any other effective method
of investigating index problems in geometries that are genuinely noncommutative,
particularly in the nonunital situation, was a primary motivation for this study and
we illustrate this point with two examples in the text.

In order to understand what is new in our approach in the commutative setting
we prove an analogue of the Gromov-Lawson relative index formula (for Dirac type
operators) for even dimensional manifolds with bounded geometry, without invoking
compact supports. For odd dimensional manifolds our index formula appears to
be completely new. As we prove our local index formula in the framework of
semifinite noncommutative geometry we are also able to prove, for manifolds of
bounded geometry, a version of Atiyah’s L2-index Theorem for covering spaces.
We also explain how to interpret the McKean-Singer formula in the nonunital case.

To prove the local index formula, we develop an integration theory compatible
with a refinement of the existing pseudodifferential calculus for spectral triples. We
also clarify some aspects of index theory for nonunital algebras.
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19K56, 58J05, 58J20, 58J30, 58J32, 58J42.
Key words and phrases. local index formula, nonunital, spectral triple, Fredholm module,

Kasparov product.

v





Introduction

Our objective in writing this memoir is to establish a unified framework to
deal with index theory on locally compact spaces, both commutative and noncom-
mutative. In the commutative situation this entails index theory on noncompact
manifolds where Dirac-type operators, for example, typically have noncompact re-
solvent, are not Fredholm, and so do not have a well-defined index. In initiating
this study we were also interested in understanding previous approaches to this
problem such as those of Gromov-Lawson [29] and Roe [51] from a new viewpoint:
that of noncommutative geometry. In this latter setting the main tool, the Connes-
Moscovici local index formula, is not adapted to nonunital examples. Thus our
primary objective here is to extend that theorem to this broader context.

Index theory provided one of the main motivations for noncommutative geom-
etry. In [20,21] it is explained how to express index pairings between the K-theory
and K-homology of noncommutative algebras using Connes’ Chern character for-
mula. In examples this formula can be difficult to compute. A more tractable
analytic formula is established by Connes and Moscovici in [23] using a repre-
sentative of the Chern character that arises from unbounded Kasparov modules
or ‘spectral triples’ as they have come to be known. Their resulting ‘local index
formula’ is an analytic cohomological expression for index pairings that has been
exploited by many authors in calculations in fully noncommutative settings.

In previous work [15–17] some of the present authors found a new proof of
the formula that applied for unital spectral triples in semifinite von Neumann alge-
bras. However for some time the understanding of the Connes-Moscovici formula
in nonunital situations has remained unsatisfactory.

The main result of this article is a residue formula of Connes-Moscovici type
for calculating the index pairing between the K-homology of nonunital algebras
and their K-theory. This latter view of index theory, as generalised by Kasparov’s
bivariant KK functor, is central to our approach and we follow the general philos-
ophy enunciated by Higson and Roe, [33]. One of our main advances is to avoid ad
hoc assumptions on our algebras (such as the existence of local units, see below).

To illustrate our main result in practice we present two examples in Chapter
5. Elsewhere we will explain how a version of the example of nonunital Toeplitz
theory in [46] can be derived from our local index formula. To understand what
is new about our theorem in the commutative case we apply our residue formula
to manifolds of bounded geometry, obtaining a cohomological formula of Atiyah-
Singer type for the index pairing. We also prove an L2-index theorem for coverings
of such manifolds.

We now explain in some detail these and our other results.

1



2 INTRODUCTION

The noncommutative results. The index theorems we prove rely on a gen-
eral nonunital noncommutative integration theory and the index theory developed
in detail in Chapters 1 and 2.

Chapter 1 presents an integration theory for weights which is compatible with
Connes and Moscovici’s approach to the pseudodifferential calculus for spectral
triples. This integration theory is the key technical innovation, and allows us to
treat the unital and nonunital cases on the same footing.

An important feature of our approach is that we can eliminate the need to
assume the existence of ‘local units’ which mimic the notion of compact sup-
port, [27, 49, 50]. The difficulty with the local unit approach is that there are
no general results guaranteeing their existence. Instead we identify subalgebras
of integrable and square integrable elements of our algebra, without the need to
control ‘supports’.

In Chapter 2 we introduce a triple (A,H,D) where H is a Hilbert space, A is
a (nonunital) ∗-algebra of operators represented in a semifinite von Neumann sub-
algebra of B(H), and D is a self-adjoint unbounded operator on H whose resolvent
need not be compact, not even in the sense of semifinite von Neumann algebras.
Instead we ask that the product a(1 + D2)−1/2 is compact, and it is the need to
control this product that produces much of the technical difficulty.

We remark that there are good cohomological reasons for taking the effort to
prove our results in the setting of semifinite noncommutative geometry, and that
these arguments are explained in [24]. In particular, [24, Théorème 15] identifies
a class of cyclic cocycles on a given algebra which have a natural representation as
Chern characters, provided one allows semifinite Fredholm modules.

We refer to the case when D does not have compact resolvent as the ‘nonunital
case’, and justify this terminology in Lemma 2.2. Instead of requiring that D be
Fredholm we show that a spectral triple (A,H,D), in the sense of Chapter 2, defines
an associated semifinite Fredholm module and a KK-class for A.

This is an important point. It is essential in the nonunital version of the theory
to have an appropriate definition of the index which we are computing. Since the
operator D of a general spectral triple need not be Fredholm, this is accomplished
by following [35] to produce a KK-class. Then the index pairing can be defined
via the Kasparov product.

The role of the additional smoothness and summability assumptions on the
spectral triple is to produce the local index formula for computing the index pairing.
Our smoothness and summability conditions are defined using the smooth version
of the integration theory in Chapter 1. This approach is justified by Propositions
2.16 and 2.17, which compare our definition with a more standard definition of
finite summability.

Having identified workable definitions of smoothness and summability, the main
technical obstacle we have to overcome in Chapter 2 is to find a suitable Fréchet
completion of A stable under the holomorphic functional calculus. The integration
theory of Chapter 1 provides such an algebra, and in the unital case it reduces to
previous solutions of this problem, [49, Lemma 16]1.

In Chapter 3 we establish our local index formula in the sense of Connes-
Moscovici. The underlying idea here is that Connes’ Chern character, which defines

1Despite being about nonunital spectral triples, [49, Lemma 16] produces a Fréchet comple-
tion which only takes smoothness, not integrability, into account.



INTRODUCTION 3

an element of the cyclic cohomology of A, computes the index pairing defined by a
Fredholm module. Any cocycle in the same cohomology class as the Chern character
will therefore also compute the index pairing. In this memoir we define several
cocycles that represent the Chern character and which are expressed in terms of
the unbounded operator D. These cocycles generalise those found in [15–17] (where
semifinite versions of the local index formula were first proved) to the nonunital case.
We have to prove that these additional cocycles, including the residue cocycle, are
in the class of the Chern character in the (b, B)-complex.

Our main result (stated in Theorem 3.33 of Chapter 3) is then an expression
for the index pairing using a nonunital version of the semifinite local index formula
of [15,16], which is in turn a generalisation to the setting of semifinite von Neumann
algebras of the original Connes-Moscovici [25] formula. Our noncommutative index
formula is given by a sum of residues of zeta functions and is easily recognisable
as a direct generalisation of the unital formulas of [15,16,25]. We emphasise that
even for the standard B(H) case our local index formula is new.

One of the main difficulties that we have to overcome is that while there is a well
understood theory of Fredholm (or Kasparov) modules for nonunital algebras, the
‘right framework’ for working with unbounded representatives of these K-homology
classes has proved elusive. We believe that we have found the appropriate formalism
and the resulting residue index formula provides evidence that the approach to
spectral triples over nonunital algebras initiated in [10] is fundamentally sound
and leads to interesting applications. Related ideas on the K-homology point of
view for relative index theorems are to be found in [52], [9] and [19], and further
references in these texts.

We also discuss some fully noncommutative applications in Chapter 5, including
the type I spectral triple of the Moyal plane constructed in [27] and semifinite spec-
tral triples arising from torus actions on C∗-algebras, but leave other applications,
such as those to the results in [44], [46] and [60], to elsewhere.

To explain how we arrived at the technical framework described here, consider
the simplest possible classical case, where H = L2(R), D = d

idx and A is a certain
∗-subalgebra of the algebra of smooth functions on R. Let P = χ[0,∞)(D) be the
projection defined using the functional calculus and the characteristic function of
the half-line and let u be a unitary in A such that u− 1 converges to zero at ±∞
‘sufficiently rapidly’. Then the classical Gohberg-Krein theory gives a formula for
the index of the Fredholm operator PMuP where Mu is the operator of multiplica-
tion by u on L2(R). In proving this theorem for general symbols u, one confronts
the classical question (studied in depth in [56]) of when an operator of the form
(Mu − 1)(1+D2)−s/2, s > 0, is trace class. In the general noncommutative setting
of this article, this question and generalisations must still be confronted and this is
done in Chapter 1.

The results for manifolds. In the case of closed manifolds, the local index
formula in noncommutative geometry (due to Connes-Moscovici [25]) can serve as
a starting point to derive the Atiyah-Singer index theorem for Dirac type operators.
This proceeds by a Getzler type argument enunciated in this setting by Ponge, [47],
though similar arguments have been used previously with the JLO cocycle as a
starting point in [7,23]. While there is already a version of this Connes-Moscovici
formula that applies in the noncompact case [50], it relies heavily on the use of
compact support assumptions.
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For the application to noncompact manifolds M , we find that our noncommu-
tative index theorem dictates that the appropriate algebra A consists of smooth
functions which, together with all their derivatives, lie in L1(M). We show how to
constructK-homology classes for this algebra from the Dirac operator on the spinor
bundle over M . This K-homology viewpoint is related to Roe’s approach [52] and
to the relative index theory of [29].

Then the results, for Dirac operators coupled to connections on sections of bun-
dles over noncompact manifolds of bounded geometry, essentially follow as corol-
laries of the work of Ponge [47]. The theorems we obtain for even dimensional
manifolds are not comparable with those in [51], but are closely related to the
viewpoint of Gromov-Lawson [29]. For odd dimensional manifolds we obtain an
index theorem for generalised Toeplitz operators that appears to be new, although
one can see an analogy with the results of Hörmander [34, section 19.3].

We now digress to give more detail on how, for noncompact even dimensional
spin manifoldsM , our local index formula implies a result analogous to the Gromov-
Lawson relative index theorem [29]. What we compute is an index pairing of K-
homology classes for the algebra A of smooth functions which, along with their
derivatives, all lie in L1(M), with differences of classes [E] − [E′] in the K-theory
of A. We verify that the Dirac operator on a spin manifold of bounded geometry
satisfies the hypotheses needed to use our residue cocycle formula so that we obtain
a local index formula of the form

(0.1) 〈[E]− [E′], [D]〉 = (const)

∫
Â(M)(Ch(E)− Ch(E′)),

where Ch(E) and Ch(E′) are the Chern classes of vector bundles E and E′ over
M . We emphasise that in our approach, the connections that lead to the curvature
terms in Ch(E) and Ch(E′), do not have to coincide outside a compact set as
in [29]. Instead they satisfy constraints that make the difference of curvature terms
integrable over M .

We reiterate that, for our notion of spectral triple, the operator D need not be
Fredholm and that the choice of the algebra A is dictated by the noncommutative
theory developed in Chapter 2. In that chapter we explain the minimal assumptions
on the pair (D,A) such that we can define a Kasparov module and so a KK-class.
The further assumptions required for the local index formula are specified, almost
uniquely, by the noncommutative integration theory developed in Chapter 1. We
verify (in Chapter 4) what these assumptions mean for the commutative algebra A
of functions on a manifold and Dirac-type operator D, in the case of a noncompact
manifold of bounded geometry, and prove that in this case we do indeed obtain a
spectral triple in the sense of our general definition.

In the odd dimensional case, for manifolds of bounded geometry, we obtain an
index formula that is apparently new, although it is of APS-type. The residues
in the noncommutative formula are again calculable by the techniques employed
by [47] in the compact case. This results in a formula for the pairing of the Chern
character of a unitary u in a matrix algebra over A, representing an odd K-theory
class, with the K-homology class of a Dirac-type operator D of the form

(0.2) 〈[u], [D]〉 = (const)

∫
Â(M)Ch(u).

We emphasise that the assumptions on the algebra A of functions on M are such
that this integral exists but they do not require compact support conditions.
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We were also motivated to consider Atiyah’s L2-index Theorem in this setting.
Because we prove our index formula in the general framework of operators affiliated
to semifinite von Neumann algebras we are able, with some additional effort, to
obtain at the same time a version of the L2-index Theorem of Atiyah for Dirac
type operators on the universal cover of M (whether M is closed or not). We
are able to reduce our proof in this L2-setting to known results about the local
asymptotics at small time of heat kernels on covering spaces. The key point here is
that our residue cocycle formula gives a uniform approach to all of these ‘classical’
index theorems.

Summary of the exposition. Chapter 1 begins by introducing the integra-
tion theory we employ, which is a refinement of the ideas introduced in [10]. Then
we examine the interaction of our integration theory with various notions of smooth-
ness for spectral triples. In particular, we follow Higson, [32], and [15] in extending
the Connes-Moscovici pseudodifferential calculus to the nonunital setting. Finally
we prove some trace estimates that play a key role in the subsequent technical parts
of the discussion. All these generalisations are required for the proof of our main
result in Chapter 3.

Chapter 2 explains how our definition of semifinite spectral triple results in an
index pairing from Kasparov’s point of view. In other words, while our spectral
triple does not a priori involve (possibly unbounded) Fredholm operators, there
is an associated index problem for bounded Fredholm operators in the setting of
Kasparov’s KK-theory. We then show that by modifying our original spectral
triple we may obtain an index problem for unbounded Fredholm operators without
changing the Kasparov class in the bounded picture. This modification of our
unbounded spectral triple proves to be essential, in two ways, for us to obtain our
residue formula in Chapter 3.

The method we use in Chapter 3 to prove the existence of a formula of Connes-
Moscovici type for the index pairing of our K-homology class with the K-theory of
the nonunital algebra A is a modification of the argument in [17]. This argument
is in turn closely related to the approach of Higson [32] to the Connes-Moscovici
formula.

The idea is to start with the resolvent cocycle of [15–17] and show that it is
well defined in the nonunital setting. We then show that there is an extension of the
results in [17] that gives a homotopy of the resolvent cocycle to the Chern character
for the Fredholm module associated to the spectral triple. The residue cocycle can
then be derived from the resolvent cocycle in the nonunital case by much the same
argument as in [15,16].

In order to avoid cluttering our exposition with proofs of nonunital modifi-
cations of the estimates of these earlier papers, we relegate much detail to the
Appendix. Modulo these technicalities we are able to show, essentially as in [17],
that the residue cocycle and the resolvent cocycle are index cocycles in the class of
the Chern character. Then Theorem 3.33 in Chapter 3 is the main result of this
memoir. It gives a residue formula for the numerical index defined in Chapter 2 for
spectral triples.

We conclude Chapter 3 with a nonunital McKean-Singer formula and an exam-
ple showing that the integrability hypotheses can be weakened still further, though
we do not pursue the issue of finding the weakest conditions for our local index
formula to hold in this text.
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The applications to the index theory for Dirac-type operators on manifolds of
bounded geometry are contained in Chapter 4. Also in Chapter 4 is a version of the
Atiyah L2-index Theorem that applies to covering spaces of noncompact manifolds
of bounded geometry. In Chapter 5 we make a start on noncommutative examples,
looking at torus actions on C∗-algebras and at the Moyal plane. Any further
treatment of noncommutative examples would add considerably to the length of
this article, and is best left for another place.

Acknowledgements. This research was supported by the Australian Re-
search Council, the Max Planck Institute for Mathematics (Bonn) and the Banff
International Research Station. A. Carey also thanks the Alexander von Humboldt
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Pedon for discussions on the Kato inequality, Raimar Wulkenhaar for discussions
on index computations for the Moyal plane, and Gilles Carron, Thierry Coulhon,
Batu Güneysu and Yuri Korduykov for discussions related to heat-kernels on non-
compact manifolds. Finally, it is a pleasure to thank the referees: their exceptional
efforts have greatly improved this work.



CHAPTER 1

Pseudodifferential Calculus and Summability

In this Chapter we introduce our chief technical innovation on which most of
our results rely. It consists of an L1-type summability theory for weights adapted
to both the nonunital and noncommutative settings.

It has become apparent to us while writing, that the integration theory pre-
sented here is closely related to Haagerup’s noncommutative Lp-spaces for weights,
at least for p = 1, 2. Despite this, it is sufficiently different to require a self-
contained discussion.

It is an essential and important feature in all that follows that our approach
comes essentially from an L2-theory: we are forced to employ weights, and a direct
L1-approach is technically unsatisfactory for weights. This is because given a weight
ϕ on a von Neumann algebra, the map T 7→ ϕ(|T |) is not subadditive in general.

Throughout this chapter, H denotes a separable Hilbert space, N ⊂ B(H) is a
semifinite von Neumann algebra, D : domD → H is a self-adjoint operator affiliated
to N , and τ is a faithful, normal, semifinite trace on N . Our integration theory
will also be parameterised by a real number p ≥ 1, which will play the role of a
dimension.

Different parts of the integration and pseudodifferential theory which we in-
troduce rely on different parts of the above data. The pseudodifferential calculus
can be formulated for any unbounded self-adjoint operator D on a Hilbert space H.
This point of view is implicit in Higson’s abstract differential algebras, [32], and
was made more explicit in [15].

The definition of summability we employ depends on all the data above, namely
D, the pair (N , τ) and the number p ≥ 1. We show in Section 1.1 how the pseu-
dodifferential calculus is compatible with our definition of summability for spectral
triples, and this will dictate our generalisation of a finitely summable spectral triple
to the nonunital case in Chapter 2.

The proof of the local index formula that we use in the nonunital setting requires
some estimates on trace norms that are different from those used in the unital case.
These are found in Section 1.5. To prepare for these estimates, we also need some
refinements of the pseudodifferential calculus introduced by Connes and Moscovici
for unital spectral triples in [22,25].

1.1. Square-summability from weight domains

In this Section we show how an unbounded self-adjoint operator affiliated to a
semifinite von Neumann algebra provides the foundation of an integration theory
suitable for discussing finite summability for spectral triples.

Throughout this Section, we let D be a self-adjoint operator affiliated to a
semifinite von Neumann algebra N with faithful normal semifinite trace τ , and let
p ≥ 1 be a real number.

7



8 1. PSEUDODIFFERENTIAL CALCULUS AND SUMMABILITY

Definition 1.1. For any s > 0, we define the weight ϕs on N by

T ∈ N+ 7→ ϕs(T ) := τ
(
(1 +D2)−s/4T (1 +D2)−s/4

)
∈ [0,+∞].

As usual, we set

dom(ϕs) := span{dom(ϕs)+} = span
{(

dom(ϕs)
1/2
)∗
dom(ϕs)

1/2} ⊂ N ,

where

dom(ϕs)+ := {T ∈ N+ : ϕs(T ) <∞} ,
dom(ϕs)

1/2 := {T ∈ N : T ∗T ∈ dom(ϕs)+}.

In the following, dom(ϕs)+ is called the positive domain and dom(ϕs)
1/2 the

half domain.

Lemma 1.2. The weights ϕs, s > 0, are faithful normal and semifinite, with
modular group given by

N ∋ T 7→ (1 +D2)−is/2T (1 +D2)is/2.

Proof. Normality of ϕs follows directly from the normality of τ . To prove
faithfulness of ϕs, using faithfulness of τ , we also need the fact that the bounded
operator (1 +D2)−s/4 is injective. Let S ∈ dom(ϕs)

1/2 and T := S∗S ∈ dom(ϕs)+
with ϕs(T ) = 0. From the trace property, we obtain ϕs(T ) = τ(S(1 +D2)−s/2S∗),
so by the faithfulness of τ , we obtain 0 = S(1 + D2)−s/2S∗ = |(1 + D2)−s/4S∗|2,
so (1 + D2)−s/4S∗ = 0, which by injectivity implies S∗ = 0 and thus T = 0.
Regarding semifiniteness of ϕs, one uses semifiniteness of τ to obtain that for any
T ∈ N+, there exists S ∈ N+ of finite trace, with S ≤ (1 +D2)−s/4T (1 +D2)−s/4.
Thus S′ := (1 +D2)s/4S(1 +D2)s/4 ≤ T is non-negative, bounded and belongs to
dom(ϕs)+, as needed. The form of the modular group follows from the definition
of the modular group of a weight. �

Domains of weights, and, a fortiori, intersections of domains of weights, are ∗-
subalgebras of N . However, dom(ϕs)

1/2 is not a ∗-algebra but only a left ideal inN .
To obtain a ∗-algebra structure from the latter, we need to force the ∗-invariance.
Since ϕs is faithful for each s > 0, the inclusion of dom(ϕs)

1/2
⋂
(dom(ϕs)

1/2)∗ in its
Hilbert space completion (for the inner product coming from ϕs) is injective. Hence
by [57, Theorem 2.6], dom(ϕs)

1/2
⋂
(dom(ϕs)

1/2)∗ is a full left Hilbert algebra.
Thus we may define a ∗-subalgebra of N for each p ≥ 1.

Definition 1.3. Let D be a self-adjoint operator affiliated to a semifinite von
Neumann algebra N with faithful normal semifinite trace τ . Then for each p ≥ 1
we define

B2(D, p) :=
⋂

s>p

(
dom(ϕs)

1/2
⋂

(dom(ϕs)
1/2)∗

)
.

The norms

(1.1) Qn(T ) :=
(
‖T‖2 + ϕp+1/n(|T |2) + ϕp+1/n(|T ∗|2)

)1/2
, n ∈ N,

take finite values on B2(D, p) and provide a topology on B2(D, p) stronger than the
norm topology. Unless mentioned otherwise we will always suppose that B2(D, p)
has the topology defined by these norms.
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Notation. Given a semifinite von Neumann algebra N with faithful normal
semifinite trace τ , we let L̃p(N , τ), 1 ≤ p < ∞, denote the set of τ -measurable
operators T affiliated to N with τ(|T |p) < ∞. We do not often use this no-
tion of p-integrable elements, preferring to use the bounded analogue, Lp(N , τ) :=

L̃p(N , τ) ∩N , normed with T 7→ τ(|T |p)1/p + ‖T‖.
Remarks. (1) If (1+D2)−s/2 ∈ L1(N , τ) for all ℜ(s) > p ≥ 1, then B2(D, p) =

N , since then the weights ϕs, s > p, are bounded and the norms Qn are all
equivalent to the operator norm.

(2) The triangle inequality for Qn follows from the Cauchy-Schwarz inequal-
ity applied to the inner product 〈T, S〉n = ϕp+1/n(T

∗S), along with the equality

Qn(T )
2 = ‖T‖2+〈T, T 〉n+〈T ∗, T ∗〉n. In concrete terms, an element T ∈ N belongs

to B2(D, p) if and only if for all s > p, both T (1 + D2)−s/4 and T ∗(1 + D2)−s/4

belong to L2(N , τ), the ideal of τ -Hilbert-Schmidt operators.
(3) The normsQn are increasing, in the sense that for n ≤ m we haveQn ≤ Qm.

We leave this as an exercise, but observe that this requires the cyclicity of the trace.
The following result of Brown and Kosaki gives the strongest statement on this
cyclicity. By the preceding Remark (2), we do not need the full power of this result
here, but record it for future use.

Proposition 1.4. [8, Theorem 17] Let τ be a faithful normal semifinite trace
on a von Neumann algebra N , and let A, B be τ -measurable operators affiliated to
N . If AB, BA ∈ L̃1(N , τ) then τ(AB) = τ(BA).

Another important result that we will frequently use comes from Bikchentaev’s
work.

Proposition 1.5. [6, Theorem 3] Let N be a semifinite von Neumann algebra
with faithful normal semfinite trace τ . If A, B ∈ N satisfy A ≥ 0, B ≥ 0, and are
such that AB is trace class, then B1/2AB1/2 and A1/2BA1/2 are also trace class,
with τ(AB) = τ(B1/2AB1/2) = τ(A1/2BA1/2).

Next we show that the topological algebra B2(D, p) is complete and thus is a
Fréchet algebra. The completeness argument relies on the Fatou property for the
trace τ , [26].

Proposition 1.6. The ∗-algebra B2(D, p) ⊂ N is a Fréchet algebra.

Proof. Showing that B2(D, p) is a ∗-algebra is routine with the aid of the
following argument. For T, S ∈ B2(D, p), the operator inequality S∗T ∗TS ≤
‖T ∗T‖S∗S shows that

ϕp+1/n(|TS|2) = ϕp+1/n(S
∗T ∗TS) ≤ ‖T‖2ϕp+1/n(|S|2),

and, therefore, Qn(TS) ≤ Qn(T )Qn(S).
For the completeness, let (Tk)k≥1 be a Cauchy sequence in B2(D, p). Then

(Tk)k≥1 converges in norm, and so there exists T ∈ N such that Tk → T in N .
For each norm Qn we have | Qn(Tk) −Qn(Tl) | ≤ Qn(Tk − Tl), so we see that the
numerical sequence (Qn(Tk))k≥1 possesses a limit. Now since

(1+D2)−p/4−1/4nT ∗
kTk(1+D2)−p/4−1/4n → (1+D2)−p/4−1/4nT ∗T (1+D2)−p/4−1/4n,
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in norm, it also converges in measure, and so we may apply the Fatou Lemma, [26,
Theorem 3.5 (i)], to deduce that

τ
(
(1 +D2)−p/4−1/4nT ∗T (1 +D2)−p/4−1/4n

)

≤ lim inf
k→∞

τ
(
(1 +D2)−p/4−1/4nT ∗

kTk(1 +D2)−p/4−1/4n
)
.

Since the same conclusion holds for TT ∗ in place of T ∗T , we see that

Qn(T ) ≤ lim inf
k→∞

Qn(Tk) = lim
k→∞

Qn(Tk) <∞,

and so T ∈ B2(D, p). Finally, fix ε > 0 and n ≥ 1. Now choose N large enough so
that Qn(Tk − Tl) ≤ ε for all k, l > N . Applying the Fatou Lemma to the sequence
(Tk)k≥1, we have Qn(T − Tl) ≤ lim infk→∞ Qn(Tk − Tl) ≤ ε. Hence Tk → T in the
topology of B2(D, p). �

We now give some easy but useful stability properties of the algebras B2(D, p).
Lemma 1.7. Let T ∈ B2(D, p), S ∈ N and let f ∈ L∞(R).

(1) The operators Tf(D), f(D)T are in B2(D, p). If moreover T ∗ = T , then
Tf(T ) ∈ B2(D, p). In all these cases,

Qn(Tf(D)), Qn(f(D)T ), Qn(Tf(T )) ≤ ‖f‖∞Qn(T ).

(2) If S∗S ≤ T ∗T and SS∗ ≤ TT ∗, then S ∈ B2(D, p) with Qn(S) ≤ Qn(T ).
(3) We have S ∈ B2(D, p) if and only if |S|, |S∗| ∈ B2(D, p).
(4) The real and imaginary parts ℜ(T ), ℑ(T ) belong to B2(D, p).
(5) If T = T ∗, let T = T+ − T− be the Jordan decomposition of T into pos-
itive and negative parts. Then T+, T− ∈ B2(D, p). Consequently B2(D, p) =
span{B2(D, p)+}.

Proof. (1) Since T (1+D2)−s/4, T ∗(1+D2)−s/4 ∈ L2(N , τ), we immediately
see that

Tf(D)(1 +D2)−s/4 = T (1 +D2)−s/4f(D), f̄(D)T ∗(1 +D2)−s/4 ∈ L2(N , τ),

and when T is self-adjoint, we also have

Tf(T )(1 +D2)−s/4 = f(T )T (1 +D2)−s/4, f̄(T )T (1 +D2)−s/4 ∈ L2(N , τ).

To prove the inequality we use the trace property to see that

τ((1 +D2)−s/4f̄(D)T ∗Tf(D)(1 +D2)−s/4)

= τ(T (1 +D2)−s/4|f |2(D)(1 +D2)−s/4T ∗)

≤ ‖f‖2∞τ((1 +D2)−s/4T ∗T (1 +D2)−s/4),

and similarly for Tf(D) and Tf(T ) when T ∗ = T .
(2) Clearly, ϕs(S

∗S) ≤ ϕs(T
∗T ) and ϕs(SS

∗) ≤ ϕs(TT
∗). The assertion follows

immediately.
(3) This follows from Qn(T ) = (Qn(|T |) + Qn(|T ∗|))/2. Item (4) follows since
B2(D, p) is a ∗-algebra, and then item (5) follows from (2), since for a self-adjoint
element T ∈ B2(D, p):

T ∗T = |T |2 = (T+ + T−)
2 = T 2

+ + T 2
− ≥ T 2

+, T
2
−.

This completes the proof. �
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The algebras B2(D, p) are stable under the holomorphic functional calculus.
We remind the reader that when B is a nonunital algebra, this means that for all
T ∈ B and functions f holomorphic in a neighbourhood of the spectrum of T with
f(0) = 0 we have f(T ) ∈ B.

Lemma 1.8. For any n ∈ N the ∗-algebra Mn(B2(D, p)) is stable under the
holomorphic functional calculus in its C∗-completion.

Proof. We begin with the n = 1 case. If T ∈ B2(D, p) is such that 1 + T is
invertible in N , then by (a minor extension of) Lemma 1.7 (1), we see that

(1 + T )−1 − 1 = −T (1 + T )−1 ∈ B2(D, p).(1.2)

Equation (1.2) and Lemma 1.7 part (1) gives, for z in the resolvent set of T ,

Qn

(
(z−T )−1−z−1

)
=Qn

(
z−1T (z−T )−1

)
≤ ‖(1+T )(z−T )−1‖Qn

(
z−1T (1+T )−1

)
.

Set Cz = ‖(1+T )(z−T )−1‖ and let Γ be a positively oriented contour surrounding
the spectrum of T with 0 6∈ Γ, and f holomorphic in a neighborhood of the spectrum
of T containing Γ. Then

Qn

( 1

2πi

∫

Γ

f(z)
[
(z − T )−1 − z−1

]
dz
)
≤ C

2π
Qn(T (1 + T )−1)

∫

Γ

∣∣∣∣
f(z)dz

z

∣∣∣∣ <∞,

where C = supz∈Γ Cz. Thus we have (when B2(D, p) ⊂ N is nonunital)
∫

Γ

f(z)(z − T )−1 dz ∈ B2(D, p)⊕ C IdN ,

with the scalar component equal to f(0)IdN . The general case follows from the
n = 1 case by the main theorem of [54]. �

1.2. Summability from weight domains

As in the last Section, we letD be a self-adjoint operator affiliated to a semifinite
von Neumann algebra N with faithful normal semifinite trace τ and p ≥ 1.

In the previous Section, we have seen that the algebra B2(D, p) plays the role of
a ∗-invariant L2-space in the setting of weights. To construct a ∗-invariant L1-type
space associated with the data (N , τ,D, p), there are two obvious strategies.

One strategy is to define seminorms on B2(D, p)2 (the finite span of products)
and then to complete this space. The other approach is to take the projective
tensor product completion of B2(D, p) ⊗ B2(D, p) and then consider its image in
N under the multiplication map. In fact both approaches yield the same answer,
and complementary benefits. We begin by recalling the projective tensor product
topology in our setting. It is defined to be the strongest locally convex topology on
the algebraic tensor product such that the natural bilinear map

B2(D, p)× B2(D, p) 7→ B2(D, p)⊗ B2(D, p),
is continuous, [58, Definition 43.2]. The projective tensor product topology can be

described in terms of seminorms P̃n,m defined for n,m ∈ N, by

(1.3) P̃n,m(T ) := inf
{ k∑

i=1

Qn(Ti,1)Qm(Ti,2) : T =
k∑

i=1

Ti,1 ⊗ Ti,2

}
.

(In fact, since theQn are norms, so too are the P̃n,m). Using the fact that the norms
Qn are increasing and from the arguments of Corollary 1.12, we see that for k ≤ n
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and l ≤ m we have P̃k,l ≤ P̃n,m. This allows us to show that the projective tensor

product topology is in fact determined by the subfamily of seminorms P̃n := P̃n,n,
and accordingly we restrict to this family for the rest of this discussion.

Then we let B2(D, p)⊗π B2(D, p) denote the completion of B2(D, p)⊗B2(D, p)
in the projective tensor product topology. The projective tensor product topology
is the unique topology on B2(D, p)⊗B2(D, p) such that, [58, Proposition 43.4], for
any locally convex topological vector space G, the canonical isomorphism
{
bilinear maps B2(D, p)×B2(D, p)→G

}
−→
{
linear maps B2(D, p)⊗B2(D, p)→G

}
,

gives an (algebraic) isomorphism
{
continuous bilinear maps B2(D, p)× B2(D, p) → G

}
−→

{
continuous linear maps B2(D, p)⊗ B2(D, p) → G

}
.

As multiplication is a continuous bilinear map m : B2(D, p)×B2(D, p) → B2(D, p),
we obtain a continuous (with respect to the projective tensor product topology)
linear map m̃ : B2(D, p) ⊗ B2(D, p) → B2(D, p). We extend m̃ to the completion

B2(D, p)⊗π B2(D, p) and denote by B̃1(D, p) ⊂ B2(D, p) the image of m̃. Since m̃ is
continuous, m̃ has closed kernel, and there is an isomorphism of topological vector
spaces between B̃1(D, p) with the quotient topology (defined below) and B2(D, p)⊗π

B2(D, p)/ ker m̃. Now by [58, Theorem 45.1], any Θ ∈ B2(D, p)⊗π B2(D, p) admits

a representation as an absolutely convergent sum (i.e. convergent for all P̃n)

Θ =

∞∑

i=0

λiRi ⊗ Si, Ri, Si ∈ B2(D, p), λi ≥ 0,

such that
∞∑

i=0

λi <∞ and Qn(Ri), Qn(Si) → 0, i→ ∞ for all n ∈ N.(1.4)

By defining R̃i = λ
1/2
i Ri and S̃i = λ

1/2
i Si, we see that we can represent Θ as an

absolutely convergent sum in each of the norms P̃n

(1.5) Θ =
∞∑

i=0

R̃i ⊗ S̃i,

such that for all n ∈ N, the numerical sequences
(
Qn(R̃i)

)
i≥0

and
(
Qn(S̃i)

)
i≥0

belong to ℓ2(N0).
Having considered the basic features of the projective tensor product approach,

we now consider the approach based on products of elements of B2(D, p). So we let
B2(D, p)2 be the finite linear span of products from B2(D, p), and define a family
of norms, {Pn,m : n,m ∈ N}, on B2(D, p)2, by setting

(1.6) Pn,m(T ) := inf
{ k∑

i=1

Qn(T1,i)Qm(T2,i)
}
,

where the infimum is taken over all possible such representations of T of the form

T =

k∑

i=1

T1,iT2,i with T1,i, T2,i ∈ B2(D, p).
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Just as we did for the norms P̃ after Equation (1.3), we may use the fact that the
Qn are increasing to show that the topology determined by the norms Pn,m is the
same as that determined by the smaller set of norms Pn := Pn,n. Thus we may
restrict attention to the norms Pn.

Now B2(D, p)2 ⊂ B̃1(D, p) and, regarding B̃1(D, p) as a quotient as above,
we claim that the norms Pn are the natural seminorms (restricted to B2(D, p)2)
defining the Fréchet topology on the quotient, [58, Proposition 7.9]. To see this,

recall that the quotient seminorms P̃n,q on B̃1(D, P ) are defined, for T ∈ B̃1(D, p) ∼=
B2(D, p)⊗π B2(D, p)/ ker m̃, by

P̃n,q(T ) := inf
T=m̃(Θ)

P̃n(Θ).

Then for T ∈ B(D, p)2 we have the elementary equalities

Pn(T ) = inf
{ k∑

i=1

Qn(Ti,1)Qn(Ti,2) : T =
k∑

i=1

Ti,1Ti,2

}

= inf
{ k∑

i=1

Qn(Ti,1)Qn(Ti,2) : Θ =

k∑

i=1

Ti,1 ⊗ Ti,2 & m̃(Θ) = T
}

= inf
m̃(Θ)=T

P̃n(Θ).

Thus the Pn are norms on B2(D, p)2.
Definition 1.9. Let B1(D, p) be the completion of B2(D, p)2 with respect to

the topology determined by the family of norms {Pn : n ∈ N}.

Theorem 1.10. We have an equality of Fréchet spaces B1(D, p) = B̃1(D, p).

Proof. For T ∈ B̃1(D, p), there exists Θ =
∑∞

i=0Ri⊗Si ∈ B2(D, p)⊗πB2(D, p)
with m̃(Θ) = T and such that the sequences (Qn(Ri))i≥0, (Qn(Si))i≥0 are in ℓ

2(N0)
for each n. Now

Θ = lim
N→∞

N∑

i=0

Ri ⊗ Si and m̃
( N∑

i=0

Ri ⊗ Si

)
=

N∑

i=0

RiSi,

so by the continuity of m̃

T = m̃(Θ) = lim
N→∞

N∑

i=0

RiSi.

Here the limit defining T is with respect to the family of norms P̃n,q = Pn on

B2(D, p)2. Hence, by definition, T ∈ B1(D, p), and so B̃1(D, p) ⊂ B1(D, p). Now
observe that we have the containments

B2(D, p)2 ⊂ B̃1(D, p) ⊂ B1(D, p),
and as B2(D, p)2 is dense in B1(D, p) by definition, B2(D, p)2 is dense in B̃1(D, p).
As P̃n,q = Pn on B2(D, p)2, we see that B̃1(D, p) is a dense and closed subset of

B1(D, p). Hence B̃1(D, p) = B1(D, p). �

On the basis of this result, we will employ the single notation B1(D, p) from
now on.
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Remark. For R, S ∈ B2(D, p), the product RS ∈ B1(D, p) with the estimate
Pn(RS) ≤ Qn(R)Qn(S). By applying m̃ to a representation of Θ ∈ B2(D, p) ⊗π

B2(D, p) as in Equation (1.5), this allows us to see that every T ∈ B1(D, p) can be
represented as a sum, convergent for every Pn,

T =

∞∑

i=0

RiSi, such that for all n ∈ N, (Qn(Ri))i≥0 , (Qn(Si))i≥0 ∈ ℓ2(N0).

We now show that B1(D, p) is a ∗-algebra, and that the norms Pn are submul-
tiplicative. The first step is to show that B1(D, p) is naturally included in B2(D, p).

Lemma 1.11. The algebra B1(D, p) is continuously embedded in B2(D, p). In
particular, for all T ∈ B1(D, p) and all n ∈ N, Qn(T ) ≤ Pn(T ).

Proof. Let T ∈ B1(D, p). That T belongs to B2(D, p) follows from the submul-
tiplicativity of the norms Qn. To see this, fix n ∈ N. Then, for any representation
T =

∑∞
i=0RiSi, the submultiplicativity of the norms Qn gives us

Qn(T ) = Qn

( ∞∑

i=0

RiSi

)
≤

∞∑

i=0

Qn(RiSi) ≤
∞∑

i=0

Qn(Ri)Qn(Si).

Since this is true for any representation T =
∑∞

i=0RiSi, we find Qn(T ) ≤ Pn(T ),
proving that B1(D, p) embeds continuously in B2(D, p). �

Corollary 1.12. The Fréchet space B1(D, p) is a ∗-subalgebra of N . More-
over, the norms Pn are ∗-invariant, submultiplicative, and for n ≤ m satisfy
Pn ≤ Pm.

Proof. We begin by showing that each Pn is a ∗-invariant norm. Using the
∗-invariance of Qn(·), we have for any T ∈ B2(D, p)2

Pn(T
∗) = inf

{∑

i

Qn(S1,i)Qn(S2,i) : T ∗ =
∑

i

S1,iS2,i

}

≤ inf
{∑

i

Qn(T
∗
2,i)Qn(T

∗
1,i) : T =

∑

i

T1,iT2,i

}

= inf
{∑

i

Qn(T2,i)Qn(T1,i) : T =
∑

i

T1,iT2,i

}
= Pn(T ).

Hence Pn(T
∗) ≤ Pn(T ), and by replacing T ∗ with T we find that Pn(T

∗) = Pn(T ).
It now follows that each Pn is ∗-invariant on all of B1(D, p).

That B1(D, p) is an algebra, follows from the embedding B1(D, p) ⊂ B2(D, p)
proven in Lemma 1.11:

B1(D, p) · B1(D, p) ⊂ B2(D, p) · B2(D, p) ⊂ B1(D, p).
For the submultiplicativity of the norms Pn, we observe for T, S ∈ B1(D, p)

Pn(TS) ≤ Qn(T )Qn(S) ≤ Pn(T )Pn(S),

where the first inequality follows from the definition of Pn and the second from the
norm estimate of Lemma 1.11.

To prove that Pn(·) ≤ Pm(·) for n ≤ m, take T ∈ B2(D, p)2 and consider any

representation T =
∑k

i=1 Ti,1 Ti,2. Then, since Qn(·) ≤ Qm(·) for n ≤ m, we have

k∑

i=1

Qn(Ti,1)Qn(Ti,2) ≤
k∑

i=1

Qm(Ti,1)Qm(Ti,2),
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and thus

(1.7) Pn(T ) ≤
k∑

i=1

Qm(Ti,1)Qm(Ti,2).

Since (1.7) is true for any such representation, we have Pn(T ) ≤ Pm(T ). Now let
T ∈ B1(D, p) be the limit of the sequence (TN )N≥1 ⊂ B2(D, p)2. Then Pn(T ) =
limN→∞ Pn(TN ) ≤ limN→∞ Pm(TN ) = Pm(T ). �

Next we show the compatibility of the norms Pn with positivity.

Lemma 1.13. Let 0 ≤ A ∈ N . Then A ∈ B1(D, p) if and only if A1/2 ∈ B2(D, p)
with

Pn(A) = Qn(A
1/2)2, for all n ∈ N.

Moreover if 0 ≤ A ≤ B ∈ N and B ∈ B1(D, p), then A ∈ B1(D, p), and we have
Pn(A) ≤ Pn(B) for all n ∈ N.

Proof. Given 0 ≤ A ∈ N with A1/2 ∈ B2(D, p), it follows from the definitions
that A ∈ B1(D, p) and Pn(A) ≤ Qn(A

1/2)2. So suppose 0 ≤ A ∈ B1(D, p) and
choose any representation

A =

∞∑

i=0

RiSi,

∞∑

i=0

Qn(Ri)Qn(Si) <∞, for all n ∈ N.

Then using the self-adjointness of A, the definitions, and the Cauchy-Schwarz in-
equality yields

Qn(A
1/2)2 = Qn

(( ∞∑

i=0

RiSi

)1/2)2

=
∥∥

∞∑

i=0

RiSi

∥∥+ ϕp+1/n

( ∞∑

i=0

RiSi

)
+ ϕp+1/n

( ∞∑

i=0

SiRi

)

≤
∞∑

i=0

∥∥Ri

∥∥ ∥∥Si

∥∥+
∣∣ϕp+1/n

(
RiSi

)∣∣+
∣∣ϕp+1/n

(
SiRi

)∣∣

≤
∞∑

i=0

‖Ri‖ ‖Si‖+ ϕp+1/n

(
RiR

∗
i

)1/2
ϕp+1/n

(
S∗
i Si

)1/2

+ ϕp+1/n

(
SiS

∗
i

)1/2
ϕp+1/n

(
R∗

iRi

)1/2

≤
∞∑

i=0

Qn(Ri)Qn(Si).

The last inequality follows from applying the Cauchy-Schwarz inequality,

(r1s1 + r2s2 + r3s3)
2 ≤ (r21 + r22 + r23)(s

2
1 + s22 + s23),

to each term in the sum. Thus for any representation of A we have Qn(A
1/2)2 ≤∑∞

i=0 Qn(Ri)Qn(Si), which entails Qn(A
1/2)2 ≤ Pn(A) as needed. For the last

statement, suppose that 0 ≤ B ∈ B1(D, p) and that 0 ≤ A ∈ N satisfies B ≥ A.
Then B1/2 ≥ A1/2 and B1/2 ∈ B2(D, p), so Lemma 1.7 (2) completes the proof. �
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Since B1(D, p) is a ∗-algebra, we have T ∈ B1(D, p) if and only if T ∗ ∈ B1(D, p).
Thus given T = T ∗ ∈ B1(D, p), it is natural to ask whether the positive and negative
parts T+, T− of the Jordan decomposition of T are in B1(D, p). We can not answer
this question, but can nevertheless prove that B1(D, p) is the (finite) span of its
positive cone.

Proposition 1.14. For every T ∈ B1(D, p), there exist four positive operators
T0, . . . , T3 ∈ B1(D, p) such that

T =
(
T0 − T2

)
+ i
(
T1 − T3

)
.

Here ℜ(T ) = T0−T2 and ℑ(T ) = T1−T3, but this need not be the Jordan decompo-
sition since it may not be that T0T2 = T1T3 = 0. Nevertheless, the space B1(D, p)
is the linear span of its positive cone.

Proof. Let T ∈ B1(D, p) have the representation T =
∑

j RjSj . By Equation

(1.5), this means that for each n the sequences (Qn(Rj))
∞
j=0 and (Qn(Sj))

∞
j=0 belong

to ℓ2(N0). Now, from the polarization identity

4R∗S =

3∑

k=0

ik(S + ikR)∗(S + ikR),

we can decompose T =
∑3

k=0 i
kTk, with

4Tk =

∞∑

j=0

(Sj + ikR∗
j )

∗(Sj + ikR∗
j ) ≥ 0.

Since (Qn(Rj))
∞
j=0 and (Qn(Sj))

∞
j=0 belong to ℓ2(N0), and using the ∗-invariance of

the norms Qn, we see that the four elements Tk, k = 0, 1, 2, 3, all belong to B1(D, p).
Now it is straightforward to check that ℜ(T ) = T0−T2 and ℑ(T ) = T1−T3, however,
these need not give the canonical decomposition into positive and negative parts
since we may not have T0T2 = 0 and T1T3 = 0. �

Remark. The previous proposition shows that we can represent elements of
B1(D, p) as finite sums of products of elements of B2(D, p), and so have a corre-
spondingly simpler description of the norms. We will not pursue this further here.

The next lemma is analogous to Lemma 1.7 (1). It shows that B1(D, p) is a bi-
module for the natural actions of the commutative von Neumann algebra generated
by the spectral family of the operator D.

Lemma 1.15. Let T ∈ B1(D, p) and f ∈ L∞(R). Then Tf(D) and f(D)T
belong to B1(D, p) with Pn

(
Tf(D)

)
,Pn

(
f(D)T

)
≤ ‖f‖∞Pn(T ) for all n ∈ N.

