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Abstract: If a one-dimensional quantum lattice system is subject to one step of a revers-
ible discrete-time dynamics, it is intuitive that as much “quantum information” as moves
into any given block of cells from the left, has to exit that block to the right. For two
types of such systems — namely quantum walks and cellular automata — we make this
intuition precise by defining an index, a quantity that measures the “net flow of quan-
tum information” through the system. The index supplies a complete characterization
of two properties of the discrete dynamics. First, two systems S1, S2 can be “pieced
together”, in the sense that there is a system S which acts like S1 in one region and
like S2 in some other region, if and only if S1 and S2 have the same index. Second, the
index labels connected components of such systems: equality of the index is necessary
and sufficient for the existence of a continuous deformation of S1 into S2. In the case
of quantum walks, the index is integer-valued, whereas for cellular automata, it takes
values in the group of positive rationals. In both cases, the map S �→ ind S is a group
homomorphism if composition of the discrete dynamics is taken as the group law of the
quantum systems. Systems with trivial index are precisely those which can be realized
by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.

1. Introduction

Quantum walks and quantum cellular automata are quantum lattice systems with a dis-
crete step dynamics, which is reversible, and satisfies a causality constraint: In each step
only finitely many neighboring cells contribute to the state change of a given cell. This
leads to an interesting interplay between the conditions of reversibility (unitarity) and
causality, which is the subject of this article.

Starting point of the analysis is a simple intuition: for any connected group of cells in
a one dimensional system as much “quantum information” as moves into the subsystem
from the left has to move out at the other end. Moreover, this “flow” is a conserved
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quantity, in the sense that it remains constant over the spatial extent of the system. It can
thus be determined locally at any point.

Making this intuition precise, we associate with every such lattice system an index,
a quantity measuring the net flow of information. The index theory developed in this
work completely resolves three, a priori very different, classification problems:

(1) Find all locally computable invariants. It is shown that there exists a “crossover”
between two systems S1, S2 if and only if their indices coincide. More precisely, a cross-
over S between S1 and S2 is a system which acts like S1 on a negative half line {x |x ≤ a}
and like S2 on a positive half line {x |x ≥ b}. Clearly, a locally computable invariant
must assign the same value to two systems if there exists a crossover between them. It
follows that any invariant is a function of the index.

(2) Classify dynamics up to composition with local unitaries. A natural way of con-
structing dynamics which respect both reversibility and causality is by concatenating
layers of block unitaries. In every step, one would decompose the lattice into non-over-
lapping finite blocks and implement a unitary operation within every block. Such local
unitary implementations are conceptually related to the gate model of quantum infor-
mation. Not every time evolution may be realized this way: a uniform right-shift of cells
serves as the paradigmatic counter-example. We show that the systems with local imple-
mentations are precisely those with trivial index. Consequently, equivalence classes of
dynamics modulo composition with block unitaries are labeled by their indices.

(3) Determine the homotopy classes. It is proved that two systems may be continu-
ously deformed into each other (with a uniform bound on the causality properties along
the connecting path) if and only if they have the same index.

We will consider the above questions, and define indices, for two kinds of systems.
Quantum walks are, on the one hand, the quantum analogs of classical random walks.
On the other hand, they are discrete time analogs of a standard quantum particle “hop-
ping” on a lattice according to a Hamiltonian which is a lattice version of the momentum
operator i∂x . The index defined for these systems is the same as a quantity called “flow”
by Kitaev [12]. Intuitively, this measures the mean speed of a quantum walk, expressed
in units of “state space dimensions shifted to the right per time step”. The mathematical
background has been explored, in a more abstract setting, by Avron, Seiler and Simon
[3]. Kitaev’s work treated the first classification problem above. We will re-prove his
results with an eye on generalizations to cellular automata, and will supply solutions to
questions (2) and (3). Although the quantum walks seemed to be comparatively straight-
forward initially, the intuition gained from this case served us well in setting up the
theory for the much more involved case of cellular automata. This allowed us to build
an abstract index theory covering both cases with almost identical arguments (Sects. 4
and 5).

Cellular automata are characterized by the property that whatever state is possible
in one cell (e.g., a superposition of empty/occupied) can be chosen independently for
each cell. Expressed in terms of particles this means that we are necessarily looking at
a “gas” system of possibly infinitely many particles. The basic definition of quantum
cellular automata was given in [16]. On the one hand, the setting considered here is more
restrictive than [16], covering only one-dimensional systems. On the other hand, we are
allowing for non-translationally invariant dynamics — a strong generalization over the
earlier paper. In fact, having completed the present work we feel that the translation
invariance assumed in [16] was obscuring the fundamental interplay between reversibil-
ity and causality. Accordingly, we obtain here a stronger structure result, even though it
is built on the same key ideas. Throughout, there is a strong interplay between local and
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global properties. For example, the following statement is an immediate consequence
of our main Theorem 9: If a nearest neighbor cellular automaton has somewhere a cell
of dimension n, and somewhere else a cell of dimension m, coprime to n, then it can be
globally implemented as a product of two partitioned unitary operations.

Our paper is organized as follows: After giving two examples in Sect. 2, we begin by
a mathematical description of what we mean by quantum walks (Sect. 3.1) and quantum
cellular automata (Sect. 3.2). We then describe the notion of locally computable invari-
ants, and why they should form an abelian group (Sect. 5). A similar general explanation
of the notion of local implementation is given in Sect.4. The detailed theory for quantum
walks is in Sect. 6, and in Sect. 7 for cellular automata. This includes the proof that an
index previously defined in the classical translationally invariant case [10], coincides
with our index for this special case (Sect. 7.4). We close with an outlook on variants of
index theory for either higher dimensional systems or automata with only approximate
causality properties (Sect. 8).

2. Examples

Before introducing the mathematical setting, we will illustrate the problems treated in
this paper by giving two concrete examples.

2.1. Particle hopping on a ring. The simplest example is given by a single particle on a
ring of N sites arranged in a circle. More precisely, the Hilbert space we are considering
is CN with basis vectors {|e0〉, . . . , |eN−1〉}. The vector |ei 〉 is taken to represent a “par-
ticle localized at position i”. One step of a reversible discrete-time dynamics is simply
given by an arbitrary unitary U ∈ U (CN ). We will consider two such time evolutions
U0,U1 defined with respect to the standard basis by

U0 : |ei 〉 �→ |ei 〉, U1 : |ei 〉 �→ |e(i+1)mod N 〉 (1)

respectively. The first unitary is the trivial evolution and the second one models a uniform
movement of the particle with velocity one site per time step to the right.

The physical interpretation of this simple model seems clear: we can think of a lattice
version of a particle with one spatial degree of freedom, where we have introduced cyclic
boundary conditions to get a simple, finite description. The causality property defining a
quantum walk then expresses the physically reasonable assumptions that couplings are
local and dynamics preserve locality.

In this setting, it is natural to think of the time evolution as being generated by a
Hamiltonian: Ut = eit H . Such a Hamiltonian formula would allow us to extend the
dynamics to arbitrary real times t ∈ R. To recover H , we need to take a logarithm of
U1. This operation is of course not uniquely defined, but the ansatz

H =
N−1∑

k=0

k

2π
| fk〉〈 fk | (2)

in terms of the Fourier basis

| fk〉 = 1√
N

N−1∑

j=0

e
2π i
N k j (3)
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Fig. 1. Absolute value squared of a vector initially localized at site 6 (of 10) under the action of the time
evolution eit H for t ∈ {0, .25, .5., .75, 1}. The Hamiltonian is given by Eq. (2). The dynamics is not causal
for non-integer values of t

seems particularly appealing. It can easily be checked to be compatible with our previous
definitions of U0 and U1.

Does this definition yield physically satisfactory dynamics for all times t ∈ [0, 1]?
Hardly. As demonstrated in Fig. 1, a particle initially localized at site 6 (N = 10) will
spread out over the entire ring during the interval t ∈ [0, 1

2 ], and refocus to site 7 during
t ∈ [ 1

2 , 1]. Any sensible notion of “causality” is violated for non-integer values of t .
Note that this contrasts with the time evolution generated by the momentum operator
H = i∂x of a continuous-variable system. The latter fulfills

(
eit Hψ

)
(x) = ψ(x − t),

thus preserving the localization properties of vectors ψ ∈ L2(R) for any t ∈ R.
The discussion immediately raises several questions:
Is there a way to continuously interpolate between U0 and U1 while preserving cau-

sality? Our particular choice (2) for H could have been unfortunate. Conceivably, there
is a better-suited, potentially time-dependent Hamiltonian which does the job. More
physically phrased: is it possible to discretize the spacial degrees of freedom, but not the
temporal ones, of a free single particle, while respecting causality? (The answer is: no,
this is not possible).

Is there a simple way of deciding that the answer to the first question is negative?
(Yes: the index of U0 is 0, the index of U1 is 1. The index is constant on connected
components with uniformly bounded interaction length).

Further questions we will answer include: Is there a “gate-model” implementation
of U1? More precisely, can I write U1 in terms of a constant-depth sequence of unitary
operations, each of which acts non-trivially only on a constant number of sites? (No).
Can I engineer a large system on N ′ � N sites, endowed with a global time evolution
U , such that the restriction of U to some region of contiguous sites looks like U0 and
the restriction of U to some other region looks like U1? (No).

All these statements are made precise in Theorem 3.