Proof. Fix T ∈ B1(D, p), f ∈ L∞(R) and n ∈ N. Consider an arbitrary
representation T =

∑∞
i=0Ri Si. Then we claim that

∑∞
i=0Ri

(
Sif(D)

)
is a repre-

sentation of Tf(D). Indeed, it follows by Lemma 1.7 (1) that

∞∑

i=0

Qn(Ri)Qn

(
Sif(D)

)
≤ ‖f‖∞

∞∑

i=0

Qn(Ri)Qn(Si) <∞,



1.2. SUMMABILITY FROM WEIGHT DOMAINS 17

showing that Tf(D) ∈ B1(D, p). Moreover, the preceding inequality entails that

Pn

(
Tf(D)

)
≤ inf

{ ∞∑

i=0

Qn(Ri)Qn

(
Sif(D)

)
: T =

∞∑

i=0

Ri Si

}

≤ ‖f‖∞ inf
{ ∞∑

i=0

Qn(Ri)Qn(Si) : T =

∞∑

i=0

Ri Si

}
= ‖f‖∞ Pn(T ).

The case of f(D)T is similar. �

Our next aim is to prove that B1(D, p) is stable under the holomorphic func-
tional calculus in its C∗-completion. This will be a corollary of the following two
lemmas.

Lemma 1.16. Let T, R be elements of B2(D, p) with 1 + R invertible in N .
Then T (1 +R)−1 ∈ B2(D, p), and for all n ∈ N we have

Qn

(
T (1 +R)

−1) ≤ Cn(R)Qn(T ),

where the constant Cn(R) is given by

Cn(R) := 4
√
2max{1, ‖(1 +R)−1‖}max{1,Qn(R)}.

Proof. For any n ∈ N we have

Qn(T (1 +R)−1)2 = ‖T (1 +R)−1‖2 + ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1)

+ ϕp+1/n(T |1 +R|−2T ∗)

≤ ‖(1 +R)−1‖2
(
‖T‖2 + ϕp+1/n(TT

∗)
)

+ ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1)

≤ ‖(1 +R)−1‖2 Qn(T )
2 + ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1),(1.8)

where the first inequality follows by an application of the operator inequality
A∗B∗BA ≤ ‖B‖2A∗A, while the second follows from the definition of the norm
Qn. Writing

(1 +R∗)−1|T |2(1 +R)−1 =

|T |2 −R∗(1 +R∗)−1|T |2 − |T |2R(1 +R)−1 +R∗(1 +R∗)−1|T |2R(1 +R)−1,

the Cauchy-Schwarz inequality for the weight ϕp+1/n gives

ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1) ≤
ϕp+1/n(|T |2) + ϕp+1/n(R

∗(1 +R∗)−1|T |2R(1 +R)−1)

+ ϕp+1/n(|T |4)1/2
(
ϕp+1/n(|R|2|1 +R|−2)1/2 + ϕp+1/n(|R∗|2|1 +R∗|−2)1/2

)
.

Using the operator inequality A∗B∗BA ≤ ‖B‖2A∗A as above, we deduce that

ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1) ≤
ϕp+1/n(|T |2) + ‖T‖2 ‖(1 +R)−1‖2 ϕp+1/n(|R|2)

+ ‖T‖ ‖(1 +R)−1‖ϕp+1/n(|T |2)1/2
(
ϕp+1/n(|R|2)1/2 + ϕp+1/n(|R∗|2)1/2

)
.

Simplifying this last expression, using ‖T‖, ϕ(|T |2)1/2 ≤ Qn(T ) and similarly for
R, we find

ϕp+1/n((1 +R∗)−1|T |2(1 +R)−1) ≤ Qn(T )
2
(
1 + ‖(1 +R)−1‖Qn(R)

)2
.
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This yields

Qn(T (1 +R)−1) ≤
√
‖(1 +R)−1‖2 + (1 + ‖(1 +R)−1‖Qn(R))2 Qn(T ).

Finally we employ, for a, b > 0, the numerical inequalities
√
a2 + (1 + ab)2 ≤

√
(ac)2 + (1 + ac)2, c := max{1, b}

≤
√
2(1 + ac) ≤

√
2(1 + a)(1 + c)

≤ 4
√
2max{1, a}max{1, c} ≤ 4

√
2max{1, a}max{1, b},

to arrive at the inequality of the statement of the Lemma. �

Lemma 1.17. Let T ∈ B1(D, p) and R ∈ B2(D, p), with 1 +R invertible in N .
Then the operator T (1 +R)−1 belongs to B1(D, p), with

Pn

(
T (1 +R)−1

)
≤ Cn(R)Pn(T ), for all n ∈ N,

for the finite constant Cn(R) of Lemma 1.16.

Proof. To see this, fix n ∈ N and consider any representation of T

T =

∞∑

i=0

T1,iT2,i with T1,i, T2,i ∈ B2(D, p) and

∞∑

i=0

Qn(T1,i)Qn(T2,i) <∞.

Then

Pn(T (1 +R)−1) ≤
∞∑

i=0

Qn(T1,i)Qn(T2,i(1 +R)−1) ≤ Cn(R)

∞∑

i=0

Qn(T1,i)Qn(T1,i),

where we used Lemma 1.16 to obtain the second estimate. Since the constant does
not depend on the representation chosen, we have the inequality

Pn

(
T (1 +R)−1

)
≤ Cn(R)Pn(T ),

which completes the proof. �

Proposition 1.18. For any n ∈ N and p ≥ 1, the ∗-algebra Mn(B1(D, p)) is
stable under the holomorphic functional calculus.

Proof. We begin with the case n = 1. Let T ∈ B1(D, p) and let f be a function
holomorphic in a neighborhood of the spectrum of T . Let Γ be a positively oriented
contour surrounding the spectrum of T , taking care that 0 does not lie on Γ. We
want to show that (when B1(D, p) is a nonunital subalgebra of N )

∫

Γ

f(z)(z − T )−1 dz ∈ B1(D, p)⊕ C IdN ,

with the scalar component equal to f(0)IdN . Since
∫

Γ

f(z)(z − T )−1 dz − f(0) IdN =

∫

Γ

f(z)Tz−1(z − T )−1 dz,

we get for all n ∈ N

Pn

(∫

Γ

f(z)(z − T )−1 dz − f(0) IdN

)
≤
∫

Γ

∣∣∣∣
f(z)

z2

∣∣∣∣Pn(T )Cn(−T/z) dz,

where Cn is the constant from Lemmas 1.16 and 1.17, and we have used Lemma
1.11 to see that T/z ∈ B2(D, p). Then the inequality

Cn(−T/z) ≤ 4
√
2max{1, ‖(1− T/z)−1‖}max{1,Qn(T )/|z|},



1.2. SUMMABILITY FROM WEIGHT DOMAINS 19

allows us to conclude that the integral above is finite. Again, the general case
follows from [54]. �

We conclude this Section by showing that when the weights ϕs, s > 0, are
tracial, then our space of integrable element B1(D, p), coincides with an intersection
of trace-ideals. This fact will be of relevance in two of our applications (Chapter 4
and Section 5.2), where the restriction of the faithful normal semifinite weights ϕs

to an appropriate sub-von Neumann algebra are faithful normal semifinite traces.

Proposition 1.19. Assume that there exists a von Neumann subalgebra M ⊂
N such that for all n ∈ N, the restriction of the faithful normal semifinite weight
τn := ϕp+1/n|M is a faithful normal semifinite trace. Then

B1(N , τ)
⋂

M =
⋂

n≥1

L1(M, τn).

Here L1(M, τn) denotes the trace ideal of M associated with the faithful normal
semifinite trace τn. Moreover, for any n ∈ N, Pn(·) = ‖ · ‖+ 2‖ · ‖τn , where ‖ · ‖τn
is the trace-norm on L1(M, τn).

Proof. Note first that the tracial property of the faithful normal semifinite
trace τn := ϕp+1/n|M, immediately implies that

B2(N , τ)
⋂

M =
⋂

n≥1

L2(M, τn),

that is, the half-domain of τn on M is already ∗-invariant and moreover

Qn(T ) =
(
‖T‖2 + 2‖|T |2‖τn

)1/2
.

Now, take T ∈ B1(D, p)
⋂M, and any representation T =

∑∞
i=1RiSi. Observe

then that the Hölder inequality gives

‖T‖+ 2‖T‖τn ≤
∞∑

i=1

(
‖RiSi‖+ 2‖RiSi‖τn

)
≤

∞∑

i=1

Qn(Ri)Qn(Si).

Since this inequality is valid for any such representation, it gives

‖T‖+ 2‖T‖τn ≤ Pn(T ),

and hence B1(N , τ)
⋂M ⊂ ⋂n≥1 L1(M, τn). Conversely, let T ∈ ⋂n L1(M, τn). If

T ≥ 0 then T =
√
T
√
T and

√
T ∈ B2(D, p)∩M, by the first part of the proof and

the fact that
√
T ∈ ⋂n L2(M, τn). Thus T ∈ B1(D, p) ∩M and, by Lemma 1.13,

Pn(T ) = Qn(
√
T )2 = ‖T‖ + 2‖T‖τn . If T is now arbitrary in

⋂
n L1(M, τn), we

may write it as a linear combination of four positive elements, T = c1T1 + c2T2 +
c3T3 + c4T4, with: |cj | = 1 for each j = 1, 2, 3, 4; 0 ≤ Tj ∈ L1(M, τn) for each
n; and ‖Tj‖+ 2‖Tj‖τn ≤ ‖T‖+ 2‖T‖τn . Hence

⋂
n≥1 L1(M, τn) ⊂ B1(N , τ)

⋂M.

Regarding the equality of norms, for T ∈ ⋂n≥1 L1(M, τn) = B1(N , τ)
⋂M, write

T = S|T | for the polar decomposition. Then by construction of the norms Pn and
the value of the norms Qn we see that

Pn(T ) ≤ Qn(S|T |1/2)Qn(|T |1/2) ≤ ‖|T |1/2‖2 + 2‖|T |‖τn = ‖T‖+ 2‖T‖τn ,
and we conclude using the converse inequality already proven. �
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1.3. Smoothness and summability

Anticipating the pseudodifferential calculus, we introduce dense subalgebras of
B1(D, p) which ‘see’ smoothness as well as summability. There are several operators
naturally associated to our notions of smoothness.

We recall that D is a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace τ , and p ≥ 1. For a few definitions,
like the next, we do not require all of this information.

Definition 1.20. Let D be a self-adjoint operator affiliated to a semifinite von
Neumann algebra N ⊂ B(H), where H is a Hilbert space. Set H∞ =

⋂
k≥0 domDk.

For an operator T ∈ N such that T : H∞ → H∞ we set

(1.9) δ(T ) := [|D|, T ], δ′(T ) := [(1 +D2)1/2, T ], T ∈ N .

In addition, we recursively set

(1.10) T (n) := [D2, T (n−1)], n ∈ N and T (0) := T.

Finally, let

L(T ) := (1 +D2)−1/2[D2, T ], R(T ) := [D2, T ](1 +D2)−1/2.(1.11)

We have defined δ, δ′, L, R for operators in N preserving H∞, and so consider
the domains of δ, δ′, L, R to be subsets of N . If T ∈ dom δ, say, so that δ(T )
is bounded, then it is straightforward to check that δ(T ) commutes with every
operator in the commutant of N , and hence δ(T ) ∈ N . Similar comments apply
to δ′, L, R. It follows from the proof of [15, Proposition 6.5] and R(T )∗ = −L(T ∗)
that

(1.12)
⋂

n≥0

domLn =
⋂

n≥0

domRn =
⋂

k, l≥0

domLk ◦Rl.

Similarly, using the fact that |x| − (1 + x2)1/2 is a bounded function, it is proved
after the Definition 2.2 of [15] that

(1.13)
⋂

n∈N

dom δn =
⋂

n∈N

dom δ′
n
.

Finally, it is proven in [22,25] and [15, Proposition 6.5] that we have equalities of
all the smooth domains in Equations (1.12), (1.13).

Definition 1.21. Let D be a self-adjoint operator affiliated to a semifinite von
Neumann algebra N with faithful normal semifinite trace τ , and p ≥ 1. Then define
for k ∈ N0 = N ∪ {0}

Bk
1 (D, p) :=

{
T ∈ N : for all l = 0, . . . , k, δl(T ) ∈ B1(D, p)

}
,

where δ = [|D|, ·] as in Equation (1.9). Also set

B∞
1 (D, p) :=

∞⋂

k=0

Bk
1 (D, p).

We equip Bk
1 (D, p), k ∈ N0 ∪{∞}, with the topology determined by the seminorms

(1.14) Pn,l(T ) :=

l∑

j=0

Pn(δ
j(T )), n ∈ N, l ∈ N0.
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The triangle inequality for the seminorms Pn,l follows from the linearity of δl

and the triangle inequality for the norm Pn. Submultiplicativity then follows from
the Leibniz rule as well as the triangle inequality and submultiplicativity for Pn.
For k finite, it is sufficient to consider the subfamily of norms {Pn,k}n∈N.

Remarks. (1) Defining Bk
2 (D, p) :=

{
T ∈ N : for all l = 0, . . . , k, δl(T ) ∈

B2(D, p)
}
, an application of the Leibniz rule shows that Bk

2 (D, p)2 ⊂ Bk
1 (D, p).

We observe that B∞
2 (D, p) is non-empty, and so B∞

1 (D, p) is non-empty. Note
first that B2(D, p) is non empty as it contains L2(N , τ). Then, for T ∈ B2(D, p),
and f ∈ Cc(R) and k, l ∈ N0 arbitrary, |D|kf(D)Tf(D)|D|l is well defined and is
in B2(D, p) by Lemma 1.7. This implies that δk

(
f(D)Tf(D)

)
∈ B2(D, p) for any

k ∈ N0 and thus f(D)Tf(D) is in B∞
2 (D, p).

(2) Using Lemma 1.15, we see that the topology on the algebras Bk
1 (D, p) could

have been equivalently defined with δ′ = [(1 + D2)1/2, ·] instead of δ. This follows
since f(D) = |D| − (1 +D2)1/2 is bounded. Indeed, Lemma 1.15 shows that

Pn(δ(T )) = Pn(δ
′(T ) + [f(D), T ]) ≤ Pn(δ

′(T )) + 2‖f‖∞ Pn(T ),

and similarly that Pn(δ
′(T )) ≤ Pn(δ(T )) + 2‖f‖∞ Pn(T ). Hence convergence in

the topology defined using δ implies convergence in the topology defined by δ′, and
conversely. Similar comments apply for Bk

2 (D, p).
(3) In Lemma 1.29, we will show that we can also use the seminorms Pn ◦Lk (and
similarly for Rk and Lk ◦Rj) to define the topologies of B∞

1 (D, p) and B∞
2 (D, p).

We begin by proving that the algebra Bk
1 (D, p) is a Fréchet ∗-subalgebra of N .

Proposition 1.22. For any n ∈ N, l = N0 ∪ {∞} and p ≥ 1, the ∗-algebra
Mn(Bl

1(D, p)) is Fréchet and stable under the holomorphic functional calculus.

Proof. We first regard the question of completeness and treat the case l = 1
and n = 1 only, since the general case is similar. Let (Tk)k≥0 be a Cauchy sequence
in B1

1(D, p). Since

Pn,1(Tk − Tl) ≥ Pn

(
δ(Tk)− δ(Tl)

)
, Pn(Tk − Tl),

we see that both (Sk)k≥0 := (δ(Tk))k≥0 and (Tk)k≥0 are Cauchy sequences in
B1(D, p). Since B1(D, p) is complete, both (Sk)k≥0 and (Tk)k≥0 converge, say to
S ∈ B1(D, p) and T ∈ B1(D, p) respectively. Next observe that δ : dom δ ⊂ N →
N is bounded, where we give on dom δ the topology determined by the norm
‖ · ‖ + ‖δ(·)‖. Hence δ has closed graph, and since Tk → T in norm and δ(Tk)
converges in norm also, we have S = δ(T ). Finally, since (δ(Tk))k≥0 is Cauchy in
B1(D, p), we have S = δ(T ) ∈ B1(D, p).

We now pass to the question of stability under holomorphic functional calculus.
As before, the proof for Mn(Bk

1 (D, p)), will follow from the proof for Bk
1 (D, p). By

completeness of Bk
1 (D, p), it is enough to show that for T ∈ Bk

1 (D, p), T (1+T )−1 ∈
Bk
1 (D, p) (see the proof of Proposition 1.18). But this follows from an iterative use

of the relation

δ
(
T (1 + T )−1

)
= δ(T )(1 + T )−1 − T (1 + T )−1δ(T )(1 + T )−1,

together with Lemma 1.17 and the fact that B1(D, p) is an algebra. �
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1.4. The pseudodifferential calculus

The pseudodifferential calculus of Connes-Moscovici, [22,25], depends only on
an unbounded self-adjoint operator D. In its original form, this calculus charac-
terises those operators which are smooth ‘as far as D is concerned’. In Section
1.2 we saw that we could also talk about operators which are ‘integrable as far as
D is concerned’. This latter notion also requires the trace τ and the dimension
p. We combine all these ideas in the following definition, to obtain a notion of
pseudodifferential operator adapted to the nonunital setting.

Once again, throughout this Section we let D be a self-adjoint operator affiliated
to a semifinite von Neumann algebra N with faithful normal semifinite trace τ and
p ≥ 1.

Definition 1.23. The set of order-r tame pseudodifferential operators

associated with (H,D), (N , τ) and p ≥ 1 is given by

OPr
0 := (1 +D2)r/2B∞

1 (D, p), r ∈ R, OP∗
0 :=

⋃

r∈R

OPr
0.

We topologise OPr
0 with the family of norms

(1.15) Pr
n,l(T ) := Pn,l

(
(1 +D2)−r/2T

)
, n ∈ N, l ∈ N0.

Remark. To lighten the notation, we do not make explicit the important
dependence on the real number p ≥ 1 and the operator D in the definition of the
tame pseudodifferential operators.

With this definition, OPr
0 is a Fréchet space and OP0

0 is a Fréchet ∗-algebra.
In Corollary 1.30 we will see that

⋃
r<−p OPr

0 ⊂ L1(N , τ), which is the basic jus-
tification for the introduction of tame pseudodifferential operators. However, since
B∞
1 (D, p) is a priori a nonunital algebra, functions of D alone do not belong to

OP∗
0. In particular, not all ‘differential operators’, such as powers of D, are tame

pseudodifferential operators.

Definition 1.24. The set of regular order-r pseudodifferential operators
is

OPr := (1 +D2)r/2
( ⋂

n∈N

dom δn
)
, r ∈ R, OP∗ :=

⋃

r∈R

OPr.

The natural topology of OPr is associated with the family of norms

l∑

k=0

‖δk((1 +D2)−r/2T )‖, l ∈ N0.

By a slight adaptation of Lemma 1.11, we see that B∞
1 (D, p) ⊂ B∞

2 (D, p)
with Qn,k(·) ≤ Pn,k(·) for all n ≥ 1 and k ≥ 0. Moreover, we have from the
definition that B∞

2 (D, p) ⊂ ⋂n∈N
dom δn, with ‖δk(·)‖ ≤ Qn,k(·). Thus B∞

1 (D, p) ⊂⋂
n∈N

dom δn, with ‖δk(·)‖ ≤ Pn,k(·). Hence, we have a continuous inclusion OPr
0 ⊂

OPr. For r > 0, OPr contains all polynomials in D of order smaller than r. In
particular, IdN ∈ OP0.

To prove that our definition of tame pseudodifferential operators is symmetric,
namely that

(1.16) OPr
0 = (1 +D2)r/2−θB∞

1 (D, p)(1 +D2)θ, for all θ ∈ [0, r/2],
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we introduce σ, the complex one-parameter group of automorphisms of OP∗ defined
by

(1.17) σz(T ) := (1 +D2)z/2 T (1 +D2)−z/2, z ∈ C, T ∈ OP∗.

It is then clear that if we know that σ preserves each OPr
0, then Equation (1.16)

will follow immediately. The next few results show that σ restricts to a group of
automorphisms of each OPr and each OPr

0, r ∈ R.

Lemma 1.25. There exists C > 0 such that for every T ∈ B∞
1 (D, p) and ε ∈

[0, 1/3], we have Pn

(
[(1 +D2)ε/2, T ]

)
≤ C Pn

(
δ(T )

)
.

Proof. Let g be a function on R such that the Fourier transform of g′ is
integrable. The elementary equality

[g(|D|), T ] = −2iπ

∫

R

ĝ(ξ)ξ

∫ 1

0

e−2iπξs|D| [|D|, T ] e−2iπξ(1−s)|D| ds dξ,

implies by Lemma 1.15 that

Pn

(
[g(|D|), T ]

)
≤ ‖ĝ′‖1 Pn

(
δ(T )

)
.

The estimate ‖ĝ′‖1 ≤
√
2(‖g′‖2 + ‖g′′‖2) is well known. Setting gε(t) = (1+ t2)ε/2,

an explicit computation of the associated 2-norms proves that for ε ∈ [0, 12 ) we have

(1.18) ‖ĝ′ε‖1 ≤ ε π1/4
(Γ( 12 − ε)1/2

Γ(2− ε)1/2
+

√
6(2− ε)Γ( 32 − ε)1/2

2Γ(4− ε)1/2

)
.

Since this estimate is uniform in ε on compact subintervals of [0, 12 ), in particular on

[0, 13 ] and is independent of T ∈ B∞
1 (D, p), the assertion follows immediately. �

Lemma 1.26. There is a constant C ≥ 1 such that for all T ∈ B∞
1 (D, p) and

z ∈ C

Pn,l

(
σz(T )

)
≤

⌊3ℜ(z)⌋+l+1∑

k=l

CkPn,k(T ).

Thus σz preserves B∞
1 (D, p).

Proof. It is clear that

σz(T ) = T + [(1 +D2)z/2, T ](1 +D2)−z/2(1.19)

= T + (1 +D2)z/2[(1 +D2)−z/2, T ].

It follows from Lemma 1.15 and Lemma 1.25 that for z ∈ [−1/3, 1/3] we have

Pn

(
σz(T )

)
≤ Pn(T ) + C Pn

(
δ(T )

)
≤ C Pn,1(T ),

with the same constant as in Lemma 1.25 (which is thus independent of T ∈
B∞
1 (D, p) and z ∈ C). By the group property, we have

Pn

(
σz(T )

)
≤

⌊3ℜ(z)⌋+1∑

k=0

CkPn,k(T ),

for z ∈ R, and as σz commutes with δ, we have the inequality Pn,l

(
σz(T )

)
≤

∑⌊3ℜ(z)⌋+l+1
k=l CkPn,k(T ) for every z ∈ R. Finally, as σz = σiℑ(z)σℜ(z) and σiℑ(z) is

isometric for each Pn,l (by Lemma 1.15 again), the assertion follows. �
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Proposition 1.27. The maps σz : B∞
1 (D, p) → B∞

1 (D, p), z ∈ C, form a
strongly continuous group of automorphisms which is uniformly continuous on ver-
tical strips.

Proof. Fix T ∈ B∞
1 (D, p). We need to prove that the map z 7→ σz(T ) is

continuous from C to B∞
1 (D, p), for the topology determined by the norms Pn,l.

By Lemma 1.26 we know that σz preserves B∞
1 (D, p) and since {σz}z∈C is a group of

automorphisms, continuity everywhere will follow from continuity at z = 0. So, let
z ∈ C with |z| ≤ 1

3 . From Equation (1.19), it is enough to treat the case ℜ(z) ≥ 0.
Moreover, Lemma 1.15 gives us

Pn,l

(
σz(T )− T

)
≤ Pn,l

(
[(1 +D2)z/2, T ]

)
,

and from the same reasoning as that leading to the estimate (1.18), we obtain

Pn,l

(
[(1 +D2)z/2, T ]

)
≤

|z|π1/4
(Γ( 12 − |ℜ(z)|)1/2
Γ(2− |ℜ(z)|)1/2 +

√
6(2− |ℜ(z)|)Γ( 32 − |ℜ(z)|)1/2

2Γ(4− |ℜ(z)|)1/2
)

Pn,l+1(T )

=: |z|C(z).

Since C(z) is uniformly bounded on the vertical strip 0 ≤ ℜ(z) ≤ 1
3 , we obtain the

result. �

Remark. Using Lemma 1.7 in place of Lemma 1.15, we see that Lemmas 1.25,
1.26 and Proposition 1.27 hold also with B∞

2 (D, p) instead of B∞
1 (D, p).

We now deduce that these continuity results also hold for both tame and regular
pseudodifferential operators.

Proposition 1.28. The group σ is strongly continuous on OPr
0 for its natural

topology, and similarly for OPr.

Proof. Since T ∈ OPr
0 if and only if (1 + D2)−r/2T ∈ B∞

1 (D, p) and since
σz commutes with the left multiplication by (1 + D2)−r/2, the proof is a direct
corollary of Proposition 1.27. The proof for OPr is simpler since it uses only the
operator norm and not the norms Pr

n; we refer to [15,22,25] for a proof. �

We can now show that B∞
1 (D, p) has an equivalent definition in terms of the

L and/or R operators, defined in Equation (1.11). Unlike the equivalent definition
in terms of δ′ mentioned in the remark after Definition 1.21, this does not work for
Bk
1 (D, p), k 6= ∞.

Lemma 1.29. We have the equality

B∞
1 (D, p) =

{
T ∈ N : ∀l ∈ N0, L

l(T ) ∈ B1(D, p)
}
,

where L(·) = (1 +D2)−1/2[D2, ·] is as in Definition 1.20. The analogous statement
with R replacing L is also true.

Proof. We have the simple identity L = (1+σ−1)◦δ′, which with Proposition
1.27 yields one of the inclusions. For the other direction, it suffices to show that
for every m,n ∈ N we have

Pm(δ′n(A)) ≤ max
n≤k≤2n

Pm(Lk(A)).
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Using the integral formula for fractional powers we have

δ′(T ) = [(1 +D2)(1 +D2)−1/2, T ] =
1

π

∫ ∞

0

λ−1/2[(1 +D2)(1 + λ+D2)−1, T ]dλ.

However, a little algebra gives
[ 1 +D2

1 + λ+D2
, T
]
=
( (1 +D2)1/2

1 + λ+D2
− (1 +D2)3/2

(1 + λ+D2)2

)
L(T )

+ λ
1 +D2

(1 + λ+D2)2
L2(T )

1

1 + λ+D2
.

The following formula can be proved in the scalar case, and by an appeal to the
spectral representation proved in general:

∫ ∞

0

λ−1/2
( (1 +D2)1/2

1 + λ+D2
− (1 +D2)3/2

(1 + λ+D2)2

)
dλ =

π

2
.

Therefore,

δ′(T ) = 1
2L(T ) +

1

π

∫ ∞

0

λ1/2
1 +D2

(1 + λ+D2)2
L2(T )

1

1 + λ+D2
dλ.

An induction now shows that

δ′n(T ) = 2−n
n∑

k=0

(
n

k

)( 2
π

)k ∫

Rk
+

k∏

j=1

λ
1/2
j (1 +D2)

(1 + λj +D2)2
Ln+k(T )

k∏

j=1

dλj
1 + λj +D2

.

The functional calculus then gives

(1 + λ+D2)−1 ≤ (1 + λ)−1, λ1/2(1 +D2)(1 + λ+D2)−2 ≤ λ−1/2/4,

and so by Lemma 1.15 we have

Pm

(
δ′n(T )

)
≤ 2−n

(
1 +

n∑

k=1

(
n

k

)( 2
π

)k k∏

j=1

∫ ∞

0

dλj

4λ
1/2
j (1 + λj)

)
max

n≤k≤2n
Pm

(
Lk(T )

)
.

The assertion now follows by the second remark following Definition 1.21 that we
may equivalently use δ′ to define Bk

1 (D, p) for k ∈ N ∪ {∞}. �

We now begin to prove the important properties of this pseudodifferential cal-
culus, such as trace-class properties and the pseudodifferential expansion. First, by
combining Proposition 1.28 with the Definition 1.23, we obtain our first trace class
property.

Corollary 1.30. For r > p, we have OP−r
0 ⊂ L1(N , τ).

Proof. Let Tr ∈ OP−r
0 . By Definition 1.23 and Proposition 1.28, we see that

the symmetric definition of OPr
0 in Equation (1.16) is equivalent to the original

definition. Thus, there exists A ∈ B∞
1 (D, p) ⊂ B1(D, p) such that

Tr = (1 +D2)−r/4A(1 +D2)−r/4.

Define n := ⌊(r − p)−1⌋ and write A =
∑3

k=0 i
kAk with Ak ∈ B1(D, p) positive, as

in Proposition 1.14. The Hölder inequality then entails that

‖Tr‖1=‖(1 +D2)−r/4A(1 +D2)−r/4‖1≤‖(1 +D2)−p/4−1/4nA(1 +D2)−p/4−1/4n‖1

≤
3∑

k=0

∥∥(1 +D2)−p/4−1/4n
√
Ak

∥∥2
2
≤

3∑

k=0

Qn

(√
Ak

)
Qn

(√
Ak

)
=

3∑

k=0

Pn(Ak),
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which is finite, and so allows us to conclude. �

As expected, the product of a tame pseudodifferential operator by a regular
pseudodifferential operator is a tame pseudodifferential operator.

Lemma 1.31. For all r, t ∈ R we have
(
OPr

0 OPt ∪OPt OPr
0

)
⊂ OPr+t

0 .

Proof. Since σ preserves both OPr
0 and OPr, it suffices to prove the claim for

r = t = 0. Indeed, for Tr ∈ OPr
0 and Ts ∈ OPs, there exist A ∈ OP0

0 and B ∈ OP0

such that Tr = (1 + D2)r/2A and Ts = (1 + D2)s/2B. Thus, the general case will
follow from the case t = s = 0 by writing

TrTs = (1 +D2)(r+s)/2σ−s(A)B.

So let T ∈ OP0
0 and S ∈ OP0. We need to show that TS ∈ OP0

0 = B∞
1 (D, p). For

this, let T =
∑∞

i=0 T1,iT2,i any representation. We will prove that
∞∑

i=0

T1,i (T2,iS),

is a representation of the product TS. Indeed, we have

Qn(T2,iS)
2 = ‖T2,iS‖2 + ‖T2,iS(1 +D2)−p/4−1/4n‖22 + ‖S∗T ∗

2,i(1 +D2)−p/4−1/4n‖22
≤ ‖S‖2‖T2,i‖2 + ‖σp/4+1/4n(S)‖2‖T2,i(1 +D2)−p/4−1/4n‖22

+ ‖S‖2‖T ∗
2,i(1 +D2)−p/4−1/4n‖22

≤
(
‖S‖+ ‖σp/4+1/4n(S)‖

)2Qn(T2,i)
2,

which is finite because OP0 =
⋂

n∈N
dom δn is invariant under σ by Proposition

1.28. This immediately shows that TS ∈ B1(D, p) since

Pn(TS) ≤
∞∑

i=0

Qn(T1,i)Qn(T2,iS)

≤
(
‖S‖+ ‖σp/4+1/4n(S)‖

) ∞∑

i=0

Qn(T1,i)Qn(T2,i) <∞.

In particular, one finds Pn(TS) ≤
(
‖S‖+ ‖σp/4+1/4n(S)‖

)
Pn(T ). Now the formula

δk(TS) =
∑k

j=0

(
k
j

)
δj(T )δk−j(S) and the last estimate shows that Pn,k(TS) =

Pn(δ
k(TS)) is finite and so TS ∈ B∞

1 (D, p). That OPt OPr
0 ⊂ OPr+t

0 can be
proven in the same way. �

Remark. Lemma 1.31 shows that B∞
1 (D, p) is a two-sided ideal in

⋂
dom δk.

The following is a Taylor-expansion type theorem for OPr
0 just as in [22,25],

and adapted to our setting.

Proposition 1.32. Let T ∈ OPr
0 and z = n+ 1− α with n ∈ N0 and ℜ(α) ∈

(0, 1). Then we have

σ2z(T )−
n∑

k=0

Ck(z) (σ
2 − Id)k(T ) ∈ OPr−n−1

0 ,

with

Ck(z) :=
z(z − 1) . . . (z − k + 1)

k!
.
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Proof. The proof is exactly the same as that in [22,25] once we realise that

if T ∈ OPr
0 then (σ2 − Id)k(T ) ∈ OPr−k

0 . This follows from

(σ2 − Id)k(T ) = (1 +D2)−k/2σk
(
δ′k(T )),

and the invariance of each OPr
0 under δ′ = [(1+D2)1/2, ·] and σ. For δ′ this follows

from the second remark following Definition 1.21. �

Lemma 1.33. If A ∈ OPr
0 and n ∈ N0, then A(n) ∈ OPr+n

0 , where A(n) is as
in Definition 1.20.

Proof. For n = 1, by the assumption there is an operator T ∈ OP0
0 such that

A = (1 + D2)r/2T . Then A(1) = (1 + D2)r/2T (1) = (1 + D2)(r+1)/2L(T ). So the
proof follows from the relation L = (1 + σ−1) ◦ δ′ and the fact that both σ−1 and
δ′ preserve OP0

0, by Lemma 1.26. The general case follows by induction. �

Proposition 1.34. The derivation LD defined by LD(T ) := [log(1 +D2), T ],
preserves OPr

0, for all r ∈ R.

Proof. Set g(t) = log(1 + t2). We have ‖ĝ′‖1 <∞ and

LD(T ) = [g(|D|), T ] = −2iπ

∫

R

ĝ(ξ)ξ

∫ 1

0

e−2iπξs|D| δ(T ) e−2iπξ(1−s)|D| ds dξ.

The assertion follows as in Lemma 1.25. �

We next improve Proposition 1.28.

Proposition 1.35. The map σ : C × OPr
0 → OPr

0, is strongly holomorphic
(entire), with

d

dz
σz = 1

2σ
z ◦ LD.

Proof. If z − z0 = u, then we have
(σz − σz0

z − z0
− 1

2σ
z0 ◦ LD

)
= σz0 ◦

(σu − 1

u
− 1

2LD
)
.

Since σz0 is strongly continuous, it is sufficient to prove holomorphy at z0 = 0.
Then for T ∈ OPr

0 we see that

σz(T )− T

z
− 1

2LD(T )

= [gz(D), T ] + z−1[(1 +D2)z/2, T ]
(
(1 +D2)−z/2 − 1

)
,(1.20)

with gz(s) = z−1
(
(1+s2)z/2−1

)
− 1

2 log(1+s
2). An explicit computation shows that

‖g′z‖2+‖g′′z ‖2 = O(|z|). Since
√
2(‖g′z‖2+‖g′′z ‖2) ≥ ‖ĝ′z‖1, we see that ‖ĝ′z‖1 → 0 as

z → 0. It follows, as in Lemma 1.25, that the first term tends to 0 in the Pr
n,l-norms,

as z → 0. It remains to treat the second commutator in Equation (1.20). We let
z ∈ C with 0 < ℜ(z) < 1. Employing the integral formula for complex powers of a
positive operator A ∈ N

(1.21) Az = π−1sin(πz)

∫ ∞

0

λ−zA(1 + λA)−1dλ, 0 < ℜ(z) < 1,
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gives

(1 +D2)−z/2 =
(
(1 +D2)−1/2

)z

= π−1sin(πz)

∫ ∞

0

λ−z(1 +D2)−1/2(1 + λ(1 +D2)−1/2)−1dλ

= π−1sin(πz)

∫ ∞

0

λ−z((1 +D2)1/2 + λ)−1dλ.

We apply this formula by choosing 0 < ε < (1−ℜ(z)) and writing

1

z
[(1 +D2)z/2, T ]

(
(1 +D2)−z/2 − 1

)

= −1

z
(1 +D2)z/2[(1 +D2)−z/2, T ](1 +D2)z/2

(
(1 +D2)−z/2 − 1

)

=
sin(πz)

πz

∫ ∞

0

λ−z(1 +D2)z/2((1 +D2)1/2 + λ)−1δ′(T )((1 +D2)1/2 + λ)−1

× (1 +D2)(z+ε)/2(1 +D2)−ε/2
(
(1 +D2)−z/2 − 1

)
dλ.

Using the elementary estimate

‖((1 +D2)1/2 + λ)−1(1 +D2)z/2‖∞ ≤ (1 + λ)ℜ(z)−1,

we have

Pr
n,l

(1
z
[(1 +D2)z/2, T ]

(
(1 +D2)−z/2 − 1

))
≤

| sin(πz)|
π

Pr
n,l(δ

′(T ))
∥∥∥1
z
(1 +D2)−ε/2

(
(1 +D2)−z/2 − 1

)∥∥∥
∞

×
∫ ∞

0

λ−ℜ(z)(1 + λ)2ℜ(z)−2+εdλ.

This concludes the proof since, as 0 < ℜ(z) < 1 − ε, the last norm is bounded in
a neighborhood of z = 0, while the integral over λ is bounded (provided ε is small
enough) and | sin(πz)| goes to zero with z. �

Last, we prove that the derivation LD(·) = [log(1 +D2), ·] ‘almost’ lowers the
order of a tame pseudodifferential operator by one.

Proposition 1.36. For all r ∈ R and for any ε ∈ (0, 1), LD continuously
maps OPr

0 to OPr−1+ε
0 .

Proof. Since the proof for a generic r ∈ R will follows from those of a fixed
r0 ∈ R, we may assume that r = 0. Let T ∈ OP0

0. We need to show that
LD(T ) ∈ OP−1+ε

0 for any ε > 0, or equivalently, that LD(T )(1+D2)1/2−ε/2 ∈ OP0
0

for any ε > 0. We use the integral representation

log(1 +D2) = D2

∫ 1

0

(1 + wD2)−1 dw,
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which follows from log(1 + x) =
∫ x

0
1

1+λ dλ via the change of variables λ = xw.
Then

[log(1 +D2), T ](1 +D2)1/2−ε/2 = [D2, T ](1 +D2)−1/2

∫ 1

0

(1 +D2)1−ε/2

1 + wD2
dw

−D2

∫ 1

0

w

1 + wD2
[D2, T ](1 +D2)−1/2 (1 +D2)1−ε/2

1 + wD2
dw.

Now elementary calculus shows that for 0 < α < 1 and 0 ≤ x ≤ 1 we have

(1 + x)α

(1 + xw)
≤
(α
w

)α( 1− α

1− w

)1−α

and

∫ 1

0

w−α(1− w)α−1dw = Γ(1− α) Γ(α),

and so we obtain the integral estimate
∫ 1

0

(1 + x)α

(1 + xw)
dw ≤ αα (1− α)1−α Γ(1− α) Γ(α).

Then using R(T ) = [D2, T ](1 +D2)−1/2 and elementary spectral theory gives

Pn,k

(
[log(1 +D2), T ](1 +D2)1/2−ε/2

)
≤

2Pn,k(R(T )) (1− ε/2)1−ε/2 (ε/2)ε/2 Γ(ε/2) Γ((1− ε)/2),

which gives the bound for all 0 < ε < 1. �

1.5. Schatten norm estimates for tame pseudodifferential operators

In this Section we prove the Schatten norm estimates we will require in our
proof of the local index formula. As before, we let D be a self-adjoint operator
affiliated to a semifinite von Neumann algebra N with faithful normal semifinite
trace τ and p ≥ 1.

Lemma 1.37. Suppose that A ∈ OP0
0 and α, β ≥ 0 with α + β > 0. Then

(1 + D2)−β/2A(1 + D2)−α/2 belongs to Lq(N , τ) for all q > p/(α + β), provided
q ≥ 1.

Proof. Since (1 + D2)−β/2A(1 + D2)−α/2 = σ−β(A)(1 + D2)−α/2−β/2 and
because σ is continuous, Proposition 1.27, on OP0

0 = B∞
1 (D, p) we can assume

β = 0.
So let A ∈ OP0

0. Note first that for y ∈ R we have A(1 + D2)iy/2 ∈ N
and by Corollary 1.30 A(1 + D2)−αq/2+iy/2 ∈ L1(N , τ), since αq > p. Consider
then, on the strip 0 ≤ ℜ(z) ≤ 1 the holomorphic operator-valued function given
by F (z) := A(1 + D2)−αqz/2. The previous observation gives F (iy) ∈ N and
F (1 + iy) ∈ L1(N , τ). Then, a standard complex interpolation argument gives
F (1/q + iy) ∈ Lq(N , τ), for q ≥ 1, which was all we needed. �

Lemma 1.38. For α ∈ [0, 1], β, γ ∈ R with α+ β + γ > 0 and A ∈ OP0
0 we let

Bα,β,γ := (1 +D2)−β/2
[
(1 +D2)(1−α)/2, A

]
(1 +D2)−γ/2,

Cα,β,γ := (1 +D2)−β/2
[
(1 +D2)(1−α)/2, A

]
(1 +D2)−γ/2 log(1 +D2),

Dα,β,γ := (1 +D2)−β/2
[
(1 +D2)(1−α)/2 log(1 +D2), A

]
(1 +D2)−γ/2.

Then, provided q ≥ 1, we find that Bα,β,γ , Cα,β,γ , Dα,β,γ ∈ Lq(N , τ) for all q >

p/(α+β+ γ). Moreover, the same conclusion holds with |D| instead of (1+D2)1/2

in the commutator.



30 1. PSEUDODIFFERENTIAL CALCULUS AND SUMMABILITY

Proof. There exists ε > 0 such α+β+γ−ε > 0. Since (1+D2)−ε/2 log(1+D2)
is bounded for all ε > 0, we see that the assertion forBα,β,γ−ε/2 implies the assertion
for Cα,β,γ . Note also that the Leibniz rule implies

Dα,β,γ = Cα,β,γ + (1 +D2)1/2−(α+β)/2LD(A)(1 +D2)−γ/2,

so the third case follows from the second case using Proposition 1.36 and Lemma
1.37. Thus it suffices to treat the case of Bα,β,γ . Moreover, we can further assume
that α ∈ (0, 1) (for α = 1 there is nothing to prove and for α = 0, the statement
follows from Lemma 1.37) and, as in the proof of the preceding lemma, we can
assume β = 0. Using the integral formula for fractional powers, Equation (1.21),
for 0 < α < 1, we see that

Bα,0,γ = −(1 +D2)(1−α)/2[(1 +D2)(α−1)/2, A](1 +D2)(1−α)/2(1 +D2)−γ/2

= π−1sinπ(1− α)/2

∫ ∞

0

λ(1−α)/2(1 +D2)(1−α)/2(1 +D2 + λ)−1

× [D2, A](1 +D2 + λ)−1(1 +D2)(1−α−γ)/2dλ

= π−1sinπ(1− α)/2

∫ ∞

0

λ(1−α)/2(1 +D2)1−α/2(1 +D2 + λ)−1

× L(A)(1 +D2)(ε−α−γ)/2(1 +D2 + λ)−1(1 +D2)(1−ε)/2dλ.

By Lemma 1.37 we see that for ε > 0 sufficiently small, L(A)(1 + D2)(ε−α−γ)/2 ∈
Lq(N , τ) for all q > p/(α + γ − ε) provided q ≥ 1. So estimating in the q norm
with q := p/(α+ γ − 2ε) > p/(α+ γ − ε) gives

‖Bα,0,γ‖q ≤‖L(A)(1 +D2)(ε−α−γ)/2‖q
∫ ∞

0

λ−(1−α)/2(1 + λ)−α/2(1 + λ)−1/2−ε/2 dλ,

which is finite. Finally, the same conclusion holds with |D| instead of (1 + D2)1/2

in the commutator, and this follows from the same estimates and the fact that
|D|1−α − (1 +D2)(1−α)/2 extends to a bounded operator for α ∈ [0, 1]. �

In the course of our proof of the local index formula, we will require additional
parameters. In the following lemma we use the same notation as later in the paper
for ease of reference.

Lemma 1.39. Assume that there exists µ > 0 such that D2 ≥ µ2. Let A ∈ OP0
0,

λ = a+ iv, 0 < a < µ2/2, v ∈ R, s ∈ R and t ∈ [0, 1], and set

Rs,t(λ) = (λ− (t+ s2 +D2))−1.

Let also q ∈ [1,∞) and N1, N2 ∈ 1
2N ∪ {0}, with N1 + N2 > p/2q. Then for each

ε > 0, there exists a finite constant C such that

‖Rs,t(λ)
N1ARs,t(λ)

N2‖q ≤ C((t+ µ2/2 + s2 − a)2 + v2)−(N1+N2)/2+p/4q+ε.

(For half integers, we use the principal branch of the square root function).

Remark. In Section 3.2, we will be integrating operator valued functions
along the contour ℓ = {a + iv : v ∈ R}. The trace estimates above are where we
require 0 < a < µ2/2 in the definition of our contour of integration ℓ. It is clear
from the proof below, where this condition is used, that there is some flexibility to
reformulate this condition.
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Proof. By the functional calculus (see the proof of [15, Lemmas 5.2 & 5.3]
for more details) and the fact that a < µ2/2, we have the operator inequalities for
any N ∈ 1

2N ∪ {0} and Q < N

|Rs,t(λ)
N | ≤ (D2 − µ2/2)−Q ((t+ µ2/2 + s2 − a)2 + v2)−N/2+Q/2,

which gives the following estimate

‖Rs,t(λ)
N1ARs,t(λ)

N2‖q ≤ ‖Rs,t(λ)
N1(D2 − µ2/2)Q1‖‖Rs,t(λ)

N2(D2 − µ/2)Q2‖
× ‖(D2 − µ2/2)−Q1A(D2 − µ2/2)−Q2‖q

≤ ((t+ µ2/2 + s2 − a)2 + v2)−(N1+N2)/2+(Q1+Q2)/2

× ‖(D2 − µ2/2)−Q1A(D2 − µ2/2)−Q2‖q.
One concludes the proof using Lemma 1.37 by choosing Q1 ≤ N1, Q2 ≤ N2 such
that Q1 +Q2 = p/2q + ε. �

Remark. For λ = 0 and with the same constraints on q and N as above, the
same operator inequalities as those of [17, Lemma 5.10], gives

‖A(t+ s2 +D2)−N‖q
≤ ‖A(D2 − µ2/2)−(p/q+ε)/2‖q(µ2/2 + s2)−N+(p/2q+ε).(1.22)





CHAPTER 2

Index Pairings for Semifinite Spectral Triples

In this Chapter we define the notion of a smoothly summable semifinite spectral
triple (A,H,D) relative to a semifinite von Neumann algebra with faithful normal
semifinite trace (N , τ), and show that such a spectral triple produces, via Kasparov
theory, a well-defined numerical index pairing with K∗(A), the K-theory of A.

The ‘standard case’ of spectral triples with (N , τ) = (B(H),Tr) for some sep-
arable Hilbert space H, is presented in [20]. In this case there is an associated
Fredholm module, and hence K-homology class. Then there is a pairing between
K-theory and K-homology, integer valued in this case, that is well-defined and
explained in detail in [33, Chapter 8]. The discussion in [33] applies to both the
unital and nonunital situations. The extension of [33, Chapter 8] to deal with both
the semifinite situation and nonunitality require some refinements that are not dif-
ficult, but are worth making explicit to the reader for the purpose of explaining the
basis of our approach.

When the spectral triple is semifinite and has (1 + D2)−s/2 ∈ L1(N , τ) for all
s > p ≥ 1, for some p, then there is an analytic formula for the index pairing, given
in terms of the R-valued index of suitable τ -Fredholm operators, [4,12,13,16].

However, for a semifinite spectral triple with (1 + D2)−1/2 not τ -compact, we
need a different approach, and so we follow the route indicated in [35]. There
it is shown that we can associate a Kasparov module, and so a KK-class, to a
semifinite spectral triple. This gives us a well-defined pairing with K∗(A) via the
Kasparov product, with and modulo some technicalities, this pairing takes values
in K0(KN ), the K-theory of the τ -compact operators KN in N . Composing this
pairing with the map on K0(KN ) induced by the trace τ gives us a numerical index
which computes the usual index when the triple is ‘unital’. When we specialise
to particular representatives of our Kasparov class, we will see that we are also
computing the R-valued indices of suitable τ -Fredholm operators.

2.1. Basic definitions for spectral triples

In this Section, we give the minimal definition for a semifinite spectral triple,
in order to have a Kasparov (and also Fredholm) module. Recall that we denote
by K(N , τ), or KN when τ is understood, the ideal of τ -compact operators in N .
This is the norm closed ideal in N generated by projections with finite trace.

Definition 2.1. A semifinite spectral triple (A,H,D), relative to (N , τ), is
given by a Hilbert space H, a ∗-subalgebra A ⊂ N acting on H, and a densely
defined unbounded self-adjoint operator D affiliated to N such that:

1. a · domD ⊂ domD for all a ∈ A, so that da := [D, a] is densely defined.
Moreover, da extends to a bounded operator in N for all a ∈ A;

2. a(1 +D2)−1/2 ∈ K(N , τ) for all a ∈ A.
We say that (A,H,D) is even if in addition there is a Z2-grading such that A is

33
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even and D is odd. This means there is an operator γ such that γ = γ∗, γ2 = IdN ,
γa = aγ for all a ∈ A and Dγ + γD = 0. Otherwise we say that (A,H,D) is odd.

Remark. (1) We will write γ in all our formulae, with the understanding
that, if (A,H,D) is odd, γ = IdN and of course, we drop the assumption that
Dγ + γD = 0.
(2) By density, we immediately see that the second condition in the definition of a
semifinite spectral triple, also holds for all elements in the C∗-completion of A.
(3) The condition a(1 +D2)−1/2 ∈ K(N , τ) is equivalent to a(i+D)−1 ∈ K(N , τ).
This follows since (1 +D2)1/2(i+D)−1 is unitary.

Our first task is to justify the terminology ‘nonunital’ for the situation where
D does not have τ -compact resolvent. What we show is that if A is unital, then we
obtain a spectral triple on the Hilbert space 1AH for which 1AD 1A has compact
resolvent. On the other hand, one can have a spectral triple with nonunital algebra
whose ‘Dirac’ operator has compact resolvent, as in [28,29,61].

Lemma 2.2. Let (A,H,D) be a semifinite spectral triple relative to (N , τ), and
suppose A possesses a unit P 6= IdN . Then (P +(PDP )2)−1/2 ∈ K(PNP, τ |PNP ).
Hence, (A, PH, PDP ) is a unital spectral triple relative to (PNP, τ |PNP ).

Proof. It is a short exercise to show that τ |PNP is a faithful normal semifinite
trace on PNP . We just need to show that (Pi+PDP )−1 is compact in PNP . To
do this we show that we can approximate (Pi + PDP )−1 by P (i + D)−1P up to
compacts. This follows from

(Pi+ PDP )P (i+D)−1P = P (i+D)P (i+D)−1P = P [D, P ](i+D)−1P + P,

the compactness of (i+D)−1P and the boundness of P [D, P ] and of (Pi+PDP )−1.
�

Thus, we may without loss of generality assume that a spectral triple (A,H,D)
whose operator D does not have compact resolvent, must have a nonunital algebra
A. Adapting this proof shows that similar results hold for spectral triples with
additional hypotheses such as summability or smoothness, introduced below.

2.2. The Kasparov class and Fredholm module of a spectral triple

In this Section, we use Kasparov modules for trivially graded C∗-algebras,
[36]. Nonunital algebras are assumed to be separable, with the exception of K(N , τ)
which typically is not separable nor even σ-unital. By separable, we always mean
separable for the norm topology and not necessarily for other topologies like the
δ-ϕ-topology introduced in Definition 2.19. Information about C∗-modules and
their endomorphisms can be found in [48]. Given a C∗-algebra B and a right
B-C∗-module X, we let EndB(X) denote the C∗-algebra of B-linear adjointable
endomorphisms of X, and let End0B(X) be the ideal of B-compact adjointable
endomorphisms.

We briefly recall the definition of Kasparov modules, and the equivalence rela-
tion on them used to construct the KK-groups.

Definition 2.3. Let A and B be C∗-algebras, with A separable. An odd Kas-
parov A-B-module consists of a countably generated ungraded right B-C∗-module
X, with π : A → EndB(X) a ∗-homomorphism, together with F ∈ EndB(X) such
that π(a)(F −F ∗), π(a)(F 2−1), [F, π(a)] are compact adjointable endomorphisms
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of X, for each a ∈ A. An even Kasparov A-B-module is an odd Kasparov A-B-
module, together with a self-adjoint adjointable endomorphism γ satisfying γ2 = 1,
π(a)γ = γπ(a), and Fγ + γF = 0.

We will use the notation (AXB , F ) or (AXB , F, γ) for Kasparov modules, gen-
erally omitting the representation π. A Kasparov module (AXB , F ) with

π(a)(F − F ∗) = π(a)(F 2 − 1) = [F, π(a)] = 0,

for all a ∈ A, is called degenerate.
We recall the equivalence relation on Kasparov A-B-modules which defines

classes in the abelian group KK(A,B) = KK0(A,B) (even case) or KK1(A,B)
(odd case). The relation consists of three separate equivalence relations: unitary
equivalence, stable equivalence and operator homotopy. More details can be found
in [36].

Two KasparovA-B-modules (A(X1)B , F1) and (A(X2)B , F2) are unitarily equiv-
alent if there is an adjointable unitary B-module map U : X1 → X2 such that
π2(a) = Uπ1(a)U

∗, for all a ∈ A and F2 = U F1 U
∗.

Two Kasparov A-B-modules (A(X1)B , F1) and (A(X2)B , F2) are stably equiva-
lent if there are degenerate Kasparov A-B-modules (A(X3)B , F3) and (A(X4)B , F4)
with

(A(X1 ⊕X3)B , F1 ⊕ F3) = (A(X2 ⊕X4)B , F2 ⊕ F4),

and π1 ⊕ π3 = π2 ⊕ π4.
Two Kasparov A-B-modules (A(X)B , G) and (A(X)B , H) (with the same rep-

resentation π of A) are called operator homotopic if there is a norm continuous
family (Ft)t∈[0,1] ⊂ EndB(X) such that for each t ∈ [0, 1] (A(X)B , Ft) is a Kas-
parov module and F0 = G, F1 = H.

Two Kasparov modules (A(X)B , G) and (A(X)B , H) are equivalent if after the
addition of degenerate modules, they are operator homotopic to unitarily equivalent
Kasparov modules. The equivalence classes of even (resp. odd) Kasparov A-B
modules form an abelian group denoted KK0(A,B) (resp. KK1(A,B)). The zero
element is represented by any degenerate Kasparov module, and the inverse of a
class [(A(X)B , F )] is the class of (A(X)B ,−F ), with grading −γ in the even case.

This equivalence relation, in conjunction with the Kasparov product, implies
further equivalences between Kasparov modules, such as Morita equivalence. This
is discussed in [5,36], where more information on the Kasparov product can also be
found. With these definitions in hand, we can state our first result linking semifinite
spectral triples and Kasparov theory.

Lemma 2.4 (see [35]). Let (A,H,D) be a semifinite spectral triple relative
to (N , τ) with A separable. For ε > 0 (resp ε ≥ 0 when D is invertible), set
Fε := D(ε + D2)−1/2 and let A be the C∗-completion of A. Then, [Fε, a] ∈ KN

for all a ∈ A. In particular, provided that KN is σ-unital, and letting X := KN

as a right KN -C∗-module, the data (AXKN , Fε) defines a Kasparov module with
class [(AXKN , Fε)] ∈ KK•(A,KN ), where • = 0 if the spectral triple (A,H,D) is
Z2-graded and • = 1 otherwise. The class [(AXKN , Fε)] is independent of ε > 0 (or
even ε ≥ 0 if D is invertible).

Proof. Regarding X = KN as a right KN -C∗-module via (T1|T2) := T ∗
1 T2,

we see immediately that left multiplication by Fε on KN gives Fε ∈ EndKN (KN ),



36 2. INDEX PAIRINGS FOR SEMIFINITE SPECTRAL TRIPLES

the adjointable endomorphisms, see [48], and left multiplication by a ∈ A, the C∗-
completion of A, gives a representation of A as adjointable endomorphisms of X
also. Since the algebra of compact endomorphisms of X is just KN , and we have
assumed KN is σ-unital, we see that X is countably generated, by [48, Proposition
5.50]. That F ∗

ε = Fε as an endomorphism follows from the functional calculus.
Now let a, b ∈ A. The integral formula for fractional powers gives

(ε+D2)−1/2 = π−1

∫ ∞

0

λ−1/2(ε+ λ+D2)−1dλ,

and with a nod to [12, Lemma 3.3] we obtain

D
[
(ε+D2)−1/2, a

]
b = π−1

∫ ∞

0

λ−1/2
(
D2(ε+ λ+D2)−1[D, a](ε+ λ+D2)−1b

+D(ε+ λ+D2)−1[D, a]D(ε+ λ+D2)−1b
)
dλ.

By the definition of a spectral triple, the integrand is τ -compact, and so is in the
compact endomorphisms of our module. The functional calculus yields the norm
estimates

‖D2(ε+ λ+D2)−1[D, a](ε+ λ+D2)−1b‖ ≤ ‖[D, a]‖‖b‖(ε+ λ)−1,

and

‖D(ε+ λ+D2)−1[D, a]D(ε+ λ+D2)−1b‖ ≤ ‖[D, a]‖‖b‖(ε+ λ)−1.

Therefore, the integral above is norm-convergent. Thus, D[(ε + D2)−1/2, a]b is
τ -compact and

[Fε, a]b = D[(ε+D2)−1/2, a]b+ [D, a](ε+D2)−1/2b,

is τ -compact too. Similarly, a[Fε, b] is τ -compact. Finally, [Fε, ab] = a[Fε, b] +
[Fε, a]b is τ -compact, and so a compact endomorphism. Taking norm limits now
shows that [Fε, ab] is τ -compact for all a, b ∈ A. By the norm density of products
in A, one concludes that [Fε, a] is compact for all a ∈ A. Finally for a ∈ A we have
a(1−F 2

ε ) = aε(ε+D2)−1, and this is τ -compact since (A,H,D) is a spectral triple.
Thus (AXKN , Fε) is a Kasparov module.

To show that the associated KK-class is independent of ε, it suffices to show
that ε 7→ Fε is continuous in operator norm, [36]. This follows from the integral
formula for fractional powers which shows that

Fε1 − Fε2 =
ε2 − ε1
π

∫ ∞

0

λ−1/2D(ε1 + λ+D2)−1(ε2 + λ+D2)−1 dλ,

since the integral converges in norm independent of ε1, ε2 > 0. If D is invertible
we can also take εi = 0. This completes the proof. �

The assumption that KN is σ-unital is never satisfied in the type II setting,
and so we do not obtain a countably generated C∗-module. In order to go beyond
this assumption, we adopt the method of [35].

Definition 2.5. Given (A,H,D) relative to (N , τ), we let C ⊂ KN be the
algebra generated by the operators

Fε[Fε, a], b[Fε, a], [Fε, a], Fεb[Fε, a], aϕ(D), a, b ∈ A, ϕ ∈ C0(R).



2.2. THE KASPAROV CLASS AND FREDHOLM MODULE OF A SPECTRAL TRIPLE 37

If A is separable, so too is C. This allows us to repeat the construction of
Lemma 2.4 using C instead of KN . The result is a Kasparov module (AXC , Fε)
with class in KK•(A,C), where C is the norm closure of C.

Corollary 2.6. Let (A,H,D) be a semifinite spectral triple relative to (N , τ)
with A separable. For ε > 0 (respectively ε ≥ 0 when D is invertible), define
Fε := D(ε+D2)−1/2 and let A be the C∗-completion of A. Then, [Fε, a] ∈ C ⊂ KN

for all a ∈ A. In particular, letting X := C as a right C-C∗-module, the data
(AXC , Fε) defines a Kasparov module with class [(AXC , Fε)] ∈ KK•(A,C), where
• = 0 if the spectral triple (A,H,D) is Z2-graded and • = 1 otherwise. The class
[(AXC , Fε)] is independent of ε > 0 (or even ε ≥ 0 if D is invertible).

Using the Kasparov product we now have a well-defined map

(2.1) · ⊗A [(AXC , Fε)] : K•(A) = KK•(C, A) → K0(C).

For this pairing to make sense it is required that A be separable, [5, Theorem
18.4.4], and we remind the reader that we always suppose this to be the case. We
refer to the map given in Equation (2.1) as the K-theoretical index pairing.

Let FN denote the ideal of ‘finite rank’ operators in KN ; that is, FN is the ideal
of N generated by projections of finite trace, without taking the norm completion.
In [35, Section 6], it shown that for all n ≥ 1, Mn(FN ) is stable under the holomor-
phic functional calculus insideMn(KN ), and so K0(FN ) ∼= K0(KN ). One may now
deduce thatMn(C∩FN ) is stable under the holomorphic functional calculus inside
Mn(C ∩KN ) =Mn(C). Thus every class in K0(C) may be represented as [e]− [f ]
where e, f are projections in a matrix algebra over the unitisation of C ∩ FN . As
in [35], the map τ∗ : K0(C) → R is then well-defined.

Definition 2.7. Let A be a ∗-algebra (continuously) represented in N , a
semifinite von Neumann algebra with faithful semifinite normal trace τ . A semifi-
nite pre-Fredholm module for A relative to (N , τ), is a pair (H, F ), where H is a
separable Hilbert space carrying a faithful representation of N and F is an operator
in N satisfying:

1. a(1− F 2), a(F − F ∗) ∈ KN , and
2. [F, a] ∈ KN for a ∈ A.

If 1 − F 2 = 0 = F − F ∗ we drop the prefix “pre-”. If our (pre-)Fredholm module
satisfies [F, a] ∈ Lp+1(N , τ) and a(1 − F 2) ∈ L(p+1)/2(N , τ) for all a ∈ A, we say
that (H, F ) is (p+ 1)-summable. We say that (H, F ) is even if in addition there is
a Z2-grading such that A is even and F is odd. This means there is an operator γ
such that γ = γ∗, γ2 = IdN , γa = aγ for all a ∈ A and Fγ + γF = 0. Otherwise
we say that (H, F ) is odd.

A semifinite pre-Fredholm module for a ∗-algebra A extends to a semifinite
pre-Fredholm module for the norm completion of A in N , by essentially the same
proof as Lemma 2.4. For completeness we state this as a lemma.

Lemma 2.8. Let (A,H,D) be a semifinite spectral triple relative to (N , τ). Let
A be the C∗-completion of A. If Fε := D(ε + D2)−1/2, ε > 0, then the operators
[Fε, a] and a(1 − F 2

ε ) are τ -compact for every a ∈ A. Hence (H, Fε) is a pre-
Fredholm module for A.
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2.3. The numerical index pairing

We will now make particular Kasparov products explicit by choosing specific
representatives of the classes. We will focus on the condition F 2 = 1 for Kasparov
modules. Imposing this condition simplifies the description of the Kasparov product
with K-theory. In the context of Lemma 2.4, this will be the case if and only if
ε = 0, that is, if and only if D is invertible. We will shortly show how to modify the
pair (H,D) in the data given by a semifinite spectral triple (A,H,D), in order that
D is always invertible. Before doing that, we need some more Kasparov theory for
nonunital C∗-algebras.

Suppose that we have two C∗-algebras A, B and a graded Kasparov module
(X =AXB , F, γ). Assume also that A is nonunital. Let e and f be projections in
a (matrix algebra over a) unitization of A, which we can take to be the minimal
unitization A∼ = A⊕ C (see [48]), by excision in K-theory, and suppose also that
we have a class [e] − [f ] ∈ K0(A). That is, [e] − [f ] ∈ ker(π∗ : K0(A

∼) → K0(C))
where π : A∼ → C is the quotient map. Then the Kasparov product over A of
[e]− [f ] with [(X,F, γ)] gives us a class in K0(B). We now show that if F 2 = IdX ,
we can represent this Kasparov product as a difference of projections over B (in
the unital case) or B∼ (in the nonunital case).

Here and in the following, we always represent elements a+λ IdA∼ ∈ A∼ on X
as a + λ IdX , λ ∈ C. Set X± := 1±γ

2 X and, ignoring the matrices to simplify the
discussion, let e ∈ A∼. To show that eF±e : eX± → eX∓ is Fredholm (which in this
context means invertible modulo End0B(X±, X∓)), we must display a parametrix.
Taking eF∓e yields

eF∓eF±e = eF∓[e, F±]e+ e(F∓F± − IdX±)e+ IdeX± .

We are left with showing that e(F∓F± − IdX±)e and eF∓[e, F±]e are (B-linear)
compact endomorphisms of the C∗-module X±. The compactness of eF∓[e, F±]e
follows since e is represented as a + λIdX for some a ∈ A and λ ∈ C, and thus
[e, F±] = [a, F±] which is compact by definition of a Kasparov module.

However e(F∓F±− IdX±)e is generally not compact, because we are only guar-
anteed that a(F∓F± − IdX±) is compact for a ∈ A, not a ∈ A∼! Nevertheless, if
the Kasparov module is normalized, i.e. if F 2 = IdX , we have F∓F± − IdX± = 0,
and so we have a parametrix, showing that eF±e is Fredholm. In this case, the
Kasparov product ([e]− [f ])⊗A [(X,F )] is given by

[
Index(eF±e)

]
−
[
Index(fF±f)

]
∈ K0(B).

Here the index is defined as the difference [ker ẽF±e]− [coker ẽF±e], where ẽF±e is
any regular amplification of eF±e, see [30, Lemma 4.10]. This index is independent
of the amplification chosen, the kernel and cokernel projections can be chosen finite
rank over B, or B∼ if B is nonunital, and the index lies inK0(B) by [30, Proposition
4.11].

Similarly, in the odd case we would like to have (see [35, Appendix] and [42,
Appendix]),

[u]⊗A

[
(X,F )

]
=
[
Index

(
1
4 (1 + F )u(1 + F )− 1

2 (1− F )
)]

∈ K0(B),

where [u] ∈ K1(A). As in the even case, to see that 1
4 (1 + F )u(1 + F )− 1

2 (1− F )

is Fredholm in the nonunital case, it is easier to assume that F 2 = 1, and in this
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case, writing (1 + F )/2 = P for the positive spectral projection of F , we have

[u]⊗A

[
(X,F )

]
=
[
Index(PuP )

]
= [ker P̃ uP ]− [coker P̃ uP ] ∈ K0(B),

there being no contribution to the index from P⊥ = (1−F )/2. As in the even case

above, P̃ uP is a regular amplification of PuP , and the projections onto ker P̃ uP

and coker P̃ uP are finite rank over B or B∼. We show in Section 2.7 an alternative
method to avoid the simplifying assumption F 2 = 1 in the odd case.

Given a pre-Fredholm module (H, F ) relative to (N , τ) for a separable ∗-algebra
A, we obtain a Kasparov module (ACC , F ), just as we did for a spectral triple in
Corollary 2.6. Here A is the norm completion of A and C ⊂ KN is given by the
norm closure of the algebra defined in Definition 2.5, using the operator F for the
commutators, and polynomials in 1− F 2 in place of ϕ(D), ϕ ∈ C0(R). Also, given
(A,H,D) relative to (N , τ), the following diagram commutes

(A,H,D) //

��

(ACC , F )

(H, F )

88
.

Thus we have a single well-defined Kasparov class arising from either the spectral
triple or the associated pre-Fredholm module. Now we show how to obtain a repre-
sentative of this class with F 2 = 1, so simplifying the index pairing. This reduces to
showing that if our spectral triple (A,H,D) is such that D is not invertible, we can
replace it by a new spectral triple for which the unbounded operator is invertible
and has the same KK-class. We learned this trick from [20, p. 68].

Definition 2.9. Let (A,H,D) be a semifinite spectral triple relative to (N , τ).
For any µ > 0, define the ‘double’ of (A,H,D) to be the semifinite spectral triple
(A,H2,Dµ) relative to (M2(N ), τ ⊗ tr2), with H2 := H ⊕ H and the action of A
and Dµ given by

Dµ :=

(
D µ
µ −D

)
, a 7→ â :=

(
a 0
0 0

)
, for all a ∈ A.

If (A,H,D) is graded by γ, then the double is even and graded by γ̂ := γ ⊕−γ.
Remark. Whether D is invertible or not, Dµ always is invertible, and Fµ =

Dµ|Dµ|−1 has square 1. This is the chief reason for introducing this construction.
We also need to extend the action ofMn(A∼) on (H⊕H)⊗Cn, in a compatible

way with the extended action of A on H⊕H. So, for a generic element b ∈Mn(A∼),
we let

(2.2) b̂ :=

(
b 0
0 1b

)
∈M2n(N ),

with 1b := πn(b)⊗ IdN , where πn :Mn(A∼) →Mn(C) is the quotient map.
It is known (see for instance [20, Proposition 12, p. 443]), that up to an

addition of a degenerate module, any Kasparov module is operator homotopic to a
normalised Kasparov module, i.e. one with F 2 = 1. The following makes it explicit.

Lemma 2.10. When A is separable, the KK-classes associated with (A,H,D)
and (A,H2,Dµ) coincide. A representative of this class is (A(C ⊕ C)C , Fµ) with
Fµ = Dµ|Dµ|−1 and C the norm closure of the ∗-subalgebra of K(N , τ) given in
Definition 2.5.
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Proof. The KK-class of (A,H,D) is represented (by an application of Corol-
lary 2.6) by (ACC , Fε) with Fε = D(ε+D2)−1/2, ε > 0, while the class of (A,H2,Dµ)
is represented by the Kasparov module (AM2(C)M2(C), Fµ,ε) with operator defined

by Fµ,ε = Dµ(ε+D2
µ)

−1/2. By Morita equivalence, this module has the same class
as the module (A(C ⊕ C)C , Fµ,ε), since M2(C)(C ⊕ C)C is a Morita equivalence
bimodule. The one-parameter family (A(C ⊕C)C , Fm,ε)0≤m≤µ is a continuous op-
erator homotopy, [36], from (A(C ⊕ C)C , Fµ,ε) to the direct sum of two Kasparov
modules

(ACC , Fε)⊕ (ACC ,−Fε).

In the odd case the second Kasparov module is operator homotopic to (ACC , IdN )
by the straight line path since A is represented by zero on this module. In the even
case we find the second Kasparov module is homotopic to

(
ACC ,

(
0 1
1 0

))
,

the matrix decomposition being with respect to the Z2-grading of H which provides
a Z2-grading of C ⊂ KN . Thus in both the even and odd cases the second module
is degenerate, i.e. F 2 = 1, F = F ∗ and [F, a] = 0 for all a ∈ A, and so the KK-class
of (A(C⊕C)C , Fµ,ε), written [(A(C⊕C)C , Fµ,ε)], is the KK-class of (ACC , Fε). In
addition, the Kasparov module (A(C ⊕ C)C , Fµ) with Fµ = Dµ|Dµ|−1 is operator
homotopic to (A(C ⊕ C)C , Fµ,ε) via

t 7→ Dµ(tε+D2
µ)

−1/2, 0 ≤ t ≤ 1.

This provides the desired representative. �

The next result records what is effectively a tautology, given our definitions.
Namely we define the K0(C)-valued index pairing of (A,H,D) with K∗(A) in terms
of the associated Kasparov module. Similarly, the associated pre-Fredholm module
has an index pairing defined in terms of the associated Kasparov module.

Corollary 2.11. Let (A,H,D) be a spectral triple relative to (N , τ) with A
separable. Let (A,H2,Dµ) be the double of (A,H,D) relative to (M2(N ), τ ⊗ tr2)
and (A(C⊕C)C , Fµ) the associated Fredholm module. Then the K0(C)-valued index
pairings defined by the two spectral triples and the semifinite Fredholm module all
agree: for x ∈ K∗(A) of the appropriate parity and µ > 0

x⊗A [(A,H,D)] = x⊗A [(ACC , Fε)]

= x⊗A

[(
A,H2,Dµ

)]

= x⊗A [(A(C ⊕ C)C , Fµ)] ∈ K0(C).

Looking ahead to the numerical index, we recall that we noted after Corollary
2.6 that the trace τ induces a homomorphism τ∗ : K0(C) → R.

An important feature of the double construction is that it allows us to make
pairings in the nonunital case explicit. To be precise, if e ∈Mn(A∼) is a projection
and πn :Mn(A∼) →Mn(C) is the quotient map (by Mn(A)), we set as in (2.2)

(2.3) 1e := πn(e) ∈Mn(C).
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Then in the double e is represented on H⊗Cn ⊕H⊗Cn (this is the spectral triple
picture, but similar comments hold for Kasparov modules) via

e 7→ ê :=

(
e 0
0 1e

)
.

Thus ê(Dµ ⊗ Idn)ê is τ ⊗ tr2n-Fredholm in M2n(N ), with the understanding that
the matrix units eij ∈M2n(C) sit in M2n(N ) as eij IdN .

Example. Let pB ∈ M2(C0(C)
∼) be the Bott projector, given explicitly by

[30, p. 76-77]

(2.4) pB(z) =
1

1 + |z|2
(
1 z̄
z |z|2

)
, then 1pB

=

(
0 0
0 1

)
.

We are now ready to define the numerical index paring for semifinite spectral
triples.

Definition 2.12. Let (A,H,D) be a semifinite spectral triple relative to (N , τ)
of parity • ∈ {0, 1}, • = 0 for an even triple, • = 1 for an odd triple and with
A separable. We define the numerical index pairing of (A,H,D) with K•(A) as
follows:

1. Take the Kasparov product with the KK-class defined by the doubled up
spectral triple

· ⊗A [(A(C ⊕ C)C , Fµ)] : K•(A) → K0(C),

2. Apply the homomorphism τ∗ : K0(C) → R to the resulting class.
We will denote this pairing by

〈[e]− [1e], (A,H,D)〉 ∈ R, even case, 〈[u], (A,H,D)〉 ∈ R, odd case.

If, in the even case, [e]− [f ] ∈ K0(A) then [1e] = [1f ] ∈ K0(C) and we may define

〈[e]− [f ], (A,H,D)〉 := 〈[e]− [1e], (A,H,D)〉 − 〈[f ]− [1f ], (A,H,D)〉 ∈ R.

From Corollary 2.11 we may deduce the following important result, which justi-
fies the name ‘numerical index pairing’ for the map given in the previous Definition,
as well as our notations.

Proposition 2.13. Let (A,H,D) be a semifinite spectral triple relative to
(N , τ), of parity • ∈ {0, 1} and with A separable. Let e be a projector in Mn(A∼)
which represents [e] ∈ K0(A), for • = 0 (resp. u be a unitary inMn(A∼) which rep-
resents [u] ∈ K1(A), for • = 1). Then with Fµ := Dµ/|Dµ| and Pµ := (1 + Fµ)/2,
we have

〈[e]− [1e], (A,H,D)〉 = Indexτ⊗tr2n

(
ê(Fµ+ ⊗ Idn)ê

)
, even case,

〈[u], (A,H,D)〉 = Indexτ⊗tr2n

(
(Pµ ⊗ Idn)û(Pµ ⊗ Idn)

)
, odd case.

2.4. Smoothness and summability for spectral triples

In this Section we discuss the notions of finitely summable spectral triple, QC∞

spectral triple and most importantly smoothly summable spectral triples for nonuni-
tal ∗-algebras. We then examine how these notions fit with our discussion of summa-
bility and the pseudodifferential calculus introduced in the previous Chapter. One
of the main technical difficulties that we have to overcome in the nonunital case is
the issue of finding the appropriate definition of a smooth algebra stable under the
holomorphic functional calculus.
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We begin by considering possible notions of summability for spectral triples.
There are two basic tasks that we need some summability for:
1) To obtain a well-defined Chern character for the associated Fredholm module,
2) To obtain a local index formula.

Even in the case where A is unital, point 2) requires extra smoothness assump-
tions, discussed below, in addition to the necessary summability. Thus we expect
point 2) to require more assumptions on the spectral triple than point 1). For point
1) we have the following answer.

Proposition 2.14. Let (A,H,D) be a semifinite spectral triple relative to
(N , τ). Suppose further that there exists p ≥ 1 such that a(1 +D2)−s/2 ∈ L1(N , τ)
for all s > p and all a ∈ A. Then (H, Fε = D(ε + D2)−1/2) defines a ⌊p⌋ + 1-
summable pre-Fredholm module for A2 whose KK-class is independent of ε > 0 (or
even ε ≥ 0 if D is invertible). If in addition we have [D, a](1+D2)−s/2 ∈ L1(N , τ)
for all s > p and all a ∈ A, then (H, Fε = D(ε + D2)−1/2) defines a ⌊p⌋ + 1-
summable pre-Fredholm module for A whose KK-class is independent of ε > 0 (or
even ε ≥ 0 if D is invertible).

Remark. Here A2 means the algebra given by the finite linear span of products
ab, a, b ∈ A.

Proof. First we employ Lemma 1.37 to deduce that for all δ > 0 we have

a(1− F 2
ε ) = ε a(ε+D2)−1 ∈ Lp/2+δ(N , τ).

The same lemma tells us that for all a ∈ A and δ > 0

a(ε+D2)−
⌊p⌋+δ

2(⌊p⌋+1) ∈ L⌊p⌋+1(N , τ).

We use the integral formula for fractional powers and [12, Lemma 3.3] to obtain

[Fε, a] =
−1

π

∫ ∞

0

λ−1/2D(ε+ λ+D2)−1[D, a]D(ε+ λ+D2)−1dλ

− 1

π

∫ ∞

0

λ−1/2(ε+ λ+D2)−1[D, a]D2(ε+ λ+D2)−1dλ+ (ε+D2)−1/2[D, a].

Now we multiply on the left by b ∈ A, and estimate the ⌊p⌋+ 1-norm. Since

(ε+D2 + λ)−1 = (ε+D2 + λ)−
⌊p⌋+δ

2(⌊p⌋+1) (ε+D2 + λ)−
1
2−

(1−δ)
2(⌊p⌋+1) ,

and

‖D(ε+D2 + λ)−
1
2−

(1−δ)
2(⌊p⌋+1) ‖∞ ≤ (ε+ λ)−

(1−δ)
2(⌊p⌋+1) ,

by spectral theory, we find that for 1 > δ > 0

‖b[Fε, a]‖⌊p⌋+1 ≤ 2‖[D, a]‖ ‖b(ε+D2)−
⌊p⌋+δ

2(⌊p⌋+1) ‖⌊p⌋+1

×
∫ ∞

0

λ−1/2(ε+ λ)−
1
2−

(1−δ)
2(⌊p⌋+1) dλ <∞.

Hence b[Fε, a] ∈ L⌊p⌋+1(N , τ), and taking adjoints yields [Fε, a]b ∈ L⌊p⌋+1(N , τ)
for all a, b ∈ A also. Now we observe that [Fε, ab] = a[Fε, b] + [Fε, a]b, and so
[Fε, ab] ∈ L⌊p⌋+1(N , τ) for all ab ∈ A2. This completes the proof of the first part.
The second claim follows from a similar estimate without the need to multiply by
b ∈ A. The independence of the class on ε > 0 is established as in Lemma 2.4. �
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The previous proposition shows that we have sufficient conditions on a spectral
triple in order to obtain a finitely summable pre-Fredholm module for A2 or A.
These two conditions are not equivalent. Here is a counterexample for p = 1.

Consider the function f : x 7→ sin(x3)/(1 + x2) on the real line, and the
operator D = −i(d/dx) on L2(R). Then the operator f(1 + D2)−s/2 is trace class
for ℜ(s) > 1, by [56, Theorem 4.5], while [D, f ](1 + D2)−s/2 is not trace class for
any ℜ(s) > 1, by [56, Proposition 4.7]. To see the latter, it suffices to show that
with g(x) = x2/(1 + x2), we have that g(1 + D2)−s/2 is not trace class. However
this follows from g(1 + D2)−s/2 = (1 + D2)−s/2 − h(1 + D2)−s/2 with h = 1

1+x2 .

The second operator is trace class, however (1 +D2)−s/2 is well-known to be non-
compact, and so not trace class.

We investigate the weaker of these two summability conditions first, relating
it to our integration theory from Chapter 1. Indeed the following two propositions
show that finite summability, in the sense of the next definition, almost uniquely
determines where A must sit inside N , and justifies the introduction of the Fréchet
algebras Bk

1 (D, p).
Definition 2.15. A semifinite spectral triple (A,H,D) is said to be finitely

summable if there exists s > 0 such that for all a ∈ A, a(1 + D2)−s/2 ∈ L1(N , τ).
In such a case, we let

p := inf
{
s > 0 : for all a ∈ A, τ

(
|a|(1 +D2)−s/2

)
<∞

}
,

and call p the spectral dimension of (A,H,D).

Remark. For the definition of the spectral dimension above to be meaningful,
one needs two facts. First, if A is the algebra of a finitely summable spectral triple,
we have |a|(1 +D2)−s/2 ∈ L1(N , τ) for all a ∈ A, which follows by using the polar
decomposition a = v|a| and writing

|a|(1 +D2)−s/2 = v∗a(1 +D2)−s/2.

Observe that we are not asserting that |a| ∈ A, which is typically not true in
examples.

The second fact we require is that τ
(
a(1+D2)−s/2

)
≥ 0 for a ≥ 0, which follows

from [6, Theorem 3], quoted here as Proposition 1.5.
In contrast to the unital case, checking the finite summability condition for a

nonunital spectral triple can be difficult. This is because our definition relies on
control of the trace norm of the non-self-adjoint operators a(1+D2)−s/2, a ∈ A. The
next two results show that for a spectral triple (A,H,D) to be finitely summable
with spectral dimension p, it is necessary that A ⊂ B1(D, p) and this condition is
almost sufficient as well.

Proposition 2.16. Let (A,H,D) be a semifinite spectral triple. If for some
p ≥ 1 we have A ⊂ B∞

1 (D, p), then (A,H,D) is finitely summable with spectral
dimension given by the infimum of such p’s. More generally, if for some p ≥ 1

we have A ⊂ B2(D, p)B⌊p⌋+1
2 (D, p) ⊂ B1(D, p), then (A,H,D) is finitely summable

with spectral dimension given by the infimum of such p’s.

Proof. The first statement is an immediate consequence of Corollary 1.30.
For the second statement, let a ∈ A. We need to prove that a(1 +D2)−s/2 is trace

class for a = bc with b ∈ B2(D, p) and c ∈ B⌊p⌋+1
2 (D, p). Thus, for all k ≤ ⌊p⌋ + 1
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and all s > p we have

b(1 +D2)−s/4, (1 +D2)−s/4δk(c) ∈ L2(N , τ).

We start from the identity

(−1)k
Γ(s+ k)

Γ(s)Γ(k + 1)
(1 + |D|)−s−k =

1

2πi

∫

ℜ(λ)=1/2

λ−s(λ− 1− |D|)−k−1dλ,

and then by induction we have

[(λ− 1− |D|)−1, c] =

⌊p⌋∑

k=1

(−1)k+1(λ− 1− |D|)−k−1δk(c)

+ (−1)⌊p⌋(λ− 1− |D|)−⌊p⌋−1δ⌊p⌋+1(c)(λ− 1− |D|)−1.

It follows that

[(1+|D|)−s, c] =
1

2πi

∫

ℜλ=1/2

λ−s[(λ− 1− |D|)−1, c] dλ

=−
⌊p⌋∑

k=1

Γ(s+ k)

Γ(s)Γ(k + 1)
(1 + |D|)−s−kδk(c)

+
(−1)⌊p⌋

2πi

∫

ℜ(λ)=1/2

λ−s(λ− 1− |D|)−⌊p⌋−1δ⌊p⌋+1(c)(λ− 1− |D|)−1dλ.

Since
∣∣λ− 1− |D|

∣∣ ≥ |λ| and since the ‖ · ‖2−norms of the operators

b(λ− 1− |D|)−(⌊p⌋+1)/2, (λ− 1− |D|)−(⌊p⌋+1)/2δ⌊p⌋+1(c),

are bounded uniformly over λ, we find that
∥∥∥∥∥b

(−1)⌊p⌋

2πi

∫

ℜλ=1/2

λ−s(λ− 1− |D|)−⌊p⌋−1δ⌊p⌋+1(c)(λ− 1− |D|)−1dλ

∥∥∥∥∥
1

,

is bounded by C(b, c)
∫
ℜλ=1/2

|dλ|
|λ|1+s , which is finite. Hence we have b[(1+|D|)−s, c] ∈

L1(N , τ) and since

b(1 + |D|)−sc = (b(1 + |D|)−s/2) · ((1 + |D|)−s/2c) ∈ L1(N , τ),

we conclude that a(1 + |D|)−s ∈ L1(N , τ), and so a(1 + D2)−s/2 ∈ L1(N , τ). The
claim about the spectral dimension follows immediately. �

Proposition 2.17. Let (A,H,D) be a finitely summable semifinite spectral
triple of spectral dimension p. Then A is a subalgebra of B1(D, p).

Proof. Since A is a ∗-algebra, it suffices to consider self-adjoint elements. For
a = a∗ ∈ A, we have by assumption that a(1 + D2)−s/2 ∈ L1(N , τ), for all s > p.
Now let a = v|a| = |a|v∗ be the polar decomposition. Observe that neither v nor
|a| need be in A. However,

|a|(1 +D2)−s/2 = v∗a(1 +D2)−s/2 ∈ L1(N , τ) for all s > p.

Proposition 1.5, from [6, Theorem 3], implies that |a|1/2(1 + D2)−s/4 ∈ L2(N , τ),
for all s > p, and so |a|1/2 ∈ B2(D, p). In addition, v|a|1/2 ∈ B2(D, p), since
v|a|1/2 = |a|1/2v∗ by the functional calculus, and

v|a|v∗ = |a|1/2v∗v|a|1/2 = |a|,
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and (1 +D2)−s/4|a|1/2v∗v|a|1/2(1 +D2)−s/4 = (1 +D2)−s/4|a|(1 +D2)−s/4. From
this we can conclude that a = v|a|1/2 · |a|1/2 ∈ (B2(D, p))2 ⊂ B1(D, p). �

Remark. The previous two results tell us that a finitely summable spectral
triple must have A ⊂ B1(D, p). However the last result does not imply that for a
finitely summable spectral triple (A,H,D) and a = a∗ ∈ A we have a+, a−, |a| in
A. On the other hand, the previous proof shows that |a| does belong to B1(D, p),
and so for a finitely summable spectral triple, we can improve on the result of
Proposition 1.14, at least for elements of A.

In addition to the summability of a spectral triple (A,H,D) relative to (N , τ),
we need to consider smoothness, and the two notions are much more tightly related
in the nonunital case. One reason for smoothness is that we need to be able to
control commutators with D2 to obtain the local index formula. Another reason is
that we need to be able to show that we have a spectral triple for a (possibly) larger
algebra B ⊃ A where B is Fréchet and stable under the holomorphic functional
calculus, and has the same norm closure as A: A = A = B.

The next definition recalls how the problem of finding suitable B ⊃ A is solved
in the unital case.

Definition 2.18. Let (A,H,D) be a semifinite spectral triple, relative to
(N , τ). With δ = [|D|, ·] we say that (A,H,D) is QCk if for all b ∈ A ∪ [D,A]
we have δj(b) ∈ N for all 0 ≤ j ≤ k. We say that (A,H,D) is QC∞ if it is QCk

for all k ∈ N0.

Remark. For a QC∞ spectral triple (A,H,D) with T0, . . . , Tm ∈ A ∪ [D,A],
we see by iteration of the relation T (1) = δ2(T ) + 2δ(T )|D|, that

T
(k0)
0 . . . T (km)

m (1 +D2)−|k|/2 ∈ N ,

where |k| := k0 + · · ·+ km and T (n) is given in Definition 1.20.
For (A,H,D) a QC∞ spectral triple, unital or not, we may endow the algebra

A with the topology determined by the family of norms

A ∋ a 7→ ‖δk(a)‖+ ‖δk([D, a])‖, k ∈ N0.(2.5)

We call this topology the δ-topology and observe that by [49, Lemma 16], (Aδ,H,D)
is also a QC∞ spectral triple, where Aδ is the completion of A in the δ-topology.
Thus we may, without loss of generality, suppose that A is complete in the δ-
topology by completing if necessary. This completion is Fréchet and stable under
the holomorphic functional calculus. So, with A the C∗-completion of A, K∗(A) ≃
K∗(A) via inclusion.

However, and this is crucial in the remaining text, in the nonunital case the
completion Aδ may not satisfy the same summability conditions as A (as classical
examples show). Thus we will define and use a finer topology which takes into
account the summability of the spectral triple, to which we now return.

Keeping in mind Propositions 2.14, 2.16, 2.17, and incorporating smoothness in
the picture, we see that the natural condition for a smooth and finitely summable
spectral triple is to require that A ∪ [D,A] ⊂ B∞

1 (D, p). The extra benefit is that
our algebra A sits inside a Fréchet algebra which is stable under the holomorphic
functional calculus.

Definition 2.19. Let (A,H,D) be a semifinite spectral triple relative to (N , τ).
Then we say that (A,H,D) is QCk summable if (A,H,D) is finitely summable with
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spectral dimension p and

A ∪ [D,A] ⊂ Bk
1 (D, p).

We say that (A,H,D) is smoothly summable if it is QCk summable for all k ∈ N0

or, equivalently, if

A ∪ [D,A] ⊂ B∞
1 (D, p).

If (A,H,D) is smoothly summable with spectral dimension p, the δ-ϕ-topology on
A is determined by the family of norms

A ∋ a 7→ Pn,k(a) + Pn,k([D, a]), n ∈ N, k ∈ N0,

where the norms Pn,k are those of Definition 1.21,

N ∋ T 7→ Pn,k(T ) :=

k∑

j=0

Pn(δ
j(T )).

Remark. The δ-ϕ-topology generalises the δ-topology. Indeed, if (1+D2)−s/2

belongs to L1(N , τ) for s > p, then the norm Pn,k is equivalent to the norm defined
in Equation (2.5).

The following result shows that given a smoothly summable spectral triple
(A,H,D), we may without loss of generality assume that the algebra A is com-
plete with respect to the δ-ϕ-topology, by completing if necessary. Moreover the
completion of A in the δ-ϕ-topology is stable under the holomorphic functional
calculus.

Proposition 2.20. Let (A,H,D) be a smoothly summable semifinite spectral
triple with spectral dimension p, and let Aδ,ϕ denote the completion of A for the
δ-ϕ topology. Then (Aδ,ϕ,H,D) is also a smoothly summable semifinite spectral
triple with spectral dimension p, and moreover Aδ,ϕ is stable under the holomorphic
functional calculus.

Proof. First observe that a sequence (ai)i≥1 ⊂ A converges in the δ-ϕ topol-
ogy if and only if both (ai)i≥1 and ([D, ai])i≥1 converge in B∞

1 (D, p). As B∞
1 (D, p)

is a Fréchet space, both Aδ,ϕ and [D,Aδ,ϕ] are contained in B∞
1 (D, p).

Next, let us show that (Aδ,ϕ,H,D) is finitely summable with spectral dimension
still given by p. Let a ∈ Aδ,ϕ and s > p. By definition of tame pseudodifferential
operators and Corollary 1.30, we have

a(1 +D2)−s/2 ∈ OP−s
0 ⊂ L1(N , τ),

as needed. Since A ⊂ Aδ,ϕ, p is the smallest number for which this property holds.
Last, it remains to show that Aδ,ϕ is stable under the holomorphic functional

calculus inside its (operator) norm completion. For each k, N ≥ 1, we complete A
in the norm ‖ ·‖N,k :=

∑N
n=1

∑k
j=0 Pn,j(·)+Pn,j([D, ·]) to obtain a Banach algebra

AN,k. We claim that Aδ,ϕ =
⋂

N≥1,k≥0 AN,k. The inclusion Aδ,ϕ ⊂ ⋂N≥1,k≥0 AN,k

is straightforward. For the inclusion Aδ,ϕ ⊃ ⋂
N≥1,k≥0 AN,k, suppose that a is

an element of the intersection. Then for each N, k there is a sequence (aN,k
i )i≥1

contained in A which converges to a in the norm ‖ · ‖N,k. Now we make the

observation that if N ′ ≤ N and k′ ≤ k then (aN,k
i )i≥1 converges in AN ′,k′ to the

same limit. Thus, in this situation, for all ε > 0 there is l ∈ N such that i > l implies

that ‖aN,k
i −a‖N ′,k′ < ε. Thus for such an ε > 0 and l we have ‖aN,N

N −a‖N ′,k′ < ε
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whenever N > max{N ′, k′, l}. Hence the sequence (aN,N
N )N≥1 converges in all of

the norms ‖ · ‖N ′,k′ and hence the limit a lies in Aδ,ϕ. Hence an element of Aδ,ϕ

is an element of A which lies in each AN,k. Moreover the norm completions of A,
Aδ,ϕ and AN,k, for each N, k, are all the same since the δ-ϕ and ‖ · ‖N,k topologies
are finer than the norm topology. We denote the latter by A. Now let a ∈ Aδ,ϕ

and λ ∈ C be such that a+ λ is invertible in A∼. Then with b = (a+ λ)−1 − λ−1

we have

(2.6) (a+ λ)(b+ λ−1) = 1 = 1 + ab+ λb+ λ−1a ⇒ b = −λ−1ab− λ−2a.