2.2. Cluster state preparation. In this section, we consider N spin-1/2 particles
arranged on a circle. The Hilbert space of the system is H = ⊗N

i=1 C
2. In the pre-

vious example, it was clear what it meant for a state vector ψ to be “localized” in some
region Λ ⊂ [1, N ]: namely this was the case if 〈ψ |ei 〉 = 0 for all i ∈ Λ. For state
vectors on tensor product spaces, on the other hand, there seems to be no satisfactory
notion of “locality”. To circumvent this problem, we focus on observables instead. An
observable A ∈ B(H) is localized in a region Λ if A acts like the identity on all tensor
factors outside of Λ.

Reversible dynamics on such a system is again represented by a unitary U ∈ U (H).
We use the symbol α to denote the action by conjugation of U on observables: A �→
α(A) = U AU∗.
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Let {σ (i)x , σ
(i)
y , σ

(i)
z } be the Pauli matrices acting on the i th spin. Since one can form a

basis of B(H) from products of the Pauli matrices {σ (i)x , σ
(i)
z }N

i=1 acting on single spins
alone, it suffices to specify the effect of α on these 2N matrices in order to completely
determine the dynamics. For example, we can set

α(σ (i)x ) = σ (i−1)
z ⊗ σ (i)x ⊗ σ (i+1)

z , (4)

α(σ (i)z ) = σ (i)z . (5)

It is a simple exercise to verify that the operators on the right-hand side fulfill the same
commutation relations as the {σ (i)x , σ

(i)
z }. This is sufficient to ensure that a unitary U

implementing the time evolution α actually exists.
As in the previous example, we can ask more refined questions about U . For exam-

ple: can we implement U by a fixed-depth circuit of nearest-neighbor unitaries? Can one
interpolate between U and the trivial time evolution while keeping observables local-
ized along the path? Is there a simple numerical invariant which would allow us to easily
decide these questions?

In this particular case an educated guess gives rise to affirmative answers to all these
questions. Indeed, set

V (i,i+1)
t =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eitπ

⎞

⎟⎠ (6)

with respect to the standard basis of the i th and (i + 1)th spin. Define

Ut =
N∏

i=1

V (i,i+1)
t (7)

(the product is well-defined because Vt commutes with its translates, so the order in
which the product is taken is immaterial). Then one checks that α corresponds to U1,
whereas U0 is the trivial evolution. Clearly Ut continuously interpolates between these
two cases, and, by construction, does not increase the localization region of an observable
by more than two sites. We note that U1 is known in the quantum information literature
as the interaction used to generate graph states [9,15].

In Sect. 7, we will set up a general theory for answering the questions posed above—
including in cases where one is not so lucky to have an explicit parametrization in terms
of gates at hand.

3. Systems

3.1. Quantum walks. We consider a quantum system with a spatial degree of freedom
x ∈ Z, and at every site or “cell” x a finite dimensional “one-cell Hilbert space” Hx .
These spaces can be thought of as describing the internal states of the system as opposed
to the external, spatial variables x . The Hilbert space of the system is

H =
∞⊕

x=−∞
Hx , (8)

The specification of the Hx will be called a cell structure.
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We call a unitary operator U on H causal,1 or a quantum walk, if, for any x ∈ Z,
there are some x− < x+ such that φ ∈ Hx ⊂ H implies Uφ ∈⊕x+

y=x− Hx . We assume
that x± are both non-decreasing as functions of x , and go to ±∞ when x does.

By Uyx : Hx → Hy we denote the block matrix corresponding to the direct sum (8),
i.e.

U
⊕

x

φx =
⊕

y

∑

x

Uyxφx . (9)

The causality of U implies that, for any x , only finitely many y give non-zero summands.

Grouping. The spatial variable x of a walk and the internal degrees of freedom,
described in Hx , are largely interchangeable. In one direction we can choose a basis
|x, 1〉, . . . , |x, d〉 in some Hx , and replace the point x by the sequence of points
(x, 1), . . . , (x, d), each with a one-dimensional space Hx,i of internal states. Because in
the above definition, we assumed that the spatial variable ranges over Z, groupings have
to be followed up by a relabeling of sites in the obvious way. In the other direction, we
can “fuse together” several cells x1, . . . , xk , getting a new cell X with internal state space
HX = ⊕k

i=1 Hi . In either case it is clear how to adjust the neighborhood parameters
x±.

Hence we can either regard our system as one without internal degrees of freedom,
and Hilbert space H = 	2(Z). Typically this may involve some large neighborhoods
[x−, x+]. Or else, we can group cells until we get a nearest neighborhood system, i.e.,
x± = x ± 1, at the expense of having to deal with high-dimensional Hx .

Most of these definitions and constructions are easily generalized to higher-dimen-
sional lattices. It is therefore instructive to identify the feature which restricts our results
to the one-dimensional case. Indeed, it lies in the fact that one can choose a partitioning
into intervals [ai , bi ] ⊂ Z such that the sites below ai and above bi interact only through
the interval [ai , bi ]. Formally, that is a consequence of demanding limx→±∞ x± = ±∞.
It is easy to see that such a separation need not be possible in a two-dimensional lattice,
even if every cell has a finite neighborhood. In this more general setup, neighborhood
relations up to regroupings may be described in terms of coarse geometry [14], a theme
we will not pursue here.

Translationally invariant walks. The simplest way to define a cell structure is to choose
a Hilbert space H0, and to set Hx ≡ H0 for all x ∈ Z. We then have the unitary equiv-
alence H ∼= 	2(Z)⊗ H0. In that case we can define the shift operation S and its powers
by

Sn(|x〉 ⊗ φ0) = |x + n〉 ⊗ φ0. (10)

In this setting one frequently looks at translationally invariant walks, i.e., unitaries U
commuting with S. More generally, there might be some period p such that [U, S p] = 0.
Clearly, it is natural in this case to group p consecutive cells, so that after grouping one
gets a strictly translationally invariant walk.

1 We are indebted to a referee who drew our attention to the inflationary use of the word “local” in our man-
uscript, where, among other things, quantum walks were called “local” unitaries. We changed this to “causal”
for the crucial finite propagation property of walks and cellular automata. This is reminiscent of relativistic
propagation in algebraic quantum field theory and in keeping with usage in signal processing (where x would
be time, and x− = x). In quantum information it agrees with [2,4]. The terminology disagrees with what
some field theorists would probably say [18], and with [16].
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The space H0 can then either be considered as an internal degree of freedom of a
walking particle, or as a coin so that shift steps (possibly depending on the internal state)
are alternated with unitary coin tosses 1 ⊗ C . Translationally invariant systems will be
treated in more detail in Sect. 6.4.

Periodic boundary conditions. Since we are after a local theory of quantum walks,
global aspects — like the distinction between a walk on Z and a walk on a large ring of
M sites — are secondary, as long as the interaction length L = max |x+ − x−| remains
small in comparison with M . In fact, from any walk on a ring we can construct one on
Z which locally looks the same. More formally, let the sites of the ring be labeled by the
classes ZM of integers modulo M , and identified with {0, . . . ,M − 1}. Then we extend
the cell structure by setting Hx+k M = Hx for all k ∈ Z. In order to extend the unitary
U on the ring to a walk Û on Z we set

Ûxy =
{

0 if |x − y| > L
Ux ′ y′ if |x − y| ≤ L , x ′ ≡ x, y′ ≡ y modM. (11)

For the second line to be unambiguous, we require 2L < M . To verify unitarity we need
to compute

∑

y

Û∗
xyÛyz =

∑

y′
U∗

x ′ y′Uy′z′ , (12)

where we have assumed that |x − z| ≤ 2L , because otherwise the left hand side is zero
anyhow. Note that for each summation index y only one class y′ ∈ ZM can occur in the
sum on the right-hand side. Moreover, every class y′ appears, although possibly with
a zero contribution. But the sum on the right is δx ′z′1x ′ , which together with a similar
argument for UU∗ proves the unitarity of Û .

From the point of view of index theory, the walk U on the ring and Û on the line
are the same. However, if we iterate U , the interaction length (x+ − x−) increases, and
eventually non-zero matrix elements can occur anywhere in U n . In this sense, the set of
quantum walks on a ring does not form a group. This is the reason why the theory of
walks on Z is more elegant and more complete. From now on we will therefore consider
walks on Z only.

3.2. Cellular automata. Once again we consider a system in which a finite dimensional
Hilbert space Hx is associated with every site x ∈ Z. However, rather than combining
these in a direct sum, we take their tensor product. In plain English this means that, for
any two sites x, y, rather than having a system of type Hx at position x or a system
of type Hy at position y, as in a quantum walk, we now have a system of type Hx at
position x and a system of type Hy at position y. In contrast to the infinite direct sum
of Hilbert spaces, the infinite tensor product is not well-defined. Since we want to look
at local properties, we could work with a “potentially” infinite product, i.e., some finite
product with more factors added as needed in the course of an argument. But it is easier
to work instead with the observable algebras Ax , equal to the operators on the Hilbert
space Hx , or equivalently the algebra Md(x), where d(x) = dim Hx (Md denotes the
algebra of d × d-matrices). In analogy to the definition for walks, we will refer to the
specification of the algebras Ax as the cell structure.
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For the observable algebras associated to setsΛ ⊂ Z, we use the following notations:
for finiteΛ, A(Λ) is the tensor product of all Ax with x ∈ Λ. ForΛ1 ⊂ Λ2 we identify
A(Λ1) with the subalgebra A(Λ1)⊗ 1Λ2\Λ1 ⊂ A(Λ2). For infinite Λ ⊂ Z we denote
by A(Λ) the C*-closure of the increasing family of finite dimensional algebras A(Λ f )

for finite Λ f ⊂ Λ, also called the quasi-local algebra [5]. In particular, the algebra of
the whole chain is A(Z), sometimes abbreviated to A.