Rearranging Equation (2.6) shows that b = −λ−1(λ + a)−1a. Now as B∞
1 (D, p)

is stable under the holomorphic functional calculus, b ∈ B∞
1 (D, p) ⊕ C, but this

formula shows that in fact b ∈ B∞
1 (D, p). Now we would like to apply [D, ·] to

Equation (2.6). Since b ∈ B∞
1 (D, p), b preserves domD = dom |D| ⊂ H, and so it

makes sense to apply [D, ·] to b. Then
[D, b] = −λ−1[D, a]b−λ−1a[D, b]−λ−2[D, a] ⇒ [D, b] = −(λ+a)−1[D, a](λ+a)−1.

Thus we see that [D, b] ∈ B∞
1 (D, p) since (λ + a)−1 ∈ B∞

1 (D, p) ⊕ C and [D, a] ∈
B∞
1 (D, p). Hence b ∈ AN,k for all N ≥ 1 and k ≥ 0 and so b ∈ Aδ,ϕ. �

We close this Section by giving a sufficient condition for a finitely summable
spectral triple to be smoothly summable. We stress that this condition is easy to
check, as shown in all of our examples.

Proposition 2.21. Let (A,H,D) be a finitely summable spectral triple of spec-
tral dimension p relative to (N , τ). If for all T ∈ A ∪ [D,A], k ∈ N0 and all s > p
we have

(2.7) (1 +D2)−s/4Lk(T )(1 +D2)−s/4 ∈ L1(N , τ),

then (A,H,D) is smoothly summable. Here L(T ) = (1 +D2)−1/2[D2, T ].

Proof. We need to show that condition (2.7) guarantees that A ∪ [D,A] ⊂
B∞
1 (D, p), that is, for all a ∈ A, the operators δk(a) and δk([D, a]), k ∈ N0,

all belong to B1(D, p). From δk(a)∗ = (−1)kδk(a∗) (respectively δk([D, a])∗ =
(−1)k+1δk([D, a∗])) and since the norms Pm, m ∈ N, are ∗-invariant, we see that
δk(a) ∈ B1(D, p) (resp. δk([D, a]) ∈ B1(D, p)) if and only if δk(ℜ(a)) and δk(ℑ(a))
(resp. δk([D,ℜ(a)]) and δk([D,ℑ(a)])) belong to B1(D, p). Thus, we may assume
that a = a∗.

Let us treat first the case of δk(a) and for a = a∗. Consider the polar decom-
position δk(a) = uk|δk(a)|. Depending on the parity of k, the partial isometry uk
is self-adjoint or skew-adjoint, and in both cases it commutes with |δk(a)|. This
implies that

δk(a) = |δk(a)|1/2uk|δk(a)|1/2.
Thus, the condition

δk(a) ∈ B1(D, p), for all k ∈ N0,

will follow if

(2.8) |δk(a)|1/2, uk|δk(a)|1/2 ∈ B2(D, p), for all k ∈ N0.

Since uk commutes with |δk(a)|1/2, and using the definition of the space B2(D, p),
the condition (2.8) is equivalent to

(2.9) |δk(a)|1/2(1 +D2)−s/4, uk|δk(a)|1/2(1 +D2)−s/4 ∈ L2(N , τ),
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for all k ∈ N0 and s > p. The conditions in (2.9) are equivalent to a single condition

|δk(a)|1/2(1 +D2)−s/4 ∈ L2(N , τ), for all k ∈ N0 and s > p,

which is equivalent to

(2.10) (1 +D2)−s/4|δk(a)|(1 +D2)−s/4 ∈ L1(N , τ), for all k ∈ N0 and s > p.

Now, by [6, Theorem 3], see Proposition 1.5, the condition (2.10) is satisfied if

|δk(a)|(1 +D2)−s/2 ∈ L1(N , τ), for all k ∈ N0 and s > p,

which in turn is equivalent to

(2.11) δk(a)(1 +D2)−s/2 ∈ L1(N , τ), for all k ∈ N0 and s > p.

Next, since

δk(a)(1 +D2)−s/2 = (1 +D2)−s/4δk(σs/4(a))(1 +D2)−s/4,

by an application of the same ideas leading to Lemmas 1.25 and 1.26, we see then
that condition (2.11) is equivalent to

(2.12) (1 +D2)−s/4δk(a)(1 +D2)−s/4 ∈ L1(N , τ), for all k ∈ N0 and s > p.

Finally, using L = (1+ σ−1) ◦ δ, given in Lemma 1.29, we see that condition (2.12)
is equivalent to

(1 +D2)−s/4Lk(a)(1 +D2)−s/4 ∈ L1(N , τ), for all k ∈ N0 and s > p.

In an entirely similar way, we see that δk([D, a]) ∈ B1(D, p) if
(1 +D2)−s/4Lk([D, a])(1 +D2)−s/4 ∈ L1(N , τ), for all k ∈ N0 and s > p.

This completes the proof. �

2.5. Some cyclic theory

In the following discussion we recall cyclic theory, sufficient for the purposes of
this memoir. More information about the complexes and bicomplexes underlying
our definitions is contained in [15,17], and much more can be found in [21,40].
When we discuss tensor products of algebras we always use the projective tensor
product.

Let A be a unital Fréchet algebra. A cyclic m-cochain on A is a multilinear
functional ψ such that

ψ(a0, . . . , am) = (−1)mψ(am, a0, . . . , am−1).

The set of all cyclic cochains is denoted Cm
λ . We say that ψ is a cyclic cocy-

cle if for all a0, . . . , am+1 ∈ A we have (bψ)(a0, . . . , am+1) = 0 where b is the
Hochschild coboundary in Equation (2.13) below. The cyclic cochain is normalised
if ψ(a0, a1, . . . , am) = 0 whenever any of a1, . . . , am is the unit of A.

A (b, B)-cochain φ for A is a finite collection of multilinear functionals,

φ = (φm)m=0,1,...,M , φm : A⊗(m+1) → C.

An odd cochain has φm = 0 for evenm, while an even cochain has φm = 0 for oddm.
Thought of as functionals on the projective tensor product A⊗(m+1), a normalised
cochain will satisfy φ(a0, a1, . . . , am) = 0 whenever for k ≥ 1, any ak = 1A. A
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normalised cochain is a (b, B)-cocycle if, for all m, bφm + Bφm+2 = 0 where b is
the Hochschild coboundary operator given by

(bφm)(a0, a1, . . . , am+1) =

m∑

k=0

(−1)kφm(a0, a1, . . . , akak+1, . . . , am+1)

+ (−1)m+1φm(am+1a0, a1, . . . , am),(2.13)

and B is Connes’ coboundary operator

(Bφm)(a0, a1, . . . , am−1)

=
m−1∑

k=0

(−1)(m−1)jφm(1A, ak, ak+1, . . . , am−1, a0, . . . , ak−1).(2.14)

We write (b+B)φ = 0 for brevity, and observe that this formula for B is only valid
on the normalised complex, [40]. As we will only consider normalised cochains, this
will be sufficient for our purposes.

For a nonunital Fréchet algebra A, a reduced (b, B)-cochain (φn)n=•,•+2,...,M

for A∼ and of parity • ∈ {0, 1}, is a normalised (b, B)-cochain such that if • = 0
we have φ0(1A∼) = 0. The formulae for the operators b, B are the same. By [40,
Proposition 2.2.16], the reduced cochains come from a suitable bicomplex called
the reduced (b, B)-bicomplex, which gives a cohomology theory for A.

Thus far, our discussion has been algebraic. We now remind the reader that
when working with a Fréchet algebra, we complete the algebraic tensor product
in the projective tensor product topology. Given a spectral triple (A,H,D), we
may without loss of generality complete A in the δ-ϕ-topology using Proposition
2.20. Then the algebraic discussion above carries through. This follows because
the operators b and B are defined using multiplication, which is continuous, and
insertion of 1A∼ in the first slot. This latter is also continuous, and one just needs
to check that B : C1(A) → C0(A) maps normalised cochains to cochains vanishing
on the unit 1A∼ ∈ A∼. This follows from the definitions.

Finally, an (n+1)-linear functional on an algebra A is cyclic if and only if it is
the character of a cycle, [21, Chapter III], [30, Proposition 8.12], and so the Chern
character of a Fredholm module over A, defined in the next section, will always
define a reduced cyclic cocyle for A∼.

2.6. The Kasparov product, numerical index and Chern character

First we discuss the Chern character of semifinite Fredholm modules and then
relate the Chern character to our analytic index pairing and the Kasparov product.

Definition 2.22. Let (H, F ) be a Fredholm module relative to (N , τ). We
define the ‘conditional trace’ τ ′ by

τ ′(T ) = 1
2τ
(
F (FT + TF )

)
,

provided FT + TF ∈ L1(N ) (as it will be in our case, see [21, p. 293] and (2.15)
below). Note that if T ∈ L1(N ), using the trace property and F 2 = 1, we find
τ ′(T ) = τ(T ).

The Chern character, [ChF ], of a (p+ 1)-summable (p ≥ 1) semifinite Fred-
holm module (H, F ) relative to (N , τ) is the class in periodic cyclic cohomology of
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the single normalized and reduced cyclic cocycle

λmτ
′
(
γa0[F, a1] . . . [F, am]

)
, a0, . . . , am ∈ A, m ≥ ⌊p⌋,

where m is even if and only if (H, F ) is even. Here λm are constants ensuring that
this collection of cocycles yields a well-defined periodic class, and they are given by

λm =

{
(−1)m(m−1)/2Γ(m2 + 1), m even,√
2i(−1)m(m−1)/2Γ(m2 + 1), m odd.

For p = n ∈ N, the Chern character of an (n+1)-summable Fredholm module of the
same parity as n, is represented by the cyclic cocycle in dimension n, ChF ∈ Cn

λ (A),
given by

ChF (a0, . . . , an) = λnτ
′(γa0[F, a1] . . . [F, an]), a0, . . . , an ∈ A.

The latter makes good sense since

Fγa0[F, a1] . . . [F, an] + γa0[F, a1] . . . [F, an]F

= (−1)nγ[F, a0][F, a1] . . . [F, an],(2.15)

belongs to L1(N , τ) by the (p + 1)-summability assumption. We will always take
the cyclic cochain ChF (or its (b, B) analogue; see below) as representative of [ChF ],
and will often refer to ChF as the Chern character.

Since the Chern character is a cyclic cochain, it lies in the image of the operator
B, [21, Corollary 20, III.1.β], and as B2 = 0 we have B ChF = 0. Since bChF = 0,
we may regard the Chern character as a one term element of the (b, B)-bicomplex.
However, the correct normalisation is (taking the Chern character in degree n)

Cn
λ ∋ ChF 7→ (−1)⌊n/2⌋

n!
ChF ∈ Cn.

Thus instead of λn defined above, we use µn := (−1)⌊n/2⌋

n! λn. The difference in
normalisation between periodic and (b, B) is due to the way the index pairing is
defined in the two cases, [21], and compatibility with the periodicity operator. From
now on we will use the (b, B)-normalisation, and so make the following definition.

Definition 2.23. Let (H, F ) be a semifinite (n + 1)-summable, n ∈ N, Fred-
holm module for a nonunital algebra A, relative to (N , τ), and suppose the parity
of the Fredholm module is the same as the parity of n. Then we define the Chern
character [ChF ] to be the cyclic cohomology class of the single term (b, B)-cocycle
defined for a0, . . . , an ∈ A by

ChnF (a0, a1, . . . , an) :=





Γ(n
2 +1)

n! τ ′(γa0[F, a1] . . . [F, an]), n even,

√
2i

Γ(n
2 +1)

n! τ ′(a0[F, a1] . . . [F, an]), n odd.

If e ∈ A∼ is a projection we define Ch0(e) = e ∈ A∼ and for k ≥ 1

Ch2k(e) = (−1)k
(2k)!

k!
(e− 1/2)⊗ e⊗ · · · ⊗ e ∈ (A∼)⊗2k+1.

If u ∈ A∼ is a unitary then we define for k ≥ 0

Ch2k+1(u) = (−1)k k!u∗ ⊗ u⊗ · · · ⊗ u∗ ⊗ u ∈ (A∼)⊗2k+2.
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In order to prove the equality of our numerical index with the Chern character
pairing, we need the cyclicity of the trace on a semifinite von Neumann algebra
from [8, Theorem 17], quoted here as Proposition 1.4.

Proposition 2.24. Let (A,H,D) be a semifinite spectral triple, with A sepa-
rable, which is smoothly summable with spectral dimension p ≥ 1, and such that ⌊p⌋
has the same parity as the spectral triple. Then for a class [e] ∈ K0(A), with e a
projection in Mn(A∼) (resp. for a class [u] ∈ K1(A), with u a unitary in Mn(A∼))
we have for any µ > 0

〈[e]− [1e], (A,H,D)〉 = Ch
⌊p⌋
Fµ⊗Idn

(
Ch⌊p⌋(ê)

)
, even case,

〈[u], (A,H,D)〉 = −(2iπ)−1/2 Ch
⌊p⌋
Fµ⊗Idn

(
Ch⌊p⌋(û)

)
, odd case.

Proof. The first thing to prove is that [Fµ, â] ∈ L⌊p⌋+1(N , τ) for all a ∈ A.

This will follow if we have [Fε, a] ∈ L⌊p⌋+1(N , τ) for all a ∈ A. By the smooth
summability assumption, we have a, [D, a] ∈ B∞

1 (D, p) = Op00 for all a ∈ A. Thus
the Schatten class property we need follows from Proposition 2.14.

For the even case the remainder of the proof is just as in [21, Proposition 4,
IV.1.γ]. The strategy in the odd case is the same. However, we present the proof
in the odd case in order to clarify some sign conventions. To simplify the notation,
we let u be a unitary in A∼ and suppress the matrices Mn(A∼). In this case the
operator PµûPµ : Pµ(H ⊕H) → Pµ(H ⊕H), is τ ⊗ tr2-Fredholm with parametrix
Pµû

∗Pµ, where u ∈ A∼ unitary and Pµ = (Fµ + 1)/2 ∈ M2(N ). To obtain our
result, we need [45, Lemma 3.5] which shows that with Qµ := ûPµû

∗ we have

|(1−Qµ)Pµ|2n=[Pµ(1−Qµ)(1−Qµ)Pµ]
n=[Pµ−PµQµPµ]

n=(Pµ−PµûPµû
∗Pµ)

n.

One ingredient in the proof that connects this to odd summability is the identity

(Qµ − Pµ)
2n+1 = |(1− Pµ)Qµ|2n − |(1−Qµ)Pµ|2n,

proved by induction in [45, Lemma 3.4]. It is then shown in [13, Theorem 3.1] that
if f is any odd function with f(1) 6= 0 and f(Qµ − Pµ) trace-class, we have

Indexτ⊗tr2(PµQµ) =
1

f(1)
τ ⊗ tr2

(
f(Qµ − Pµ)

)
.

Putting these ingredients together we have

Indexτ⊗tr2(PµûPµ) = Indexτ⊗tr2(PµûPµû
∗) = Indexτ⊗tr2(PµQµ)

= τ ⊗ tr2
(
(Pµ − Pµû

∗PµûPµ)
n − (Pµ − PµûPµû

∗Pµ)
n
)
,

where n = (⌊p⌋ + 1)/2 is an integer, since ⌊p⌋ is assumed odd. First we observe
that Pµ − Pµû

∗PµûPµ = −Pµ[û
∗, Pµ]ûPµ, and by replacing Pµ by (1 + Fµ)/2 we

have

Pµ[û
∗, Pµ]ûPµ = [Fµ, û

∗] [Fµ, û](1 + Fµ)/8.
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Since Fµ[Fµ, â] = −[Fµ, â]Fµ for all a ∈ A, cycling a single [Fµ, û
∗] around using

Proposition 1.4 yields

Indexτ⊗tr2(PµûPµ) = τ ⊗ tr2
(
(Pµ−Pµû

∗PµûPµ)
n
)
− τ ⊗ tr2

(
(Pµ−PµûPµû

∗Pµ)
n
)

= τ ⊗ tr2

((
− 1

4
[Fµ, û

∗] [Fµ, û]
1 + Fµ

2

)n)

− τ ⊗ tr2

((
− 1

4
[Fµ, û] [Fµ, û

∗]
1 + Fµ

2

)n)

= (−1)n
1

4n
τ ⊗ tr2

(1 + Fµ

2
([Fµ, û

∗][Fµ, û])
n

− [Fµ, û
∗][Fµ, û][Fµ, û

∗]
1 + Fµ

2
[Fµ, û][Fµ, û

∗] . . .
1 + Fµ

2
[Fµ, û]

1− Fµ

2

)
.

Thus

Indexτ⊗tr2(PµûPµ) = (−1)n
1

4n
τ ⊗ tr2

((1 + Fµ

2
− 1− Fµ

2

)(
[Fµ, û

∗][Fµ, û]
)n)

= (−1)n
1

4n
τ ⊗ tr2

(
Fµ([Fµ, û

∗][Fµ, û]
)n

)

= (−1)n
1

22n−1
(τ ⊗ tr2)

′
(
û∗[Fµ, û] . . . [Fµ, û

∗][Fµ, û]
)
,

where in the last line there are 2n − 1 = ⌊p⌋ commutators. Comparing the nor-
malisation of the formulae above with the Chern characters using the duplication
formula for the Gamma function, we find

Indexτ⊗tr2(PµûPµ) =
−1√
2πi

Ch
⌊p⌋
Fµ

(Ch⌊p⌋(û)),

as needed. �

Remark. When the parity of ⌊p⌋ does not agree with the parity of the spectral

triple, we apply the same proof to ⌊p⌋ + 1, and so use Ch
⌊p⌋+1
Fµ⊗Idn

to represent the

class of the Chern character.
Remark. An independent check of the sign can be made on the circle, using

the unitary u = eiθ and the Dirac operator 1
i

d
dθ . In this case Index(PuP ) = −1. To

arrive at this sign we have retained the usual definition of the Chern character and
introduced an additional minus sign in the normalisation. In [15] the signs used
are all correct, however in [17] we introduced an additional minus sign (in error)
in the formula for spectral flow. This disguised the fact that we were not taking a
homotopy to the Chern character (as defined above) but rather to minus the Chern
character. This is of some relevance, as our strategy for proving the local index
formula in the nonunital case is based on the homotopy arguments of [17].

2.7. Digression on the odd index pairing for nonunital algebras

To emphasise that the introduction of the double is only a technical device
to enable us to work with invertible operators, we explain a different approach to
handling the problem of constructing an involutive Fredholm module in the odd
case.

Assume that we have an odd Fredholm module (H, F ) over a nonunital C∗-
algebra A, with F 2 = 1. Then, as mentioned previously, it is straightforward to
check that with P = (1+F )/2 and u ∈ A∼ a unitary, the operator PuP is Fredholm
with parametrix Pu∗P (as operators on PH).
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Now we have constructed a doubled up version of a spectral triple (A,H2,Dµ),
and so obtained a Fredholm module (H2, Fµ) with F 2

µ = 1. By Lemma 2.10, this
Fredholm module represents the class of our spectral triple. In this brief digression
we show that the odd index pairing can be defined in terms of the original data
with no doubling.

So assume that we have a spectral triple (A,H,D). First we can decompose
P := χ[0,∞)(D) as the kernel projection P0 plus the positive spectral projection
P+. We will use P− for the negative spectral projection so that P− + P0 + P+ is
the identity of N . We let F = 2P − 1 and we want to prove that F can be used
to construct a Fredholm module for A that is in the same Kasparov class as that
given by Fε := D(ε+D2)−1/2. If we can show that [F, a] is compact for all a ∈ A
then we are done because the straight-line path Ft = tF + (1 − t)Fε provides a
homotopy of Kasparov modules. To prove compactness of the commutators we use
the method of [11].

Proposition 2.25. Let (A,H,D) be a semifinite spectral triple relative to
(N , τ) with A separable. With F = 2χ[0,∞)(D) − 1, the pair (H, F ) is a Fredholm
module for A and (F,CC) (with C the C∗-completion of the subalgebra of K(N , τ)
given in Definition 2.5) provides a bounded representative for the Kasparov class of
the spectral triple (A,H,D).

Proof. Our proof uses the doubled spectral triple (A,H2,Dµ). Let Pµ =
(1 + Fµ)/2 and use the notation Q for the operator obtained by taking the strong
limit limµ→0 Pµ as µ→ 0. We note that

Q =

(
P+ + 1

2P0
1
2P0

1
2P0 P− + 1

2P0

)
and Pµ =

(
A A1/2(1−A)1/2

A1/2(1−A)1/2 1−A

)
,

where A = 1
2

(
(µ2+D2)1/2+D

)
(µ2+D2)−1/2. Next a short calculation shows that

2Q− 1 =

(
F 0
0 −F

)
+

(
−P0 P0

P0 −P0

)
.

Recall that in the double spectral triple

a 7→ â =

(
a 0
0 0

)
, for all a ∈ A.

Thus to show that [F, a] is compact for all a ∈ A, it suffices to show that [Q, â]
is compact, since for any s > 0 we have P0a = P0(1 + D2)−sa and so both P0a
and aP0 are compact for all a ∈ A. This follows since a(1 + D2)−1/2 is compact.
Consider

[Pµ, â]− [Q, â] = [Pµ −Q, â],

and the individual matrix elements in (Pµ −Q)â for example. We have two terms
to deal with: the diagonal one

1
2

(
(µ2 +D2)1/2 +D − 2(P+ + 1

2P0)(µ
2 +D2)1/2

)
(µ2 +D2)−1/2a,

and the off-diagonal one

1
2µ(µ

2 +D2)−1/2a− 1
2P0a.

We have already observed that since we have a spectral triple, the off-diagonal
terms are compact. For the diagonal terms, we first observe that

(µ2 +D2)1/2 +D − 2(P+ + 1
2P0)(µ

2 +D2)1/2 = D − (2P − 1)(µ2 +D2)1/2 − P0µ,
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is a bounded operator. This follows from the functional calculus applied to the
function f(x) = x− sign(x)(µ2 + x2)1/2, where sign(0) is defined to be 1. This can
be checked for all µ in [0, 1]. This boundedness, together with the compactness of
(µ2 +D2)−1/2a, shows that

1
2

(
(µ2 +D2)1/2 +D − 2(P+ + 1

2P0)(µ
2 +D2)1/2

)
(µ2 +D2)−1/2a,

is compact for all µ ∈ [0, 1]. This establishes that [Q, â] is compact for all a ∈ A.
The second statement now follows immediately. �

Combining this with Proposition 2.13 proves the following result.

Corollary 2.26. Let (A,H,D) be an odd semifinite smoothly summable spec-
tral triple relative to (N , τ) with spectral dimension p ≥ 1 and with A separable. Let
u be a unitary in Mn(A∼) representing a class [u] in K1(A) and P = χ[0,∞)(D).
Then

〈[u], (A,H,D)〉 = Indexτ⊗trn

(
(P ⊗ Idn)u(P ⊗ Idn)

)
.



CHAPTER 3

The Local Index Formula for Semifinite Spectral

Triples

We have now come to the proof of the local index formula in noncommutative
geometry for semifinite smoothly summable spectral triples. This proof is modelled
on that in [17] in the unital case, which in turn was inspired by Higson’s proof
in [32].

We have opted to present the proof ‘almost in full’, though sometimes just
sketching the algebraic parts of the argument, referring to [17] for more details.
This means we have some repetition of material from [17] in order that the proof
be comprehensible. Due to the nonunital subtleties, we include detailed proofs of
the analytic statements, deferring the lengthier proofs to the Appendix so as not
to distract from the main argument.

In the unital case we constructed two (b, B)-cocycles, the resolvent and residue
cocycles. The proof in [17] shows that the residue cocycle is cohomologous to
the Chern character, while the resolvent cocycle is ‘almost’ cohomologous to the
Chern character, in a sense we make precise later. The aim now is to show that for
smoothly summable semifinite spectral triples:

1) the resolvent and residue cocycles are still defined as elements of the reduced
(b, B)-complex in the nonunital setting;

2) the homotopies from the Chern character to the resolvent and residue co-
cycles are still well-defined and continuous in the nonunital setting. In particular,
various intermediate cocycles must be shown to be well-defined and continuous.

3.1. The resolvent and residue cocycles and other cochains

In order to deal with the even and odd cases simultaneously, we need to intro-
duce some further notation to handle the differences in the formulae between the
two cases.

In the following, we fix (A,H,D), a semifinite, smoothly summable, spectral
triple, with spectral dimension p ≥ 1 and parity • ∈ {0, 1} (• = 0 for an even
spectral triple and • = 1 for odd triples). We will use the notation da := [D, a] for
commutators in order to save space. We further require that A, the norm closure
of A, be separable in order that we can apply the Kasparov product to define
the numerical index pairings given in Definition 2.12. Finally, we have seen in
Proposition 2.20 that we may assume, without loss of generality, that A is complete
in the δ-ϕ-topology.

We define a (partial) Z2-grading on OP∗, by declaring that |D| and the elements
ofA have degree zero, whileD has degree one. When the triple is even, this coincides
with the degree defined by the grading γ. When defined, we denote the grading
degree of an element T ∈ OP∗ by deg(T ). We also let M := 2⌊(p+ •+ 1)/2⌋ − •,

55
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the greatest integer of parity • in [0, p + 1]. In particular, M = p when p is an
integer of parity • and M = p + 1 if p is an integer of parity 1 − •. The grading
degree allows us to define the graded commutator of S, T ∈ OP∗ of definite grading
degree, by

[S, T ]± := ST − (−1)deg(S) deg(T )TS.

We will begin by defining the various cocycles and cochains we need on A⊗(m+1)

for appropriate m. In order to work in the reduced (b, B)-bicomplex for A∼, we
will need to extend the definitions of all these cochains to A∼⊗A⊗m. We will carry
out this extension in the next Section.

3.1.1. The residue cocycle. In order to define the residue cocycle, we need
a condition on the singularities of zeta functions constructed from D and A.

Definition 3.1. Let (A,H,D) be a smoothly summable spectral triple of spec-
tral dimension p. We say that the spectral dimension is isolated, if for any element
b ∈ N , of the form1

b = a0 da
(k1)
1 . . . da(km)

m (1 +D2)−|k|−m/2, a0, . . . , am ∈ A,
with k ∈ Nm

0 a multi-index and |k| = k1 + · · ·+ km, then the zeta function

ζb(z) := τ
(
b(1 +D2)−z),

has an analytic continuation to a deleted neighbourhood of z = 0. In this case, we
define the numbers

τj(b) := resz=0 zj ζb(z), j ∈ {−1} ∪ N0.(3.1)

Remark. The isolated spectral dimension condition is implied by the much
stronger notion of discrete dimension spectrum, [25]. We say that a smoothly
summable spectral triple (A,H,D), has discrete dimension spectrum Sd ⊂ C, if
Sd is a discrete set and for all b in the polynomial algebra generated by δk(a) and
δk(da), with a ∈ A and k ∈ N0, the function ζb(z) is defined and holomorphic for
ℜ(z) large, and analytically continues to C \ Sd.

For a multi-index k ∈ Nm
0 , we define

α(k)−1 := k1! . . . km!(k1 + 1)(k1 + k2 + 2) . . . (|k|+m),(3.2)

and we let σn,l be the non-negative rational numbers defined by the identities

n−1∏

j=0

(z + j + 1
2 ) =

n∑

j=0

zj σn,j , when • = 1,

n−1∏

j=0

(z + j) =

n∑

j=1

zjσn,j , when • = 0.(3.3)

Definition 3.2. Assume that (A,H,D) is a semifinite smoothly summable
spectral triple with isolated spectral dimension p ≥ 1. For m = •, • + 2, . . . ,M ,
with τj defined in Definition 3.1, and for a multi-index k setting h = |k|+(m−•)/2,
the m-th component of the residue cocycle φm : A⊗A⊗m → C is defined by

φ0(a0) = τ−1(a0),

1Recall T (n) = [D2, T (n−1)]; see equation (1.10).
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and for m = 1, . . . ,M

φm(a0, . . . , am) =

(
√
2iπ)•

M−m∑

|k|=0

(−1)|k|α(k)

h∑

j=1−•

σh,j τj−1+•

(
γa0 da

(k1)
1 . . . da(km)

m (1 +D2)−|k|−m/2
)
,

with α(k) given in Equation (3.2).

3.2. The resolvent cocycle and variations

In this Section, we do not assume that our spectral triple (A,H,D) has isolated
spectral dimension, however several of the cochains defined here require invertibility
of D. The issue of invertibility will be discussed in the next Section, and we will
show in Section 3.8 how this assumption is removed.

For the invertibility we assume that there exists µ > 0 such that D2 ≥ µ2. For
such an invertible D, we may define

Du := D|D|−u for u ∈ [0, 1], and for a ∈ A, du(a) := [Du, a].

Thus D0 = D and D1 = F . Note that du maps A to OP0
0. This follows from

the estimates given in the proof of Lemma 1.38 with |D| instead of (1 + D2)1/2

when D is invertible. Note also that the family of derivations {du, u ∈ [0, 1]},
interpolates between the two natural notions of differential in quantised calculus,
that is d0a = da = [D, a] and d1a = [F, a]. We also set

Ḋu := −Du log |D|,
the formal derivative of Du with respect to the parameter u ∈ [0, 1]. We define the
shorthand notations

Rs,t,u(λ) := (λ− (t+ s2 +D2
u))

−1,(3.4)

Rs,t(λ) := Rs,t,0(λ), Rs,u(λ) := Rs,0,u(λ), Rs(λ) := Rs,1,0(λ).

The range of the parameters is λ ∈ C, with 0 < ℜ(λ) < µ2/2, s ∈ [0,∞), and
t, u ∈ [0, 1]. Recall that for a multi-index k ∈ Nm, we set |k| := k1 + · · ·+ km.

The parameters s, λ constitute an essential part of the definition of

our cocycles, while the parameters t, u will be the parameters of homo-

topies which will eventually take us from the resolvent cocycle to the

Chern character.

Next we have the analogue of [15, Lemma 7.2]. This is the lemma which
will permit us to demonstrate that the resolvent cococyle introduced below is well
defined. We refer to the Appendix, Section A.2.1, for the proof of this important
but technical result.

Lemma 3.3. Let ℓ be the vertical line {a+ iv : v ∈ R} for some a ∈ (0, µ2/2).

Also let Aj ∈ OPkj , j = 1, . . . ,m and A0 ∈ OPk0
0 . For s > 0, r ∈ C and t ∈ [0, 1],

the operator-valued function2

Br,t(s) =
1

2πi

∫

ℓ

λ−p/2−rA0Rs,t(λ)A1Rs,t(λ) . . . Rs,t(λ)AmRs,t(λ) dλ,

is trace class valued for ℜ(r) > −m + |k|/2 > 0. Moreover, the function [s 7→
sα ‖Br,t(s)‖1], α > 0, is integrable on [0,∞) when ℜ(r) > −m+ (|k|+ α+ 1)/2.

2we define λ−r using the principal branch of log.
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Remark. In Corollary 3.11, we will generalize this result to the case where

any one of the Aj ’s belongs to OP
kj

0 . From Lemma 3.3 and Corollary 3.11, it
follows that the expectations and cochains introduced below are well-defined, for
ℜ(r) sufficiently large, whenever one of its entries belongs to OPk

0 .

Definition 3.4. For a ∈ (0, µ2/2), let ℓ be the vertical line ℓ = {a+iv : v ∈ R}.
Given m ∈ N, s ∈ R+, r ∈ C and operators Aj ∈ OPkj , j = 0, . . . ,m, with

A0 ∈ OPk0
0 , such that |k| − 2m < 2ℜ(r), we define

〈A0, . . . , Am〉m,r,s,t :=
1

2πi
τ
(
γ

∫

ℓ

λ−p/2−rA0Rs,t(λ) . . . AmRs,t(λ) dλ
)
.(3.5)

Here γ is the Z2-grading in the even case and the identity operator in the odd
case. When |k| − 2m− 1 < 2ℜ(r) and when the operators Aj have definite grading

degree, we use the fact that D ∈ OP1 to allow us to define

〈〈A0, . . . , Am〉〉m,r,s,t

:=
m∑

j=0

(−1)deg(Aj)〈A0, . . . , Aj ,D, Aj+1, . . . , Am〉m+1,r,s,t.(3.6)

We now state the definition of the resolvent cocycle in terms of the expectations
〈·, . . . , ·〉m,r,s,t.

Definition 3.5. For m = •, •+ 2, . . . ,M , we introduce the constants ηm by

ηm =
(
−
√
2i
)•

2m+1Γ(m/2 + 1)

Γ(m+ 1)
.

Then for t ∈ [0, 1] and ℜ(r) > (1 −m)/2, the m-th component of the resolvent

cocycles φrm, φ
r
m,t : A⊗A⊗m → C are defined by φrm := φrm,1 and

φrm,t(a0, . . . , am) := ηm

∫ ∞

0

sm〈a0, da1, . . . , dam〉m,r,s,t ds,(3.7)

Remark. It is important to note that the resolvent cocycle φrm is well defined
even when D is not invertible.

Our proof of the local index formula involves constructing cohomologies and
homotopies in the reduced (b, B)-bicomplex. This involves the use of ‘transgression’
cochains, as well as some other auxiliary cochains. The transgression cochains Φr

m,t

and auxiliary cochains BΦr
M+1,0,u, Ψ

r
M,u (see below) are defined similarly to the

resolvent cochains. However, the cochains Φr
m,t are of the opposite parity to φrm.

Thus, if we have an even spectral triple, we will only have Φr
m,t with m odd.

Definition 3.6. For t ∈ [0, 1], r ∈ C with ℜ(r) > (1 − m)/2 and with D
invertible, them-th component,m = 1−•, 1−•+2, . . . ,M+1, of the transgression
cochains Φr

m,t : A⊗A⊗m → C are defined by

Φr
m,t(a0, . . . , am) := ηm+1

∫ ∞

0

sm+1〈〈a0, da1, . . . , dam〉〉m,r,s,t ds.(3.8)

By specialising the parameter t to t = 1, we define Φr
m := Φr

m,1.

Finally we need to consider BΦr
M+1,0,u and another auxiliary cochain Ψr

M,u

for u 6= 0. We define Ψr
M,u below, and the definition of BΦr

M+1,0,u is the same as

BΦr
M+1,0 with every appearance of D replaced by Du := D|D|−u, including in the

resolvents.
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To show that these cochains are well-defined when u 6= 0 requires additional
argument beyond power counting and Lemma 3.3. We outline the argument briefly,
beginning with the case p ≥ 2. We start from the identity for a ∈ A,

du(a) = [Du, a] = [F |D|1−u, a] = F [|D|1−u, a] +
(
da− Fδ(a)

)
|D|−u,

and we note that da−Fδ(a) ∈ OP0
0. Applying the second part of Lemma 1.38 and

Lemma 1.37 now shows that du(a) ∈ Lq(N , τ) for all q > p/u. Next, we find that

Rs,u(λ) = (λ− s2 −D2
u)

−1 = |D|−2(1−u)D2
u(λ− s2 −D2

u)
−1 =: |D|−2(1−u)B(u),

where B(u) is uniformly bounded. Then Lemma 1.37 and the Hölder inequality
show that du(ai)Rs,u(λ) ∈ Lq(N , τ) for all q with (2 − u)q > p ≥ 2 and i =

0, 1, . . . , j, j + 2, . . . ,M − 1,M , while Rs,u(λ)
1/2 du(aj+1)Rs,u(λ) ∈ Lq(N , τ) for

all q satisfying (3 − 2u)q > p ≥ 2. An application of the Hölder inequality now
shows that BΦr

M+1,0,u is well-defined. To see that Ψr
M,u is well-defined requires

the arguments above, as well as Lemma 1.38 to deal with the extra log(|D|) factor
appearing in Ḋu. More details can be found in the proof of Lemma 3.26 in Section
A.2.4. For 2 > p ≥ 1 the algebra is a little more complicated, and we again refer
to the proof of Lemma 3.26 in Section A.2.4 for more details.

Definition 3.7. For t ∈ [0, 1], r ∈ C with ℜ(r) > (1 − M)/2 and with D
invertible, the auxiliary cochain Ψr

M,u : A⊗A⊗M → C is defined by

Ψr
M,u(a0, . . . , aM ) := −ηM

2

∫ ∞

0

sM 〈〈a0Ḋu, du(a1), . . . , du(aM )〉〉M,r,s,0 ds,(3.9)

where the expectation uses the resolvent Rs,t,u(λ) for Du.

These are all the cochains that will appear in our homotopy arguments con-
necting the resolvent and residue cocycles to the Chern character. However, we
still need to ensure that we can extend all these cochains to A∼ ⊗A⊗m, in such a
way that we obtain reduced cochains. This extension must also allow us to remove
the invertibility assumption on D when we reach the end of the argument. We deal
with these two related issues next.

3.3. The double construction, invertibility and reduced cochains

The cochains φrm,t, BΦr
m,t,u and Ψr

M,u require the invertibility of D for u 6= 0
and t = 0. Thus we will need to assume the invertibility of D for the main part of
our proof, and show how to remove the assumption at the end.

More importantly, we need to know that all our cochains and cocycles lie in the
reduced (b, B)-bicomplex. The good news is that the same mechanism we employ
to deal with invertibility also ensures that our homotopy to the Chern character
takes place within the reduced bicomplex.

The mechanism we employ is the double spectral triple (A,H2,Dµ, γ̂) (see
Definition 2.9), with invertible operator Dµ. We know that this spectral triple
defines the same index pairing with K∗(A) as (A,H,D, γ). Now we show how
the various cochains associated to the double spectral triple extend naturally to
A∼ ⊗A⊗m. Recall that this is really only an issue when m = 0, and in particular
does not affect any odd cochains.

To distinguish the residue and resolvent cocycles associated with the double
spectral triple (A,H2,Dµ, γ̂), we use for them the notations φµ,m, φrµ,m, and simi-
larly for the other cochains.
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Let OP0
0 be the C∗-closure of OP0

0 (defined using the operator Dµ!), and let

{ψλ}λ∈Λ ⊂ OP0
0 be a net forming an approximate unit for OP0

0. Such an approxi-
mate unit always exists by the density of OP0

0. In terms of the two-by-two matrix
picture of our doubled spectral triple, we can suppose that there is an approxi-

mate unit {ψ̃λ}λ∈Λ for the OP0
0 algebra defined by D (rather than Dµ) such that

ψλ = ψ̃λ ⊗ Id2. Then we define for m > 0 and c0, c1, . . . , cm ∈ C

φµ,m(a0 + c0IdA∼ , a1 + c1IdA∼ , . . . , am + cmIdA∼)

:= φµ,m(a0 + c0, a1, . . . , am).(3.10)

This makes sense as the residue cocycle is already normalised. For m > 0 this
is well-defined since [Dµ, â1]

(k1) . . . [Dµ, âm](km)(1 + D2
µ)

−|k|/2 ∈ OP0
0, by Lemma

1.33. Then by definition of isolated spectral dimension, we see that for m > 0 the
components of the residue cocycle take finite values on A∼⊗A⊗m. For m = • = 0,
we define

φµ,0(1A∼) := lim
λ→∞

resz=0
1

z
τ ⊗ tr2

(
γψ̃λ(1 + µ2 +D2)−z 0

0 −γψ̃λ(1 + µ2 +D2)−z

)

= 0.

Thus this extension of the residue cocycle for Dµ defines a reduced cochain for A.
The resolvent cochains φrµ,m, m = •, •+2, . . . , are normalised cochains by def-

inition. We extend all of these cochains to A∼⊗A⊗m just as we did for the residue
cocycle in Equation (3.10). The resulting cochains are then reduced cochains. For
Ψr

µ,M,u and BΦr
µ,M+1,0,u there is no issue since M ≥ 1 in all cases.

For Φr
µ,m,t the situation is different as we will employ an even version of Φ

when • = 1, and so there is no grading. However, when m = 0 we can perform
the Cauchy integral in the definition of Φr

µ,0,t, and so we obtain for ℜ(r) > 1/2 a
constant C such that

Φr
µ,0,t(1A∼) =

lim
λ→∞

C

∫ ∞

0

s τ ⊗ tr2

((
ψ̃λ 0

0 ψ̃λ

)(
D µ
µ −D

))
(t+ µ2 + s2 +D2)−p/2−r ds = 0.

These arguments prove the following:

Lemma 3.8. Let t ∈ [0, 1] and r ∈ C. Provided ℜ(r) > (1 −m)/2, the compo-
nents of the residue (φµ,m)m=•,•+2,...,M , the resolvent cochain (φrµ,m,t)m=•,•+2,...,M ,
the transgression cochain (Φr

µ,m,t)m=1−•,1−•+2,...,M+1 and the auxiliary cochains

Ψr
µ,M,u and BΦr

µ,M+1,0,u are finite on A∼ ⊗ A⊗m and, moreover, define cochains

in the reduced (b, B)-bicomplex for A∼.

Thus all the relevant cochains defined using the double live in the reduced
bicomplex for A∼, and Dµ is invertible. For the central part of our proof, from
Section 3.4 until the beginning of Section 3.8, we shall simply assume that our
smoothly summable spectral triple (A,H,D) has D invertible with D2 ≥ µ2 > 0.
In Section 3.8 we will complete the proof by relating cocycles for the double, for
which our arguments are valid, to cocycles for our original spectral triple.
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3.4. Algebraic properties of the expectations

Here we develop some of the properties of the expectations given in Definition
3.4. These properties are the same as those stated in [17], but some of the proofs
require extra care in the nonunital setting.

We refer to the following two lemmas as the s-trick and the λ-trick, respectively.
Their proofs are given in the Appendix, Sections A.2.2 and A.2.3 respectively. Both
the s-trick and the λ-trick provide a way of integrating by parts. Unfortunately,
justifying these tricks is somewhat technical.

Formally, the s-trick follows by integrating d
ds (s

α〈·, . . . , ·〉m,r,s,t) and using the
fundamental Theorem of calculus.

Lemma 3.9. Let m ∈ N, α > 0, t ∈ [0, 1] and let r ∈ C be such that 2ℜ(r) >
1 + α+ |k| − 2m. Also let Aj ∈ OPkj , j = 1, . . . ,m and A0 ∈ OPk0

0 . Then

α

∫ ∞

0

sα−1〈A0, . . . , Am〉m,r,s,t ds =

− 2

m∑

j=0

∫ ∞

0

sα+1〈A0, . . . , Aj , IdN , Aj+1, . . . , Am〉m+1,r,s,t ds,

and if 2ℜ(r) > α+ |k| − 2m then

α

∫ ∞

0

sα−1〈〈A0, . . . , Am〉〉m,r,s,t ds =

− 2

m∑

j=0

∫ ∞

0

sα+1〈〈A0, . . . , Aj , IdN , Aj+1, . . . , Am〉〉m+1,r,s,t ds.

Differentiating the λ-parameter under the Cauchy integral, we obtain in a sim-
ilar manner:

Lemma 3.10. Let m ∈ N, α > 0, t ∈ [0, 1], s > 0 and r ∈ C such that

2ℜ(r) > |k| − 2m. Let also Aj ∈ OPkj , j = 1, . . . ,m and A0 ∈ OPk0
0 . Then

−(p/2 + r)〈A0, . . . , Am〉m,r+1,s,t =

m∑

j=0

〈A0, . . . , Aj , IdN , Aj+1, . . . , Am〉m+1,r,s,t,

and if 2ℜ(r) > |k| − 2m− 1, then

−(p/2 + r)〈〈A0, . . . , Am〉〉m,r+1,s,t =
m∑

j=0

〈〈A0, . . . , Aj , IdN , Aj+1, . . . , Am〉〉m+1,r,s,t.

Corollary 3.11. Let Aj ∈ OPkj , j = 0, . . . ,m, have definite grading degree,

and suppose that there exists j0 ∈ {0, . . . ,m} with Aj0 ∈ OP
kj0
0 . Then, for ℜ(r)

sufficiently large and with 1− • the anti-parity, the signed expectations

(−1)(1−•)
∑m

k=j deg(Ak)〈Aj , Aj+1, . . . , A0, . . . , Am, . . . , Aj−1〉m,r,s,t, j = 0, . . . ,m,

are all finite and coincide, and similarly for the expectations (3.6). In particular,

Lemmas 3.3, 3.9 and 3.10 remain valid if one assumes that Aj0 ∈ OP
kj0
0 , for any

j0 ∈ {0, . . . ,m}.
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Proof. Formally, the proof is to integrate by parts until the integrand is trace-
class, and then apply cyclicity of the trace. To make such a formal argument
rigorous, we employ the λ-trick. We assume first A0 ∈ OPk0

0 . From the same
reasoning as at the beginning of the proof of Lemma 3.3, one can further assume
that Am ∈ OP0, at the price that Am−1 will be in OPkm−1+km . Then, we repeat
the λ-trick (Lemma 3.10) until the integrand of

〈A0, 1, . . . , 1, A2, 1, . . . , 1, Am, 1, . . . , 1〉M+1,r,s,t,

is trace class. We then move the bounded (by [15, Lemma 6.10], see the Appendix
Lemma A.2) operator R−kAmR

k (k is the number of resolvents on the right of Am)
to the front, using the trace property. This gives after recombination

〈A0, . . . , Am〉m,r,s,t = (−1)(1−•) deg(Am)〈Am, A0, . . . , Am−1〉m,r,s,t.

The sign comes from the relation Amγ = (−1)(1−•) deg(Am)γAm. One concludes
iteratively. The proof for the expectations (3.6) is entirely similar. �

We quote several results from [17] which carry over to our setting with no
substantial change in their proofs.

Lemma 3.12. Let m ≥ 0, Aj ∈ OPkj , j = 0, . . . ,m, with definite grading
degree and with |k|−2m−1 < 2ℜ(r), and suppose there exists j0 ∈ {0, . . . ,m} with

Aj0 ∈ OP
kj0
0 . Then for 1 ≤ j < m we have

〈A0, . . . , Aj−1, [D2, Aj ], Aj+1, . . . , Am〉m,r,s,t =

− 〈A0, . . . , Aj−2, Aj−1Aj , Aj+1, . . . , Am〉m−1,r,s,t

+ 〈A0, . . . , Aj−1, AjAj+1, Aj+2, . . . , Am〉m−1,r,s,t,

while for j = m we have

〈A0, . . . , Am−1, [D2, Am]〉m,r,s,t =

− 〈A0, . . . , Am−2, Am−1Am〉m−1,r,s,t

+ (−1)(1−•) deg(Am)〈AmA0, A1, . . . , Am−1〉m−1,r,s,t.

For k ≥ 1 we have
∫ ∞

0

sk〈DA0, A1, . . . , Am〉m,r,s,tds =

(−1)1−•

∫ ∞

0

sk〈A0, A1, . . . , AmD〉m,r,s,tds.(3.11)

If furthermore
∑m

j=0 deg(Aj) ≡ 1− • (mod 2), we define

deg−1 = 0 and degk = deg(A0) + deg(A1) + · · ·+ deg(Ak),

then

(3.12)

m∑

j=0

(−1)degj−1

∫ ∞

0

sk〈A0, . . . , Aj−1, [D, Aj ]±, Aj+1 . . . , Am〉m,r,s,tds = 0.

Lemma 3.13. Let m ≥ 0, Aj ∈ OPkj , j = 0, . . . ,m, with definite grading
degree and with |k|−2m−2 < 2ℜ(r), and suppose there exists j0 ∈ {0, . . . ,m} with
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Aj0 ∈ OP
kj0
0 . Then for 1 ≤ j < m we have the identity

〈〈A0, . . . , Aj−1, [D2, Aj ], Aj+1, . . . , Am〉〉m,r,s,t =

− (−1)degj−1〈A0, . . . , Aj−1, [D, Aj ]±, Aj+1, . . . , Am〉m,r,s,t

− 〈〈A0, . . . , Aj−2, Aj−1Aj , Aj+1 . . . , Am〉〉m−1,r,s,t

+ 〈〈A0, . . . , Aj−1, AjAj+1, Aj+2 . . . , Am〉〉m−1,r,s,t.(3.13)

For j = m we also have

〈〈A0, . . . , Am−1, [D2, Am]〉〉m,r,s,t =

− (−1)degm−1〈A0, . . . , Am−1, [D, Am]±〉m,r,s,t

− 〈〈A0, . . . , Am−2, Am−1Am〉〉m−1,r,s,t

+ (−1)•deg(Am)〈〈AmA0, A1, . . . , Am−1〉〉m−1,r,s,t.

If
∑m

j=0 deg(Aj) ≡ • (mod 2) and α ≥ 1, then we also have

m∑

j=0

(−1)degj−1

∫ ∞

0

sα〈〈A0, . . . , Aj−1, [D, Aj ]±, Aj+1, . . . , Am〉〉m,r,s,tds =

2
m∑

j=0

∫ ∞

0

sα〈A0, . . . , Aj ,D2, Aj+1, . . . , Am〉m+1,r,s,tds.(3.14)

On the other hand, if
∑m

j=0 deg(Aj) ≡ 1 − • (mod 2) and α ≥ 1 then 〈〈. . . 〉〉
satisfies the cyclic property
∫ ∞

0

sα〈〈A0, . . . , Am〉〉m,r,s,tds = (−1)• deg(Am)

∫ ∞

0

sα〈〈Am, A0, . . . , Am−1〉〉m,r,s,tds.

From these various algebraic identities andD2Rs,t(λ) = −1+(λ−(t+s2))Rs,t(λ)
we deduce the following important relationship between powers of D and the values
of our parameters.

Lemma 3.14. Let m,α ≥ 0, Aj ∈ OPkj , j = 1, . . . ,m, with definite grading
degree, r ∈ C be such that 2ℜ(r) > 1 + α − 2m + |k|, and suppose there exists

j0 ∈ {0, . . . ,m} with Aj0 ∈ OP
kj0
0 . Then

m∑

j=0

∫ ∞

0

sα〈A0, . . . , Aj ,D2, Aj+1, . . . , Am〉m+1,r,s,tds =

− (m+ 1)

∫ ∞

0

sα〈A0, . . . , Am〉m,r,s,tds

+ (1− p/2− r)

∫ ∞

0

sα〈A0, . . . , Am〉m,r,s,tds

+
(α+ 1)

2

∫ ∞

0

sα〈A0, . . . , Am〉m,r,s,tds

− t

m∑

j=0

∫ ∞

0

sα〈A0, . . . , Aj , 1, Aj+1, . . . , Am〉m+1,r,s,tds.
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3.5. Continuity of the resolvent cochain

In this Section, we demonstrate the continuity, differentiability and holomorphy
properties, allowing us to prove that the resolvent cocycle represents the Chern
character.

Definition 3.15. Let Om be the set of holomorphic functions on the open half-
plane {z ∈ C : ℜ(z) > (1 −m)/2}. We endow Om with the topology of uniform
convergence on compact sets.

Lemma 3.16. Let m = •, • + 2, . . . ,M and t ∈ [0, 1]. For A0, . . . , Am ∈ OP0

such that there exists j ∈ {0, . . . ,m} with Aj ∈ OP0
0, both the functions

[
r 7→

∫ ∞

0

sm〈A0, . . . , Am〉m,r,s,t ds
]
,
[
r 7→

∫ ∞

0

sm+1〈〈A0, . . . , Am〉〉m,r,s,t ds
]
,

are elements of Om.

Proof. We prove a stronger result, namely that the operator-valued function

2πiBr,t(s, ε) =∫

ℓ

λ−p/2−r
(
ε−1(λ−ε − 1) + log λ

)
A0Rs,t(λ)A1Rs,t(λ) . . . Rs,t(λ)AmRs,t(λ) dλ,

satisfies limε→0

∫∞

0
sm‖Br,t(s, ε)‖1ds = 0, whenever ℜ(r) > (1 −m)/2. (Here ℓ is

the vertical line ℓ = {a + iv : v ∈ R} with 0 < a < µ2/2 and µ ∈ (0,∞) is such
that D2 ≥ µ2.) By Corollary 3.11, we can assume that A0 ∈ OP0

0. The proof then
follows by a minor modification of the arguments of the proof of Lemma 3.3 (see
the Appendix Section A.2.1), so that we only outline it. (We use the shorthand
notation R := Rs,t(λ).) We start by writing for any L ∈ N, using Lemma A.3
(see [15, Lemma 6.11])

A0RA1R . . . RAmR =
L∑

|n|=0

C(n)A0A
(n1)
1 . . . A(nm)

m Rm+|n|+1 +A0 PL,m,

with PL,m ∈ OP−2m−L−3. The conclusion for the remainder term follows then from
the estimate ∣∣∣λ−p/2−r

(
ε−1(λ−ε − 1) + log(λ)

)∣∣∣ ≤ C |ε| |λ|−p/2−ℜ(r),

together with the same techniques as those used in the proof of Lemma 3.3. A more
detailed account can be found in [15, Lemma 7.4]. For the non-remainder terms,
we perform the Cauchy integrals

1

2πi

∫

ℓ

λ−p/2−r
(
ε−1(λ−ε − 1) + log λ

)
A0A

(n1)
1 . . . A(nm)

m Rm+1+|n|dλ =

(−1)m+|n|Γ(p/2 + r +m+ |n|)
Γ(p/2 + r)

A0A
(n1)
1 . . . A(nm)

m (t+ s2 +D2)−p/2−r−m−|n|

×
(
ε−1((t+ s2 +D2)−ε − 1) + log

(
t+ s2 +D2)

)

+

m+|n|−1∑

k=0

(
m+ |n|

k

)
(−1)m+|n|Γ(p/2 + r + k)

Γ(p/2 + r)
A0A

(n1)
1 . . . A(nm)

m

×(t+ s2 +D2)−p/2−r−m−|n|
(Γ(ε+m+ |n|−k)

Γ(ε+ 1)
(t+ s2 +D2)−ε−Γ(m+ |n|−k)

)
.
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Let ρ > 0 such that ℜ(z) > (1−m)/2+ ρ. Call Tk(s) the terms with no logarithm.
Using the estimates of Lemma 3.3 and

(t+ s2 +D2)−ρ
(
(t+ s2 +D2)−ε − 1

)
→ 0 as ε→ 0,

in norm, we see that limε→0

∫∞

0
sm ‖Tk(s)‖1 ds = 0. For the first term (with a

logarithm), one concludes using the fact that for any ρ > 0
∥∥∥∥(t+ s2 +D2)−ρ

(
(t+ s2 +D2)−ε − 1

ε
+ log

(
t+ s2 +D2)

)∥∥∥∥ ≤ C ε,

where the constant C is independent of s (and of t). �

We finally arrive at the main result of this Section.

Proposition 3.17. Let m = •, • + 2, . . . ,M for the resolvent cocycle, and
m = 1 − •, 1 − • + 2, . . . ,M + 1 for the transgression cochain. Also let t ∈ [0, 1].
Then the maps

a0⊗· · ·⊗am 7→
[
r 7→ φrm,t(a0, . . . , am)

]
, a0⊗· · ·⊗am 7→

[
r 7→ Φr

m,t(a0, . . . , am)
]
,

are continuous multilinear maps from A⊗A⊗m to Om.

Proof. We only give the proof for the resolvent cocycle, the case of the trans-
gression cochain being similar. So let us first fix r ∈ C with ℜ(r) > (1−m)/2. Since
Lemma 3.8 ensures that our functionals are finite for these values of r, all that we
need to do is to improve the estimates of Lemma 3.3 to prove continuity. We do this
using the s- and λ-tricks. We recall that we have defined M = 2⌊(p+ •+1)/2⌋− •
(which is the biggest integer of parity • less than or equal to p + 1). By applying
successively the s- and λ-tricks (which commute) (M −m)/2 times, we obtain

φrm,t(a0, . . ., am) = 2(M−m)/2(M − n)!

(M−m)/2∏

j1=1

1

p/2 + r − j1

(M−m)/2∏

j2=1

1

m+ j2

×
∑

|k|=M−m

∫ ∞

0

sM 〈a0, 1k0 , da1, 1
k1 , . . . , dam, 1

km〉M,r−(M−m)/2,s,tds,(3.15)

where 1ki = 1, 1, . . . , 1 with ki entries. Since M ≤ p + 1, the poles associated to
the prefactors are outside the region {z ∈ C : ℜ(z) > (1 − m)/2}. Ignoring the
prefactors, setting ni = ki +1 and R := Rs,t(λ), we need to deal with the integrals
∫ ∞

0

sMτ
(
γ

∫

ℓ

λ−p/2−r−(M−m)/2a0R
n0da1R

n1 . . . damR
nmdλ

)
ds, |n| =M + 1,

where ℓ is the vertical line ℓ = {a + iv : v ∈ R} with a ∈ (0, µ2/2) and µ ∈ (0,∞)
is such that D2 ≥ µ2. Let pj := (M + 1)/nj , so that

∑m
j=0 p

−1
j = 1. The Hölder

inequality gives

‖a0Rn0da1R
n1 . . . damR

nm‖1 ≤ ‖a0Rn0‖p0
‖da1Rn1‖p1

. . . ‖damRnm‖pm
.

By Lemma 1.39, we obtain for ε > 0, and with A0 = a0, Aj = daj , j = 1, . . . ,m,

‖AjR
nj‖pj≤‖Aj(D2 − µ2/2)

−( p
pj

+ ε
m+1 )/2‖pj ((s

2 + a)2 + v2)
−

nj
2 +( p

pj
+ ε

m+1 )/4.

Since
∑m

j=0 nj =M + 1, this gives

‖a0Rn0da1R
n1 . . . damR

nm‖1 ≤ C(a0, . . . , am) ((s2 + a)2 + v2)−(M+1)/2+(p+ε)/4,
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which is enough to show the absolute convergence of the iterated integrals (see [15,
Lemma 5.4]). Now observe that the constant C(a0, . . . , am) above, is equal to

‖a0(D2 − µ2/2)−(p/p0+ε/(m+1))/2‖p0
. . . ‖dam(D2 − µ2/2)−(p/pm+ε/(m+1))/2‖pm

.

Note also that the explicit interpolation inequality of Lemma 1.37 reads

‖A(D2 −µ2/2)−α/2‖q ≤ ‖A(D2 −µ2/2)−αq/2‖1/q1 ‖A‖1−1/q, A ∈ OP0
0, q > p/α,

and the latter is bounded by Pn,k(A) for n = ⌊(αq − p)−1⌋ and k = 3⌊αq/4⌋ + 1,
by a simultaneous application of Lemma 1.26 and Corollary 1.30. Thus, with the
same notations as above, we find for j 6= 0 and some constant C > 0

‖daj(D2−µ2/2)−(p/pj+ε/(m+1))/4‖pj

≤ ‖daj(D2 − µ2/2)−(p+pjε/(m+1))/4‖1/pj

2 ‖daj‖1−1/pj ≤ C Pn,k(daj),

for suitable n, k ∈ N. For j = 0 we have a similar but easier calculation. This
proves the joint continuity of the resolvent cocycle for the δ-ϕ-topology.

The proof that the map r 7→ φrm,t(a0, . . . , am) is holomorphic in the region
ℜ(r) > (1−m)/2 follows from Lemma 3.16. �

Proposition 3.18. For each m = •, •+ 2, . . . ,M , the map

[0, 1] ∋ t 7→
[
r 7→ φrm,t

]
∈ Hom(A⊗(m+1),Om),

is continuously differentiable and

d

dt

[
t 7→

[
r 7→ φrm,t

]]
=
[
t 7→

[
r 7→ −(p/2 + r)φr+1

m,t

]]
.

Proof. We do the case m < M where we must use some initial trickery
to reduce to a computable situation. For m = M such tricks are not needed.
We proceed as in the proof of Proposition 3.17, applying the s- and λ- tricks to
obtain (3.15). Keeping the same notations as in the cited proposition, in particular
pj = (M + 1)/nj , j = 0, . . . ,m, and ignoring the prefactors, we are left with the
integrals

∫ ∞

0

sMτ
(
γ

∫

ℓ

λ−p/2−r−(M−m)/2a0R
n0
s,t da1R

n1
s,t . . . damRnm

s,t dλ
)
ds.

(Here ℓ is the vertical line ℓ = {a + iv : v ∈ R} with 0 < a < µ2/2.) Now each
integrand is not only trace class, but also t-differentiable in trace norm. This is
a consequence of the product rule, Hölder’s inequality and the following argument
showing the Schatten norm differentiability of ARn

s,t for A ∈ OP0
0. By adding and

substracting suitable terms, the resolvent identity gives

A
(
ε−1(Rn

s,t+ε −Rn
s,t) + nRn+1

s,t

)
= nARn

s,t

(
Rs,t −

1

n

n∑

k=1

R−k+1
s,t Rk

s,t+ε

)
.

The term in brackets on the right hand side converges to zero in operator norm
since R−k+1

s,t Rk−1
s,t+ε is uniformly bounded. Thus as ε→ 0, and for suitable q ≥ 1,

‖A
(
ε−1(Rn

s,t+ε −Rn
s,t) + nRn+1

s,t

)
‖q ≤ ‖nARn

s,t‖q
∥∥∥Rs,t−

1

n

n∑

k=1

R−k+1
s,t Rk

s,t+ε

∥∥∥→ 0.

Choosing A = a0 or A = daj and q = p0 or q = pj respectively proves the
differentiability of each term ARn

s,t in the integrand in the appropriate q-norm,
and so an application of Hölder’s inequality completes the proof of trace norm
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differentiability. The existence of the integrals can now be deduced from the formula
for the derivative of the integrand and Lemma 3.3. This proves differentiability,
and so the t-derivative of φrm,t(a0, . . . , am) exists and (reinstating the prefactors)
equals

ηm2
M−m

2 (M −m)!

(M−m)
2∏

b=1

1

p/2 + r − b

(M−m)
2∏

j=1

1

m+ j

∑

|k|=M−m

m∑

j=0

×
∫ ∞

0

sM (kj + 1)〈a0, 1k0 , . . . , daj , 1
kj+1, . . . , dam, 1

km〉M+1,r−(M−m)/2,s,tds.

Now undoing our applications of the s-trick and the λ-trick gives

d

dt
φrm,t(a0, . . . , am) = ηm

m∑

j=0

∫ ∞

0

sm〈a0, . . . , daj , 1, daj+1, . . . , dam〉m+1,r,s,tds,

and a final application of the λ-trick yields our final formula,

d

dt
φrm,t(a0, . . . , am) = −(p/2 + r)φr+1

m,t (a0, . . . , am).

We note that by our estimates the convergence is uniform in r, for r in a compact
subset of a suitable right half-plane. �

3.6. Cocyclicity of the resolvent and residue cocycles

We start by explaining why the resolvent cocycle is is indeed a (b, B)-cocycle.

Proposition 3.19. Provided ℜ(r) > 1/2, there exists δ ∈ (0, 1) such that the
resolvent cochain (φrm,t)

M
m=• is a reduced (b, B)-cocycle of parity • ∈ {0, 1} for A,

modulo functions holomorphic in the half plane ℜ(r) > (1− p)/2− δ.

Proof. Since (φrm,t)
M
m=• is a reduced cochain, the proof of the first claim will

follow from the same algebraic arguments as in [15, Proposition 7.10] (odd case)
and [16, Proposition 6.2] (even case). We reproduce the main elements of the proof
for the odd case here.

We start with the computation of the coboundaries of the φrm,t. The definition
of the operator B and φrm+2,t gives

(Bφrm+2,t)(a0, . . . , am+1) =

m+1∑

j=0

φrm+2,t(1, aj , . . . , am+1, a0, . . . , aj−1)

=

m+1∑

j=0

ηm+2

∫ ∞

0

sm+2〈1, [D, aj ], . . . , [D, aj−1]〉m+2,r,s,tds.

Using Lemma 3.11 and Lemma 3.9, this is equal to

m+1∑

j=0

ηm+2

∫ ∞

0

sm+2〈[D, a0], . . . , [D, aj−1], 1, [D, aj ], . . . , [D, am+1]〉m+2,r,s,tds =

− ηm+2
(m+ 1)

2

∫ ∞

0

sm〈[D, a0], . . . , [D, am+1]〉m+1,r,s,tds.

We observe at this point that ηm+2(m+ 1)/2 = ηm, using the functional equation
for the Gamma function. Next we write [D, a0] = Da0 − a0D and anticommute the
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second D through the remaining [D, aj ] using D[D, aj ] + [D, aj ]D = [D2, aj ]. This
gives, after some algebra and an application of Equation (3.11) from Lemma 3.12,

(Bφrm+2,t)(a0, . . . , am+1) =(3.16)

− ηm

∫ ∞

0

sm
m+1∑

j=1

(−1)j〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, am+1]〉m+1,s,r,tds.

Observe that for φr1,t we have

(Bφr1,t)(a0) =
η1
2πi

∫ ∞

0

sτ

(∫

ℓ

λ−p/2−rRs,t(λ)[D, a0]Rs,t(λ)dλ

)
ds = 0,

by a variant of Lemma 3.12. We now compute the Hochschild coboundary of φrm,t.
From the definitions we have

(bφrm,t)(a0, . . . , am+1) = φrm,t(a0a1, a2, . . . , am+1)

+

m∑

i=1

(−1)iφrm,t(a0, . . . , aiai+1, . . . , am+1) + φrm,t(am+1a0, a1, . . . , am),

but this is equal to

ηm

∫ ∞

0

sm
(
〈a0a1, [D, a2], . . . , [D, am+1]〉m,r,s,t + 〈am+1a0, [D, a1], . . . , [D, am]〉m,r,s,t

+

m∑

j=1

(−1)i〈a0, [D, a1], . . . , aj [D, aj+1] + [D, aj ]aj+1, . . . , [D, am+1]〉m,r,s,t

)
ds.

We now reorganise the terms so that we can employ the first identity of Lemma
3.12. So

(bφrm,t)(a0, . . . , am+1) =(3.17)

m+1∑

j=1

(−1)jηm

∫ ∞

0

sm〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, am+1]〉m+1,r,s,tds.

For m = 1, 3, 5, . . . ,M + • − 3 comparing Equations (3.17) and (3.16) shows that

(Bφrm+2,t + bφrm,t)(a0, . . . , am+1) = 0.

So we just need to check the claim that bφrM+•−1 is holomorphic for ℜ(r) > −p/2+δ
for some suitable δ. From the computation given above, we have (up to a constant)

bφrM,t(a0, . . . , aM+1) =

C(M)

M+1∑

j=1

(−1)j
∫ ∞

0

sM 〈a0, da1, . . . , [D2, aj ], . . . , daM+1〉M+1,r,s,t ds.

Now, since the total order |k| of the pseudodifferential operator entries of the expec-
tation is equal to one, we obtain by Lemma 3.3 that bφrM,t(a0, . . . , aM+1) is finite

for (ε > 0 is arbitrary)

ℜ(r) > −M − 1 + (1 +M + 1)/2 + ε = (1− p)/2 + (p−M − 1 + 2ε)/2.

Since p−M − 1 < 0, one can always find ε > 0 such that −δ := p−M − 1 + 2ε ∈
(−1, 0). The holomorphy follows from Lemma 3.16. �

We can now relate the resolvent and residue cocycles.
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Proposition 3.20. Suppose the smoothly summable spectral triple (A,H,D)
has isolated spectral dimension. Then for m = •, • + 2, . . . ,M , a0, a1 . . . , am ∈ A,
the map

[
r 7→ φrm(a0, . . . , am)] ∈ Om, analytically continues to a deleted neigh-

bourhood of the critical point r = (1 − p)/2. Keeping the same notation for this
continuation, we have

resr=(1−p)/2 φ
r
m(a0, . . . , am) = φm(a0, . . . , am), m = •, •+ 2, . . . ,M.

Proof. For the even case and m = 0, we can explicitly compute

φr0(a0) =
1

r − (1− p)/2
τ(γa0(1 +D2)−(r−(1−p)/2)),

modulo a function of r holomorphic at r = (1 − p)/2. So we need only consider
the case m ≥ 1. We start with the expansion, described in detail in the Appendix,
Lemma A.3, with L =M −m and R := Rs(λ)

a0Rda1R . . . R damR =

M−m∑

|n|=0

C(n)a0 da
(n1)
1 . . . da(nm)

m Rm+|n|+1 + a0 PM−m,m.

Ignoring for a moment the remainder term PM−m,m, performing the Cauchy inte-
grals gives

φrm(a0, . . . , am) =

M−m∑

|n|=0

C ′(n,m, r)

×
∫ ∞

0

smτ
(
γa0 da

(n1)
1 . . . da(nm)

m (1 + s2 +D2)−m−|n|−p/2−r
)
ds.

Setting h = |n|+(m−•)/2, and for ℜ(r) > (1−m)/2, one can perform the s-integral
to obtain (after some manipulation of the constants as in [16, Theorem 6.4]) for
m > 0

φrm(a0, . . . , am) = (
√
2iπ)•

M−m∑

|n|=0

(−1)|n|α(n)

h∑

j=1−•

σh,j
(
r − (1− p)/2

)j−1+•

× τ
(
γa0 da

(n1)
1 . . . da(nm)

m (1 +D2)−|n|−m/2−r+1/2−p/2
)
.(3.18)

From this the result will be clear if the remainder term is holomorphic for ℜ(r) >
(1 − p)/2, since under the isolated spectral dimension assumption the residues of
the right hand side of the previous expression are individually well defined. This
can be shown using the estimate of the remainder term given in the proof of Lemma
3.3 presented in A.2.1. �

3.7. The homotopy to the Chern character

We explain here the sequence of results that leads to the fact that the Chern
character in degree M is cohomologous to the residue cocycle.

Lemma 3.21. Let t ∈ [0, 1], ℜ(r) > 1/2 and m ≡ • mod2. Then we have

BΦr
m+1,t + bΦr

m−1,t =
(p− 1

2
+ r
)
φrm,t − t

p+ 2r

2
φr+1
m,t .
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Proof. By Proposition 3.17, we see that both sides are well defined as continu-
ous multi-linear maps from A⊗(m+1) to the set of holomorphic functions on the half
plane ℜ(r) > (m− 1)/2. We include the following argument from [17, Proposition
5.14] for completeness.

First, using the cyclic property of 〈〈. . . 〉〉 of Lemma 3.13 and the fact that
m ≡ • (mod 2), we have

BΦr
m+1,t(a0, . . . , am)

=
ηm+2

2

m∑

j=0

∫ ∞

0

sm+2(−1)mj〈〈1, daj , daj+1 . . . , daj−2, daj−1〉〉m+1,r,s,tds

=
ηm+2

2

m∑

j=0

∫ ∞

0

sm+2〈〈da0, . . . , daj−1, 1, daj , . . . , dam〉〉m+1,r,s,tds.

Using the s-trick (Lemma 3.9), we deduce

BΦr
m+1,t(a0, . . . , am) = −ηm+2(m+ 1)

4

∫ ∞

0

sm〈〈da0, . . . , dam〉〉m,r,s,tds

= −ηm
2

∫ ∞

0

sm〈〈da0, . . . , dam〉〉m,r,s,tds.(3.19)

The computation for bΦr
m−1,t is the same as for bφrm−1,t in Equation (3.17), except

we need to take account of the extra term in Equation (3.13). This gives

bΦr
m−1,t(a0, . . . , am) =

ηm
2

m∑

j=1

(−1)j
∫ ∞

0

sm〈〈a0, da1, . . . , [D2, aj ], . . . , dam〉〉m,s,r,tds

− ηm
2

m∑

j=1

∫ ∞

0

sm〈a0, da1, . . . , daj , . . . , dam〉m,s,r,tds

=
ηm
2

m∑

j=1

(−1)j
∫ ∞

0

sm〈〈a0, da1 . . . , [D2, aj ], . . . , dam〉〉m,s,r,tds

− ηmm

2

∫ ∞

0

sm〈a0, da1, . . . , dam〉m,s,r,tds.

Now put them together. First, using ηm+2(m+ 1)/2 = ηm we have

(BΦr
m+1,t + bΦr

m−1,t)(a0, . . . , am) = −ηm
2

∫ ∞

0

sm〈〈da0, . . . , dam〉〉m,s,r,tds

+
ηm
2

m∑

j=1

(−1)j
∫ ∞

0

sm〈〈a0, da1, . . . , [D2, aj ], . . . , dam〉〉m,s,r,tds

− ηmm

2

∫ ∞

0

sm〈a0, da1, . . . , dam〉m,s,r,tds,
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and then applying [D2, aj ] = [D, [D, aj ]]± to the previous equality (with deg(a0) =
0) yields

− ηm
2
(−1)deg(a0)

∫ ∞

0

sm〈〈[D, a0]±, da1, . . . , dam〉〉m,s,r,tds

+
−ηm
2

m∑

j=1

(−1)deg(a0)+deg(da1)+···+deg(daj−1)

×
∫ ∞

0

sm〈〈a0, da1 . . . , [D, daj ]±, . . . , dam〉〉m,s,r,tds

− ηmm

2

∫ ∞

0

sm〈a0, da1, . . . , dam〉m,s,r,tds.

Then identity (3.14) of Lemma 3.13 shows that this is equal to

−2ηm
2

∫ ∞

0

sm
( m∑

j=0

〈a0, . . . , daj ,D2, daj+1, . . . , dam〉m+1,s,r,t

+
m

2
〈a0, da1, . . . , dam〉m,s,r,t

)
ds,

where for j = 0 we mean 〈a0,D2, da1, . . . , dam〉m+1,s,r,t. Then, applying Lemma
3.14 gives us finally

(BΦr
m+1,t + bΦr

m−1,t)(a0, . . . , am) = ηm
p+ 2r−1

2

∫ ∞

0

sm〈a0, da1, . . . , dam〉m,s,r,tds

+ t ηm

m∑

j=0

∫ ∞

0

sm〈a0, . . . , daj , 1, daj+1, . . . , dam〉m+1,s,r,tds

=
p+ 2r − 1

2
φrm,t(a0, . . . , am)− t

p+ 2r

2
φr+1
m,t (a0, . . . , am),(3.20)

where we used the λ-trick (Lemma 3.10) in the last line. Again, for j = 0 we mean
〈a0, 1, da1, . . . , dam〉m+1,s,r,t. �

Proposition 3.22. Viewed as a cochain with non-trivial components for m =
M only,

(r − (1− p)/2)−1BΦr
M+1,0,

is a (b, B)-cocycle modulo cochains with values in functions holomorphic at r =
(1− p)/2 and is cohomologous to the resolvent cocycle (φrm,0)

M
m=•.

Proof. By Proposition 3.21, applying (B, b) to the finitely supported cochain
( 1

(r − (1− p)/2)
Φr

1−•,0, . . . ,
1

(r − (1− p)/2)
Φr

M−1,0, 0, 0, . . .
)
,

yields
(
φr•,0, φ

r
•+2,0, . . . , φ

r
M,0−

BΦr
M+1,0

(r − (1− p)/2)
, 0, 0, . . .

)
=
(
(φrm,0)

M
m=•−

BΦr
M+1,0

(r − (1− p)/2)

)
.

That is, (φrm,0)
M
m=• is cohomologous to (r − (1 − p)/2)−1BΦr

M+1,0. Observe that

because it is in the image of B, (r − (1 − p)/2)−1BΦr
M+1,0 is cyclic. It is also

a b-cyclic cocycle modulo cochains with values in the functions holomorphic at
r = (1− p)/2. This follows from

bΦr
M−1,0 +BΦr

M+1,0 = (r − (1− p)/2)φrM,0,
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by applying b and recalling that bφrM,0 is holomorphic at r = (1− p)/2. �

Taking residues at r = (1− p)/2 and applying Proposition 3.20, together with
the two preceding results, leads directly to

Corollary 3.23. If the spectral triple (A,H,D) has isolated dimension spec-

trum, then the residue cocycle (φm,0)
M
m=• is cohomologous to BΦ

(1−p)/2
M+1,0 (viewed as

a single term cochain).

Proposition 3.24. Let R, T ∈ [0, 1]. Then, modulo coboundaries and cochains
yielding holomorphic functions at the critical point r = (1 − p)/2, we have the
equality (φrm,R)

M
m=• = (φrm,T )

M
m=•.

Proof. Replacing r by r + k in Proposition 3.21 yields the formula

(3.21) φr+k
m,t =

1

r + k + (p− 1)/2

(
BΦr+k

m+1,t + bΦr+k
m−1,t +

(p
2
+ r + k

)
tφr+k+1

m,t

)
.

Recall from Proposition 3.18 that for D invertible, φrm,t is defined and holomorphic
for ℜ(r) > (1−m)/2 for all t ∈ [0, 1]. As [0, 1] is compact, the integral

∫ 1

0

φrm,t(a0, . . . , am)dt,

is holomorphic for ℜ(r) > (1−m)/2 and any a0, . . . , am ∈ A. Now we make some
simple observations, omitting the variables a0, . . . , am to lighten the notation. For
T, R ∈ [0, 1] we have

(3.22) φrm,T − φrm,R =

∫ T

R

d

dt
φrm,tdt = −(p/2 + r)

∫ T

R

φr+1
m,t dt.

Now apply the formula of Equation (3.21) iteratively. At the first step we have

φrm,T −φrm,R =
−(p/2 + r)

r + 1 + (p− 1)/2

∫ T

R

(
BΦr+1

m+1,t + bΦr+1
m−1,t +

(p
2
+ r + 1

)
tφr+2

m,t

)
dt.

Observe that the numerical factors are holomorphic at r = (1−p)/2. Iterating this
procedure L times gives us

φrm,T − φrm,R =
−(p/2 + r) . . . (p/2 + r + L)

(r + 1 + (p− 1)/2) . . . (r + L+ (p− 1)/2)

∫ T

R

tLφr+L+1
m,t dt

+

L∑

j=1

−(p/2 + r) . . . (p/2 + r + j − 1)

(r + 1 + (p− 1)/2) . . . (r + j + (p− 1)/2)

∫ T

R

(
BΦr+j

m+1,t + bΦr+j
m−1,t

)
tj−1dt.

In fact the smallest L guaranteeing that φr+L+1
m,t is holomorphic at r = (1 − p)/2

for all m is (M − •)/2. See [17, Lemma 5.20] for a proof. With this choice of
L = (M − •)/2, we have modulo cochains yielding functions holomorphic in a half
plane containing (1− p)/2,

φrm,T − φrm,R =

L∑

j=1

−(p/2 + r) . . . (p/2 + r + j − 1)

(r + 1 + (p− 1)/2) . . . (r + j + (p− 1)/2)

∫ T

R

(
BΦr+j

m+1,t + bΦr+j
m−1,t

)
tj−1dt.
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Thus, a simple rearrangement yields the cohomology, valid for ℜ(r) > (1− •)/2,

(φrm,T − φrm,R)
M
m=•

−B

L∑

j=1

−(p/2 + r) . . . (p/2 + r + j − 1)

(r + 1 + (p− 1)/2) . . . (r + j + (p− 1)/2)

∫ T

R

Φr+j
M+1,tt

j−1dt =

(B + b)




L∑

j=1

−(p/2 + r) . . . (p/2 + r + j − 1)

(r + 1 + (p− 1)/2) . . . (r + j + (p− 1)/2)

∫ T

R

Φr+j
m,t t

j−1dt




M−1

m=1−•

.

Hence, modulo coboundaries and cochains yielding functions holomorphic at r =
(1− p)/2, the cochain (φrm,T − φrm,R)

M
m=• is equal to

B

L∑

j=1

−(p/2 + r) . . . (p/2 + r + j − 1)

(r + 1 + (p− 1)/2) . . . (r + j + (p− 1)/2)

∫ T

R

Φr+j
M+1,tt

j−1dt.

However, an application of Lemma 3.3 now shows that this term is holomorphic at
r = (1 − p)/2, since j ≥ 1 in all cases. Hence, modulo coboundaries and cochains
yielding functions holomorphic at r = (1− p)/2, we have

(φrm,T )
M
m=• = (φrm,R)

M
m=•,

which is the equality we were looking for. �

Corollary 3.25. Modulo coboundaries and cochains yielding functions holo-
morphic in a half plane containing r = (1− p)/2, we have the equality

(φrm)Mm=• := (φrm,1)
M
m=• = BΦr

M+1,0.

At this point we have shown that the resolvent cocycle is (b, B)-cohomologous
to the cocycle (r − (1 − p)/2)−1BΦr

M+1,0 (modulo functions holomorphic at r =

(1 − p)/2), while the residue cocycle is (b, B)-cohomologous to BΦ
(1−p)/2
M+1,0 . We

remark that BΦ
(1−p)/2
M+1,0 is well-defined (i.e. finite) by an application of Lemma 3.3.

Our aim now is to use the map [0, 1] ∋ u→ D|D|−u to obtain a homotopy from

BΦ
(1−p)/2
M+1,0 to the Chern character. This is the most technically difficult part of the

proof, and we defer the proof of the next lemma to the Appendix, Lemma A.2.4.
This lemma proves a trace class differentiability result.

Lemma 3.26. For a0, . . . , aM ∈ A and j = 0, . . . ,M , we define Ts,λ,j(u) to be

du(a0)Rs,u(λ) . . . du(aj)Rs,u(λ)DuRs,u(λ) du(aj+1)Rs,u(λ) . . . du(aM )Rs,u(λ).
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Then the map
[
u 7→ Ts,λ,j(u)

]
is continuously differentiable for the trace norm

topology. Moreover, with Ru := Rs,u(λ) and Ḋu = −Du log |D|, we obtain

dTs,λ,j
du

(u) =

M∑

k=0

du(a0)Ru . . . Ru du(ak) (2Ru Du ḊuRu) du(ak+1)Ru . . . du(aM )Ru

+ du(a0)Ru . . . Ru du(aj)Ru Du (2Ru Du ḊuRu) du(aj+1) . . . Ru du(aM )Ru

+

M∑

k=0

du(a0)Ru du(a1)Ru . . . Ru[Ḋu, ak]Ru . . . Ru du(aM )Ru

+ du(a0)Ru du(a1)Ru . . . Ru du(aj)Ru ḊuRu du(aj+1) . . . Ru du(aM )Ru.

Lemma 3.27. For a0, . . . , aM ∈ A and for r > (1−M)/2, we have

(bBΨr
M,u)(a0, . . . , aM ) =

d

du
(BΦr

M+1,0,u)(a0, . . . , aM )− ηM
r + (p− 1)

2

×
M∑

j=0

(−1)j
∫ ∞

0

sM 〈[Du, a0], . . . , [Du, aj ], Ḋu, [Du, aj+1], . . . , [Du, aM ]〉M+1,r,s,0 ds,

where the expectation uses the resolvent for Du, that is Rs,0,u(λ). Moreover,

r 7→ −ηM
M∑

j=0

(−1)j
∫ ∞

0

sM 〈[Du, a0], . . . , [Du, aj ], Ḋu, . . . , [Du, aM ]〉M+1,r,s,0 ds,

is a holomorphic function of r in a right half plane containing the critical point
r = (1− p)/2.

Proof. Lemma 3.26, and together with arguments of a similar nature, show
that Ψr

M,u and d
duΦ

r
M+1,0,u are well-defined and continuous. The proof of Lemma

3.26 also shows that the formal differentiations given below are in fact justified.
First of all, using the Du version of Equation 3.19 of Lemma 3.21 and the Ru

version of Definition 3.4 to expand (BΦr
M+1,0,u)(a0, . . . , aM ), we see that it is the

sum of the Ts,λ,j(u) and so its derivative is the sum over j of the derivatives in
Lemma 3.26. Using the Ru version of Definition 3.4 again to rewrite this in terms
of 〈〈. . . 〉〉 where possible, shows that

d

du
(BΦr

M+1,0,u)(a0, . . . , aM ) =

− ηM
2

∫ ∞

0

sM
M∑

j=0

(
〈〈[Du, a0], . . . , [Du, aj ], 2DuḊu, . . . , [Du, aM ]〉〉M+1,s,r,0

+ 〈〈[Du, a0], . . . , [Ḋu, aj ], . . . , [Du, aM ]〉〉M,s,r,0

)
ds

− ηM
2

∫ ∞

0

sM
M∑

j=0

(−1)j〈[Du, a0], . . . , [Du, aj ], Ḋu, . . . , [Du, aM ]〉M+1,s,r,0 ds.
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For the next step we compute BbΨr
M,u, and then use bB = −Bb. First we apply b

(bΨr
M,u)(a0, . . . , aM+1) = −ηM

2

∫ ∞

0

sM 〈〈a0a1Ḋu, [Du, a2], . . . , [Du, aM+1]〉〉M,s,r,0ds

− ηM
2

M∑

j=1

(−1)j
∫ ∞

0

sM 〈〈a0Ḋu, . . . , [Du, ajaj+1], . . . , [Du, aM+1]〉〉M,s,r,0ds

− (−1)M+1 ηM
2

∫ ∞

0

sM 〈〈aM+1a0Ḋu, [Du, a1], . . . , [Du, aM ]〉〉M,s,r,0ds

= −ηM
2

∫ ∞

0

sM
M+1∑

j=1

(−1)j〈〈a0Ḋu, [Du, a1], . . . , [D2
u, aj ], . . . , [Du, aM+1]〉〉M+1,s,r,0ds

− ηM
2

∫ ∞

0

sM
M+1∑

j=1

(−1)j(−1)deg(a0Ḋu)+···+deg([Du,aj−1])

× 〈a0Ḋu, [Du, a1], . . . , [Du, aM+1]〉M+1,s,r,0ds

+
ηM
2

∫ ∞

0

sM 〈〈a0[Ḋu, a1], . . . , [Du, aM+1]〉〉M,s,r,0ds.

The last equality follows from the Ru version of Lemma 3.13. In the above, we
note that deg(a0Ḋu) = 1 = deg([Du, ak]) for all k so that deg(a0Ḋu) + · · · +
deg([Du, aj−1]) = j and deg(a0Ḋu) + · · · + deg([Du, aM+1]) = M + 2 ≡ •(mod 2).
We also note the commutator identity [D2

u, aj ] = {Du, [Du, aj ]} = [Du, [Du, aj ]]±
so in order to apply the Du version of Equation (3.14) of Lemma 3.13 we first add
and substract

−ηM
2

∫ ∞

0

sM 〈〈{Du, a0Ḋu}, [Du, a1], . . . , [Du, aM+1]〉〉M+1,s,r,0ds,

and then an application of Equation (3.14) yields

(bΨr
M,u)(a0, . . . , aM+1) =

− 2
ηM
2

∫ ∞

0

sM
M+1∑

j=0

〈a0Ḋu, . . . , [Du, aj ],D2
u, . . . , [Du, aM+1]〉M+2,s,r,0ds

+
ηM
2

∫ ∞

0

sM 〈〈a0{Du, Ḋu}+ [Du, a0]Ḋu, [Du, a1], . . . , [Du, aM+1]〉〉M+1,s,r,0ds

− ηM
2

(M + 1)

∫ ∞

0

sM 〈a0Ḋu, [Du, a1], . . . , [Du, aM+1]〉M+1,s,r,0ds

+
ηM
2

∫ ∞

0

sM 〈〈a0[Ḋu, a1], . . . , [Du, aM+1]〉〉M,s,r,0ds.
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Then we apply the Du version of Lemma 3.14 to obtain

(bΨr
M,u)(a0, . . . , aM+1) =

ηM
2

(p+ 2r)

∫ ∞

0

sM 〈a0Ḋu, [Du, a1], . . . , [Du, aM+1]〉M+1,s,r,0ds

+
ηM
2

∫ ∞

0

sM 〈〈a0{Du, Ḋu}+ [Du, a0]Ḋu, [Du, a1], . . . , [Du, aM+1]〉〉M+1,s,r,0ds

+
ηM
2

∫ ∞

0

sM 〈〈a0[Ḋu, a1], . . . , [Du, aM+1]〉〉M,s,r,0ds.

The next step is to apply B to these three terms, producing (with a−1 := aM )

(BbΨr
M,u)(a0, . . . , aM ) =

(p+ 2r)
ηM
2

M∑

j=0

(−1)(M+1)j

∫ ∞

0

sM 〈Ḋu, [Du, aj ], . . . , [Du, aj−1]〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

(−1)(M+1)j

∫ ∞

0

sM 〈〈{Du, Ḋu}, [Du, aj ], . . . , [Du, aj−1]〉〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

(−1)(M+1)j

∫ ∞

0

sM 〈〈[Ḋu, aj ], . . . , [Du, aj−1]〉〉M,s,r,0ds,

which is identical to

(p+ 2r)ηM
2

M∑

j=0

(−1)(M+1)j+(1−•)j

×
∫ ∞

0

sM 〈[Du, a0], . . . , [Du, aj−1], Ḋu, . . . , [Du, aM ]〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

(−1)(M+1)j+(2−•)j

×
∫ ∞

0

sM 〈〈[Du, a0], . . . , {Du, Ḋu}, [Du, aj ], . . . , [Du, aM ]〉〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

(−1)(M+1)j+(2−•)j

×
∫ ∞

0

sM 〈〈[Du, a0], . . . , [Du, aj−1], [Ḋu, aj ], . . . , [Du, aM ]〉〉M,s,r,0ds.

This last expression equals

(p+ 2r)
ηM
2

M∑

j=0

(−1)j
∫ ∞

0

sM 〈[Du, a0], . . . , [Du, aj−1], Ḋu, . . . , [Du, aM ]〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

∫ ∞

0

sM 〈〈[Du, a0], . . . , 2DuḊu, [Du, aj ], . . . , [Du, aM ]〉〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

∫ ∞

0

sM 〈〈[Du, a0], . . . , [Du, aj−1], [Ḋu, aj ], . . . , [Du, aM ]〉〉M,s,r,0ds.
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Using bB = −Bb, and our formula for d
du (BΦr

M+1,0,u)(a0, . . . , aM ) gives

(bBΨr
M,u)(a0, . . . , aM ) = −(p+ 2r)

ηM
2

M∑

j=0

(−1)j
∫ ∞

0

sM 〈[Du, a0], . . . ,

. . . , [Du, aj−1], Ḋu, [Du, aj ], . . . , [Du, aM ]〉M+1,s,r,0ds

+
ηM
2

M∑

j=0

(−1)j
∫ ∞

0

sM 〈[Du, a0], . . . ,

. . . , [Du, aj ], Ḋu, [Du, aj+1], . . . , [Du, aM ]〉M+1,s,r,0ds

+
d

du
(BΦr

M+1,0,u)(a0, . . . , aM ).

This proves the result. �

Thus we have proven the following key statement.

Corollary 3.28. We have

1

(r + (p− 1)/2)
(bBΨr

M,U )(a0, . . . , aM ) =

1

(r + (p− 1)/2)

d

du
(BΦr

M+1,0,u)(a0, . . . , aM ) + holo(r),

where holo is analytic for ℜ(r) > −M/2, and by taking residues

(bBΨ
(1−p)/2
M,u )(a0, . . . , aM ) =

d

du
(BΦ

(1−p)/2
M+1,0,u)(a0, . . . , aM ).

We now have the promised cohomologies.

Theorem 3.29. Let (A,H,D) be a smoothly summable spectral triple relative
to (N , τ) and of spectral dimension p ≥ 1, parity • ∈ {0, 1}, with D invertible and
A separable. Then
(1) In the (b, B)-bicomplex with coefficients in the set of holomorphic functions on
the right half plane ℜ(r) > 1/2, the resolvent cocycle (φrm)Mm=• is cohomologous to
the single term cocycle

(r − (1− p)/2)−1ChMF ,

modulo cochains with values in the set of holomorphic functions on a right half
plane containing the critical point r = (1− p)/2. Here F = D |D|−1.
(2) If, moreover, the spectral triple (A,H,D) has isolated spectral dimension, then

the residue cocycle (φm)Mm=• is cohomologous to the Chern character ChMF .

Proof. Up to cochains holomorphic at the critical point (the integral on a
compact domain does not modify the holomorphy property), Lemma 3.27 gives

1

r − (1− p)/2

∫ 1

0

(bBΨr
M,u)(a0, . . . , aM ) du =

1

r − (1− p)/2

∫ 1

0

d

du
(BΦr

M+1,0,u)(a0, . . . , aM ) du.

Since 1
r−(1−p)/2

∫ 1

0
bBΨr

M,u is a coboundary, we obtain the following equality in

cyclic cohomology (up to coboundaries and a cochain holomorphic at the critical
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point)

1

r − (1− p)/2
(BΦr

M+1,0,1) =
1

r − (1− p)/2
(BΦr

M+1,0,0).

One can now compute directly to see that the left hand side is (r−(1−p)/2)−1ChMF
as follows. Recalling that F 2 = 1 and using our previous formula for BΦr

M+1,0,u

(the Du version of Proposition 3.21 with u = 1) we have

(BΦr
M+1,0,u)(a0, . . . , aM )|u=1

= −ηM
2

M∑

j=0

(−1)j+1

∫ ∞

0

sM 〈[F, a0], . . . , [F, aj ], F, [F, aj+1], . . . , [F, aM ]〉M+1,s,r,0ds

= −ηM
2

M∑

j=0

∫ ∞

0

sM
1

2πi
τ

(
γ

∫

ℓ

λ−p/2−rF [F, a0] . . . [F, aM ](λ− (s2 + 1))−M−2dλ

)
ds

=
ηM
2

(−1)M

M !

Γ(M + 1 + p/2 + r)

Γ(p/2 + r)

×
∫ ∞

0

sMτ
(
γF [F, a0] . . . [F, aM ](s2 + 1)−M−1−p/2−r

)
ds.