A cellular automaton with cell structure {Ax }x∈Z is an automorphism α of A =
A(Z)) such that, for some functions x �→ x± as specified in Sect. 3.1, each α(Ax ) ⊂
A([x−, x+]). Note that the restricted homomorphisms αx : Ax → A([x−, x+]) uniquely
determineα, because every observable acting on a finite number of cells can be expanded
into products of one-site observables. These local rules αx have to satisfy the constraint
that the algebrasαx (Ax ) for different x commute element-wise. In that case they uniquely
determine an endomorphism α. For examples and various construction methods for cel-
lular automata we refer to [16].

Exactly as in the case of quantum walks we can group cells together for convenience.
Whereas the dimensions for subcells add up for quantum walks (dim

⊕
x∈Λ Hx =∑

x∈Λ dim Hx ) we get A(Λ) ∼= Md with the product d =∏x∈Λ d(x).
By considering the time evolution of observables, we have implicitly chosen to work

in the Heisenberg picture. The expectation value of the physical procedure (i) prepare
a state ρ, (ii) run the automaton for k time steps, (iii) measure an observable A would
thus be given by the expression ρ(αk(A)). Accordingly, we choose a convention for the
shift on a chain with isomorphic cells, which at first seems inverted relative to the defi-
nition (10) for walks. We define it as the automorphism σ with σ(Ax ) = Ax−1, acting
according to the assumed isomorphism of all the cell algebras. Thus if one prepares a
certain state, it will be found shifted to the right after one step of σ , in accordance with
(10) although in that case UHx = Hx+1.

4. Local Implementability

We have defined the causality properties of walks and cellular automata axiomatically,
i.e., as a condition on the input-output behavior of the maps U and α. Alternatively, one
may take a constructive approach. Here, one would list a set of operations that should
certainly be included in the set of local dynamics, and refer to any given time evolution as
being locally implementable if it can be represented as a sequence of these basic building
blocks. Both methods are equally valid, and in this section we will completely analyze
their relation. From the axiomatic point of view this might be called a “structure theo-
rem”, whereas from the constructive point of view one would call it a “characterization
theorem”.

In the case at hand, there is a natural choice of building blocks. Namely, we can
partition the system into some subsets (“blocks”) of sites, and apply a unitary operation
separately to each subsystem in the partition. (Note that the unitaries would be combined
by a direct sum for walks and by a tensor product for cellular automata). For such maps
the interplay between unitarity and causality is trivial: causality puts no constraint what-
soever on the choice of unitaries acting in each block. Moreover, it allows the overall
operation to be resolved into a sequence of steps, in which one block operation is done
after the other. This picture is close to the gate model of quantum computation [13]: here
each block unitary would correspond to one “gate” involving some subset of registers, so
that these gates do not disturb each other. The fact that they can be executed in parallel is
expressed by saying that these infinitely many gates nevertheless represent an operation
of logical depth 1.
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For partitioned unitary operations the various block unitaries obviously commute.
Commutation is really the essential feature if we want to resolve the overall time step
into a sequence of block unitary steps. Indeed, consider a family of commuting uni-
taries U j , each localized in a finite subset Λ j of some infinite lattice (not necessarily
one-dimensional). We only need that the cover by the Λ j is locally finite, i.e., each
point x is contained in at most finitely many Λ j . Then the product

∏
j U j implements

a well-defined operation on localized elements. In the cellular automaton case (where
localization just means U j ∈ A(Λ j )), we define the action on a local observable A as

α(A) =
(∏

j

U∗
j

)
A
(∏

j

U j

)
, (13)

with the understanding that both products range over the same index set, namely those j
for whichΛ j meets the localization region of A. Here the products can be taken without
regard to operator ordering, since we assumed that the U j commute. Including additional
factors U j on both sides will not change α(A), since such factors can be “commuted
past” all other U j ′,U∗

j ′ and A to meet the corresponding U∗
j and cancel. So the prod-

uct is over all j , in the sense of a product over any sufficiently large finite set. Similar
considerations apply for the case of walks on general lattices.

Now if a QCA α is represented in the form (13), we can also represent it as a product
of partitioned operations: indeed, we only need to group the U j into families within
which all Λ j are disjoint. The product of each family is obviously a partitioned unitary
and under suitable uniformity conditions on the cover we only need a finite product of
such partitioned operations to represent α, typically s + 1 factors, where s is the spatial
dimension of the lattice. Hence we consider the representation as a product of parti-
tioned unitaries as essentially equivalent to the representation by commuting unitaries
as in (13). In either case we will say that the system is locally implementable.

We now come to the basic result for implementing general walks or cellular auto-
mata by commuting unitaries — provided we are allowed to enlarge the system. The
key feature of these extensions is that they work in arbitrary (not necessarily one-dimen-
sional) lattices and that the ancillary system is a copy of the system itself, on which
we implement simultaneously the inverse operation. In the following result, we allow
the underlying “lattice” X to be any countable set. General neighborhood schemes are
described as controlled sets in some coarse structure [14]. For the present paper it suf-
fices to describe causality in terms of a metric d on X , of which we only assume that all
balls NL(x) = {y|d(x, y) ≤ L} are finite sets. The causality condition for walks on X is
then that there is some “interaction radius” L such that in (9) Uyx = 0 for d(x, y) > L .
Similarly, for QCAs, the causality condition reads α(Ax ) ⊂ A(NL(x)). For walks U, V
on the same lattice we simply write U ⊕ V for a walk with one-cell Hilbert spaces
Hx ⊕ Kx , where Hx are the one-cell spaces for U and Kx those for V . This splits the
total Hilbert space into H ⊕ K, and U ⊕ V acts according to this direct sum. Similarly,
we define the tensor product α⊗ β acting on two parallel systems combined in a tensor
product.

Proposition 1. (1) For any quantum walk U, the walk U ⊕U∗ is locally implementable.
(2) For any cellular automaton α, the automaton α ⊗ α−1 is locally implementable.

Proof. (1) We are considering a doubled system in which the one-cell Hilbert space at
x is Hx ⊕ Hx . Let Sx denote the unitary operator on the doubled system which swaps
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these two summands, and acts as the identity on the one-cell spaces of all other sites.
Now consider the unitaries

Tx = (U∗ ⊕ 1)Sx (U ⊕ 1).

These commute, because they are the images of the commuting transformations Sx under
the same unitary conjugation. Moreover, they are localized near x by the causality prop-
erties postulated for U . Hence their infinite product defines a walk unitary, as discussed
above. This unitary is

∏

x

Tx = (U∗ ⊕ 1)S(U ⊕ 1) = S(1 ⊕ U∗)(U ⊕ 1) = S(U ⊕ U∗),

where we have used that S = ∏x Sx is just the global swap of the two system copies.
Hence U ⊕ U∗ = (

∏
x Sx )(

∏
x Tx ) is locally implemented.

(2) Essentially the same idea works for cellular automata [2]. Again we consider the
unitaries Sx ∈ Ax ⊗ Ax , which swap the two tensor factors, so that Sx (Ax ⊗ Bx ) =
(Bx ⊗ Ax )Sx . Now consider the unitary elements

Tx = (id ⊗ α)[Sx ].
Here we have written the arguments of an automorphism in brackets, to distinguish it
from grouping parentheses, and thus eliminate a possible source of confusion in the
coming computations. As images of a family of commuting unitaries under an auto-
morphism, the Tx are themselves a commuting family of unitaries. Moreover, they are
localized in Ax ⊗ AN (x). Hence they implement a cellular automaton β. We determine
it by letting it act first on a localized element of the form Ax ⊗ 1 with Ax ∈ Ax ,

β[Ax ⊗ 1] =
(∏

y

Ty

)∗(
Ax ⊗ 1

)(∏

y

Ty

)

= (id ⊗ α)
[∏

y

Sy

]
(id ⊗ α)

[
Ax ⊗ 1

]
(id ⊗ α)

[∏

y

Sy

]

= (id ⊗ α)
[
(
∏

y

Sy)(Ax ⊗ 1)(
∏

y

Sy)
]

= (id ⊗ α)[1 ⊗ Ax ] = 1 ⊗ α[Ax ].
A similar computation shows that β[1⊗α[Bx ]] = Bx ⊗1. Since α is an automorphism,
this is the same as β[1 ⊗ Bx ] = α−1[Bx ] ⊗ 1. Using the homomorphism property of
β, we get for general localized elements A, B that β[A ⊗ B] = α−1[B] ⊗ α[A]. Hence
following β by a global swap (implemented by

∏
x Sx ) we have implemented α ⊗ α−1

locally. ��

5. The Group of Locally Computable Invariants

In this section we take up the idea of a locally computable invariant and show that,
for either walks or automata, these invariants necessarily form an abelian group. The
group multiplication reflects both the composition and the parallel application to a dou-
ble chain. We postpone to later sections the question whether nontrivial invariants exist,
i.e., at this stage it might well be that the group described here is trivial. Later on we
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will determine this group to be (Z,+) for quantum walks (see Sect. 6)and (Q+, ·), the
multiplicative group of positive fractions, for cellular automata (see Sect. 7). In this
section, in order not to double each step, we will describe the arguments for the case of
walks, and just comment at the end on the necessary changes for the cellular automaton
case.