In the second equality we anticommuted F past the commutators, and pulled all
the resolvents to the right (they commute with everything, since they involve only
scalars). In the last equality we used the Cauchy integral formula to do the contour
integral, and performed the sum. Now we pull out (s2 + 1)−M−1−p/2−r from the
trace, leaving the identity behind. The s-integral is given by

∫ ∞

0

sM (s2 + 1)−M−1−p/2−rds =
Γ((M + 1)/2)Γ(p/2 + r +M/2 + 1/2)

2Γ(M + 1 + p/2 + r)
.

Putting the pieces together gives

(BΦr
M+1,0,u)(a0, . . . , aM )|u=1 =

ηM
2

(−1)M
Γ((M + 1)/2)

Γ(p/2 + r)

Γ(((p− 1)/2 + r) +M/2 + 1)

2M !
τ(γF [F, a0] . . . [F, aM ]).

Now ηM =
√
2i

•
(−1)M2M+1Γ(M/2 + 1)/Γ(M + 1), and the duplication formula

for the Gamma function tells us that Γ((M + 1)/2)Γ(M/2+ 1)2M =
√
πΓ(M + 1).

Hence

(BΦr
M+1,0,u)(a0, . . . , aM )|u=1 =
√
π
√
2i

•
Γ(((p− 1)/2 + r) +M/2 + 1)

2M !Γ(p/2 + r)
τ(γF [F, a0][F, a1] . . . [F, aM ]).

Now we use the functional equation for the Gamma function

Γ(((p− 1)/2 + r) +M/2 + 1) = Γ((p− 1)/2 + r)

(M−•)/2∏

j=0

((p− 1)/2 + r + j + •/2),
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to write this as

(BΦr
M+1,0,u)(a0, . . . , aM )|u=1 =

Cp/2+r

√
2i

•

2 ·M !

(M−•)/2+1∑

j=1−•

(r + (p− 1)/2)jσ(M−•)/2,jτ(γF [F, a0][F, a1] . . . [F, aM ]),

where the σ(M−•)/2,j are the elementary symmetric functions of the integers 1, 2,
. . . ,M/2 (even case) or of the half integers 1/2, 3/2, . . . ,M/2 (odd case). The
‘constant’

Cp/2+r :=

√
πΓ((p− 1)/2 + r)

Γ(p/2 + r)
,

has a simple pole at r = (1 − p)/2 with residue equal to 1, and in both even and
odd cases we have σM/2,1−• = Γ(M/2 + 1). So, recalling Definition 2.22 of τ ′ we
see that

1

(r − (1− p)/2)
(BΦr

M+1,0,u)(a0, . . . , aM )|u=1 =

1

(r − (1− p)/2)
ChF (a0, a1, . . . , aM ) + holo(r),

where holo is a function holomorphic at r = (1− p)/2, and on the right hand side
the Chern character appears with its (b, B) normalisation. As the left hand side is
cohomologous to the resolvent cocycle by Proposition 3.22, the first part is proven.
The proof of the second part is now a consequence of Proposition 3.20. �

3.8. Removing the invertibility of D
We can now apply Theorem 3.29 to the double of a smoothly summable spectral

triple of spectral dimension p ≥ 1. In this case, the resolvent and residue cocycles
extend to the reduced (b, B)-bicomplex for A∼, and it is simple to check that they
are still cocycles there. Moreover, as noted in Lemma 3.8, all of our cohomologies
can be considered to take place in the reduced complex for A∼.

Thus, under the isolated spectral dimension assumption, the residue cocycle for
(A,H⊕H,Dµ, γ̂) is cohomologous to the Chern character ChMFµ

, and similarly for
the resolvent cocycle. We now show how to obtain a residue and resolvent formula
for the index in terms of the original spectral triple.

In the following we write {φrµ,m}m=•,•+2,...,M for the resolvent cocycle for A
defined using the double spectral triple and {φrm}m=•,•+2,...,M for the resolvent
cocycle for A defined by using original spectral triple, according to the notations
introduced in Section 3.3.

The formula for ChMFµ
is scale invariant, in that it remains unchanged if we

replace Dµ by λDµ for any λ > 0. This scale invariance is the main tool we
employ.

In the double up procedure we will start with 0 < µ < 1. We are interested in
the relationship between (1 +D2)⊗ Id2 and 1 +D2

µ, given by

1 +D2
µ =

(
1 + µ2 +D2 0

0 1 + µ2 +D2

)
.

If we perform the scaling Dµ 7→ (1− µ2)−1/2Dµ, then

(1 +D2
µ)

−s 7→ (1− µ2)s(1 +D2)−s ⊗ Id2.
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This algebraic simplification is not yet enough. We need to scale every appear-
ance of D in the formula for the resolvent cocycle. Now Proposition 3.20 provides
the following formula for the resolvent cocycle in terms of zeta functions, modulo
functions holomorphic at r = (1− p)/2:

φrµ,m(a0, . . . , am) =(3.23)

(
√
2iπ)•

M−m∑

|k|=0

(−1)|k|α(n)

(M−•)/2+|k|∑

j=1−•

σh,j
(
r − (1− p)/2

)j−1+•

× τ ⊗ tr2

(
γa0 [Dµ, a1]

(k1) . . . [Dµ, am](km)(1 +D2
µ)

−|k|−m/2−r+1/2−p/2
)
.

So we require the scaling properties of the coefficient operators

ωµ,m,k = [Dµ, a1]
(k1) . . . [Dµ, am](km),

that appear in this zeta function representation of the resolvent cocycle. In order to
study these coefficient operators, it is useful to introduce the following operations
(arising from the periodicity operator in cyclic cohomology, see [14,21]). We define

Ŝ : A⊗m → OP0
0, for any m ≥ 0 by

Ŝ(a1) = 0, Ŝ(a1, . . . , am) = a1a2da3 . . . dam + da1a2a3da4 . . . dam
m−1∑

j=3

da1 . . . (daj−1)ajaj+1daj+2 . . . dam,

and extend it by linearity to the tensor product A⊗m. As usual, we write da =
[D, a]. To define ‘powers’ of Ŝ, we recursively set

Ŝk(a1, . . . , am) =
k−1∑

j=0

(
k − 1

j

)m−1∑

i=1

Ŝl(a1, . . . , ai−1)Ŝ
k−j−1(aiai+1, . . . , am).

The following lemma is proven in [14, Appendix].

Lemma 3.30. The maps Ŝj satisfy the following relations:

(3.24) Ŝ(a1, . . . , am−1)dam = Ŝ(a1, . . . , am)− da1 . . . (dam−2)am−1am,

and for j > 1

Ŝj(a1, . . . , am−1)dam = Ŝj(a1, . . . , am)− j Ŝj−1(a1, . . . , am−2)am−1am,

j Ŝj−1(a1, . . . , a2j−2)a2j−1a2j = Ŝj(a1, . . . , a2j), Ŝj(a1, . . . , a2j−1) = 0.

As a last generalisation, we note that if k is now a multi-index then we can
define analogues of the operations Ŝj by

Ŝk(a1) := 0,

Ŝk(a1, . . . , am) := (a1)
(k1)(a2)

(k2)(da3)
(k3) . . . (dam)(km)

+ (da1)
(k1)(a2)

(k2)(a3)
(k3)(da4)

(k4) . . . (dam)(km)

+

m−1∑

j=3

(da1)
(k1) . . . (daj−1)

(kj−1)a
(kj)
j a

(kj+1)
j+1 (daj+2)

(kj+2) . . . (dam)(km).

With these operations in hand we can state the result.
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Lemma 3.31. With D and Dµ as above, and for m > 1, the product of commu-

tators [Dµ, a1]
(k1) . . . [Dµ, am](km) is given by




ωm,k +
∑⌊m/2⌋

j=1 cj Ŝ
j(a1, . . . , am)

−µωm−1,ka
(km)
m −

µ
∑⌊(m−1)/2⌋

j=1 cj Ŝ
j(a1, . . . , am−1)a

(km)
m

µa
(k1)
1 ω̃m−1,k+

µ
∑⌊(m−1)/2⌋

j=1 cj a
(k1)
1 Ŝj(a2, . . . , am)

−µ2a
(k1)
1 ω̂m−2,ka

(km)
m −

µ2
∑⌊m/2⌋−1

j=1 cj a
(k1)
1 Ŝj(a2, . . . , am−1)a

(km)
m



.

In this expression

ωm,k = (da1)
(k1) . . . (dam)(km), ωm−1,k = (da1)

(k1) . . . (dam−1)
(km−1),

ω̃m−1,k = (da2)
(k2) . . . (dam)(km), ω̂m−2,k = (da2)

(k2) . . . (dam−1)
(km−1),

the superscript (kj)’s refer to commutators with D2 (Definition 1.20), and cj =
(−1)jµ2j/j!.

Proof. This is proved by induction using

[Dµ, an+1]
(kn+1) = [Dµ, a

(kn+1)
n+1 ] =

(
da

(kn+1)
n+1 −µa(kn+1)

n+1

µa
(kn+1)
n+1 0

)
.

It is important to note that the formulae for the Ŝ operation are unaffected by the
commutators withD2

µ, sinceD2
µ is diagonal. A similar calculation in [14, Appendix],

where there is a sign error corrected here, indicates how the proof proceeds. �

Multiplying the operator in Lemma 3.31 by â0 =

(
a0 0
0 0

)
gives us a0ωm,µ,k.

Having identified the µ dependence of ωm,µ,k(1 + D2
µ)

−|k|−m/2−r−(p−1)/2 arising
from the coefficient operators ωm,µ,k, we now identify the remaining µ dependence

in a0ωm,µ,k(1 + D2
µ)

−|k|−m/2−r−(p−1)/2 coming from (1 + D2
µ)

−|k|−m/2−r−(p−1)/2.

So replacing Dµ by (1− µ2)−1/2Dµ, our calculations give for m > 0

a0ωm,µ,k(1 +D2
µ)

−|k|−m/2−r−(p−1)/2 7−→

(1− µ2)−r−(p−1)/2a0ωm,k(1 +D2)−|k|−m/2−r−(p−1)/2 ⊗
(
1 0
0 0

)
+O(µ),

where the O(µ) terms are those arising from Lemma 3.31. Of course at r = (1−p)/2
the numerical factor (1 − µ2)−r−(p−1)/2 is equal to one, and contributes nothing
when we take residues. For m = 0 there are no additional O(µ) terms. Ignoring the
factor of (1−µ2)−r−(p−1)/2, we collect all terms in the cochain {φrµ,m}m=•,•+2,...,M

with the same power of µ arising from a0ωm,k,µ. This gives us a finite family of
(b, B)-cochains of different lengths but the same parity, one for each power of µ in
the expansion of a0ωm,k,µ. Denote these new cochains by ψr

i = (ψr
i,m)m=•,•+2,...,

where ψr
i is assembled as the coefficient cochain for µi, i ∈ N0. To simplify the

notation, we will consider the cochains ψr
i as functionals on suitable elements in

OP∗. With these conventions, and modulo functions holomorphic at r = (1− p)/2,
we have

φrµ,m(a0, . . . , am) = (1− µ2)−r+(1−p)/2
( 2⌊m

2 ⌋+1∑

i=0

ψr
i,m(a0ωm,k,i)µ

i
)
,
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where ωm,k,i are some coefficient operators depending on a1, . . . , am, but not on µ,
and ωm,k,0 = ωm,k, as defined in Lemma 3.31.

Let α = (αm)m=•,•+2,... be a (b, B)-boundary in the reduced complex for A∼.

Then as ChMFµ
is a (b, B)-cocycle, we find by performing the pseudodifferential

expansion that there are reduced (b, B)-cochains C0, . . . , C2⌊M/2⌋+• such that

0 = ChMFµ
(αM ) = resr=(1−p)/2

M∑

m=•

φrµ,m(αm)

= C0(α) + C1(α)µ+ · · ·+ C2⌊M/2⌋+•(α)µ
2⌊M/2⌋+•.

The class of ChMFµ
is independent of µ > 0, and as we can vary µ ∈ (0, 1), we see that

each of the coefficients Ci(α) = 0. As the Ci(α) arise as the result of pairing a (b, B)-
cochain with the (b, B)-boundary α, and α is an arbitrary boundary, we see that
all the ψr

i are (reduced) cocycles modulo functions holomorphic at r = (1− p)/2.
Now let β be a (b, B)-cycle. Then by performing the pseudodifferential expan-

sion we find that

ChMFµ
(βM ) = resr=(1−p)/2

M∑

m=•

φrµ,m(βm)

= C0(β) + C1(β)µ+ · · ·+ C2⌊M/2⌋+•(β)µ
2⌊M/2⌋+•.

The left hand side is independent of µ, and so taking the derivative with respect to
µ yields

0 = C1(β) + · · ·+ (2⌊M/2⌋+ •)C2⌊M/2⌋+•(β)µ
2⌊M/2⌋+•−1.

Again, by varying µ we see that each coefficient Ci(β), i > 0, must vanish. As
β is an arbitrary (b, B)-cycle, for i 6= 0, ψr

i is a coboundary modulo functions
holomorphic at r = (1 − p)/2. The conclusion is that resψr

0 represents the Chern
character. We now turn to making this representative explicit.

The cocycle ψr
0 is given, in terms of the original spectral triple (A,H,D), in

all degrees except zero, by {φrm}m=•,•+2,...,M , that is the formula for the resolvent
cocycle presented in Definition 3.5 with D in place of Dµ. In degree zero we need
some care, and after a computation we find that for b ∈ A∼ and µ ∈ (0, 1), φrµ,0(b)
is given by

φrµ,0(b) = lim
λ→∞

Γ(r − (1− p)/2)
√
π(1− µ2)−(r−(1−p)/2)

Γ(p/2 + r)
τ ⊗ tr2

(
γ(b− 1b)(1 +D2)−z + γψ̃λ1b(1 +D2)−(r−(1−p)/2) 0

0 −γψ̃λ1b(1 +D2)−(r−(1−p)/2)

)
,

where 1b is defined after Equation (2.2). Canceling the 1b terms and taking the
limit shows that φrµ,0(b) is given by

Γ(r − (1− p)/2)
√
π(1− µ2)−(r−(1−p)/2)

Γ(p/2 + r)
τ
(
γ(b− 1b)(1 +D2)−(r−(1−p)/2)

)
.

The function of r outside the trace has a simple pole at r = (1− p)/2 with residue
equal to 1, and can be replaced by any other such function, like (r − (1− p)/2)−1.
Thus modulo functions holomorphic at the critical point, we have

φrµ,0(b) = φr0(b− 1b).
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Thus, we have proved the following proposition.

Proposition 3.32. Let (A,H,D) be a smoothly summable spectral triple of
spectral dimension p ≥ 1 and of parity • ∈ {0, 1}. Let also a0 ⊗ a1 ⊗ · · · ⊗ am ∈
A∼⊗A⊗m. Let {φrµ,m}m=•,•+2,...,M and {φrm}m=•,•+2,...,M be the resolvent cocycles
defined respectively by the double and the original spectral triple. Then {φrm −
φrµ,m}m=•,•+2,...,M is a reduced (b, B)-coboundary modulo functions holomorphic at
r = (1− p)/2.

If, moreover, the spectral dimension of (A,H,D) is isolated, we have

resr=(1−p)/2 φ
r
µ,m(a0, . . . , am) = resr=(1−p)/2 φ

r
m(a0, . . . , am), m > 0,

resr=(1−p)/2 φ
r
µ,0(a0) = resr=(1−p)/2 φ

r
0(a0 − 1a0).

3.9. The local index formula

Let u ∈ Mn(A∼) be a unitary and let e ∈ Mn(A∼) be a projection. Set
1e = πn(e) ∈Mn(C) as in Equation (2.3). We also observe that inflating a smoothly
summable spectral triple (A,H,D) to (Mn(A),H⊗Cn,D⊗ Idn) yields a smoothly
summable spectral triple for Mn(A), with the same spectral dimension. Then we
can summarise the results of Chapters 2 and 3 as follows.

Theorem 3.33. Let (A,H,D) be a semifinite spectral triple of parity • ∈ {0, 1},
which is smoothly summable with spectral dimension p ≥ 1 and with A separable.
Let also M = 2⌊(p + • + 1)/2⌋ − • be the largest integer of parity • less than or
equal to p+1. Let Dµ,n denote the operator coming from the double of the inflation
(Mn(A),H⊗Cn,D⊗ Idn) of (A,H,D), with phase Fµ⊗ Idn and Dn be the operator
coming from the inflation of (A,H,D). Then with the notations introduced above:
(1) The Chern character in cyclic homology computes the numerical index pairing:

〈[u], [(A,H,D)]〉 = −1√
2πi

ChMFµ⊗Idn

(
ChM (û)

)
, (odd case),

〈[e]− [1e], [(A,H,D)]〉 = ChMFµ⊗Idn

(
ChM (ê)

)
, (even case).

(2) The numerical index pairing can also be computed with the resolvent cocycle of
Dn via

〈[u], [(A,H,D)]〉 = −1√
2πi

resr=(1−p)/2

M∑

m=1, odd

φrm
(
Chm(u)

)
, (odd case),

〈[e]− [1e], [(A,H,D)]〉 = resr=(1−p)/2

M∑

m=0, even

φrm
(
Chm(e)− Chm(1e)

)
, (even case),

and, in particular, for x = u or x = e, depending on the parity,
∑M

m=• φ
r
m(Chm(x))

analytically continues to a deleted neighborhood of the critical point r = (1 − p)/2
with at worst a simple pole at that point.
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(3) If, moreover, the triple (A,H,D) has isolated spectral dimension, then the nu-
merical index can also be computed with the residue cocycle for Dn, via

〈[u], [(A,H,D)]〉 = −1√
2πi

M∑

m=1, odd

φm
(
Chm(u)

)
, (odd case),

〈[e]− [1e], [(A,H,D)]〉 =
M∑

m=0, even

φm
(
Chm(e)− Chm(1e)

)
, (even case).

3.10. A nonunital McKean-Singer formula

To illustrate this theorem, we prove a nonunital version of the McKean-Singer
formula. To the best knowledge of the authors, there is no other version of McKean-
Singer formula which is valid without the assumption that f(D2) is trace class for
some function f . Our assumptions are quite different from the usual McKean-Singer
formula.

Let (A,H,D) be an even semifinite smoothly summable spectral triple relative
to (N , τ) with spectral dimension p ≥ 1. Also, let e ∈ Mn(A∼) be a projection
with πn(e) = 1e ∈ Mn(C) ⊂ Mn(N ). Then using the well known homotopy (with
Dn = D ⊗ Idn)

Dn = eDne+ (1− e)Dn(1− e) + t
(
eDn(1− e) + (1− e)Dne

)

= eDne+ (1− e)Dn(1− e) + t
(
(1− e)[Dn, e]− e[Dn, e]

)
(3.25)

=: De − t(2e− 1)[Dn, e],

we see that we have an equality of the KK-classes associated to the spectral triples

[(Mn(A),H⊗ Cn,Dn)] = [(Mn(A),H⊗ Cn,De)] ∈ KK0(A, C),
where C is the (separable) C∗-algebra generated by the τ -compact operators listed
in Definition 2.5. However, the property of smooth summability may not be pre-
served by this homotopy. The next lemma shows that the summability part is
preserved.

Lemma 3.34. Let (A,H,D) be a smoothly summable semifinite spectral triple
relative to (N , τ) with spectral dimension p ≥ 1. Let A ∈ OP0

0 be a self-adjoint
element. Then

B2(D +A, p) = B2(D, p) and B1(D +A, p) = B1(D, p).
Proof. For K ∈ N arbitrary, Cauchy’s formula and the resolvent expansion

gives

(1 + (D +A)2)−s/2 − (1 +D2)−s/2 =

K∑

m=1

1

2πi

∫

ℓ

λ−s/2
(
R(λ)({D, A}+A2)

)m
R(λ)dλ

+
1

2πi

∫

ℓ

λ−s/2
(
R(λ)({D, A}+A2)

)K+1
RA(λ)dλ,

where R(λ) = (λ− (1+D2))−1, RA(λ) = (λ− (1+ (D+A)2))−1 and {·, ·} denotes
the anticommutator. Now since {D, A}+A2 is in OP1

0, Lemma 3.3 can be applied
to all terms except the last, to see that each is trace-class for s > p − m. Using
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Lemma 1.39, the Hölder inequality and estimating RA(λ) in norm, we see that the
integrand of the remainder term has trace norm

‖
(
R(λ)({D, A}+A2)

)K+1
RA(λ)‖1 ≤ Cε(a

2 + v2)−(K+1)/4+(K+1)p/4q+(K+1)ε−1/2,

where q > p and ε > 0. Choosing q = p+ δ for some δ > 0, we may choose K large
enough so that the integral over v = ℜ(λ) converges absolutely whenever s > p−1.
Hence, we can suppose that the remainder term is trace-class for s > p − 1. Now
let T ∈ B2(D, p) and use the tracial property to see that

τ((1 + (D +A)2)−s/4T ∗T (1 + (D +A)2)−s/4)

= τ(|T |(1 + (D +A)2)−s/2|T |)
= τ(|T |(1 +D2)−s/2|T |) + Cs

= τ((1 +D2)−s/4T ∗T (1 +D2)−s/4) + Cs,

where Cs = τ(|T |
(
(1 + (D +A)2)−s/2 − (1 +D2)−s/2

)
|T |) is finite for s > p−1 by

the previous considerations. By repeating the argument for T ∗ we have T ∈ B2(D+
A, p). As D = (D+A)−A, the argument is symmetric, and we see that B2(D, p) =
B2(D +A, p). This entails by construction that B1(D, p) = B1(D +A, p). �

Unfortunately, there is no reason to suppose that the smoothness properties
of the spectral triple (Mn(A),Hn,Dn) are preserved by the homotopy from Dn

to De. Instead, consider (Ae,Hn,De), where Ae is the algebra of polynomials in
e − 1e ∈ Mn(A). Then by Lemma 3.34 and [De, e − 1e] = [De, e] = 0 (which
implies since De is self-adjoint that [|De|, e− 1e] = [|De|, e] = 0 too) and we easily
check that (Ae,Hn,De) is a smoothly summable spectral triple. Now employing
the resolvent cocycle of (Ae,Hn,De) yields

Indexτ⊗tr2n

(
ê(Fµ,+ ⊗ Idn)ê

)
= resr=(1−p)/2

( M∑

m=2,even

φrµ,m
(
Chm(ê)

)

+
1

(r − (1− p)/2)
τ ⊗ trn

(
γ(e− 1e)(1 +D2

e)
−(r−(1−p)/2)

))
.

This equality follows from Proposition 3.32 and the explicit computation of the zero
degree term. Now since [De, e] = 0, φrm(Chm(e)) = 0 for all m ≥ 2. This proves
the following nonunital McKean-Singer formula.

Theorem 3.35. Let (A,H,D) be an even semifinite smoothly summable spectral
triple relative to (N , τ) with spectral dimension p ≥ 1 and with A separable. Also,
let e ∈Mn(A∼) be a projection. Then

〈[e]− [1e],[(A,H,D)]〉 = 〈[e]− [1e], [(Ae,H,D)]〉

= resr=(1−p)/2
1

(r − (1− p)/2)
τ ⊗ trn

(
γ(e− 1e)(1 +D2

e)
−(r−(1−p)/2)

)
.

This gives a nonunital analogue of the McKean-Singer formula. Observe that
the formula has De not Dn.

Remark. We have also proved a nonunital version of the Carey-Phillips spec-
tral flow formula for paths (Dt)t∈[0,1] with unitarily equivalent endpoints and with

Ḋt satisfying suitable summability constraints. The proof is quite lengthy, and so
we will present this elsewhere.
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3.11. A classical example with weaker integrability properties

Perhaps surprisingly, given the difficulty of the nonunital case, we gain a little
more freedom in choosing representatives of K-theory classes than we might have
expected. We do not formulate a general statement, but instead illustrate with
an example. This example involves a projection which does not live in a matrix
algebra over (the unitisation of) our ‘integrable algebra’ B1(D, p), but we may still
use the local index formula to compute index pairings.

We will employ the uniform Sobolev algebra W∞,1(R2), i.e. the Fréchet com-
pletion of C∞

c (R2) for the seminorms qn(f) := maxn1+n2≤n ‖∂n1
1 ∂n2

2 f‖1. By the
Sobolev Lemma, W∞,1(R2) is continuously embedded in L∞(R2), and is separable
for the uniform topology as it contains C∞

c (R2) as a dense subalgebra, and C∞
c (R2)

is separable for the uniform norm topology. The spin Dirac operator on R2 ≃ C is

∂/ :=

(
0 ∂1 + i∂2

−∂1 + i∂2 0

)
, with grading γ :=

(
1 0
0 −1

)
. Identifying a function

with the operator of pointwise multiplication by it, an element f ∈ W∞,1(R2) is
represented as f ⊗ Id2 on L2(R2,C2). Anticipating the results of the next Chapter,
we know by Proposition 4.9 that the triple

(
W∞,1(R2), L2(R2,C2), ∂/

)
is smoothly

summable, relative to the pair
(
B(L2(R2,C2)),Tr

)
whose spectral dimension is 2

and is isolated. Thus, we can employ the residue cocycle to compute indices.
Let pB ∈M2(C0(C)

∼) be the Bott projector

(3.26) pB(z) :=
1

1 + |z|2
(
1 z̄
z |z|2

)
, 1pB

=

(
0 0
0 1

)
.

It is important to observe that pB − 1pB
is not in B1(∂/ , 2) since the off-diagonal

terms are not even L2-functions.
Since the fibre trace of pB − 1pB

is identically zero, the zero degree term of
the local index formula does not contribute to the index pairing. This observation
holds in general for commutative algebras since elements of K0 then correspond to
virtual bundles of virtual rank zero. Thus, there is only one term to consider in
the local index formula, in degree 2. More generally, for even dimensional mani-
folds we will only ever need to consider the terms in the local index formula with
m ≥ 2. This means that all we really require is that [∂/ ⊗ Id2, pB ][∂/ ⊗ Id2, pB ]
lies in M2(W

∞,1(R2)), and this is straightforward to check. Indeed, the routine
computation

(pB−1/2)[∂/ ⊗ Id2, pB ][∂/ ⊗ Id2, pB ] =
−4

(1 + |z|2)3




1/2 z̄/2 0 0
z/2 |z|2/2 0 0
0 0 −|z|2/2 z̄/2
0 0 z/2 −1/2


 ,

shows that (pB − 1/2)[∂/ ⊗ Id2, pB ][∂/ ⊗ Id2, pB ] is a matrix over W∞,1(R2). The
fibrewise trace gives

tr2
(
(pB − 1/2)[∂/ ⊗ Id2, pB ][∂/ ⊗ Id2, pB ]

)
=

−2

(1 + |z|2)2
(
1 0
0 −1

)
.
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Applying [50, Corollary 14], we find (the prefactor of 1/2 comes from the coefficients
in the local index formula)

1

2
Tr⊗ tr2

(
γ(pB − 1/2)[∂/ ⊗ Id2, pB ][∂/ ⊗ Id2, pB ](1 +D2)−1−ξ

)

= − Γ(ξ)

Γ(1 + ξ)

∫ ∞

0

r

(1 + r2)2
dr = − 1

2ξ
.

Recalling that the second component of the Chern character of pB introduces a
factor of −2, we arrive at the numerical index

〈[pB ]− [1pB
],
[(
W∞,1(R2), L2(R2,C2), ∂/

)]
〉 = 1,

as expected. This indicates that the resolvent cocycle extends by continuity to
a larger complex, defined using norms of iterated projective tensor product type
associated to the norms Pn. We leave a more thorough discussion of this to another
place.





CHAPTER 4

Applications to Index Theorems on Open

Manifolds

This Chapter contains a discussion of some of what the noncommutative residue
formula implies for the classical situation of a noncompact manifold. The main
contribution of the noncommutative approach that we have endeavoured to explain
here, is the extent to which compact support assumptions such as those in [29]
may be avoided. However, we do not exhaust all of the applications of the residue
formula in the classical case in this memoir.

Our aim is to write an account of our results in a relatively complete fashion.
We recall the basic definitions of spin geometry, [39], and heat kernel estimates for
manifolds of bounded geometry. Using this data we construct a smoothly summable
spectral triple for manifolds of bounded geometry. Having done this, we use results
of Ponge and Greiner to obtain an Atiyah-Singer formula for the index pairing on
manifolds of bounded geometry. Then we utilise the semifinite framework to obtain
an L2-index theorem for covers of manifolds of bounded geometry.

4.1. A spectral triple for manifolds of bounded geometry

4.1.1. Dirac-type operators and Dirac bundles. Let (M, g) be a (finite
dimensional, paracompact, second countable) geodesically complete Riemannian
manifold. We let n ∈ N be the dimension of M and µg be the Riemannian volume
form. Unless otherwise specified, the measure involved in the definition of the
Lebesgue function spaces Lq(M), 1 ≤ q ≤ ∞, is the one associated with µg.

We let DS be a Dirac-type operator in the sense of [29,39]. Such operators are
of the following form. Let S → M , be a vector bundle, complex for simplicity, of
rank m ∈ N and (·|·), a fiber-wise Hermitian form. We suppose that S is a bundle
of left modules over the Clifford bundle algebra Cliff(M) := Cliff(T ∗M, g) which
is such that for each unit vector ex of T ∗

xM , the Clifford module multiplication
c(ex) : Sx → Sx is a (smoothly varying) isometry. It is further equipped with a
metric compatible connection ∇S , such that for any smooth sections σ ∈ Γ∞(S)
and ϕ ∈ Γ∞(Cliff(M)), it satisfies

(4.1) ∇S(c(ϕ)σ) = c(∇ϕ)σ + c(ϕ)∇S(σ).

Here, ∇ is the Levi-Civita connection naturally extended to a (metric compatible)
connection on Cliff(M) which satisfies, for ϕ, ψ ∈ Cliff(M), ∇(ϕ · ψ) = ∇(ϕ) · ψ +
ϕ ·∇(ψ) (the dot here is the Clifford multiplication). We call such a bundle a Dirac
bundle, [39, Definition 5.2]. Then, DS is defined as the composition

Γ∞(S) → Γ∞(T ∗M ⊗ S) → Γ∞(S),

where the first arrow is given by ∇S and the second by the Clifford multiplication.

89
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For any orthonormal basis {eµ}µ=1,...,n of T ∗
xM , at each point x ∈ M and

{eµ}µ=1,...,n the dual basis of TxM , with Einstein summation convention under-
stood, we therefore have

DS = c(eµ)∇S
eµ .

Let 〈σ1, σ2〉S =
∫
M
(σ1|σ2)(x)µg(x) be the L2-inner product on Γ∞

c (S), with (·|·)
the Hermitian form on S. As usual L2(M,S) is the associated Hilbert space com-
pletion of Γ∞

c (S). Recall that under the assumption of geodesic completeness,
DS is essentially self-adjoint and Γ∞

c (S) is a core for DS , [33, Corollary 10.2.6]
and [29, Theorem 1.17]. Moreover, if the Dirac bundle S → M is a Z2-graded
Cliff(M)-module, then DS is odd, and in the usual matrix decomposition, it reads

DS =

(
0 D+

S

D−
S 0

)
, with (D±

S )
∗ = D∓

S .

We identify L∞(M) with a subalgebra of the bounded Borel sections of Cliff(M)
in the usual way. We thus have a left action L∞(M)×L2(M,S) → L2(M,S) given
by (f, σ) 7→ c(f)σ. In a local trivialization of S, this action is given by the diagonal
point-wise multiplication. It, moreover, satisfies ‖c(f)‖ = ‖f‖∞.

We recall now the important Bochner-Weitzenböck-Lichnerowicz formula for
the square of a Dirac-type operator:

(4.2) D2
S = ∆S + 1

2R, R := c(eµ) c(eν) F (eµ, eν),

where ∆S := (∇S)∗ ∇S is the Laplacian on S and F : Λ2T ∗M → End(S) is the
curvature tensor of ∇S .

Remark. Using the formula (4.2), Gromov and Lawson [29, Theorem 3.2]
have proven that if there exists a compact set K ⊂M such that

inf
x∈M\K

sup{κ ∈ R : R(x) ≥ κ IdSx} > 0,

then DS (and thus D±
S in the graded case) is Fredholm in the ordinary sense.

Note that the Leibniz-type relation (4.1) shows that for any f ∈ C∞
c (M), the

commutator [DS , c(f)] extends to a bounded operator since an explicit computation
gives

[DS , c(f)] = c(df).(4.3)

4.1.2. The case of a manifold with bounded geometry. Recall that the
injectivity radius rinj ∈ [0,∞), is defined as

rinj := inf
x∈M

sup{rx > 0},

where rx ∈ (0,∞) is such that the exponential map expx is a diffeomorphism from
B(0, rx) ⊂ TxM to Ur,x, an open neighborhood of x ∈ M . We call canonical
coordinates the coordinates given by exp−1

x : Ur,x → B(0, rx) ⊂ TxM ≃ Rn. Note
that rinj > 0 implies that (M, g) is geodesically complete.

With these preliminaries, we recall the definition of bounded geometry.

Definition 4.1. A Riemannian manifold (M, g) is said to have bounded ge-
ometry if it has strictly positive injectivity radius and all the covariant derivatives
of the curvature tensor are bounded on M . A Dirac bundle on M is said to have
bounded geometry if, in addition, all the covariant derivatives of F , the curvature
tensor of the connection ∇S , are bounded on M . For brevity, we simply say that
(M, g, S) has bounded geometry.
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We summarise some facts about manifolds of bounded geometry. Bounded
geometry allows the construction of canonical coordinates which are such that the
transition functions have bounded derivatives of all orders, uniformly on M , [51,
Proposition 2.10]. Moreover, for all ε ∈ (0, rinj/3), there exist countably many
points xi ∈ M , such that M = ∪B(xi, ε) and such that the covering of M by the
balls B(xi, 2ε) has finite order. (Recall that the order of a covering of a topological
space, is the least integer k, such that the intersection of any k + 1 open sets of
this covering is empty.) Subordinate to the covering by the balls B(xi, 2ε), there
exists a partition of unity,

∑
i ϕi = 1, with suppϕi ∈ B(xi, 2ε) and such that their

derivatives of all orders and in normal coordinates are bounded, uniformly in the
covering index i. See [55, Lemmas 1.2, 1.3, Appendix 1] for details and proofs
of all these assertions. Also, a differential operator is said to have uniform C∞-
bounded coefficients, if for any atlas consisting of charts of normal coordinates, the
derivatives of all order of the coefficients are bounded on the chart domain and the
bounds are uniform on the atlas.

The next proposition follows from results of Kordyukov [37] and Greiner [31],
and records everything that we need to know about the heat semi-group with
generator D2

S .

Proposition 4.2. Let (M, g) be a Riemannian manifold of dimension n with
bounded geometry. Let DS be a Dirac type operator acting on the sections of a Dirac
bundle S of bounded geometry and P a differential operator on Γ∞

c (S) of order
α ∈ N, with uniform C∞-bounded coefficients. Let then KS

t,P (x, y) ∈ Hom(Sx, Sy)

be the operator kernel of P e−tD2
S . Then:

(1) We have the global off-diagonal gaussian upper bound

∣∣KS
t,P (x, y)

∣∣
∞

≤ C t−(n+α)/2 exp
(
− d2g(x, y)

4(1 + c)t

)
, t > 0,

where | · |∞ denotes the operator norm on Hom(Sx, Sy) and dg the geodesic distance
function.
(2) We have the short-time asymptotic expansion

tr
(
KS

t,P (x, x)
)
∼t→0+ t−⌊α/2⌋−n/2

∑

i≥0

tibP,i(x), for all x ∈M,

where the functions bP,i(x) are determined by a finite number of jets of the principal
symbol of P (∂t +D2

S)
−1.

(3) Moreover, this local asymptotic expansion carries through to give a global one:
For any f ∈ L1(M), we have
∫

M

f(x) tr
(
KS

t,P (x, x)
)
dµg(x) ∼t→0+ t−⌊α/2⌋−n/2

∑

i≥0

ti
∫

M

f(x) bP,i(x) dµg(x).

Proof. When M is compact, the first two results can be found in [31, Chap-
ter I]. When M is noncompact but has bounded geometry, Kordyukov has proven
in [37, Section 5.2] that all the relevant gaussian bounds used in [31] to construct
a fundamental solution, via the Levi method, of a parabolic equation associated
with an elliptic differential operator, remains valid for any uniformly elliptic differ-
ential operator with C∞-bounded coefficients, which is the case for D2

S . The only
restriction for us is that Kordyukov treats the scalar case only. However, a careful
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inspection of his arguments shows that the same bounds still hold for a uniformly
elliptic differential operator acting on the smooth sections of a vector bundle of
bounded geometry, as far as the operators under consideration have C∞-bounded
coefficients. With these gaussian bounds at hand (for the approximating solution
and for the remainder term), one can then repeat word for word the arguments of
Greiner to conclude for (1) and (2). For (3) one uses Kordyukov’s bounds extended
to the vector bundle case, [37, Proposition 5.4], to see that for all k ∈ N0, one has

∣∣∣tr
(
KS

t,P (x, x)
)
− t−⌊α/2⌋−n/2

k∑

i=0

tibP,i(x)
∣∣∣ ≤ C t−⌊α/2⌋−n/2+k+1,

for a constant C > 0, independent of x ∈M . This is enough to conclude. �

Given ω, a weight function (positive and nowhere vanishing) on M , we denote
by W k,l(M,ω), 1 ≤ k ≤ ∞, 0 ≤ l <∞, the weighted uniform Sobolev space. That
is to say, the completion of C∞

c (M) for the topology associated to the norm

‖f‖k,l,ω :=
(∫

M

|∆l/2f |k ω dµg

)1/k
,

where, ∆ denotes the scalar Laplacian onM . For ω = 1 we simply denote this space
by W k,l(M) and the associated norm by ‖ · ‖k,l. We also write W k,∞(M,ω) :=⋂

l≥0W
k,l(M,ω) endowed with the projective limit topology.

WhenM has strictly positive injectivity radius (thus in particular for manifolds
of bounded geometry), the standard Sobolev embedding

W k,l(M) ⊂ L∞(M),

holds for any 1 ≤ k ≤ ∞ and l > n/k, with n the dimension of M (see [2, Chapter
2]). In particular, if ε > 0 then W k,n/k+ε(M) is not only a Fréchet space but a
Fréchet algebra. Moreover, W k,l(M) ⊂ C0(M) for 1 ≤ k ≤ ∞ and 0 ≤ l ≤ ∞, so
that it is separable for the uniform topology as M is metrisable. The next lemma
gives equivalent norms for the weighted Sobolev spaces W k,l(M,ω).

Lemma 4.3. Let
∑
ϕi = 1 be a partition of unity subordinate to a covering

of M by balls of radius ε ∈ (0, rinj/3). Then the norm ‖ · ‖k,l,ω on W k,l(M,ω),
1 ≤ k ≤ ∞, l ∈ N0, is equivalent to

f 7→
∞∑

i=1

‖ϕif‖k,l,ω.

Proof. This is the weighted version of the discussion which follows [55, Lemma
1.3, Appendix 1], which is a consequence of the fact that the normal derivatives of
ϕi are bounded uniformly in the covering index and because this covering has finite
order. �

In the following lemma, we examine first the question of (ordinary) smoothness
before turning to smooth summability.

Lemma 4.4. Let (M, g, S) have bounded geometry. For T an operator on
L2(M,S) preserving the domain of DS, define δ(T ) = [|DS |, T ]. Then for any
f ∈W∞,∞(M), the operators c(f) and c(df) on L2(M,S) belong to

⋂∞
j=0 dom δj.
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Proof. By the discussion following Definition 1.20, it suffices to show that for
f ∈ W∞,∞(M), c(f) belongs to

⋂∞
j=0 domRj , with R(T ) = [D2

S , T ](1 + D2
S)

−1/2.

Next observe that since [c(f),R] = 0, with R the zero-th order operator appearing
in (4.2), we have

Rk
(
c(f)

)
= [D2

S , [. . . , [D2
S , [D2

S , c(f)]] . . . ]](1 +D2
S)

−k/2

= [∆S + 1
2R, [. . . , [∆S + 1

2R, [∆S , c(f)]] . . . ]](1 +D2
S)

−k/2,

with k commutators. Define

Bk := [∆S + 1
2R, [. . . , [∆S + 1

2R, [∆S , c(f)]] . . . ]],

so that Rk
(
c(f)

)
= Bk (1 +D2

S)
−k/2. Since the principal symbol of ∆S is |ξ|2IdSx

,
a local computation shows that Bk is a differential operator of order k. With the
bounded geometry assumption, we see moreover that Bk has uniform C∞-bounded
coefficients. (This follows because the covariant derivatives of R will appear in
the expression of the coefficients of Bk and since R(x) = c(eµx) c(e

ν
x)F (eµ,x, eν,x) ∈

End(Sx).) In particular, Bk is a properly supported pseudodifferential operator
with bounded symbol (in the sense of [37, Definition 2.1]) of order k. While the
pseudodifferential operator (1+D2

S)
−k/2 is not properly supported, it can be written

as the sum of a properly supported pseudodifferential operator of order −k and an
infinitely smoothing operator; see [37, Theorem 3.3] for more information. Hence,
by [37, Proposition 2.7], Rk

(
c(f)

)
is properly supported with bounded symbol of

zeroth order. Then one concludes using [37, Proposition 2.9], where one needs [55,
Theorem 3.6, Appendix] instead of [37, Lemma 2.2] used in that proof, to extend
the result to the case of a vector bundle of bounded geometry. The proof for c(df)
is entirely similar. �

As before, we let KS
t , t > 0, be the Schwartz kernel of the heat semigroup with

generator D2
S . When it exists, we let ks, s > 0, be the restriction to the diagonal of

the fibre-wise trace of the distributional kernel of (1 + D2
S)

−s/2. That is for s > 0
and x ∈M , we set

ks(x) = tr
(
[(1 +D2

S)
−s/2]x,x

)
,

where the trace tr is the matrix trace on End(Sx) and for A a bounded operator
on L2(M,S) we denote by [A]x,y its distributional kernel.

Now assuming the geodesic completeness of M , the heat kernel KS
t , t > 0, is a

smooth section of the endomorphism bundle of S. Combining this with the Laplace
transform representation

ks(x) =
1

Γ(s/2)

∫ ∞

0

ts/2−1 e−t tr
(
KS

t (x, x)
)
dt, for all x ∈M,

we see that the question of existence of ks is uniquely determined by the integrability
of the on-diagonal fibre-wise trace of the Dirac heat kernel with respect to the
parameter t. More precisely, Proposition 4.2 (1) gives

Lemma 4.5. Let DS be a Dirac type operator operating on the sections of a
Dirac bundle S of bounded geometry. Then, for s > n, the function ks is uniformly
bounded on M .

As a corollary of the lemma above, we see that W r,t(M) ⊂ W r,t(M,ks) with
‖ · ‖r,t,ks ≤ C(s)‖ · ‖r,t , for some constant C(s) independent of r ∈ [1,∞] and of
t ∈ R.
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Lemma 4.6. Let DS be a Dirac type operator operating on the sections of a
Dirac bundle S of bounded geometry. Then provided f ∈ W 2,0(M,ks) and s > n,
the operator c(f)(1 +D2

S)
−s/4 is Hilbert-Schmidt on L2(M,S), with

‖c(f)(1 +D2
S)

−s/4‖2 =
(∫

M

|f |2(x) ks(x) dµg(x)
)1/2

= ‖f‖2,0,ks .

Proof. By Lemma 4.5, the function ks is well defined and uniformly bounded
on M . Now let A be a bounded operator acting on L2(M,S), with distributional
kernel [A]x,y. Then for f ∈ L∞(M), a calculation shows that Ac(f) has distri-
butional kernel f(y)[A]x,y. We then have the following expression for the Hilbert-
Schmidt norm of Ac(f):

‖Ac(f)‖22 =

∫

M×M

tr
(
|[Ac(f)]x,y|2

)
dµg(x) dµg(y)

=

∫

M×M

|f(y)|2tr
(
|[A]x,y|2

)
dµg(x) dµg(y)

=

∫

M×M

|f(y)|2tr
(
[A∗]y,x[A]x,y

)
dµg(x) dµg(y)

=

∫

M

|f(y)|2tr
(
[A∗A]y,y

)
dµg(y),

where in the last equality we used the operator-kernel product rule. Then, the
proof follows by setting A = (1 +D2

S)
−s/4. �

As explained above, we identify the von Neumann algebra generated by the
operators {c(f), f ∈ C∞

c (M)} acting on L2(M,S) with L∞(M). Then, from the
previous Hilbert-Schmidt norm computation, we can determine the weights ϕs of
Definition 1.1, constructed with DS .

Corollary 4.7. Let DS be a Dirac type operator operating on the sections of
a Dirac bundle S of bounded geometry. For s > n, let ϕs be the faithful normal
semifinite weight of Definition 1.1, on the type I von Neumann algebra B(L2(M,S))
with operator trace. When restricted to L∞(M), ϕs coincides with the integral on
M with respect to the Borel measure ks dµg.

We now examine which functions on the manifold are in B∞
1 (DS , n). Combining

Proposition 1.19 with Lemma 4.6 allows us to determine the norms Pm restricted
to L∞(M).

Corollary 4.8. Let DS be a Dirac type operator operating on the sections of
a Dirac bundle S of bounded geometry. Then

B1(DS , n)
⋂
L∞(M) = L∞(M)

⋂

m∈N

L1(M,ks+1/mdµg).

Moreover, we have the equality

Pm

(
c(f)

)
= ‖f‖∞ + 2‖f‖1,kn+1/m

, m ∈ N.

By Lemma 4.5, we see that
⋂

m∈N
L1(M,ks+1/mdµg) contains L1(M). Note

also that if a uniform on-diagonal lower bound for the Dirac heat kernel of the form
∣∣KS

t (x, x)
∣∣
∞

≥ ct−n/2,
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holds (with | · |∞ the operator norm on End(Sx)), then
⋂

m∈N
L1(M,ks+1/mdµg) =

L1(M). Such an estimate holds for the spin Dirac operator on Euclidean spaces,
for example, and for the scalar heat kernel for any manifold of bounded geometry.

We now arrive at the main statement of this Section.

Proposition 4.9. Let DS be a Dirac type operator operating on the sections of
a Dirac bundle S of bounded geometry on a manifold M of dimension n. Relative
to the I∞ factor B(L2(M,S)) with operator trace, the spectral triple

(
W∞,1(M), L2(M,S),DS

)
,

is smoothly summable and of spectral dimension n. Moreover, the spectral dimen-
sion is isolated in the sense of Definition 3.1.

Proof. We first show that for any f ∈W∞,1(M), the operators δk(c(f)) and
δk(c(df)), k ∈ N0, all belong to B1(DS , n). That c(f) ∈ B1(DS , n) for f ∈W∞,1(M)
has already been proven in Corollary 4.8 since

⋂
mW∞,1(M,kn+1/m) ⊃W∞,1(M).

For the rest, we know by Proposition 2.21 that it is sufficient to prove that

(1 +D2
S)

−s/4Rk(c(f))(1 +D2
S)

−s/4 ∈ L1
(
L2(M,S)

)
, for all k ∈ N0, and all s > n,

and similarly for c(df). By the proof of Lemma 4.4, we also know that for f ∈
W∞,1(M) ⊂ W∞,∞(M), the operators Rk(c(f)) and Rk(c(df)) are of the form
Bk(1 + D2

S)
−k/2, where Bk is a differential operator of order k, with uniform

W∞,1(M)-coefficients. This means that for any covering of M = ∪B(xi, ε) of
balls of radius ε ∈ (0, rinj/3) and partition of unity

∑
ϕi = 1 subordinate to the

covering, there exist elements fα ∈ End(Sx) with Bk|B(xi,ε) =
∑

|α|≤k fα∂
α in nor-

mal coordinates. Moreover,
∑∞

i=0 ‖ϕi|fα|∞‖1 < ∞, where | · |∞ is the operator
norm on End(Sx), each ϕi has bounded derivatives of all order, uniformly in the
covering index i. Now take

∑
ψi = 1 a second partition of unity subordinate to the

covering M = ∪B(xi, 2ε) (recall that the latter has finite order), with ψi(x) = 1 in
a neighbourhood of supp(ϕi). We then have

Bk =
∞∑

i=0

ψiBkϕi =
∞∑

i=0

∑

|α|≤k

ψifα∂
αϕi =

∞∑

i=0

∑

|α|,|β|≤k

ψifα∂
β(ϕi)∂

α.

Let ψifα∂
β(ϕi) = ui,α,β |ψifα∂

β(ϕi)| be the polar decomposition. Define

Ci,α,β := ui,α,β |ψifα∂
β(ϕi)|1/2, Di,α,β := |ψifα∂

β(ϕi)|1/2∂α,
so that

(1 +D2
S)

−s/4Bk(1 +D2
S)

−(s+2k)/4 =
∞∑

i=0

∑

|α|,|β|≤k

(1 +D2
S)

−s/4Ci,α,β Di,α,β(1 +D2
S)

−(s+2k)/4.

The fibre-wise trace of the on-diagonal operator kernel of C∗
i,α,β(1 +D2

S)
−s/2Ci,α,β

being given by |ψi(x)fα(x)∂
β(ϕi)(x)|1ks(x) (with | · |1 the trace-norm on End(Sx)),

we have for s > n

Tr
(
C∗

i,α,β(1 +D2
S)

−s/2Ci,α,β

)
=

∫

B(xi,2ε)

|ψi(x)fα(x)∂
β(ϕi)(x)|1ks(x)dµg(x),

so that

‖(1 +D2
S)

−s/4Ci,α,β‖2 = ‖ψi|fα|1∂β(ϕi)‖1/21,0,ks
≤ Cα,β‖ψi|fα|∞‖1/21 .
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For Di,α,β , note that the off-diagonal kernel of Di,α,β(1+D2
S)

−(s+2k)/2D∗
i,α,β reads

up to a Γ-function factor

i|α||ψifα∂
β(ϕi)|(x)1/2

∫ ∞

0

t(s+2k)/2−1 e−t ∂αx ∂
α
yK

S
t (x, y) dt |ψifα∂

β(ϕi)|(y)1/2.

But Proposition 4.2 (1) gives

|∂αx ∂βyKS
t (x, y)|∞ ≤ C ′(α, β)t−(n+|α|+|β|)/2 exp

(
− d2g(x, y)

4(1 + c)t

)
, t > 0.

Since |α|, |β| ≤ k, we finally obtain the inequality

‖Di,α,β(1 +D2
S)

−(s+2k)/4‖22 ≤ C ′(α)

∫

B(xi,2ε)

|ψifα∂
β(ϕi)|∞(x)dµg(x)

≤ C ′′(α, β)

∫

B(xi,2ε)

|ψi| |fα|∞(x)dµg(x) = C ′′(α, β)‖ψi|fα|∞‖1.

Thus,

‖(1 +D2
S)

−s/4Bk(1 +D2
S)

−(s+2k)/4‖1

≤
∞∑

i=0

∑

|α|,|β|≤k

‖(1 +D2
S)

−s/4Ci,α,β‖2 ‖Di,α,β(1 +D2
S)

−(s+2k)/4‖2

≤ C

∞∑

i=0

∑

|α|≤k

‖ψi|fα|∞‖1,

which is finite by Lemma 4.3. This proves that for all k ∈ N0, δ
k(c(f)) and δk(c(df))

are in B1(DS , n). We also have proven that the triple
(
W∞,1(M), L2(M,S),DS

)
is

finitely summable.
That n is the smallest number such that c(f)(1 +D2

S)
−s/2 is trace class for all

s > n follows from Proposition 4.2 (3), since

Tr
(
c(f)(1 +D2

S)
−s/2

)
=

1

Γ(s/2)

∫ ∞

0

ts/2−1 e−t

∫

M

f(x) tr
(
KS

t (x, x)
)
dµg(x) dt,

and

tr
(
KS

t (x, x)
)
∼t→0 t

−n/2
∑

i≥0

ti bi(x).

Thus, the spectral dimension is n.
Last, that the spectral dimension is isolated follows from the fact that it has

discrete dimension spectrum, which follows from Proposition 4.2 (3) and the trace
computation above, since for any f0, f1, . . . , fm ∈W∞,1(M), the operator

c(f0)c(df1)
(k1) . . . c(dfm)(km),

is a differential operator of order |k| = k1 + · · · + km with uniform C∞-bounded
coefficients. �

4.2. An index formula for manifolds of bounded geometry

4.2.1. Extension of the Ponge approach. We still consider (M, g), a com-
plete Riemannian manifold of dimension n, but now suppose that (M, g) is spin.
We fix S to be the spinor bundle endowed with a connection ∇S which is the usual
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lift of the Levi-Civita connection. We let DS be the associated Dirac operator. We
still assume that (M, g, S) has bounded geometry, in the sense of Definition 4.1.

Now we need to explain how to use the asympotic expansions of Proposition
4.2 (3), to deduce the Atiyah-Singer local index formula from the residue cocy-
cle formula for the index. (Recall that by Proposition 4.9, the spectral triple(
W∞,1(M), L2(M,S),DS

)
has isolated spectral dimension, so that we can use the

last version of Theorem 3.33 to compute the index.) The key tool is Ponge’s adap-
tation of Getzler’s arguments, [47].

As Ponge and Roe explain, [47,51], the arguments that Gilkey uses to prove
that the coefficients in the asymptotic expansion of the Dirac Laplacian are univer-
sal polynomials, carries over to the noncompact situation and produces universal
polynomials, identical to those of the compact case. Moreover, Ponge’s argument
is purely local; that is, it proceeds by choosing a single point in M and checking
what the asymptotic expansion gives for the terms in the residue cocycle formula
at that point. As such there is no change needed in Ponge’s argument to handle
complete manifolds of bounded geometry.

Thus, both the following results are proven just as in Ponge, and the only work
is in checking that the constants are consistent with our conventions.

4.2.2. The odd case. We treat the odd case first, which is not affected by
our ‘doubling up’ construction.

Theorem 4.10. Let (M, g, S) be a Riemannian spin manifold with bounded
geometry and of odd dimension n. Let

(
W∞,1(M), L2(M,S),DS

)
be the smoothly

summable spectral triple of spectral dimension n described in the last Section. The
components of the odd residue cocycle are given by

φ2m+1(f
0, f1, . . . , f2m+1)

=
(−1)m

√
2πi

(2πi)
n+1
2 (2m+ 1)!m!

∫

M

f0df1 ∧ · · · ∧ df2m+1 ∧ Â(R)(n−2m−1),

for f0, f1, . . . , f2m+1 ∈W∞,1(M), m ≥ 0, R being the curvature tensor of M .

Remark. The A-roof genus, Â(R), is computed here with no normalisation of
the Pontryagin classes by factors of 2πi. To obtain the index formula in the next
result, one should use the (b, B)-Chern character of a unitary u ∈MN

(
W∞,1(M)∼

)
,

antisymmetrising after taking the matrix trace.

Corollary 4.11. For any unitary u ∈ MN

(
W∞,1(M)∼

)
and with 2Pµ − 1

being the phase of DS,µ ⊗ IdN and P = χ[0,∞)(DS) ⊗ IdN , we have the odd index
pairing given by

Ind(PuP ) = Ind(PµûPµ)

= − 1

(2πi)
n+1
2

n−1
2∑

m=0

(−1)m

(2m+ 1)!m!

∫

M

Ch2m+1(u) ∧ Â(R)(n−2m−1).

4.2.3. The even case. Now as the rank of a projection f ∈MN

(
W∞,1(M)∼

)

is constant on connected components and equal to the rank of 1f , the contribution
of the zeroth term to the local index formula is zero. It remains therefore to compute
φ2m for m ≥ 1 evaluated on the Chern character of a projection f .
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Theorem 4.12. Let (M, g, S) be a Riemannian spin manifold with bounded
geometry and of even dimension n. Let

(
W∞,1(M), L2(M,S),DS

)
be the smoothly

summable spectral triple of spectral dimension n described in the last Section. The
non-zero components of the even residue cocycle are given by

φ2m(f0, f1, . . . , f2m) =
(−1)m

(2πi)n/2(2m)!

∫

M

f0df1∧· · ·∧df2m∧Â(R)(n−2m), m ≥ 1,

for f0, f1, . . . , f2m ∈W∞,1(M), R being the curvature tensor of M .

Again the A-roof genus is defined without 2πi normalisations, and in the fol-
lowing result one uses the (b, B)-Chern character of f ∈ MN

(
W∞,1(M)∼

)
, anti-

symmetrising after taking the trace.

Corollary 4.13. For any projector f ∈MN

(
W∞,1(M)∼

)
and with Fµ being

the phase of DS,µ ⊗ IdN , we have

Ind(f̂ Fµ,+ f̂
)
= (2πi)−n/2

n
2∑

m=1

(−1)m

(2m)!

∫

M

Ch2m(f) ∧ Â(R)(n−2m).

4.3. An L2-index theorem for manifolds of bounded geometry

In this Section we show how a version of the relative L2-index (see [59] for
another version) which generalises that in [1], can be obtained from our residue
formula.

As above, we fix (M̃, g̃), a Riemannian manifold of dimension n and of bounded
geometry. Let also G be a countable discrete group acting freely and properly on
M̃ by (smooth) isometries. Note that we do not assume M̃ to be G-compact

and we let M := G \ M̃ be the possibly noncompact manifold (by properness) of

right cosets. It is then natural to think of M̃ as the total space of a principal
G-bundle with noncompact base M . We denote by q : M̃ → M the projection
map. Note that the metric g̃ on M̃ then naturally yields a metric g on M given
by gx(v1, v2) = g̃x̃(ṽ1, ṽ2), if x = q(x̃) ∈ M and vi = q(ṽi) ∈ TxM where we have

identified TxM ≃ G.(Tx̃M̃), since the action of G naturally extends to TM̃ . In
particular, (M, g) also has bounded geometry.

An important class of examples is given by universal coverings. In this case,
G is the fundamental group of a manifold of bounded geometry M and M̃ is its
universal cover. Also, in this case q : M̃ → M is the covering map and g̃ is the
lifted metric on M̃ by g̃x̃ = gq(x̃).

Let now DS be a Dirac type operator acting on the sections of a Dirac bundle S
of bounded geometry on M . To simplify the notations, we denote by (A,H,DS) :=(
W∞,1(M), L2(M,S),DS

)
the smoothly summable spectral triple constructed in

Section 4.1.1. If the triple is either even or odd, then we have various formulae for

Index(êFµ,+ê) even case, Index(PµûPµ) odd case,

where Fµ is the phase of DS,µ, is the double of DS (see Definition 2.9), and Pµ =

(Fµ+1)/2. We lift the bundle S to a bundle S̃ on M̃ (pullback by q) and we also lift

the operator DS to an equivariant operator D̃S on sections of S̃. This requires that
the action of G on M̃ lifts to an action on S̃, and we assume that this is the case.
We also denote by c̃ the Clifford action of Cliff(M̃) on S̃. We let H̃ = L2(M̃, S̃)
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and observe that A acts on H̃ by (c̃(f)ξ)(x̃) = c(f(x))ξ(x̃), for f ∈ A, ξ ∈ H̃, and

x̃ ∈ M̃ with x = q(x̃).
We now briefly review the setting for L2-index theory referring, for example, to

the review [53] for some details and references to the original literature. Since the

action of G on M̃ is free and proper, we have an isometric identification L2(M̃, S̃) ∼=
L2(M,S) ⊗ ℓ2(G). This allows us to define the von Neumann algebra NG = G′ ∼=
B(H) ⊗ R(G)′′, where R(G) is the group algebra consisting of the span of the
unitaries giving the right action of G on ℓ2(G). There is a canonical semifinite
faithful normal trace τG defined on elementary tensors T ⊗ U ∈ B(H)⊗R(G)′′ by

τG(T ⊗ U) = TrH(T ) τe(U),

where TrH is the operator trace on H and τe is the usual finite faithful normal trace
on R(G)′′ given by evaluation at the neutral element. Let now T̃ be a pseudodiffer-

ential operator on H̃ with smooth kernel [T̃ ] ∈ Γ∞(S̃⊠S̃). Then, T̃ is G-equivariant
if and only if

[T̃ ](h · x̃, h · ỹ) = ex̃(h) [T ](x̃, ỹ) eỹ(h)
−1, for all (h, x̃, ỹ) ∈ G× M̃2,

where ex̃ : G → Aut(S̃x̃) is the fibre-wise lift of the action of G to S̃. For such

G-equivariant pseudodifferential operators on H̃ which belongs to L1(NG, τG), we
have

(4.4) τG(T̃ ) =

∫

F

tr
(
[T ](x̃, x̃)

)
dµg̃(x̃),

where F is a fundamental domain in M̃ and tr is the fibre-wise trace on End(S̃x̃).
This latter formulation is the natural one, and was initially defined by Atiyah [1].
It is clear from its definition that τG is faithful so that the algebra NG is semi-
finite. It need not be a factor because (as it is well known) the algebra R(G)′′ has
a non-trivial centre precisely when the group G has finite conjugacy classes [53].

We note that when T is a pseudodifferential operator of trace class on L2(M,S)
with Schwartz kernel [T ] (and, thus, order less than −n and with L1-coefficients),
and U ∈ R(G)′′, we have, using the identification above,

τG(T ⊗ U) :=

∫

M

tr
(
[T ](x, x)

)
µg(x) × τe(U).

When the original triple (A,H,DS) on M is even with grading γ, we denote

by γ̃ := γ ⊗ Idℓ2(G) the grading lifted to H̃.
Remark. The ideal of τG-compact operators KNG

= K(NG, τG) is given by the
norm closure of the G-equivariant pseudodifferential operators of strictly negative
order and with integral kernel vanishing at infinity inside a fundamental domain.

Lemma 4.14. Let (M̃, g̃) be a Riemannian manifold of bounded geometry en-
dowed with a free and proper action of a countable group G. Let also P be a differ-
ential operator of order α ∈ N0 and of uniform C∞-bounded coefficients, acting on
the sections of S and let P̃ be its lift as a G-equivariant operator on S̃ (which has
also uniform C∞-bounded coefficients). Assume further that

κ := inf
{
dg̃(x̃, h · x̃) : x̃ ∈ M̃, h ∈ G \ {e}

}
> 0.

Then there exist two constants C > and c > 0, such that for any (x̃, x) ∈ M̃ ×M ,
with x = q(x̃) we have

∣∣[P̃ e−tD̃2
S ](x̃, x̃)− [Pe−tD2

S ](x, x)
∣∣
∞

≤ C t−(n+α)/2e−c/t,
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where | · |∞ is the operator norm on End(S̃x).

Proof. Note first that for any (x̃, x), (ỹ, y) ∈ M̃×M , with x = q(x̃), y = q(ỹ),
we have

[Pe−tD2
S ](x, y) =

∑

h∈G

[P̃ e−tD̃2
S ](x̃, h · ỹ),

which is proven using the uniqueness of solutions of the heat equation on M̃ and
on M . Thus,

[Pe−tD2
S ](x, x)− [P̃ e−tD̃2

S ](x̃, x̃) =
∑

h∈G, h 6=e

[P̃ e−tD̃2
S ](x̃, h · x̃).

From Proposition 4.2, we immediately deduce
∣∣[P̃ e−tD̃2

S ](x̃, x̃)− [Pe−tD2
S ](x, x)

∣∣
∞

≤ C t−(n+α)/2
∑

h∈G, h 6=e

e−d2
g(x̃,h·x̃)/4(1+c)t.

Since (M̃, g̃) has bounded geometry, the sectional curvature is bounded below, by
say −K2 with K > 0. From [41], we have for any ρ > 0 the existence of a uniform

(over M̃) constant C ′ > 0 such that

Nx̃(ρ) := Card
{
h ∈ G : dg̃(x̃, h · x̃) ≤ ρ

}
≤ C ′e(n−1)Kρ.

Then the assumption that κ := inf
{
dg̃(x̃, h · x̃) : x̃ ∈ M̃, h ∈ G \ {e}

}
> 0, yields

the inequality

∣∣[P̃ e−tD̃2
S ](x̃, x̃)− [Pe−tD2

S ](x, x)
∣∣
∞

≤ C ′′ t−(n+α)/2

∫ ∞

κ

e−ρ2/4(1+c)tdNx̃(ρ),

which after an integration by parts, gives the proof. �

Lemma 4.15. Under the hypotheses of Lemma 4.14 and for f ∈ A and P a
differential operator on S with uniform C∞-bounded coefficients (and P̃ its lift on

S̃ as a G-equivariant operator), the functions

C ∋ z 7→ τG

(
c̃(f)P̃

∫ ∞

1

tze−t(1+D̃2
S)dt

)
, C ∋ z 7→ Tr

(
c(f)P

∫ ∞

1

tze−t(1+D2
S)dt

)
,

are entire.

Proof. From Proposition 4.2 and Equation (4.4), we see that the integral
is absolutely convergent. We thus may differentiate under the integral sign with
respect to z and since the resulting integral is again absolutely convergent, we are
done. �

Proposition 4.16. Under the hypotheses of Lemma 4.14, for f ∈ A, P is a
differential operator of uniform C∞-bounded coefficients and ℜ(z) > n, there is an
equality

τG
(
γ̃c̃(f)P̃ (1 + D̃2

S)
−z/2

)
= Tr

(
γc(f)P (1 +D2

S)
−z/2

)
,

modulo an entire function of z.

Proof. This is a combinations of Lemmas 4.14 and 4.15 together with the
usual Laplace transform representation for the operators concerned. �

The following result, whose proof follows from the previous discussion and the
same arguments as in Section 4.1.1, is key.
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Corollary 4.17. The triple (A, H̃, D̃) is a smoothly summable semifinite spec-
tral triple with respect to (NG, τG), of isolated spectral dimension n.

Proof. This follows from Proposition 4.16 combined with Proposition 4.9 to-
gether with similar arguments as those used in Proposition 4.9 to prove that the
operators δk(c̃(f)) and δk(c̃(df)), k ∈ N0, all belong to B1(DS , n) for f ∈ A. �

We arrive at the main result of this Section.

Theorem 4.18. The numerical pairing of (A,H,D) with K∗(A) coincides with

the numerical pairing of (A, H̃, D̃) with K∗(A) (which is thus integer-valued).

Proof. Since both spectral triples (A,H,D) and (A, H̃, D̃) have isolated spec-
tral dimension, one can use the last version of Theorem 3.33 to compute the index
pairing, i.e. we can use the residue cocycle. Then the result follows from Proposi-
tion 4.16. �





CHAPTER 5

Noncommutative Examples

In this Chapter, we apply our results to purely noncommutative examples.
The first source of examples comes from torus actions on C∗-algebras and the
construction follows [42] and [43] where explicit special cases for graph and k-
graph algebras were studied. The second describes the Moyal plane and uses the
results of [27].

5.1. Torus actions on C∗-algebras

We are interested here in spectral triples arising from an action of a compact
abelian Lie group Tp = (R/2πR)p on a separable C∗-algebra A, which we de-
note by σ· : Tp → Aut(A). We suppose that A possesses a Tp-invariant norm
lower-semicontinuous faithful semifinite trace τ . Recall that τ is norm lower-
semicontinuous if whenever we have a norm convergent sequence of positive ele-
ments, A ∋ aj → a ∈ A, then τ(a) ≤ lim inf τ(aj), and the tracial property says
that τ(a∗a) = τ(aa∗) for all a ∈ A.

We show that with this data we obtain a smoothly summable spectral triple,
even if we dispense with the assumption that the algebra has local units employed
in [42,43,60].

We begin by setting H1 = L2(A, τ), the GNS space for A constructed using the
trace τ . The action of Tp on our algebra A gives a Zp-grading on A by the spectral
subspaces

A =
⊕

m∈Zp

Am, Am = {a ∈ A : σz(a) = zma = zm1
1 . . . zmp

p a}.

So for all a ∈ A we can write a as a sum of elements am homogenous for the action
of Tp

a =
∑

m∈Zp

am, t · am = ei〈m,t〉am, m ∈ Zp, t ∈ Tp.

The invariance of the trace τ implies that the Tp action extends to a unitary
action U on H1 which implements the action on A. As a consequence there exist
pairwise orthogonal projections Φm ∈ B(H1),m ∈ Zp, such that

∑
m∈Zp Φm = IdH1

(strongly) and amΦk = Φm+kam for a homogenous algebra element am ∈ Am.
Moreover, we say that A has full spectral subspaces if for all m ∈ Zp we have
AmA∗

m = A0. Observe that A0 coincides with AT
p

, the fixed point algebra of A for
the action of Tp.

Let H := H1 ⊗C Hf , where Hf := C2⌊p/2⌋ . We define our operator D as the
operator affiliated to B(H), given by the ‘push-forward’ of the flat Dirac operator
on Tp to the Hilbert space H. More precisely, we first define the domain dom(D)
by

dom(D) := H∞
1 ⊗Hf , H∞

1 :=
{
ψ ∈ H1 : [t 7→ t · ψ] ∈ C∞(Tp,H1)

}
.

103
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Then we define D on dom(D) by

D =
∑

n∈Zp

Φn ⊗ γ(in),

where γ(in) = i
∑p

j=1 γjnj , n = (n1, . . . , np), and the γj are Clifford matrices
acting on Hf with

γjγl + γlγj = −2 δjl IdHf
.

In future we will abuse notation by letting Φn denote the projections acting on H1,
on A, and also the projections Φn ⊗ IdHf

acting on H. Similarly we will speak of
A and A0 acting on H, by tensoring the GNS representation on H1 by IdHf

. To
simplify the notations, we just identify A with its image in the GNS representation.

We let N ⊂ B(H) be the commutant of the right multiplication action of the
fixed point algebra A0 on H. Then it can be checked that the left multiplication
representation of A is in N and D is affiliated to N . To obtain a faithful normal
semifinite trace, which we call Trτ , on N , we have two possible routes, which both
lead to the same trace, and which yield different and complementary information
about the trace.

The first approach is to let Trτ be the dual trace on N = (A0)
′. The dual

trace is defined using spatial derivatives and is a faithful normal semifinite trace
on N . A detailed discussion of this construction and its equivalence with our next
construction, can be found in [38, p. 471-478]. The discussion referred to in [38]
is in the context of KMS weights, but by specializing the β-KMS weights to the
case β = 0, the particular case of invariant traces, we obtain the description we
want. Alternatively, the reader may examine [38, Theorem 1.1] for a trace specific
description of our next construction.

In fact, the article [38] is, in part, concerned with inducing traces from the
coefficient algebra of a C∗-module to traces on the algebra of compact endomor-
phisms on that module. To make contact with [38], we make A⊗Hf a right inner
product module over A0 via the inner product

(a⊗ ξ|b⊗ η) := Φ0(a
∗b)〈ξ, η〉Hf

, a, b ∈ A, ξ, η ∈ Hf .

Calling the completed right A0-C
∗-module by X, it can be shown, see [38], that

EndA0(X) acts on H and that N = EndA0(X)′′. We introduce this additional
structure because we can compute Trτ on all rank one endomorphisms on X. Given
x, y, z ∈ X, the rank one endomorphism Θx,y acts on z by Θx,yz := x(y|z). Then
by [38, Lemma 3.1 & Theorem 3.2] specialised to invariant traces, see also [38,
Theorem 1.1], we have

(5.1) Trτ (Θx,y) = τ((y|x)) :=
2⌊p/2⌋∑

i=1

τ((yi|xi)),

where x =
∑

i xi ⊗ ei, the ei are the standard basis vectors of Hf , and similarly
y =

∑
i yi⊗ ei. Moreover, Trτ restricted to the compact endomorphisms of X is an

AdU(TP )-invariant norm lower-semicontinuous trace, [38, Theorem 3.2], where U
is the action of Tp on H.

Lemma 5.1. Let 0 ≤ a ∈ dom τ ⊂ A ⊂ N . Then,

Trτ
(
aΦ0

)
= 2⌊p/2⌋ τ(a),
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More generally, for m ∈ Zp we have

(5.2) 0 ≤ Trτ
(
aΦm

)
≤ 2⌊p/2⌋ τ(a),

and when A has full spectral subspaces, we have an equality:

0 ≤ Trτ
(
aΦm

)
= 2⌊p/2⌋ τ(a).

Proof. We prove the statement for a ∈ A0, and then proceed to general
elements of A. We begin with the case of full spectral subspaces. Consider first a =

bb∗ for b ∈ Ak ∩ dom1/2 τ homogenous of degree k, so that a ∈ A0 ∩ dom τ (since τ

is a trace). Then a short calculation shows that ΦkaΦk = aΦk =
∑2⌊p/2⌋

i=1 Θb⊗ei,b⊗ei

where the ei are the standard basis vectors in Hf . Hence

Trτ (aΦk) =

2⌊p/2⌋∑

i=1

τ(b∗b) =

2⌊p/2⌋∑

i=1

τ(bb∗) = 2⌊p/2⌋τ(a).

Therefore Trτ (aΦk) = 2⌊p/2⌋τ(a) if a is a finite sum of elements of the form bb∗,
b ∈ Ak. Thus, if AkA∗

k = A0 for all k ∈ Zp we get equality for all dom τ ∩ A+
0 ∋ a

and k ∈ Zp. In particular, we always have Trτ (aΦ0) = 2⌊p/2⌋τ(a).
In the more general situation consider the closed ideal AkA∗

k in A0, which is

σ-unital by the separability of A, and of AkA∗
k . Choose a positive approximate

unit {ψn}n≥1 ⊂ AkA
∗
k for AkA∗

k. Since AkA
∗
kAk is dense in Ak, we have ψnx → x

for any x ∈ Xk = Ak ⊗Hf . Hence, when n goes to ∞, ψnaψn ∈ AkA
∗
k converges

strongly to the action of a on Xk for any a ∈ A0. Since Trτ is strictly lower
semicontinuous, [38, Theorem 3.2], for A0 ∩ dom τ ∋ a ≥ 0 we therefore get

Trτ (aΦk) ≤ lim inf
n

Trτ (ψnaψnΦk) = lim inf
n

2⌊p/2⌋τ(ψnaψn)

= lim inf
n

2⌊p/2⌋τ(a1/2ψ2
na

1/2) ≤ 2⌊p/2⌋τ(a).

This proves the Lemma for a ∈ A0 ∩ dom τ . Now for general 0 ≤ a ∈ dom τ , we
may use the AdU -invariance of Trτ to see that

Trτ (aΦk) = Trτ (Φ0(a)Φk) ≤ 2⌊p/2⌋τ(Φ0(a)),

with equality for k = 0 or for all k ∈ Zp if A has full spectral subspaces. Thus, if
we write a =

∑
m∈Zp am as a sum of homogenous components,

Trτ (aΦk) = Trτ (a0Φk) ≤ 2⌊p/2⌋τ(a0) = 2⌊p/2⌋τ(a),

with equality if k = 0 or for all k ∈ Zp if A has full spectral subspaces. �

Corollary 5.2. Let A,H,D,N ,Trτ be as above. Use D and Trτ to construct
the weights ϕs, s > p, on N via Definition 1.1. Consider the restrictions ψs of the
weights ϕs to the domain of τ in A. Then

ψs(a) ≤ 2⌊p/2⌋
( ∑

m∈Zp

(1 + |m|2)−s/2
)
τ(a) , a ∈ A+ ∩ dom τ , s > p,

with equality if A has full spectral subspaces.

Proof. Note first that

(1 +D2)−s/2 =
∑

m∈Zp

(1 + |m|2)−s/2Φm,
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so that for a ∈ A+ and s > p, by definition of the weights ϕs, we have that

ϕs(a) = Trτ
(
(1 +D2)−s/4a(1 +D2)−s/4

)
,

which by traciality of Trτ implies

ϕs(a) = Trτ
(√
a(1 +D2)−s/2

√
a
)
= Trτ

( ∑

m∈Zp

(1 + |m|2)−s/2
√
aΦm

√
a
)
.

The normality of Trτ allows us to permute the sum and the trace

ϕs(a) =
∑

m∈Zp

(1 + |m|2)−s/2Trτ
(√
aΦm

√
a
)
=
∑

m∈Zp

(1 + |m|2)−s/2Trτ
(
Φm aΦm

)

=
∑

m∈Zp

(1 + |m|2)−s/2Trτ
(
Φ0(a) Φm

)
≤ 2⌊p/2⌋

( ∑

m∈Zp

(1 + |m|2)−s/2
)
τ(a),(5.3)

the last inequality following from Lemma 5.1, and it is an equality if A has full
spectral subspaces. �

Let A ⊂ A be the algebra of smooth vectors for the action of Tp

A :=
{
a ∈ A : [t 7→ t · a] ∈ C∞(Tp, A)

}

=
{
a =

∑

m∈Zp

am ∈
⊕

m∈Zp

Am :
∑

m∈Zp

|m|k‖am‖ <∞ for all k ∈ N0

}
.

Then, as expected, A is contained in OP0. We let δ(T ) = [|D|, T ] for T ∈ N
preserving H∞.

Lemma 5.3. The subalgebra A of smooth vectors in A for the action of Tp is
contained in

⋂
k dom(δk). More explicitly, for a =

∑
m∈Zp am ∈ ⊕m∈Zp Am we

have the bound

‖δk(a)‖ ≤ Ck

∑

m∈Zp

|m|2k ‖am‖.

Proof. By the discussion following Definition 1.20, the claim is equivalent to
A ⊂ ∩kdom(Rk), where R(T ) = [D2, T ](1 + D2)−1/2. Recall that for a ∈ A and
k ∈ N, we have

Rk(a) = [D2, . . . [D2, a] . . . ](1 +D2)−k/2,

with k commutators. For j = 1, . . . , p, denote by ∂j the generators of the T
p-action

on both A and H1. For α ∈ Np, let ∂α := ∂α1
1 . . . ∂

αp
p . Since D2 = −(

∑p
j=1 ∂

2
j ) ⊗

IdHf
, an elementary computation shows that

Rk(a) =
∑

|α|≤2k,|β|≤k

Cα,β ∂
α(a) ∂β ⊗ IdHf

(1 +D2)−k/2.

This is enough to conclude, since a ∈ A implies that ‖∂α(a)‖ <∞, and elementary
spectral theory of p pairwise commuting operators shows that for |β| ≤ k, ∂β ⊗
IdHf

(1 +D2)−k/2 is bounded too. The bound then follows from

∂α(am) = i|α|mα am , am ∈ Am,

which delivers the proof. �
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Define the algebras B, C ⊂ A ⊂ A by

B =
{
a =

∑

m∈Zp

am ∈ A :
∑

m∈Zp

|m|k τ(a∗mam) <∞ for all k ∈ N0

}
,

C =
{
a =

∑

m∈Zp

am ∈ A :
∑

m∈Zp

|m|kτ(|am|) <∞ for all k ∈ N0

}
.

The following is the main result of this Section.

Proposition 5.4. Let Tp be a torus acting on a C∗-algebra A with a norm
lower-semicontinuous faithful Tp-invariant trace τ . Then (C,H,D) defined as above
is a semifinite spectral triple relative to (N ,Trτ ). Moreover, (C,H,D) is smoothly
summable with spectral dimension p. The square integrable and integrable elements
of A satisfy

B2(D, p)
⋂
A = (dom(τ))1/2, B1(D, p)

⋂
A = dom(τ),

The space of smooth square integrable and the space of smooth integrable elements
of A contain B and C respectively. More precisely,

B∞
2 (D, p) ⊃ B ∪ [D,B], B∞

1 (D, p) ⊃ C ∪ [D, C].
Furthermore, if 0 ≤ a ∈ dom(τ) and A has full spectral subspaces, then

resz=0Trτ (a(1 +D2)−p/2−z) = 2⌊p/2⌋−1 Vol(Sp−1) τ(a).

Proof. We begin by proving that B2(D, p)
⋂
A ⊃ (dom(τ))1/2. Lemma 5.1

shows that for all a ∈ dom(τ) with a ≥ 0 and all m ∈ Zp we have

(5.4) Trτ (aΦm) ≤ 2⌊p/2⌋ τ(a) ,

and equality holds when we have full spectral subspaces or m = 0. Thus, using the
normality of Trτ and the same arguments as in Equation (5.3), for a ∈ (dom(τ))1/2

and ℜ(s) > p we see that

Trτ ((1 +D2)−s/4a∗a(1 +D2)−s/4) =
∑

n∈Zp

(1 + |n|2)−s/2 Trτ (a
∗aΦn)

≤ τ(a∗a) 2⌊p/2⌋
∑

n∈Zp

(1 + |n|2)−s/2 <∞.

Hence (dom(τ))1/2 ⊂ B2(D, p). Conversely, if a ∈ A lies in B2(D, p) we have
a(1 +D2)−s/4 ∈ L2(N ,Trτ ) for all s with ℜ(s) > p. Then

aΦ0a
∗ ≤ a(1 +D2)−s/2a∗ ∈ L1(N ,Trτ ), ℜ(s) > p,

and so aΦ0a
∗ ∈ L1(N ,Trτ ). Then

τ(a∗a) = Trτ (Φ0a
∗aΦ0) = Trτ (aΦ0a

∗) <∞.

Thus, a∗a ∈ dom(τ), and so a ∈ dom(τ)1/2. Since B2(D, p) is a ∗-algebra, we also
have a∗(1 + D2)−s/4 ∈ L2(N ,Trτ ), and so a∗ ∈ dom(τ)1/2 as expected. Now for
0 ≤ a ∈ A, Lemma 1.13 tells us that a ∈ B1(D, p) if and only if a1/2 ∈ B2(D, p).
So a ∈ dom(τ)+ if and only if a1/2 ∈ (dom(τ))

1/2
+ = (B2(D, p) ∩ A)+, proving

that dom(τ)+ = B1(D, p)+
⋂
A+. Since B1(D, p) is the span of its positive cone by

Proposition 1.14, we have

B1(D, p)
⋂
A = span(B1(D, p)+

⋂
A+) = span(dom(τ)+) = dom(τ).
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Now we turn to the smooth subalgebras. The definitions show that for k ∈ Zp,
and a homogeneous element am ∈ Am, we have

δ(am)Φk = (|m+ k| − |k|)amΦk.

Since δ(am) is also homogenous of degree m, which follows since |D| is invariant,
we find that for all α ∈ N0

δα(am)Φk = (|m+ k| − |k|)αamΦk.

Hence for a =
∑

m am ∈ B and s > p we have

Trτ

(
1 +D2)−s/4|δα(a)|2(1 +D2)−s/4

)
(5.5)

=
∑

m,n,k∈Zp

(1 + |k|2)−s/2Trτ (Φkδ
α(am)∗δα(an)Φk)

=
∑

m,n,k∈Zp

(|m+ k| − |k|)α(|n+ k| − |k|)α(1 + |k|2)−s/2Trτ
(
Φka

∗
manΦk

)
.

Now, using amΦk = Φm+kam for am ∈ Am we have

Φka
∗
manΦk = a∗manΦk−n+mΦk = δn,ma

∗
manΦk.

Inserting this equality into the last line of Equation (5.5) yields

∑

m,k∈Zp

∣∣|m+ k| − |k|
∣∣2α(1 + |k|2)−s/2Trτ (a

∗
mamΦk)

≤
∑

k∈Zp

(1 + |k|2)−s/2
∑

m∈Zp

|m|2αTrτ (a∗mamΦk)

≤ 2⌊p/2⌋
∑

k∈Zp

(1 + |k|2)−s/2
∑

m∈Zp

|m|2ατ (a∗mam) ,

where we used Lemma 5.1 in the last step and the latter is finite by definition of
B. Since

Qn(δ
α(a))2 = ‖δα(a)‖2 +Trτ

(
(1 +D2)−p/4−1/n|δα(a)|2(1 +D2)−p/4−1/n

)

+Trτ

(
(1 +D2)−p/4−1/n|δα(a)∗|2(1 +D2)−p/4−1/n

)
,

we deduce that B ⊂ B∞
2 (D, p). Finally, for m ∈ Zp and am ∈ B homogenous of

degree m, we have

[D, am] = am IdH1 ⊗ γ(im).

Then by the same arguments as above, we deduce that [D, am] ∈ B2(D, p), and
thus [D,B] ⊂ B2(D, p). By combining the estimates for [D, a] and δα(a), we see
that B ∪ [D,B] ⊂ B∞

2 (D, p).
Now let a =

∑
m am ∈ C, so that, in particular, |am|, |a∗m| ∈ dom(τ). Then

vm|am|1/2, |am|1/2 ∈ (dom(τ))1/2 ⊂ B2(D, p) where am = vm|am| is the polar
decomposition in N .

To deal with smooth summability, we need another operator inequality. For
am ∈ Am, k ∈ Zp we have the simple computation

δα(am)∗δα(am)Φk = (−1)αδα(a∗m)δα(am)Φk

= (−1)α(|k| − |m+ k|)α(|m+ k| − |k|)αa∗mamΦk = (|m+ k| − |k|)2αa∗mamΦk.
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Since 0 ≤ (|m+ k| − |k|)2α ≤ |m|2α for all k ∈ Zp, we deduce that

0 ≤ δα(am)∗δα(am) ≤ |m|2αa∗mam.

With this inequality in hand, and using a ∈ C, we use the polar decomposition as
above to see that for all α ∈ N0, the decomposition

δα(a) =
∑

m

δα(am) =
∑

m

vα,m|δα(am)|1/2 |δα(am)|1/2 ∈ B1(D, p),

gives a representation of δα(am) as an element of B1(D, p). To see this we first
check that |δα(am)|1/2 ∈ B2(D, p), which follows from

Trτ

(
(1 +D2)−p/4−1/n|δα(am)|(1 +D2)−p/4−1/n

)

=
∑

k∈Zp

(1 + k2)−p/2−1/2n Trτ (Φk

√
δα(am)∗δα(am)Φk)

≤
∑

k∈Zp

(1 + k2)−p/2−1/2n|m|ατ(
√
a∗mam) = |m|α τ(|am|)

∑

k∈Zp

(1 + k2)−p/2−1/2n.

Since
(
vα,m|δα(am)|1/2

)∗
vα,m|δα(am)|1/2 = |δα(am)|,

the corresponding term is handled in the same way. Finally we have

Trτ

(
(1 +D2)−p/4−1/nvα,m|δα(am)|v∗α,m(1 +D2)−p/4−1/n

)

=
∑

k∈Zp

(1 + k2)−p/2−1/2n Trτ (Φkvα,m|δα(am)|v∗α,mΦk)

=
∑

k∈Zp

(1 + k2)−p/2−1/2nTrτ (|δα(am)|1/2v∗α,mΦkvα,m|δα(am)|1/2)

=
∑

k∈Zp

(1 + k2)−p/2−1/2nTrτ (|δα(am)|1/2Φk−mv
∗
α,mvα,m|δα(am)|1/2)

=
∑

k∈Zp

(1 + k2)−p/2−1/2nTrτ (|δα(am)|1/2Φk−mv
∗
α,mvα,mΦk−m|δα(am)|1/2)

≤
∑

k∈Zp

(1 + k2)−p/2−1/2nTrτ (|δα(am)|1/2Φk−m|δα(am)|1/2)

=
∑

k∈Zp

(1 + k2)−p/2−1/2n Trτ (Φk−m|δα(am)|Φk−m)

≤
∑

k∈Zp

(1 + k2)−p/2−1/2n|m|α Trτ (Φk−m|am|Φk−m)

≤ |m|α τ(|am|)
∑

k∈Zp

(1 + k2)−p/2−1/2n.

In the third equality we again used v∗α,mΦk = Φk−mv
∗
α,m, which is true since δα(am)

is homogenous of degree m and |δα(am)| is homogenous of degree zero. In the forth
equality, we used this again for both vα,m and v∗α,m. In the last equality, we again
used this trick, and the fact that |δα(am)| is homogenous of degree zero. The last
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two inequalities follow just as above. So Qn(|δα(am)|1/2) is bounded by

|m|α/2(‖am‖+ τ(|am|) + τ(|a∗m|))1/2
( ∑

k∈Zp

(1 + k2)−p/2−1/2n
)1/2

=

|m|α/2(‖am‖+ 2τ(|am|))1/2
( ∑

k∈Zp

(1 + k2)−p/2−1/2n
)1/2

,

and similarly for vα,m|δα(am)|1/2. Hence,

Pn,β(a) ≤
β∑

α=0

∑

m

Qn(vα,m|δα(am)|1/2)Qn(|δα(am)|1/2)

≤
∑

k∈Zp

(1 + k2)−p/2−1/2n

β∑

α=0

∑

m

|m|α(‖am‖+ 2τ(|am|)),

which is enough to show that δα(a) ∈ B1(D, p). Since similar arguments show that
δα([D, a]) ∈ B1(D, p), we see that C ∪ [D, C] ⊂ B∞

1 (D, p).
The computation of the zeta function is straightforward using Lemma 5.1, once

one realises that
∑

k∈Zp(1+k2)−p/2−z is just (2π)p times the trace of the Laplacian
on a flat torus. This precise value of the residue can be deduced from the Dixmier
trace calculation for the torus in [30, Example 7.1, p. 291], and the relationship
between residues of zeta functions and Dixmier traces in [18, Lemma 5.1]. This
also proves that the spectral dimension is p. �

Semifinite spectral triples for more general compact group actions on C∗-
algebras have been constructed in [60]. These spectral triples are shown to satisfy
some summability conditions, but it is not immediately clear that they satisfy our
definition of smooth summability. We leave this investigation to another place.

For torus actions we can give a simple description of the index formula. First we
observe that elementary Clifford algebra considerations, [3, Appendix] and [42,43],
reduce the resolvent cocycle to a single term in degree p. This means that we
automatically obtain the analytic continuation of the single zeta function which
arises, and so the spectral dimension is isolated, and there is at worst a simple
pole at r = (1− p)/2. Hence, the residue cocycle is given by the single functional,
defined on a0, . . . , ap ∈ C by

φp(a0, . . . , ap)=





√
2iπ 1

p! ress=0Trτ

(
a0 [D, a1] . . . [D, ap](1 +D2)−p/2−s

)
, p odd,

1
p! ress=0Trτ

(
γa0 [D, a1] . . . [D, ap](1 +D2)−p/2−s

)
, p even.

Applications of this formula to graph and k-graph algebras appear in [42,43]. Both
these papers show that the index is sensitive to the group action, by presenting an
algebra with two different actions of the same group which yield different indices.

5.2. Moyal plane

5.2.1. Definition of the Moyal product. Recall that the Moyal product of
a pair of functions (or distributions) f, g on R2d, is given by

(5.6) f ⋆θ g(x) := (πθ)−2d

∫

R2

∫

R2

e
2i
θ ω0(x−y,x−z)f(y)g(z) dy dz.
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The parameter θ lies in R \ {0} and plays the role of the Planck constant. The
quadratic form ω0 is the canonical symplectic form of R2d ≃ T ∗Rd. With basic
Fourier analysis one shows that the Schwartz space, S(R2d), endowed with this
product is a (separable) Fréchet ∗-algebra with jointly continuous product (the
involution being given by the complex conjugation). For instance, when f, g ∈
S(R2d), we have the relations

∫

R2

f ⋆θ g(x) dx =

∫

R2

f(x) g(x) dx,(5.7)

∂j(f ⋆θ g) = ∂j(f) ⋆θ g+f ⋆θ ∂j(g), f ⋆θ g = g ⋆θ f.

This noncommutative product is nothing but the composition law of symbols
in the framework of the Weyl pseudodifferential calculus on Rd. Indeed, let OpW
be the Weyl quantization map:

OpW : T ∈ S′(R2d) 7→
[
ϕ ∈ S(Rd) 7→

[
q0 ∈ Rd 7→ (2π)−d

∫

R2d

T
(
(q0 + q)/2, p

)
ϕ(q0)e

i(q0−q)p ddq ddp
]

∈ S′(Rd)
]
.

Again, Fourier analysis shows that OpW restricts to a unitary operator from the
Hilbert space L2(R2d) (the L2-symbols) to the Hilbert space of Hilbert-Schmidt
operators acting on L2(Rd), with

(5.8) ‖OpW (f)‖2 = (2π)−d/2‖f‖2 ,
where the first 2-norm is the Hilbert-Schmidt norm on L2(Rd) while the second is
the Lebesgue 2-norm on L2(R2d). Thus, the algebra (L2(R2d), ⋆θ) turns out to be a
full Hilbert-algebra. It is then natural to use the GNS construction (associated with
the operator trace on L2(Rd) in the operator picture, or with the Lebesgue integral
in the symbolic picture) to represent this algebra. To keep track of the dependence
on the deformation parameter θ, the left regular representation is denoted by Lθ.
With this notation we have (see [27, Lemma 2.12])

(5.9) Lθ(f)g := f ⋆θ g, ‖Lθ(f)‖ ≤ (2πθ)−d/2‖f‖2, f, g ∈ L2(R2d).

Note the singular nature of this estimate in the commutative θ → 0 limit. Since
the operator norm of a bounded operator on a Hilbert space H coincides (via the
left regular representation) with the operator norm of the same bounded operator
acting by left multiplication on the Hilbert space L2(B(H)) of Hilbert-Schmidt
operators, we have

(5.10) ‖Lθ(f)‖ = (2π)d/2‖OpW (f)‖,
where the first norm is the operator norm on L2(R2d) and the second is the operator
norm on L2(Rd). In particular, the Weyl quantization gives the identification of
von Neumann algebras:

(5.11) B
(
L2(R2d)

)
⊃
{
Lθ(f), f ∈ L2(R2d)

}′′ ≃ B
(
L2(R2)

)
.