Suppose we have defined a property P(U ), which is defined for any quantum walk U ,
and which can be determined solely on the basis of a finite collection of the block matri-
ces Uxy . More specifically, if we write the walk in nearest-neighbor form by grouping,
we call a property P(U ) locally computable if we can compute it from the restriction
of U on any interval of length ≥ 2. The crucial part of this definition is, of course, that
the result obtained in this way must be the same for any interval we may select for the
computation, a property which we stress by calling P a locally computable invariant.

Suppose now that two walks U1 and U2 share a patch, in the sense that there is a
long interval [x1, x2] ⊂ Z, on which the Hilbert spaces Hx for x ∈ [x1, x2] have the
same dimensions and, after the choice of a suitable isomorphism, the unitaries U1 and
U2 restricted to these subspaces act in the same way. We assume that the interval is
sufficiently long to determine P. Then local computability just means that we must have
P(U1) = P(U2). In other words, P must be constant on each equivalence class of the
relation of “sharing a patch”. So the theory of locally computable invariants is really
equivalent to characterizing the classes of the transitive hull of this relation: We will
write U1 ∼ Un , if there is a chain of walks U1,U2, . . . ,Un such that, for all i , Ui and
Ui+1 share a patch. In contrast to the relation of sharing a patch, this equivalence relation
no longer makes any requirements about the sizes of any one-cell Hilbert spaces in the
walks U1 and Un . The most comprehensive locally computable property is now just the
property of U to belong to some equivalence class: all other locally computable proper-
ties are functions of this class. Our aim thus shifts to computing the set J of equivalence
classes for “∼”. The equivalence class of a walk U will be denoted by ind (U ) ∈ J ,
and called its (abstract) index.

Triviality of locally implementable systems. Let us first make the connection to the ques-
tions of the previous section: suppose that a walk or automaton is locally implementable,
i.e., the product of a collection of block partitioned unitaries. Compare this with a system
in which all unitaries, whose localization intersects the positive half axis, are replaced
by the identity. Clearly, this acts like the identity on all cells on the positive axis, and we
can further modify the system by making it trivial (0-dimensional Hx or 1-dimensional
algebras Ax ) for x > 0. Clearly these systems share a large patch (most of the negative
axis), so they are equivalent. In other words, locally implementable systems have the
same index as the identity on a trivial chain.

Crossovers. A very useful fact about the relation U1 ∼ U2 is that it implies a prima
facie much stronger relation: It is equivalent to the property that there is a “crossover”
walk Uc, which coincides with U1 on a negative half line {x |x ≤ a} and coincides with
U2 on a positive half line {x |x ≥ b}.
Proof. Let us denote the relation just described by U1 ≈ U2. Then U1 ≈ U2 ⇒ U1 ∼
U2, because U1 and U2 each share an infinite patch with Uc.

In the converse direction, if U1 and U2 share a patch, we can define Uc to be the walk
whose one-cell Hilbert spaces Hx are those of U1 for x to the left of the shared patch,
and are those of U2 for x to the right of the shared patch. Similarly, we define the unitary
Uc to coincide with U1 to the left and with U2 on the right. On the shared patch we can
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Fig. 2. Combining a crossover from U1 to U2 with a crossover from U2 to U3 to obtain a crossover from U1
to U3. The shaded double chains can be fused to a single cell by Prop. 1

choose either one, since the two walks coincide. Since the shared patch was assumed
to be sufficiently long this does not lead to an ambiguity for either Uc or U−1

c . Hence
U1 ≈ U2.

In order to cover the case that U1 and U2 are linked by a chain in which any neighbors
share a patch, we only need to prove that U1 ≈ U2 is a transitive relation.

In order to prove transitivity, consider the walks U1,U2,U3 with crossovers U12 and
U23 as shown in Fig. 2. There we also included a copy of the inverse of U2. We take
the overall picture as a representation of the walk U12 ⊕ U−1

2 ⊕ U23. Now consider the
strands of U12 and U−1

2 to the right of the crossover region of U12. Since U2 ⊕ U−1
2 is

locally implementable by Prop. 1, we can replace this pair of strands by a trivial system,
still retaining a legitimate unitary operation for the rest. Similarly, we can fuse the strands
of U23 and U−1

2 to the left of the crossover region of U23 to nothing. This results in a
unitary operator, which coincides with U1 on a left half axis and with U3 on a positive
half axis, i.e., a crossover U13. ��

Grouping. Suppose we regroup some finite collection of the cells. Clearly, this does
not affect cells far away, and we immediately get a crossover. Hence the index does not
change when regrouping cells, even if this is carried out in parallel. We will implicitly
use this in the sequel by regrouping sites in whatever way is most convenient.

Parallel chains. Define the direct sum U ⊕ V of walks as in the previous section. Then
if Uc (resp. Vc) is a crossover between U1 and U2 (resp. V1 and V2), Uc ⊕Vc is obviously
a crossover between U1 ⊕ V1 and U2 ⊕ V2. Hence the class ind (U ⊕ V ) ∈ J depends
only on the equivalence classes of U and V , and we can define an “addition” of indices
by ind (U ) + ind (V ) = ind (U ⊕ V ). This addition is abelian, because there is a trivial
crossover between U ⊕ V andV ⊕ U , just exchanging the summands on a half chain.
Moreover, since an inverse is defined as −ind (U ) = ind (U∗) via Prop. 1, we conclude
that J becomes an abelian group.

Products. Now suppose U and V are walks on the same cell structure, so that U V makes
sense. We claim that there is a crossover between U V and U ⊕ V . Hence we also get

ind (U V ) = ind (U ⊕ V ) = ind (U ) + ind (V ).

Indeed, consider the cell structure on which U ⊕ V is defined, which has one-cell
Hilbert spaces Hx ⊕ Hx at each site. Now let S+ denote the unitary which acts as the
swap on all Hx ⊕Hx with x > 0 and leaves the subspaces with x ≤ 0 unchanged. Then
(U ⊕ 1)S+(1 ⊕ V )S+ is a crossover between U ⊕ V and U V ⊕ 1 ∼ U V .



Index Theory of One Dimensional Quantum Walks and Cellular Automata 431

Modifications for cellular automata. The concept of crossovers and the arguments for
the group structure can be taken over verbatim, with the replacements U �→ α, Hx �→
Ax , ⊕ �→ ⊗. Of course, the index group will also be different, and we will adopt
the convention to write it multiplicatively. The product formula thus reads ind (αβ) =
ind (α ⊗ β) = ind (α)ind (β).

Numerical representation and shift subgroups. To make the abstract theory of this sec-
tion useful, one needs to establish an isomorphism of the index group with some explicitly
known group. The natural way to do that is to identify generators, i.e., some particu-
lar walks which cannot be implemented locally, but are sufficient to generate arbitrary
walks up to locally implementable factors. Although it is far from obvious at this point,
it will turn out later that, for walks as well as for cellular automata, the role of generators
is played by the shifts. Since there is only one kind of generators, it suffices to assign
numbers as “index values” to the shifts to establish an isomorphism of the abstract index
groups with groups of numbers.

For walks, the shift was introduced in Sect. 3.1. We denote by Sd the shift on a system
with d-dimensional internal degree of freedom (dim Hx = d for all x). Similarly, let σd
denote the shift automorphism on a chain with cell algebra Md . We tentatively demand

ind (Sd) = d (14)

and, similarly,

ind (σd) = d. (15)

This has to be consistent for shifts on parallel chains. Since Sd ⊕Se = Sd+e and σd ⊗σe =
σd·e, this requires that we take the indices of walks as a group of numbers under addition,
and for the cellular automata as a group of numbers under multiplication. Indeed, we
will show that the above formulas fix an isomorphism of the abstract index group J
to (Z,+) for quantum walks, and to the group (Q+, ·) of positive fractions for cellular
automata.

6. Index for Quantum Walks

6.1. Pedestrian definition. The following is the basic definition of this chapter. To the
best knowledge of the authors, it is due to Kitaev [12], who calls this quantity the flow
of a walk U .

Definition 2. For any walk U, we define the index as

ind U =
∑

x≥0>y

(
Tr(Uxy)

∗Uxy − Tr(Uyx )
∗Uyx

)
. (16)

Note that the sum is finite by virtue of the definition of causal unitaries. Clearly, for the
simple shift we get ind S1 = 1, confirming Eq. (14).

Of course, we will show presently that this quantity has all the properties of the
abstract index discussed in the previous sections. However, from the definition given
here it seems miraculous that such a quantity should be always an integer, and indepen-
dent of the positioning of the cut. To see this it is better to rewrite this quantity in the
following way.
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6.2. Operator theoretic definition. We introduce the projection P for the half axis {x ≥
0}, i.e., the projection onto the subspace

⊕
x≥0 Hx . Then, for φx ∈ Hx and φy ∈ Hy

we get

〈φx |PU − U P|φy〉 =

⎧
⎪⎨

⎪⎩

0 x ≥ 0 and y ≥ 0
−〈φx |Uxy |φy〉 x < 0 and y ≥ 0
〈φx |Uxy |φy〉 x ≥ 0 and y < 0

0 x < 0 and y < 0

. (17)

Hence, for any pair (x, y) the commutator [U, P] has just the signs used in the definition
of the index, and we get

ind U = Tr U∗[P,U ] = Tr(U∗ PU − P). (18)

Note that for the the trace on the right hand side we cannot use linearity of the trace to
write it as the difference of two (equal!) terms, because this would result in an indeter-
minate expression ∞ − ∞.

6.3. Fundamental properties of the index for walks.

Theorem 3. 1. ind U is an integer for any walk U.
2. ind U is locally computable, and uniquely parameterizes the equivalence classes for

the relation ∼ from Sect. 5, hence can be identified with the abstract index defined
there.

3. ind (U1 ⊕ U2) = ind (U1) + ind (U2), and, when U1 and U2 are defined on the
same cell structure, ind (U1U2) = ind (U1) + ind (U2). Moreover, for the shift of
d-dimensional cells: ind Sd = d.

4. ind U = 0 if and only if U admits a “local decoupling”, i.e. there is a unitary
V , which acts like the identity on all but finitely many Hx , such that U V is block
diagonal with respect to the decomposition H = (⊕x≤0 Hx

)⊕ (⊕x≥1 Hx
)
.

5. ind U = 0 if and only if it is locally implementable (see Sect. 4). In this case it can
be written as a product of just two partitioned unitaries. When U is regrouped in
nearest neighbor form, then the partitioned unitaries can be chosen to couple only
pairs of nearest neighbors.

6. ind U1 = ind U0 if and only if U0 and U1 lie in the same connected component, i.e.,
there is a norm continuous path [0, 1] � t �→ Ut of causal unitaries of uniformly
bounded interaction length L with the specified boundary values.

The rest of this subsection is devoted to the proof of this result. According to Eq. (18),
the index is closely related to a difference of projections. If these were finite dimensional,
we could just use linearity to get the difference of two integers. The following lemma
shows that the result is still an integer when the difference of the two projections has
finite rank. Actually it is even sufficient for the difference to be trace class, and with a
careful discussion of the trace, it is sufficient for the ±1 eigenspaces of the difference to
be finite dimensional [3]. Here we include the simple case sufficient for our purposes.

Lemma 4. Let Q, P be orthogonal projections in a Hilbert space H, such that Q − P
has finite rank. Then

1. The range R = (Q − P)H is an invariant subspace for both Q and P.
2. Tr(Q − P) is an integer.
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3. There is a unitary operator V such that Vφ = φ for all φ ⊥ (Q − P)H, and such
that Q ≥ V ∗ PV or Q ≤ V ∗ PV .

4. If Tr(Q − P) = 0, the V from the previous item satisfies Q = V ∗ PV .

Proof. 1. Follows from the identity

Q(Q − P) = Q(1 − P) = (Q − P)(1 − P),

and its analogue for P .
2. Clearly, we can evaluate the trace in a basis of R since the basis elements from

R⊥ contribute only zeros. Since the restrictions of Q and P to R are projections on a
finite dimensional space,

Tr(Q − P) = TrR(Q − P) = TrR(Q)− TrR(P)

is the difference of two natural numbers.
3&4. Obviously, we can find such a unitary on R with the corresponding property

for the restrictions of Q and P to R. We then extend V to be the identity on R⊥. When
Tr(Q − P) = 0, this V is a unitary mapping from QR to PR. ��
Proof (of Theorem 3). None of the statements, or values of the index will change under
grouping, except part of Item 5, which requires nearest neighbor form. Therefore we
will assume without loss that all walks are nearest neighbor. We will use Lemma 4 with
Q = U∗ PU .

1. This follows directly from Eq. (18) and Lemma 4, Item 2.
2. Let P ′ be the projection onto another half axis, say x ≥ x0. Then P − P ′ is finite

rank and hence (U∗ PU − P)− (U∗ P ′U − P ′) = P ′ − P − U∗(P − P ′)U is the dif-
ference of two finite rank operators with equal trace. Hence the index does not depend
on the cut position, and since formula (2) clearly involves only matrix elements at most
1 site from the cut, it is a locally computable invariant. It remains to be shown that it is
a complete invariant, i.e., that ind U1 = ind U2 implies U1 ∼ U2 in the sense of Sect. 5.
This will be done in connection with Item 4 below.

3. This follows from Sect. 5. But a direct proof (for the product) is also instructive:

(U1U2)
∗ P(U1U2)− P = (U∗

2 PU2 − P) + U∗
2 (U

∗
1 PU1 − P)U2

is the sum of two finite rank operators, of which we can take the trace separately.
4. Apply Lemma 4, Item 3, to get V with P = V ∗(U∗ PU )V , and hence PU V =

U V P . The fact that V −1 vanishes on all but finitely many Hx follows from its construc-
tion: V −1 vanishes on the complement of (P − Q)H ⊂ H−1 ⊕H0, for the cut “−1|0”
used in Def. 2. Note that this implies V ∼ 1, and also U V ∼ 1, since a unitary which
has no matrix elements connecting x ≥ 0 and x < 0 clearly allows a crossover with the
identity. From the product formula for locally computable invariants we therefore get
that ind U = 0 implies U ∼ 1. Obviously, this extends to other values of the index: if
ind U1 = ind U2 we have ind U∗

1 U2 = 0, hence U∗
1 U2 ∼ 1 and hence U1 ∼ U2. This

completes the proof of Item 2.
5&6. These items each contain a trivial direction: We have already shown in Sect. 5

that locally implementable walks have trivial index. Moreover, it is clear from Defi-
nition 2 that the index is a continuous function, and must hence be constant on each
connected component. The non-trivial statement in Item 5. is that walks with trivial
index are indeed implementable, and in Item 6. that walks with vanishing index can
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be connected to the identity (the rest then follows by multiplication). In either case, an
explicit construction is required, and it will actually be the same one.

So let U = U1 be a walk ind U = 0. Let V0 denote the decoupling unitary for the
cut −1|0, obtained in the proof of Item 4, and define similar unitaries Vk for the cuts at
2k − 1|2k such that U Vk has no non-zero matrix elements (U Vk)xy with y < 2k ≤ x .
Let Hk denote a hermitian operator located on the same subspaces as Vk − 1, such that
Vk = exp(i Hk). We will take all Hk bounded in norm by the same constant (π will do).
Then since they live on orthogonal subspaces, their sum H = ∑

k Hk is well-defined
and also bounded. Now let V (t) = exp(i t H), which is a norm continuous function of
t , because ‖H‖ ≤ π . The endpoint V (1) can also be defined by this product formula
V (1) = ∏k Vk , because on each subspace H2k−1 ⊕ H2k only one of these unitaries is
different from 1. Moreover, U V (1) has no matrix elements y < 2k ≤ x for any k, i.e.,
it is block diagonal for a decomposition of Z into pairs {2k, 2k + 1}. Now take a similar
Hamiltonian path deforming each block in this matrix decomposition separately to the
identity. Specifically, we take W (0) = 1 and W (1) = U V (1). Then t �→ W (t)V (t)∗
is a norm continuous path (although no longer a unitary group), with the endpoints 1
and U . Moreover, each unitary W (t) or V (t)∗ is based on a partition into neighboring
pairs so that, for no t , W (t)V (t)∗ has any non-zero matrix element between sites with
|x − y| > 2. This proves the remaining statement in Item 5 (for t = 1), and also the
statement about uniformly bounded neighborhoods in Item 6. ��

6.4. The translation invariant case. Suppose that U commutes with some power of the
shift. It is then useful to group spaces Hx into larger blocks to get commutation with the
shift itself. That is, in this section we assume all Hx ≡ K to be equal, and Uxy = Ux−y ,
where by a slight abuse of notation the single-index quantity Ux is defined as Ux0.
The width L is the largest x such that Ux = 0 or U−x = 0. It is natural to diagonal-
ize U using the Fourier transform. We define F : 	2(Z) ⊗ K → L2([−π, π ]) ⊗ K
by F(Ψ )(p) = 1√

2π

∑
x eipxΨ (x). This is to be read as a K-valued equation, where

we use the natural identification of L2([−π, π ]) ⊗ K with the set of K-valued square
integrable functions on [−π, π ]. Similarly, we identify 	2(Z) ⊗ K with the K-valued
square summable sequences. Then FUF∗ becomes the multiplication operator by the
p-dependent matrix

Û (p) =
L∑

x=−L

Ux eipx . (19)

Note that this is a Laurent polynomial in eip. The largest degree of eip in the poly-
nomial is x+ − x , which is constant by translation invariance. The lowest degree is
x − x−. Further, Û (p) must be a unitary operator on K for every p ∈ R. Taking these
facts together, we conclude that both the determinant det Û (p) = f (p) and its inverse
1/ f (p) = det Û (p)∗ are Laurent polynomials as well. But this is only possible if f is
actually a monomial, say proportional to exp(inp) for some integer n. We claim that
this n is the index:

Proposition 5. For a translation invariant walk,

det Û (p) = Ceip ind (U ), (20)

for some phase constant C.
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As a simple example consider the shift on a chain with dim H0 = 1. We already
noted after Definition 2 that this has index 1. The corresponding p-dependent unitary
is the number Û (p) = eip, so this also gives index 1. For unitaries acting on each site
separately in the same way, we get agreement because ind U = 0, and Û (p) is inde-
pendent of p. Note also that both sides of 20 have the same behavior under composition
and direct sums. This proves the formula for all walks which can be composed of shifts
and sitewise rotations. Actually, all translationally invariant walks can be represented
in this way [7], but we prefer to give a direct proof of the proposition without invoking
this decomposition.