The following Hilbert-Schmidt norm equality on L2(R2d), is proven in [27, Lemma
4.3] (this is the analogue of Lemma 4.6 in this context):

‖Lθ(f)g(∇)‖2 = (2π)−d‖g‖2‖f‖2.(5.12)

Note the independence of θ on the right hand side.
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5.2.2. A smoothly summable spectral triple for the Moyal plane. In
this paragraph, we generalize the result of [27]. For simplicity, we restrict ourself
to the simplest d = 2 case, despite the fact that our analysis can be carried out in
any even dimension. Here we let H := L2(R2)⊗ C2 be the Hilbert space of square
integrable sections of the trivial spinor bundle on R2. In Cartesian coordinates, the
flat Dirac operator reads

D :=

(
0 i∂1 − ∂2

i∂1 + ∂2 0

)
.

Elements of the algebra (S(R2), ⋆θ) are represented on H via Lθ⊗ Id2, the diagonal
left regular representation. In [27], it is proven that

(
(S(R2), ⋆θ),H,D

)
is an even

QC∞ finitely summable spectral triple with spectral dimension 2 and with grading

γ =

(
1 0
0 −1

)
.

In particular, the Leibniz rule in the first display of Equation (5.7) gives

(5.13) [D, Lθ(f)⊗ Id2] =

(
0 iLθ(∂1f)− Lθ(∂2f)

iLθ(∂1f) + Lθ(∂2f) 0

)
,

which together with (5.9) shows that for f a Schwartz function the commutator
[D, Lθ(f)⊗ Id2] extends to a bounded operator.

Then, from the Hilbert-Schmidt norm computation of Equation (5.12), we can
determine the weights ϕs of Definition 1.1, constructed with the flat Dirac operator
on R2.

Lemma 5.5. For s > 2, let ϕs be the faithful normal semifinite weight of Def-
inition 1.1 determined by D on the type I von Neumann algebra B(H) with oper-
ator trace. When restricted to the von Neumann subalgebra of B(H) generated by
Lθ(f)⊗ Id2, ϕs is a tracial weight and for f ∈ L2(R2) we have

ϕs

(
Lθ(f)∗Lθ(f)⊗ Id2

)
= (π(s− 2))−1

∫

R2

f̄(x) ⋆θ f(x)dx = 2(s− 2)−1‖OpW (f)‖22.

Proof. Since D2 = ∆⊗ Id2, with 0 ≤ ∆ the usual Laplacian on R2, we have

ϕs

(
Lθ(f)∗Lθ(f)⊗ Id2

)
= 2TrL2(R2)

(
(1 + ∆)−s/4Lθ(f)∗Lθ(f)(1 + ∆)−s/4

)
.

Thus, the result follows from Equations (5.7), (5.8) and (5.12). �

We turn now to the question of which elements of the von Neumann algebra
generated by Lθ(f) ⊗ Id2 are in B∞

1 (D, 2). The next result follows by combining
Proposition 1.19 with Lemma 5.5.

Corollary 5.6. Identifying the von Neumann subalgebra of B(L2(R2)) gen-
erated by Lθ(f)⊗ Id2, f ∈ L2(R2), with B(L2(R)) as in Equation (5.11) yields the
identifications

B1(D, 2)
⋂

B(L2(R)) ≃ L2(R2) ⋆θ L
2(R2) ≃ L1

(
L2(R)

)
.

Moreover, for all m ∈ N, the norms on L2(R2) ⋆θ L
2(R2)

f 7→ Pm

(
Lθ(f)⊗ Id2

)
,

are equivalent to the single norm

f 7→ ‖OpW (f)‖1.
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Proof. The identification L2(R2) ⋆θ L
2(R2) ≃ L1

(
L2(R)

)
follows from the

identification L2(R2) ≃ L2
(
L2(R)

)
given by the unitarity of the Weyl quantization

map, and the equality

L2
(
L2(R)

)
· L2

(
L2(R)

)
= L1

(
L2(R)

)
.

By Proposition 1.19 we know that B1(D, 2)
⋂B(L2(R)) is identified with

⋂

n≥1

L1
(
B(L2(R)), ϕ2+1/n

)
.

Lemma 5.5 says that restricted to B(L2(R)), all the weights ϕ2+1/n are proportional

to the operator trace of B(L2(R)). This gives the final identification. Moreover,
Proposition 1.19 also gives the equality

Pn(.) = 2‖ · ‖τn + ‖ · ‖,

where ‖ · ‖τn is the trace norm associated to the tracial weight ϕ2+1/n restricted

to B(L2(R)). As the latter is proportional to the operator trace on B(L2(R)),
which dominates the operator norm since we are in the I∞ factor case, we get the
equivalence of the norms

f 7→ Pn

(
L⋆(f)⊗ Id2

)
, n ∈ N, and ‖OpW(f)‖1,

and we are done. �

On the basis of the previous result, we construct a Fréchet algebra yielding a
smoothly summable spectral triple of spectral dimension 2, for the Moyal product.

Lemma 5.7. Endowed with the set of seminorms

f 7→ ‖f‖1,α := ‖OpW (∂αf)‖1, α ∈ N2
0,

the set

A :=
{
f ∈ C∞(R2) : ∀n = (n1, n2) ∈ N2

0, ∃f1, f2 ∈ L2(R2) : ∂n1
1 ∂n2

2 f = f1⋆θf2
}
,

is a Fréchet algebra for the Moyal product.

Proof. From the Leibniz rule for the Moyal product (see Equation (5.7) sec-
ond display) and the fact that L2(R2)⋆θL

2(R2) ⊂ L2(R2), the setA is an algebra for
the Moyal product. Since L2(R2) ⋆θ L

2(R2) ≃ L1
(
L2(R)

)
, the seminorms ‖ · ‖1,α,

α ∈ N2
0, take finite values on A. It remains to show that A is complete for the

topology induced by these seminorms. So let (fk)k∈N be a Cauchy sequence on
A, i.e. Cauchy for each seminorm ‖ · ‖1,α. Since L1(L2(R)) is complete, for each
α ∈ N2

0,
(
OpW (∂αfk)

)
k∈N

converges to Aα, a trace-class operator on L2(R). But

since L1(L2(R)) ≃ L2(R2) ⋆θ L
2(R2), via the Weyl map, Aα = OpW (fα) for some

element fα ∈ L2(R2) ⋆θ L
2(R2). In particular, for α = (0, 0), the sequence (fk)k∈N

converges to an element f ∈ L2(R2) ⋆θ L
2(R2). But we need to show that f ∈ A,

that is, we need to show that ‖OpW (∂αf)‖1 < ∞ for all α ∈ N2
0. This will be the

case if ∂αf = fα. Note that f ∈ L2(R2) ⋆θ L
2(R2) ⊂ L2(R2) ⊂ S ′(R2), so that

∂αf ∈ S ′(R2) too. With 〈·|·〉 denoting the duality brackets S ′(R2) × S(R2) → C,
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we have for any k ∈ N and any ψ ∈ S(R2)
∣∣〈(∂αf − fα)|ψ〉

∣∣ =
∣∣〈(∂αf − ∂αfk)|ψ〉 − 〈(fα − ∂αfk)|ψ〉

∣∣

=
∣∣(−1)|k|〈(f − fk)|∂αψ〉 − 〈(fα − ∂αfk)|ψ〉

∣∣
≤ ‖f − fk‖2 ‖∂αψ‖2 + ‖fα − ∂αfk‖2 ‖ψ‖2
= (2π)1/2‖∂αψ‖2 ‖OpW (f − fk)‖2 + (2π)1/2‖ψ‖2 ‖OpW (fα − ∂αfk)‖2,

where we have used Equation (5.12). Now, since the trace-norm dominates the
Hilbert-Schmidt norm, we find
∣∣〈(∂αf − fα)|ψ〉

∣∣ ≤ C(ψ)
(
‖OpW (f)−OpW (fk)‖1 + ‖OpW (fα)−OpW (∂αfk)‖1

)
.

However, since OpW (∂αfk) → OpW (fα) in the trace-norm for all α ∈ N2
0, we

see that
∣∣〈(∂αf − fα)|ψ〉

∣∣ ≤ ε for all ε > 0 and thus 〈(∂αf − fα)|ψ〉 = 0 for

all ψ ∈ S(R2). Hence, ∂αf = fα in S ′(R2), but since fα ∈ L2(R2) ⋆θ L
2(R2),

∂αf ∈ L2(R2) ⋆θ L
2(R2) too. This completes the proof. �

Remark. Note that the C∗-completion of (A, ⋆θ), is isomorphic to the C∗-
algebra of compact operators acting on L2(R) and that A contains S(R2).

Combining all these preliminary statements, we now improve the results of [27].

Proposition 5.8. The data (A,H,D, γ) defines an even smoothly summable
spectral triple with spectral dimension 2.

Proof. We first need to prove that (A,H,D, γ) (which is even) is finitely
summable, that is, we need to show that

δk
(
Lθ(f)⊗ Id2

)
(1 +D2)−s/2 ∈ L1(H), for all f ∈ A, for all s > 2, for all k ∈ N0.

This will follow from the proof of Proposition 2.21, if

(1 +D2)−s/4Rk
(
Lθ(f)⊗ Id2

)
(1 +D2)−s/4 ∈ L1(N , τ),

for all f ∈ A, s > 2 and k ∈ N0. Now, by the Leibniz rule (Equation 5.7 first
display), with ∆ = −∂21 − ∂22 , we have

[∆, Lθ(f)] = Lθ(∆f) + 2Lθ(∂1f)∂1 + 2Lθ(∂2f)∂2,

so that since D2 = ∆⊗ Id2, for all k ∈ N0, we have

Rk
(
Lθ(f)⊗ Id2

)
=

∑

|α|,|β|≤k

Cα,βL
θ(∂αf)∂β(1 + ∆)−k/2 ⊗ Id2,

and thus,

(1 +D2)−s/4Rk
(
Lθ(f)⊗ Id2

)
(1 +D2)−s/4

=
∑

|α|,|β|≤k

Cα,β(1 + ∆)−s/4Lθ(∂αf)(1 + ∆)−s/4∂β(1 + ∆)−k/2 ⊗ Id2,

which is trace class because ∂β(1 + ∆)−k/2 is bounded and by definition of A,
∂αf = f1 ⋆θ f2 with f1, f2 ∈ L2(R2), so that this operator appears as the product
of two Hilbert-Schmidt by Equation (5.12). Thus, the spectral triple is finitely
summable, and the spectral dimension is 2 by [27, Lemma 4.14], which gives for
any f ∈ A

Tr
(
Lθ(f)⊗ Id2(1 +D2)−s/2

)
=

1

π(s− 2)

∫

R2

f(x) dx.
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From Proposition 2.21, we also have verified one of the condition ensuring that
A ∪ [D,A] ⊂ B∞

1 (D, 2). The second is to verify that for all s > p

(1 +D2)−s/4Rk
(
[D, Lθ(f)⊗ Id2]

)
(1 +D2)−s/4 ∈ L1(N , τ), for all k ∈ N0.

This can be done as for Rk
(
Lθ(f)⊗ Id2

)
by noticing that

Rk
(
[D,Lθ(f)⊗ Id2]

)
=

∑

|α|≤k

∑

|β1|,|β2|≤k+1

Cα,β1,β2

(
0 Lθ(∂β1f)

Lθ(∂β2f) 0

)
∂α(1 + ∆)−k/2 ⊗ Id2,

and the proof is complete. �

5.2.3. An index formula for the Moyal plane. In order to obtain an
explicit index formula out of the spectral triple previously constructed, we need to
introduce a suitable family of projectors.

Let H := 1
2 (x

2
1 + x22), x1, x2 ∈ R, be the (classical) Hamiltonian of the one-

dimensional harmonic oscillator. Let also a := 2−1/2(x1+ix2), ā := 2−1/2(x1−ix2)
be the annihilation and creation functions. Define next

fm,n :=
1√

θn+mn!m!
ā⋆θm ⋆θ f0,0 ⋆θ a

⋆θn, where f0,0 := 2e−
2
θH , m, n ∈ N0.

The family {fm,n}m,n∈N0
is an orthogonal basis of L2(R2), consisting of Schwartz

functions. They constitute an important tool in the analysis of [27], since they
allow to construct local units. In fact, they are the Weyl symbols of the rank
one operators ϕ 7→ 〈ϕm|ϕ〉ϕn, with {ϕn}n∈N0 the basis of L2(R) consisting of
eigenvectors for the one-dimensional quantum harmonic oscillator. The proof of
the next lemma can be found in [27, subsection 2.3 and Appendix].

Lemma 5.9. The following relations hold true.

fm,n = fn,m, fm,n ⋆θ fk,l = δn,k fm,l,

∫

R2

fm,n(x) dx = 2πθ δm,n,

so, in particular, {fn,n}n∈N0 , is a family of pairwise orthogonal projectors. More-
over, we have
[
D, Lθ(fm,n)⊗ Id2

]
=

− i

√
2

θ

(
0

√
mLθ(fm−1,n)−

√
n+ 1Lθ(fm,n+1)√

nLθ(fm,n−1)−
√
m+ 1Lθ(fm+1,n) 0

)
,

with the convention that fm,n ≡ 0 whenever n < 0 or m < 0.

We are in the situation where the projectors fn,n belong to the algebra (not

its unitization, nor a matrix algebra over it). Thus, if we set F = D(1 + D2)−1/2,
then Lθ(fn,n)F±L

θ(fn,n) is a Fredholm operator from L2(R2) to itself, according
to the discussion at the beginning of the Section 2.3. Thus, we do not need the
‘double picture’ here. In particular, [fn,n] ∈ K0(A). The next result computes the
numerical index pairing between (A, L2(R2,C2),D) and K0(A).

Proposition 5.10. For J a finite subset of N0, let pJ :=
∑

n∈J L
θ(fn,n).

Setting F = D(1 +D2)−1/2, we have the integer-valued index paring

Index
(
pJF+pJ

)
=
〈
[pJ ], [(A, L2(R2,C2),D)]

〉
= Card(J).
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In particular, the index map gives an explicit isomorphism between K0

(
K(L2(R))

)

and Z.

Proof. Assume first that J = {n}, n ∈ N0. The degree zero term is not zero
in this case as the projection lies in our algebra. Hence, including all the constants
from the local index formula and the Chern character of fn,n gives

Index
(
Lθ(fn,n)F+L

θ(fn,n)
)
= resz=0

(1
z
Tr
(
γLθ(fn,n)(1 +D2)−z

)
−

Tr
(
γ
(
Lθ(fn,n)⊗ Id2 − 1/2

)
[D, Lθ(fn,n)⊗ Id2][D, Lθ(fn,n)⊗ Id2](1 +D2)−1−z

))
.

The second term is computed with the help of Lemma 5.9. First we have

γ
(
Lθ(fn,n)⊗ Id2 − 1/2

)
[D, Lθ(fn,n)⊗ Id2][D, Lθ(fn,n)⊗ Id2]

=
1

θ

(
nLθ(fn−1,n−1)− (n+ 1)Lθ(fn,n) 0

0 −(n+ 1)Lθ(fn+1,n+1) + nLθ(fn,n)

)
.

Since D2 = ∆⊗ Id2, with here ∆ = −∂21 − ∂22 , we find that

Tr
(
γ(Lθ(fn,n)⊗ Id2 − 1/2)[D, Lθ(fn,n)]⊗ Id2[D, Lθ(fn,n)⊗ Id2](1 +D2)−1−z

)

=
1

θ
Tr
((

− Lθ(fn,n)− (n+ 1)Lθ(fn+1,n+1) + nLθ(fn−1,n−1)
)
(1 + ∆)−1−z

)

=
1

θ

1

(2π)2

∫

R2

(
− fn,n(x)− (n+ 1)fn+1,n+1(x) + nfn−1,n−1(x)

)
dx

×
∫

R2

(1 + |ξ|2)−1−z dξ

=
1

θ

1

(2π)2
(
− 1− (n+ 1) + n

)
(2πθ)

2π

2z
= −1

z
.

In the second equality we have used [27, Lemma 4.14]. Note that the factor (2π)−2

can also be deduced from (5.12). Finally, we have used Lemma 5.9 to obtain the
last line and this is where the factor 2πθ comes from. Thus, the residue from the
second term gives us 1. For the first term we compute

resz=0
1

z
Tr
(
γLθ(fn,n)⊗ Id2 (1 +D2)−z

)
= 0,

because the grading γ cancels the traces on each half of the spinor space. This gives
the result in this elementary case, Index

(
Lθ(fn,n)F+L

θ(fn,n)
)
= 1. For the general

case, note that, since for n 6= m, fm,m and fn,n are orthogonal projectors, we have
[fm,m + fn,n] = [fm,m] + [fn,n] ∈ K0(A) and the final result follows immediately.
Last, to see that the index paring is an isomorphism, it suffices to observe that if I
and J are subsets of N0 with the same cardinality, then [PI ] = [PJ ] ∈ K0(A), since
the norm completion of A is just the compact operators. �



APPENDIX A

Estimates and Technical Lemmas

A.1. Background material on the pseudodiferential expansion

To aid the reader, this Appendix recalls five Lemmas from [15] which are used
repeatedly in Chapter 1 and in Chapter 3. All were proved in the unital setting,
however, all norm estimates remain unchanged, and in the pseudodifferential expan-
sion in Lemmas A.1, A.3, if the operators Ai lie in OP∗

0, then so does the remainder,
by the invariance of OP∗

0 under the one parameter group σ (see Proposition 1.28).
The integral estimate in Lemma A.5 is unaffected by any changes.

We begin by giving the algebraic version of the pseudodifferential expansion
developed by Higson. This expansion gives simple formulae, and sharp estimates
on remainders. In the statement Q = t+ s2 +D2, t ∈ [0, 1], s ∈ [0,∞).

Lemma A.1. (see [15, Lemma 6.9]) Let m,n, k be non-negative integers and
T ∈ OPm

0 (resp. T ∈ OPm). Then for λ in the resolvent set of Q

(λ−Q)−nT =

k∑

j=0

(
n+ j − 1

j

)
T (j)(λ−Q)−n−j + P (λ),

where the remainder P (λ) belongs to OP
−(2n+k−m+1)
0 (resp. OP−(2n+k−m+1)) and

is given by

P (λ) =

n∑

j=1

(
j + k − 1

k

)
(λ−Q)j−n−1T (k+1)(λ−Q)−j−k.

In the following lemmas, we let Rs(λ) = (λ− (1 +D2 + s2))−1.

Lemma A.2. (see [15, Lemma 6.10]) Let k, n be non-negative integers, s ≥ 0,

and suppose λ ∈ C, 0 < ℜ(λ) < 1/2. Then for A ∈ OPk, we have

‖Rs(λ)
n/2+k/2ARs(λ)

−n/2‖ ≤ Cn,k and ‖Rs(λ)
−n/2ARs(λ)

n/2+k/2‖ ≤ Cn,k,

where Cn,k is constant independent of s and λ (square roots use the principal branch
of log.)

Lemma A.3. (see [15, Lemma 6.11]) Let Ai ∈ OPni
0 (resp. Ai ∈ OPni) for

i = 1, . . . ,m and let 0 < ℜ(λ) < 1/2 as above. We consider the operator

Rs(λ)A1Rs(λ)A2Rs(λ) . . . Rs(λ)AmRs(λ),

Then for all M ≥ 0

Rs(λ)A1Rs(λ)A2 . . . AmRs(λ) =

M∑

|k|=0

C(k)A
(k1)
1 . . . A(km)

m Rs(λ)
m+|k|+1 + PM,m,

117
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where PM,m ∈ OP
|n|−2m−M−3
0 (resp. PM,m ∈ OP|n|−2m−M−3), and k and n are

multi-indices with |k| = k1 + · · ·+ km and |n| = n1 + · · ·+ nm. The constant C(k)
is given by

C(k) =
(|k|+m)!

k1!k2! . . . km!(k1 + 1)(k1 + k2 + 2) . . . (|k|+m)
.

Lemma A.4. (see [15, Lemma 6.12]) With the assumptions and notation of the
last Lemma including the assumption that Ai ∈ OPni for each i, there is a positive
constant C such that

‖(λ− (1 +D2 + s2))m+M/2+3/2−|n|/2PM,m‖ ≤ C,

and Cindependent of s and λ (though it depends on M and m and the Ai).

Lemma A.5. (see [15, Lemma 5.4]) Let 0 < a < 1/2 and 0 ≤ c ≤
√
2 and

j = 0 or 1. Let J ,K and M be nonegative constants. Then the integral
∫ ∞

0

∫ ∞

−∞

sJ
(
a2+v2

)−M/2(
(s2+1/2−a)2+v2

)−K/2(
(s2+1−a−sc)2+v2

)−j/2
dvds,

converges provided J − 2K − 2j < −1 and J − 2K − 2j + 1− 2M < −2.

A.2. Estimates for Chapter 2

In this Section, we collect the proofs of the key lemmas in our homotopy argu-
ments which are essentially nonunital variations of proofs appearing in [17].

The first result we prove is the analogue of [15, Lemma 7.2], needed to prove
that the expectations used to define our various cochains are well-defined and holo-
morphic.

A.2.1. Proof of Lemma 3.3. Most of the proof relies on the same algebraic
arguments and norm estimates as in [15, Lemma 7.2]. We just need to adapt the
arguments which use some trace norm estimates. To simplify the notations for
0 ≤ t ≤ 1, we use the shorthand

R := Rs,t(λ) = (λ− (t+ s2 +D2))−1,

as in Equation (3.4). We first remark that we can always assume A0 ∈ OP0
0, at the

price that A1 will be in OPk0+k1 , so that the global degree |k| remains unchanged.
Indeed, we can write

A0RA1R . . . RAmR = A0(1 +D2)−k0/2R (1 +D2)k0/2A1R . . . RAmR,

and this remark follows from the change

A0 ∈ OPk0
0 7→ A0(1+D2)−k0/2 ∈ OP0

0, A1 ∈ OPk1 7→ (1+D2)k0/2A1 ∈ OPk0+k1 .

From Lemma A.3, we know that for any L ∈ N, there exists a regular pseudodiffer-

ential operator PL,m of order (at most) |k|−2m−L−3 (i.e. PL,m ∈ OP|k|−2m−L−3),
such that

A0RA1R . . . RAmR =

L∑

|n|=0

C(n)A0A
(n1)
1 . . . A(nm)

m Rm+|n|+1 +A0 PL,m.

Regarding the remainder term PL,m, by Lemma A.4 we know that it satisfies the
norm inequality

‖Rs,t(λ)
−m−L/2−3/2+|k|/2 PL,m‖ ≤ C,
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where the constant C is uniform in s and λ. (Here the complex square root function
is defined with its principal branch.) Using Lemma 1.39 and A0 ∈ OP0

0, we obtain
the trace norm bound

‖A0 PL,m‖1 ≤ C‖A0Rs,t(λ)
m+L/2+3/2−|k|/2‖1

≤ C ′((s2 + a)2 + v2)−m/2−L/4−3/4+|k|/4+(p+ε)/4.

Thus, the corresponding s-integral of the trace-norm of Br,t(s) is bounded by
∫ ∞

0

sα
∥∥∥
∫

ℓ

λ−p/2−r A0 PL,mdλ
∥∥∥
1
ds ≤

∫ ∞

0

sα
∫

ℓ

|λ|−p/2−r‖A0 PL,m‖1|dλ|ds

≤ C

∫ ∞

0

sα
∫ ∞

−∞

(a2 + v2)−p/4−ℜ(r)/2((s2 + a)2 + v2)−m/2−L/4−3/4+|k|/4+(p+ε)/4dvds,

where ℓ is the vertical line ℓ = {a+ iv : v ∈ R} with a ∈ (0, µ2/2). By Lemma A.5,
the latter integral is finite for L > |k| + α + p + ε − 2 − 2m, which can always be
arranged. To perform the Cauchy integrals

1

2πi

∫

ℓ

λ−p/2−rA0A
(n1)
1 . . . A(nm)

m Rm+1+|n|dλ,

we refer to [15, Lemma 7.2] for the precise justifications. This gives a multiple of

A0A
(n1)
1 . . . A(nm)

m (t+ s2 +D2)−p/2−r−m−|n|.

By Lemmas 1.31 and 1.33, we see that A0A
(n1)
1 . . . A

(nm)
m ∈ OP

|k|+|n|
0 , so that

B := A0A
(n1)
1 . . . A(nm)

m |D|−|n|−|k| ∈ OP0
0.

(Remember that in this setting we assume D2 ≥ µ2). Thus, for ε > 0, Equation
(1.22) gives
∥∥A0A

(n1)
1 . . . A(nm)

m (t+ s2 +D2)−p/2−r−m−|n|
∥∥
1
=

∥∥B|D||n|+|k|(t+ s2 +D2)−p/2−r−m−|n|
∥∥
1
≤

∥∥B(t+ s2 +D2)−p/2−r−m−|n|/2+|k|/2
∥∥
1

∥∥|D||n|+|k|(t+ s2 +D2)−|n|/2−|k|/2
∥∥ ≤

C(µ/2 + s2)−ℜ(r)−m−|n|/2+|k|/2+ε/2.

In particular, the constant C is uniform in s. The worst term being that with
|n| = 0, we obtain that the corresponding s-integral is convergent for all r ∈ C with
ℜ(r) > −m+ (|k|+ α+ 1)/2 + ε. �

A.2.2. Proof of Lemma 3.9. We give the proof for the first type of expecta-
tion 〈A0, . . . , Am〉m,r,s,t. The proof for 〈〈A0, . . . , Am〉〉m,r,s,t is similar with suitable
modification of the domain of the parameters. From Lemma 3.3, we first see that
each term of the equality is well defined, provided 2ℜ(r) > 1+α+|k|−2m, and, since
2m+2 > α > 0, Lemma 3.3 also shows that 〈〈A0, . . . , Am〉〉m,r,s,t vanishes at s = 0
and s = ∞. All we have to do is to show that the map [s 7→ 〈A0, . . . , Am〉m,r,s,t] is
differentiable, with derivative given by

2s

m∑

j=0

〈A0, . . . , Aj , 1, Aj+1, . . . , Am〉m+1,r,s,t,
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since then the result will follow by integrating between 0 and +∞ the following
total derivative
d

ds
sα〈A0, . . . , Am〉m,r,s,t =

α sα−1〈A0, . . . , Am〉m,r,s,t + 2

m∑

j=0

sα+1〈A0, . . . , Aj , 1, Aj+1, . . . , Am〉m+1,r,s,t.

As 1
ε

(
Rs+ε,t(λ) − Rs,t(λ)

)
= −Rs+ε,t(λ)(2s + ε)Rs,t(λ), we see that the resolvent

is continuously norm-differentiable in the s-parameter, with norm derivative given
by 2sRs,t(λ)

2. We then write

2πi 1ε
(
〈A0, . . . , Am〉m,r,s+ε,t − 〈A0, . . . , Am〉m,r,s,t

)
=

m∑

j=0

τ
(
γ

∫

ℓ

λ−p/2−rA0Rs+ε,t(λ) . . . Aj Rs+ε,t(λ)(2s+ ε)

×Rs,t(λ)Aj+1 . . . Rs,t(λ)AmRs,t(λ) dλ
)
,

where ℓ is the vertical line ℓ = {a+ iv : v ∈ R} with a ∈ (0, µ2/2). This leads to

1
ε

(
〈A0, . . . , Am〉m,r,s+ε,t − 〈A0, . . . , Am〉m,r,s,t

)

− 2s
m∑

j=0

〈A0, . . . , Aj , 1, Aj+1, . . . , Am〉m+1,r,s,t =

ε

2πi

m∑

j=0

τ
(
γ

∫

ℓ

λ−p/2−rA0Rs+ε,t(λ) . . . Aj Rs+ε,t(λ)
2

×Aj+1 . . . Rs,t(λ)AmRs,t(λ) dλ
)

+
2sε

2πi

m∑

k≤j=0

τ
(
γ

∫

ℓ

λ−p/2−rA0Rs+ε,t(λ) . . . Ak Rs+ε,t(λ)(2s+ ε)

×Rs,t(λ)Aj+k . . . Aj Rs,t(λ)
2Aj+1 . . . Rs,t(λ)AmRs,t(λ) dλ

)
.

We now proceed as in Lemma 3.3. We write each integrand (of the first or second
type) as

A0RA1R . . . RAm+j R =

M∑

|n|=0

C(k)A0A
(n1)
1 . . . A

(nm+j)
m+j Rm+j+|n|+1 +A0 PM,m+j ,

where j ∈ {1, 2} depending the type of term we are looking at, the Aj ’s have been
redefined and now R stands for Rs,t(λ) or Rs+ε,t(λ). To treat the non-remainder
terms, before applying the Cauchy formula, one needs to perform a resolvent ex-
pansion

Rs+ε,t(λ) =

M∑

j=0

(−ε(2s+ ε))j−1Rs,t(λ)
j + (−ε(2s+ ε))MRs,t(λ)

MRs+ε,t(λ).

We can always choose M big enough so that the integrand associated with the
remainder term in the resolvent expansion is integrable in trace norm, by Lemma
3.3. Provided ℜ(r)+m− |k|/2 > 0, one sees with the same estimates as in Lemma
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3.3, that the corresponding term in the difference-quotient goes to zero with ε. For
the non-remainder terms of the resolvent expansion, we can use the Cauchy formula
as in Lemma 3.3, and obtain the same conclusion. All that is left is to treat the
remainder term. The main difference with the corresponding term in Lemma 3.3 is
that PM,m+j is now ε-dependent. But the ε-dependence only occurs in Rs+ε,t(λ)
and since the estimate of Lemma A.2 is uniform in s, we still have

‖Rs,t(λ)
−m−M/2−3/2+|k|/2 PM,m+j‖ ≤ C,

where the constant is uniform in s, λ and ε. This is enough (see again the proof of
Lemma 3.3) to show that the corresponding term in the difference-quotient goes to
zero with ε, provided ℜ(r)+m−|k|/2 > 0. Thus, 〈A0, . . . , Am〉m,r,s,t is differentiable
in s, concluding the proof. �

A.2.3. Proof of Lemma 3.10. According to our assumptions, one first notes
from Lemma 3.3, that all the terms involved in the equalities above are well defined.
From

1
ε

(
Rs,t(λ+ ε)−Rs,t(λ)

)
+Rs,t(λ)

2 = εRs,t(λ+ ε)Rs,t(λ)
2,

we readily conclude that the map λ 7→ Rs,t(λ) is norm-continuously differentiable,

with norm derivatives given by −Rs,t(λ)
2. We deduce that for Aj ∈ OPkj , the

map λ 7→ AjRs,t(λ) is continuously differentiable for the topology of OPkj−2, with
derivative given by −AjRs,t(λ)

2. Thus, A0R . . . AmR is continuously differentiable

for the topology of OP
|k|−2m
0 , with derivative given by

−
m∑

j=0

A0Rs,t(λ) . . . Aj Rs,t(λ)
2Aj+1 . . . AmRs,t(λ).

We thus arrive at the identity in OP
|k|−2m
0 :

d

dλ

(
λ−q/2−rA0Rs,t(λ) . . . AmRs,t(λ)

)

=− (p/2− r)λ−q/2−r−1A0Rs,t(λ) . . . AmRs,t(λ)

−
m∑

j=0

λ−q/2−rA0Rs,t(λ) . . . Aj Rs,t(λ)
2Aj+1 . . . AmRs,t(λ)

=− (p/2− r)λ−q/2−r−1A0Rs,t(λ) . . . AmRs,t(λ)

−
m∑

j=0

λ−q/2−rA0Rs,t(λ) . . . Aj Rs,t(λ) 1Rs,t(λ)Aj+1 . . . AmRs,t(λ).

By Lemma 3.3, the λ-integral of the right hand side of the former equality is well
defined as a trace class operator for 2ℜ(r) > |k| − 2m. Performing the integra-
tion gives the result, since 〈〈A0, . . . , Am〉〉m,r+1,s,t vanishes at the endpoints of the
integration domain. �

We now present the proof of the trace norm differentiability result, Lemma
3.26, needed to complete the homotopy to the Chern character.
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A.2.4. Proof of Lemma 3.26. Recall that a0, . . . , aM ∈ A∼ so that each of
dai, δ(ai) ∈ OP0

0 for i = 0, . . . ,M . This means we can use the result of Lemma
1.38. We first assume p ≥ 2. We start from the identity,

du(a) = [Du, a] = [F |D|1−u, a] = F [|D|1−u, a] +
(
da− Fδ(a)

)
|D|−u,

and we note that da−Fδ(a) ∈ OP0
0. Applying the second part of Lemma 1.38 and

Lemma 1.37 now shows that du(a) ∈ Lq(N , τ) for all q > p/u. Next, we find that

Rs,u(λ) = (λ− s2 −D2
u)

−1 = |D|−2(1−u)D2
u(λ− s2 −D2

u)
−1 =: |D|−2(1−u)B(u),

where B(u) is uniformly bounded. Then Lemma 1.37 and the Hölder inequality
show that

du(ai)Rs,u(λ) ∈ Lq(N , τ), for all q > p/(2− u) ≥ p/2 ≥ 1,

and for each i = 0, . . . , j, j + 2, . . . ,M , while

Rs,u(λ)
1/2 du(aj+1)Rs,u(λ) ∈ Lq(N , τ) for all q ≥ 2 with (3− 2u)q > p.

The worst case is u = 1 for which we find 2 ≤ p ≤ q, allowing us to use the first and
simplest case of Lemma 1.37. Since Ts,λ,j(u) contains M terms du(ai)Rs,u(λ) and

contains one term Rs,u(λ)
1/2 du(aj+1)Rs,u(λ) and one bounded term DuRs,u(λ)

1/2,
the Hölder inequality gives

Ts,λ,j(u) ∈ Lq(N , τ), for all q > p/(M(2−u)+(3−2u)) = p/(2M+3−u(M+2)).

Since u ∈ [0, 1] and M > p− 1, we obtain

p/(2M + 3− u(M + 2)) < p/(M + 1) < 1,

that is Ts,λ,j(u) ∈ L1(N , τ). The proof then proceeds by showing that
[
u 7→ du(ai)Rs,u(λ)

]
∈ C1

(
[0, 1],Lq(N , τ)

)
, q > p/(2− u),

for each i = 0, . . . , j, j + 2, . . . ,M , and
[
u 7→ DuRs,u(λ) du(aj+1)Rs,u(λ)

]
∈ C1

(
[0, 1],Lq(N , τ)

)
, q > p/(3− 2u),

with derivatives given respectively by

[Ḋu, ai]Rs,u(λ) + 2du(ai)Rs,u(λ)ḊuDuRs,u(λ),

and

ḊuRs,u(λ) du(aj+1)Rs,u(λ) + 2DuRs,u(λ)ḊuDuRs,u(λ) du(aj+1)Rs,u(λ)

+DuRs,u(λ) [Ḋu, aj+1]Rs,u(λ) + 2DuRs,u(λ) du(aj+1)Rs,u(λ)ḊuDuRs,u(λ).

This will eventually imply the statement of the lemma. We only treat the first term,
the arguments for the second term being similar but algebraically more involved.
We write,

ε−1(du+ε(ai)Rs,u+ε(λ)− du(ai)Rs,u(λ))

− [Ḋu, ai]Rs,u(λ)− 2du(ai)Rs,u(λ)ḊuDuRs,u(λ) =(
ε−1(du+ε(ai)− du(ai))− [Ḋu, ai]

)
Rs,u(λ)

+
(
du+ε(ai)− du(ai)

)
ε−1(Rs,u+ε(λ)−Rs,u(λ))(A.1)

+ du(ai)
(
ε−1(Rs,u+ε(λ)−Rs,u(λ))− 2Rs,u(λ)ḊuDuRs,u(λ)

)
.
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The first term of Equation (A.1) is the most involved. We start by writing

ε−1(du+ε(ai)− du(ai))− [Ḋu, ai] =
[
ε−1(Du+ε −Du) +Du log |D|, ai

]

=
[
F |D|1−u

(
ε−1(|D|−ε − 1) + log |D|

)
, ai

]

= F
[
|D|1−u

(
ε−1(|D|−ε − 1) + log |D|

)
, ai

]

+
(
dai − Fδ(ai)

)
|D|−u

(
ε−1(|D|−ε − 1) + log |D|

)
.

We are seeking convergence for the Schatten norm ‖ · ‖q with q > p/(2−u). So, let

ρ > 0, be such that for A ∈ OP0
0, A|D|−2+u+ρ ∈ Lq(N , τ). Thus, the last term of

the previous expression, multiplied by Rs,u(λ) can be estimated in q-norm by:
∥∥∥
(
dai − Fδ(ai)

)
|D|−u

(
ε−1(|D|−ε − 1) + log |D|

)
Rs,u(λ)

∥∥∥
q

≤
∥∥(dai − Fδ(ai)

)
|D|−2+u+ρ

∥∥
q

∥∥|D|−2(1−u)Rs,u(λ)
∥∥

×
∥∥∥
(
ε−1(|D|−ε − 1) + log |D|

)
D−ρ

∥∥∥,

which treats this term since the last operator norm goes to zero with ε. We now
show that

(A.2)
[
|D|1−u

(
ε−1(|D|−ε − 1) + log |D|

)
, ai

]
,

converges to zero in q-norm (for the same values of q as before). We first remark
that we can assume u > 0. Indeed, when u = 0, we can use (as before) the little
room left between q and p/2, find ρ > 0 such that a|D|−2+ρ ∈ Lq(N , τ) and write
[
|D|
(
ε−1(|D|−ε − 1) + log |D|

)
, ai

]
|D|−ρ =

[
|D|1−ρ

(
ε−1(|D|−ε − 1) + log |D|

)
, ai

]

− |D|1−ρ
(
ε−1(|D|−ε − 1) + log |D|

)[
|D|ρ, ai

]
|D|−ρ,

and use an estimate of the previous type plus the content of Lemma 1.38. To take
care of the term (A.2) (for u > 0), we use the integral formula for fractional powers.
After some rearrangements, this gives the following expression for (A.2):
∫ ∞

0

λu−1(πε)−1
{
(sinπ(1− u− ε)− sinπ(1− u))(λε − 1)

+ sinπ(1− u)(λε − 1− ε log λ) + cosπ(1− u)

+
(
(πε)−1(sinπ(1− u− ε)− sinπ(1− u))

)}
(1 + λ|D|)−1δ(ai)(1 + λ|D|)−1 dλ.

The last term can be recombined as
(
(πε)−1(sinπ(1− u− ε)−sinπ(1− u))+cosπ(1−u)

)
π(sinπ(1− u))−1

[
|D|1−u, ai

]
,

and one concludes (for this term) using Lemma 1.38 together with an (ordinary)
Taylor expansion for the pre-factor. Since D2 ≥ µ2 > 0, the first term (multiplied
by Rs,u(λ)) is estimated (up to a constant) in q-norm by

∣∣ sinπ(1−u−ε)−sinπ(1−u)
∣∣∥∥δ(ai)Rs,u(λ)

∥∥
q

∫ ∞

0

λu−1ε−1(λε − 1)(1 + λµ1/2)−2 dλ,
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which goes to zero with ε, as seen by a Taylor expansion of the prefactor and since
(λε − 1)/ε is uniformly bounded in ε for λ ∈ [0, 1], while between 1 in ∞, we use
∫ ∞

1

λu−1ε−1(λε − 1)(1 + λµ1/2)−2 dλ ≤ (µ ε)−1

∫ ∞

1

(
λu−3+ε − λu−3

)
dλ

= (µ(2− u− ε))−1 ≤ (µ(1− u))−1.

For the middle term, we obtain instead the bound (up to a constant depending on
u only)

∥∥δ(ai)Rs,u(λ)
∥∥
q

∫ ∞

0

λu−1ε−1(λε − 1− ε log(λ))(1 + λµ1/2)−2 dλ,

and one concludes using the same kind of arguments as employed previously. Similar
(and easier) arguments show that the two other terms in (A.1) converge to zero in
q-norm. That the derivative of Ts,λ,l(u) is continuous for the trace norm topology
follows from analogous arguments.

Now we consider the case 1 ≤ p < 2. In this case M = 1 in the odd case and
M = 2 in the even case. For the odd case we have two terms to consider,

Ts,λ,0(u) = du(a0)Rs,u(λ)DuRs,u(λ)du(a1)Rs,u(λ),

and
Ts,λ,1(u) = du(a0)Rs,u(λ)du(a1)Rs,u(λ)DuRs,u(λ).

We write Ts,λ,0(u) as

du(a0)|D|− 5
2 (1−u)

︸ ︷︷ ︸
A

Rs,u(λ)DuRs,u(λ)|D|3(1−u)

︸ ︷︷ ︸
B

|D|− 1
2 (1−u)du(a1)Rs,u(λ)︸ ︷︷ ︸

C

.

Now the operator B is uniformly bounded in u ∈ [0, 1], while Lemma 1.37 shows
that both A and C lie in Lq(N , τ) for all q ≥ p. Since 1 > p/2, the Hölder
inequality now shows that Ts,λ,0(u) lies in L1(N , τ) for each u ∈ [0, 1]. Now the
strict inequality 1 > p/2 allows us to handle the difference quotients as in the p ≥ 2
case above to obtain the trace norm differentiability of Ts,λ,0(u). For Ts,λ,1(u) we
write

du(a0)Rs,u(λ)|D|−2(1−u)

︸ ︷︷ ︸
A

du(σ
(1−u)/2(a1))|D|−2(1−u)Rs,u(λ)DuRs,u(λ)︸ ︷︷ ︸

B

.

Applying Lemma 1.37 and the Hölder inequality again shows that Ts,λ,1(u) ∈
L1(N , τ). The strict inequality 1 > p/2 again allows us to prove trace norm differ-
entiability. For the even case where M = 2 we have more terms to consider, but
the pattern is now clear. We break up Ts,λ,j(u), j = 0, 1, into a product of terms
whose Schatten norms we can control, and obtain a strict inequality allowing us to
control the logarithms arising in the formal derivative. This completes the proof.
�
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Index

L, R, operators associated with D2, 20

Rs,t,u(λ), see resolvent functions, 57

T (n), 20

[·, ·]±, graded commutator, 56

A, a ∗-algebra, 33

B1(D, p), algebra of integrable elements , 13

Bk
1 (D, p), smooth version of B1(D, p), 21

B2(D, p), algebra of square integrable
elements, 8

Bk
2 (D, p), smooth version of B2(D, p), 21

D, a self-adjoint operator, 7

Du = D|D|−u, the deformation from D to
F = D|D|−1, 57

H, a Hilbert space, 20

K(N , τ), KN , the τ -compact operators in
N , 33

Lp, L̃p, Schatten ideals, 9

Pn, seminorms on B1(D, p), 13, 14

Pn,l, seminorms on Bk
1 (D, p) and

B∞
1 (D, p), 21

Φr
m,t, see transgression cochain, 58

Ψr
M,u, auxiliary cochain, 59

Qn, seminorms on B2(D, p), 8

α(k), combinatorial factors in index
formula, 56

•, parity notation, 55

N , a semifinite von Neumann algebra, 7

δ, δ′, derivations associated with D, 20

δ-ϕ-topology, 46

δ-topology, 45

ηm, constant in the definition of the
resolvent cocycle, 58

λ-trick, 61

〈. . . 〉m,r,s,t, expectation in the resolvent
cocycle, 58

〈〈. . . 〉〉m,r,s,t, expectation in the
transgression cochain, 58

Z2-grading, 34

Om, functions holomorphic for
ℜ(z) > (1−m)/2, 64

φr
m, φr

m,t, see resolvent cocycle, 58

φm, residue cocycle, 57

σn,l, combinatorial factors in index
formula, 56

σz , the one parameter group associated to
D2, 23

τ , a faithful, semifinite, normal trace on a
von Neumann algebra, 7

τj , residue functionals, 56

ϕs, weights defined by D, 8

ζb(z), zeta functions in index formula, 56

du = [Du, ·], 57
s-trick, 61

OPr, regular pseudodifferential operators
of order r, 22

OPr
0, tame pseudodifferential operators of
order r, 22

deg, grading degree for operators, 55

dom(ϕs), domain of the weight ϕs, 8

dom(ϕs)1/2, ‘L2-domain’ of the weight ϕs,

8

Auxiliary cochain, 59

Bott projector, 41, 86

Bounded geometry, 91

Chern character, 50

Clifford bundle, 89

Conditional trace, 49

Covering space, 98

Cyclic cohomology, 48

(b, B)-cocycle, 49

cyclic cocycle, 48

normalised cocycle, 48

reduced (b, B)-cocycle, 49

Dirac bundle, 89

Dirac-type operator, 89

Discrete dimension spectrum, 56

Double construction, 39

Fatou Lemma, 10

Fredholm module, 37

Index pairing, 37

K-theoretical , 37
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numerical , 41

Index theorem

L2-index theorem, 98, 101

Atiyah-Singer formula, 97, 98

Injectivity radius, 90

Isolated spectral dimension, 56

Jordan decomposition, 10, 16

Kasparov module, 35

local index formula, 83

McKean-Singer, 85

Moyal plane, 110

Projective tensor product, 11

Pseudodifferential operators, 22

regular, 22

tame, 22

Taylor expansion, 26

Residue cocycle, 57

Resolvent cocycle, 58

φr
m defined using resolvent function
Rs(λ), 58

φr
m,t defined using resolvent function

Rs,t(λ), 58

Resolvent function, 30, 57

Rs(λ) = (λ− (1 + s2 +D2))−1, 57

Rs,t,u(λ) = (λ− (t+ s2 +D2
u))

−1, 57

Rs,t(λ) = (λ− (t+ s2 +D2))−1, 57

Schatten ideals, 9

Schatten norm estimates, 29

Semifinite Fredholm module, 37

finitely summable, 37

pre-Fredholm module, 37

Semifinite spectral triple, 34

QC∞, 45

QCk, 45

QCk summable, 46

δ-ϕ-topology, 46

δ-topology, 45

discrete dimension spectrum, 56

finitely summable, 43

isolated spectral dimension, 56

smoothly summable, 46

spectral dimension, 43

Seminorms, 8

Pn, seminorms on B1(D, p), 13, 14

Pn,l, seminorms on Bk
1 (D, p), B∞

1 (D, p),

21

Pr
n,l, seminorms on OPr

0, 22

Qn, seminorms on B2(D, p), 8

Spectral dimension, 43

Torus actions, 103

Transgression cochain, 58

BΦr
M+1,0,u defined using resolvent

function Rs,0,u(λ), 58
Φr

m,t defined using resolvent function

Rs,t(λ), 58
Φr

m defined using resolvent function

Rs(λ), 58

Weyl pseudodifferential calculus, 111

Zeta function, 56
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