Proof. From Definition 2 we get

ind U =
∞∑

x=0

−1∑

y=−∞
Tr |Ux−y |2 − Tr |Uy−x |2

=
∞∑

n=−∞
n Tr |Un|2 =

∑

nm

δnmn Tr(U∗
mUn)

= 1

2π i

∫ π

−π
dp Tr

(
Û (p)∗ dÛ (p)

dp

)
.

On the other hand, for any invertible matrix function Û ,

d

dp
det Û (p) = det Û (p)Tr

(
Û (p)−1 dÛ (p)

dp

)
.

Hence with det Û (p) = exp(i pn) the above integrand is actually constant equal to in,
and ind (U ) = n. ��

The properties of a walk depend crucially on the properties of the eigenvalues
eiω1(p), . . . , eiωd (p) of Û (p) (see Fig. 3). Clearly, p �→ Û (p) is an analytic family
of operators, so we can follow the eigenvalues as analytic curves [11]. The derivatives
of the eigenvalues determine the group velocity: Let Pα(p) be the eigenprojection of
Û (p) belonging to the eigenvalue exp iωα(p). Then the group velocity operator can be
written as

G(p) = lim
t→∞

1

t
X (t) =

∑

α

Pα(p)
dωα(p)

dp
, (21)

where X denotes the position operator, and at degenerate eigenvalues the projections
Pα(p) have to be chosen appropriately, as dictated by analytic perturbation theory. The
limit is in the strong resolvent sense. Hence the probability distribution for the selfadjoint
operator G in a state ρ is equal to the asymptotic position distribution starting from ρ

in “ballistic” scaling[1]. In particular, when the internal state is unpolarised, i.e., when
the initial state is of the form ρ = σ ⊗ 1/d, we find [12]

〈X (t)〉 = 〈X (0)〉 +
t

d
ind (U ).

In this sense the index has direct relevance as a mean speed of the walk.
It is, of course, suggestive to connect the topological properties of the eigenvalue

curves in Fig. 3 with the index. In principle, these curves are allowed to cross each other.
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Fig. 3. Example for eigenvalues of Û (p), with dim K = 3, L = 5, ind U = −1. In this case the spectrum is
a single curve on the torus. The index can be computed by the signed number of crossings of any horizontal
line, or as the sum of the derivatives of all branches

So in general, we have several branches of curves, which wind several times around the
torus before closing. The number of curves and their winding numbers would appear
to be a topological invariant, but this is not true because of the “avoided crossing” phe-
nomenon, in which a small perturbation of the walk turns an eigenvalue crossing into a
close encounter of two separate curves (suggested also at p = 1.6 in Fig. 3). Hence only
the sum of the winding numbers is stable with respect to small perturbations, and this is
indeed equal to ind U . To see this, note that at every p the sum of the derivatives of all
branches is equal to the index. Therefore the sum of the winding angles of the branches
taken from p = −π to p = π is 2π ind U . The winding angles of the closed curve
components are just suitable sub-sums of this, and this partition is changed at avoided
crossing points.

We close this section by establishing a variant of the main theorem for the transla-
tionally invariant case. Of course, most of this follows by simply specializing. The only
question which requires a new argument is whether the path connecting two translation-
ally invariant walks can be chosen to go entirely through translationally invariant walks.
This is established in the following proposition.

Proposition 6. Let U be a translationally invariant causal unitary with ind U = 0. Then
we can find a norm continuous path t �→ Ut of translationally invariant causal unitaries
of bounded width such that U0 = 1 and U1 = U.

Proof. We use the factorization theorem for “paraunitary” operators [7] (see also [17]),
which states that Û (p) can be written as a finite product

Û (p) = V0

r∏

k=1

Ŵmk (p) Vk
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of constant unitaries Vk and the elementary causal unitaries

Ŵm(p) =

⎛

⎜⎜⎜⎝

eimp 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

⎞

⎟⎟⎟⎠ .

As a quantum walk these correspond to a shift of only the first internal state by m posi-
tions, leaving all other internal states fixed. This walk has index m, and the product
formula yields ind U = ∑

k mk . The maximal polynomial degree of any matrix ele-
ment in e±i p depends on the localization region [x+,−x−], and is clearly bounded by
Lmax =∑k |mk |. Hence we can contract the walk to 1 by contracting each of the Vk to
1, never exceeding width Lmax on the way. ��

7. The Index for Cellular Automata

For cellular automata we proceed in analogy to the case of walks, i.e., by defining directly
a locally computable quantity as the index ind α of a walk automorphism α. We then
establish that it is actually a complete locally computable invariant and, at the same time
that it characterizes the connected components of QCAs.

As a technical preparation we need some background on commutation properties
of algebras spanning several cells. It is basically taken from [16], and included here to
make the presentation here self-contained.

7.1. Support algebras. For defining the index we need to find a quantitative character-
ization of “how much” of one cell ends up in another. To this end we introduce the notion
of support algebras. Consider a subalgebra A ⊂ B1 ⊗ B2 of a tensor product. What is
the position of A relative to the tensor structure? Here we answer a relatively simple
part of this question: which elements of B1,B2 are actually needed to build A?

For the following definition with lemma, recall that A′ denotes the commutant
{a|∀a1 ∈ A : [a, a1] = 0}.
Lemma 7. Let B1 and B2 be finite dimensional C*-algebras, and A ⊂ B1 ⊗ B2 a
subalgebra. Then

1. There is a smallest C*-subalgebra C1 ⊂ B1 such that A ⊂ C1 ⊗ B2. We call this the
support algebra of A on B1, and denote it by C1 = S(A,B1).

2. Consider a basis {eμ} ⊂ B2, so that every a ∈ A has a unique expansion a =∑
μ aμ ⊗ eμ with aμ ∈ B1. Then S(A,B1) is generated by all the elements aμ

arising in this way.
3. The commutant of S(A,B1) in B1 is characterized as {b ∈ B1|b ⊗ 1 ∈ A′}.
Proof. We can pick out the terms aμ by applying a suitable functional ωμ from the dual
basis to the second factor, i.e., by applying the map id ⊗ ωμ : B1 ⊗ B2 → B1, which
takes b1 ⊗b2 to ωμ(b2)b1. Clearly, if a ∈ C1 ⊗B2, so that a can be expanded into simple
tensors using only elements from C1 in the first factor, we find aμ = (id ⊗ωμ)(a) ∈ C1.
Hence the algebra described in Item 2 must be contained in any C1 satisfying Item 1.
Since it also satisfies Condition 1, we have identified the unique smallest C1. The Char-
acterization 3 follows by looking at commutators of the form [b ⊗1, a], and expanding
a as above. ��
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This construction was introduced to the QI community by Zanardi [19], who applied
it to the algebra generated by an interaction Hamiltonian, and consequently called it an
“interaction algebra”. Of course, we can apply the construction also to the second factor,
so that

A ⊂ S(A,B1)⊗ S(A,B2) ⊂ B1 ⊗ B2 . (22)

The crucial fact we need about support algebras is that “commutation of algebras
with overlapping localization happens on the intersection”. More precisely, we have the
following

Lemma 8. Let A1 ⊂ B1 ⊗ B2 and A2 ⊂ B2 ⊗ B3 be subalgebras such that A1 ⊗ 13
and 11 ⊗A2 commute in B1 ⊗B2 ⊗B3. Then S(A1,B2) and S(A2,B2) commute in B2.

Proof. Pick bases {eμ} ⊂ B1 and {e′
ν} ⊂ B2, and let a ∈ A1 and a′ ∈ A2. Then we may

expand uniquely: a =∑μ eμ ⊗ aμ and a′ =∑ν a′
ν ⊗ e′

ν . Then by assumption

0 = [a ⊗ 13,11 ⊗ a′] =
∑

μν

eμ ⊗ [aμ, a′
ν] ⊗ e′

ν .

Now since the elements eμ ⊗ e′
ν are a basis of B1 ⊗ B3, this expansion is unique, so we

must have [aμ, a′
ν] = 0 for all μ, ν. Clearly, this property also transfers to the algebras

generated by the aμ and a′
ν , i.e., to the support algebras introduced in the lemma. ��

7.2. Defining the index. Now consider a cellular automaton α on a cell structure Ax . By
regrouping, if necessary, we may assume that it has only nearest neighbor interactions.
Now consider any two neighboring cells A2x ⊗ A2x+1, and their image under α, i.e.,

α
(
A2x ⊗ A2x+1

)
⊂
(
A2x−1 ⊗ A2x

)
⊗
(
A2x+1 ⊗ A2x+2

)
.

We apply the support algebra construction to this inclusion, obtaining two algebras

R2x = S
(
α
(
A2x ⊗ A2x+1

)
,
(
A2x−1 ⊗ A2x

))
, (23)

R2x+1 = S
(
α
(
A2x ⊗ A2x+1

)
,
(
A2x+1 ⊗ A2x+2

))
. (24)

Intuitively, the algebras Ry with even index become larger when information flows to the
right, whereas the ones with odd index describe a flow to the left. Of course, this intuition
will be made precise below, but at this stage one can at least check these statements for
the shift: When α(Ay) = Ay−1 (recall the convention made at the end of Sect. 3.2) we
have R2x = A2x−1 ⊗ A2x and R2x+1 = C1. This is to be contrasted with Ry = Ay
for the identity.

Continuing with our construction, observe that by Lemma 8, the subalgebras R2x+1
and R2x+2 commute in the algebra

(
A2x+1 ⊗ A2x+2

)
. Algebras Ry which are further

away commute anyhow, since they are contained in disjoint cells. We conclude that all
Ry commute.

By definition of support algebras, α(A2x ⊗A2x+1) ⊂ R2x ⊗R2x+1, so that the alge-
bras Rx together generate an algebra containing αA(Z). Because α is an automorphism,
this is the same as A(Z). Now if any Rx had a non-trivial center, i.e., if there were an
element X ∈ Rx commuting with all of Rx but not a multiple of 1, this X would also be
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Fig. 4. Cell structure with support algebras. (Read top to bottom) If the width of cells is taken as log dimension,
the index can be read off the slope in the boxes representing mapping by α

in the center of the entire quasi-local algebra A(Z). However, this center is known to be
trivial [5]. We conclude that each Rx must have trivial center, and hence be isomorphic
to Mr(x) for some integer r(x). Moreover, the inclusion noted at the beginning of this
paragraph cannot be strict, since otherwise we would find an element in the relative
commutant, which would once again be in the center αA(Z). To summarize, we must
have

α
(
A2x ⊗ A2x+1

) = R2x ⊗ R2x+1, (25)

hence d(2x)d(2x + 1) = r(2x)r(2x + 1). (26)

On the other hand, the commuting full matrix algebras R2x+1 and R2x+2 together
span the tensor product isomorphic to Mr(2x+1)r(2x+2) inside

(
A2x+1 ⊗ A2x+2

)
. Again

the inclusion cannot be strict, because otherwise the automorphism would not be onto.
From this we get the second relation and dimension equation

R2x+1 ⊗ R2x+2 = A2x+1 ⊗ A2x+2,

hence r(2x + 1)r(2x + 2) = d(2x + 1)d(2x + 2).
(27)

These relations are summarized pictorially in Fig. 4. They give us the the first two
equalities in

r(2x)

d(2x)
= d(2x + 1)

r(2x + 1)
= r(2x + 2)

d(2x + 2)
≡ ind α. (28)

In other words, this quantity is constant along the chain, and hence we are entitled to
define it as the index ind α. The even/odd asymmetry only comes from the construction,
by which the even R2x describe a flow to the right (increasing x), and the odd R2x+1 are
associated with a flow to the left. By shifting the entire construction, we could switch
the even/odd distinction, and define, for any Ax , both the ascending and the descending
Rx . In any case, for the shift σd of a d-dimensional chain we get d(y) ≡ d, r(2x) = d2,
and r(2x − 1) = 1, and hence ind σd = d, as announced in Eq. (15).

It is part of the local computability property that we have a lot of freedom in choosing
the cell structure for which we want to evaluate the index. Since one typically wants to
use this freedom to simplify the computation, we will now summarize the constraints.
It is clear that there are three subalgebras involved in the computation, playing the rôle
of, say the above A0,A1,A2 for determining R1. Let us call these AL ,AM ,AR to



440 D. Gross, V. Nesme, H. Vogts, R. F. Werner

emphasize that these algebras need not be part of the original cell structure, and we are
free to choose them within certain limits. Let us start by fixing some algebra AM ∼= Md ,
a full matrix algebra contained in some local algebra, whose crucial property is to split
the system: we must have an isomorphism of the total algebra with A<M ⊗AM ⊗A>M ,
where the outer factors contain suitable infinite half chain algebras, and such that

[α(A<M ),A>M ] = [α(A>M ),A<M ] = {0}.
Clearly, this imposes a lower bound on the size of AM in terms of the interaction length of
the automorphism. Now we choose finite dimensional matrix subalgebras AR ⊂ A>M
and AL ⊂ A<M such that α(AM ) ⊂ AL ⊗ AM ⊗ AR . These three can be taken as part
of a nearest neighbor cell structure, so that the above arguments give

AM ∼= Md
S(α(AL ⊗ AM ),AM ⊗ AR) ∼= Mr

}
⇒ ind α = d

r
. (29)

Note that there is no harm in choosing AR larger than necessary: the support algebra,
being the minimal algebra needed to build the tensor product, will simply not change. By
a similar argument, we can choose AL too large without changing this support algebra.

7.3. Fundamental properties of the index for cellular automata.

Theorem 9. 1. ind α is a positive rational for everyα. When the automaton is regrouped
in nearest neighbor form, both the numerator and the denominator of ind α in can-
celed form divide every cell dimension.

2. ind α is locally computable, and uniquely characterizes the equivalence classes for
the relation ∼ from Sect. 5. It can hence be identified with the abstract index defined
there.

3. ind (α ⊗ α′) = ind (α)ind (α′) and, when α and α′ are defined on the same cell
structure, ind (αα′) = ind (α)ind (α′).
If, for some y, α(A((−∞, y])) ⊂ A((−∞, y])), then ind α ∈ N.
Moreover, for the shift of d-dimensional cells: ind σd = d.

4. An automaton α has index 1 if and only if it can be implemented locally. In this case
it can be written as a product of just two partitioned unitary automorphisms. If α is
partitioned in nearest neighbor form, the partitioned automorphisms can be taken
to couple pairs of nearest neighbors only.

5. Two automata α0, α1 on the same cell structure have the same index if and only if they
can be deformed to each other, i.e., there is a strongly continuous path [0, 1] � t �→ αt
of automorphisms, all with the same neighborhoods, and with the specified boundary
values.

Proof. Items (1,3) ind α ∈ Q+ follows immediately from the construction in Sect. 7.2,
particularly Eq. (28). Let ind α = p

q be the fraction in canceled form. Then, from this
equation p = nr(2x) and q = nd(2x), where n is the canceled factor. Hence q divides
d(2x) and from the second fraction in (28) we find that p divides d(2x + 1). By shifting
the construction by one cell, we find the remaining divisibility statements. From Eq. (28)
we also get the product formulas Item 3. Suppose that α maps some left half chain into
itself. Then we choose a cell partition so that y = 2x + 1 in the setting of (23). Then
R2x+1 ⊂ A2x+1, and since these are full matrix algebras with the same unit, the quotient
ind α = d2x+1/r2x+1 in (28) is integer. The value for the shift was verified as an example
after (28).
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Items (2,4,5) From Eq. (28) local computability is obvious. From the general discus-
sion in Sect. 5 we also get that locally implementable α have ind α = 1. The hard part,
which is needed to identify the abstract index with the concrete formula is the converse.
For this the crucial step is the following claim:

Let α and α′ be nearest neighbor cellular automata on the same cell structure and
with the same index. Then there are unitaries Vx ∈ Ax ⊗ Ax+1 such that the two locally
implemented automorphisms

β(A) = (
∏

x

V2x−1)
∗ A(
∏

x

V2x−1),

γ (A) = (
∏

x

V2x )
∗ A(
∏

x

V2x )

satisfy: α′γ = βα.
Before proving this claim, let us see how it implies the statements in the theorem. By

the general theory of Sect. 5 locally implementable automorphisms β, γ are ∼-equiva-
lent to the identity, and α ∼ βα = α′γ ∼ α′. Hence equality of the indices as defined
by (29) implies crossover equivalence, and hence the equality of all locally computable
invariants. This proves Item 2. The converse in Item 4 follows by taking α′ = id, giving
the local implementation α = β−1γ of any index 1 automorphism α.

Finally, it is clear for Item 5 that we can connect α and α′ with the same index by
the required continuous path: we just need to contract each unitary Vx in β, γ to the
identity, to obtain a path αt = βtαγ

−1
t with α0 = α and α1 = α′. This path will not be

continuous in the norm on automorphisms, i.e., we cannot make ‖αt − αs‖ small, since

this would already fail for one-site operations αt (A) =
(

U⊗∞
t

)∗
AU⊗∞

t with t �→ Ut

norm continuous. However, for any finitely localized observable A, t �→ αt (A) will be
continuous in norm, which is the claim of strong continuity made in the theorem. We
remark that an important part of the proof of Item 5 is missing at this point: We did
not exclude the possibility that there are continuous paths linking automorphisms of
different index. This will be achieved by Prop. 13, an expression for the index which is
manifestly continuous with respect to strongly continuous deformations.

Now to prove the claim, let α and α′ have the same cell structure and the same index.
Then we carry out the construction of Sect. 7.2 for both automorphisms, resulting in
some intermediate algebras Rx and R′

x .
Since the indices coincide, formula (28) demands that these are full matrix algebras

of the same dimensions. For example,

R2x−1 ⊗ R2x = A2x−1 ⊗ A2x = R′
2x−1 ⊗ R′

2x .

Clearly, there is a unitary operator V2x−1 ∈ A2x−1 ⊗A2x so that V ∗
2x−1Ry V2x−1 = R′

y
for y = 2x and for y = 2x − 1. We can take all these unitaries together as implement-
ing one partitioned automorphism β(A) = (

∏
x V2x−1)

∗ A(
∏

x V2x−1). By definition, it
satisfies β(Ry) = R′

y for all y ∈ Z.
Now consider the action of α and α′ on A2x ⊗A2x+1. We now get two isomorphisms

α′ : A2x ⊗ A2x+1 → R′
2x ⊗ R′

2x+1 and

βα : A2x ⊗ A2x+1 → R2x ⊗ R2x+1 → R′
2x ⊗ R′

2x+1.

Hence (α′)−1βα restricts to an automorphism of A2x ⊗ A2x+1, and can therefore be
implemented by a unitary V2x ∈ A2x ⊗ A2x+1. These unitaries together implement γ ,
and we get the desired equation α′γ = βα. ��
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7.4. Index for classical reversible automata. In this section, we will review a common
notion of index for reversible classical cellular automata, and show that it coincides with
our definition. In the context of this paper, a reversible classical cellular automaton can
be defined as a particular case of a quantum cellular automaton. In each cell Ax we
single out a maximal abelian subalgebra Dx . With respect to a suitable choice of basis,
Dx is then the set of diagonal matrices. As a finite dimensional abelian algebra, we can
regard Dx as the set of complex valued functions on a finite set Ax , called the alphabet
of the cell, which at the same time serves as the set of basis labels for the orthonormal
basis in which Dx is diagonal. The global C*-algebra of the classical system is then the
infinite tensor product D(Z) =⊗∞

x=−∞ Dx . It is canonically isomorphic to the algebra
of continuous functions on the compact cartesian product space AZ = ��

∞
x=−∞ Ax , also

known as the space of infinite configurations. We use lower case letters such as c for
such configurations, and denote by c(x) ∈ Ax the configuration of the cell at x .

Now let α be a QCA with the property that α(D) ⊂ D. Then the restriction of α to D
is an automorphism of D, which must be of the form (α f )(c) = f (Φ(c)), where Φ is a
homeomorphism on configurations. The causality conditions on α are readily expressed
in terms of Φ, and, together with analogous arguments for the inverses show that Φ is
a reversible classical cellular automaton in the usual sense, apart from the requirement
of translation invariance. There are some subtle points to note about the correspondence
α → Φ:

– Suppose that in the above argument we start from a general, not necessarily strictly
causal automorphism α of the quasi-local algebra A(Z). We still get a continuous
Φ on the compact space AZ. By the definition of the product topology this means
that the local configurations Φ(c)x after the time step depend on only finitely many
c(y). In the translation invariant case this means that Φ is a cellular automaton
with finite neighborhood. In fact, this argument is used to establish that the inverse
of a reversibly cellular automaton also has a finite neighborhood. This is a rather
surprising sharpening of the causality condition. However, we are appealing here
to a highly non-constructive compactness argument, which gives no control on the
size of the neighborhoods, or (barring translation invariance) on the uniformity of
the neighborhoods. For example, we can apply it to a cellular automaton α on a
2D lattice, whose quasi-local C*-algebra is isomorphic to that of a 1D automaton.
Hence the condition of α being an automorphism is not strong enough to give a 1D
automaton in the sense defined above.

– The mapping is onto, i.e., every classical reversible cellular automaton can be “quan-
tized”. The argument is very simple for finite lattices, e.g., a regular lattice with
periodic boundary conditions: one labels the basis of a Hilbert space by the classical
configurations. Then the classical automaton Φ is a permutation of the basis vec-
tors, which can be interpreted as a unitary operator via UΦ |c〉 = |Φ(c)〉. Then for all
observables we set α(A) = U∗

Φ AUΦ . One needs to check that this transformation is
causal in the quantum sense [16], in particular that off-diagonal local operators that
are finitely localized (i.e. localized on a finite number of cells) keep this property
under the action of α. Indeed one gets a bound on the quantum neighborhoods,
which involves both the neighborhoods of Φ and the neighborhoods of Φ−1. The
same computation provides a formula for α(A), for A finitely localized, in terms of
the classical rule, and this can be used to define α also for infinite lattices. We will
not, however, make this explicit here.

– The mappingα → Φ is not injective. Indeed an ambiguity is inherent in the construc-
tion just described: we can choose different bases with the same diagonal operators
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|a〉〈a| by choosing a phase for each basis vector. This amounts to changing α by an
on-site unitary, which is certainly irrelevant for index purposes. But we can consider
this more generally: suppose that two cellular automata α, β restrict to the same
automorphism on the diagonal algebra D. Then αβ−1 leaves D point-wise fixed. In
a finite lattice, so that α is unitarily implemented, the implementing unitary hence
commutes with all elements of the maximally abelian algebra D, hence must itself
be diagonal. It is suggestive that this also holds in a localized form on the infinite
lattice, so αβ−1 would be a product of commuting unitaries and hence have trivial
index. The following result builds on this intuition.

Proposition 10. Suppose thatα andβ be quantum cellular automata taking the diagonal
algebra D into itself, with the same restriction to D. Then ind α = ind β.

Before coming to the proof of this proposition we single out two arguments of inde-
pendent interest, each of which can be used to draw the main conclusion, without dis-
cussing in detail the structure of local phase factors. The first criterion uses the absence
of propagation. The second uses the global transpose map Θ : A(Z) → Z. It is defined
as the matrix transpose on each local algebra, in a basis in which D is diagonal. Since
transposition is isometric, and consistent with the embeddings A �→ A ⊗1 it extends to
the whole algebra.Θ is a linear anti-homomorphism (meaningΘ(AB) = Θ(B)Θ(A)),
and, for every automorphism α, ΘαΘ is again an automorphism.

Lemma 11. 1. Let α be a nearest neighbor cellular automaton such that, for some finite
interval [z−, z+] we haveαn

(
A([0, 1])) ⊂ A([z−, z+]) for all n ∈ Z. Then ind α = 1.

2. For any cellular automaton α: ind (ΘαΘ) = ind α.

Proof. 1. The index ind αn can be expressed as a ratio of subcell dimensions of
A([z−, z+]), hence is uniformly bounded in n. But since ind αn = (ind α)n this implies
ind α ≤ 1. With the same argument for the inverse we get ind α ≥ 1.

2. By assumption, the global transposition is made with respect to product basis, so
that for a tensor product B = B1 ⊗ B2 of cells we get ΘB = ΘB1 ⊗ΘB2 . We will drop
the indices on Θ in the sequel. Then it is clear from the definition (Lemma 7) that the
support algebra construction behaves naturally under global transposition, i.e., we have
S(ΘA,ΘB1) = ΘS(A,B1). Moreover, when B1 is a tensor product of cells we get
ΘB1 = B1. Hence in (23) we find for the automorphism α̃ = ΘαΘ:

R̃2x = S
(
ΘαΘ

(
A2x ⊗ A2x+1

)
,
(
A2x−1 ⊗ A2x

))

= S
(
Θα
(
A2x ⊗ A2x+1

)
,Θ
(
A2x−1 ⊗ A2x

))

= ΘS
(
α
(
A2x ⊗ A2x+1

)
,
(
A2x−1 ⊗ A2x

)) = ΘR2x .

Since this has the same dimension as R2x , we find from (28) that ind (ΘαΘ) = ind α.
��

Proof (of Prop. 10). Due to the multiplication formula, we only need to consider the
case that α is equal to the identity (= β) on D. Consider any operator Ax ∈ Ax in a
single cell, and let Dy ∈ Dy be a diagonal element in another cell. Then

α(Ax )Dy = α(Ax )α(Dy) = α(Ax Dy) = α(Dy Ax Dy) = Dyα(Ax ).
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Hence the finitely localized element α(Ax ) commutes with all diagonal operators on the
neighboring sites, and α(Ax ) ∈ Ax ⊗⊗y =x Dy . This algebra is best seen as a direct
sum of copies of Ax , labeled by configurations c = {c(y)} with c(y) ∈ Ay of all cells
y = x in the localization region of α(Ax ). A homomorphism of Ax into this algebra
splits into one homomorphism into each summand, which in turn is given by a unitary
Ux (c). Hence we can summarize the action of α on Ax as

α(Ax ) =
∑

c

Ux (c)
∗ AxUx (c)⊗ P(c), (30)

where Pc is the minimal projection of the diagonal algebra corresponding to c. We also
know that diagonal elements of Ax are fixed, so Ux (c) is itself diagonal, say Ux (c)|a〉 =
u(a, c)|a〉. This leads to

α
(
(|a〉〈b|)x

) =
∑

c

u(b, c)

u(a, c)
(|a〉〈b|)x ⊗ P(c). (31)

The commutation of α(Ax ) and α(Ay) for x = y introduces further conditions on
the phase functions u. But rather than analyzing these in detail, we use the lemma to
conclude directly from Eq. (31) that ind α = 1. To this end, note that by applying the
homomorphism α to (31) and using α(P(c)) = P(c), we get a corresponding formula
for the iterate of α:

αn((|a〉〈b|)x
) =

∑

c

(
u(b, c)

u(a, c)

)n

(|a〉〈b|)x ⊗ P(c), (32)

for any n ∈ Z. Clearly, the localization region of this operator does not increase with
n, so by the first part of the lemma we get ind α = 1. Alternatively, we can apply Θ
to the equation, using Θ(P(c) = P(c). This reverses each of the ketbra operators, so
ΘαΘ = α−1. Hence ind α = 1 also follows with the second part of the lemma. ��

An index for classical reversible cellular automata has been defined albeit only in the
translationally invariant case. According to G. A. Hedlund ([8], Sect. 14), the definition
is due to L. R. Welch, so we will call it the Welch index iW here. For the definition
itself we will follow Kari [10], where it is introduced in Sect. 3. We will show that this
coincides with the quantum index. Hence the quantum index is a possible extension to
non-translationally invariant systems. It is very likely that the theory in [10] can also be
extended directly, but we have not gone to the trouble of checking all the details.

In the translation invariant case, all cell alphabets Ax ≡ A are the same, and a cellular
automaton is a map φ : A

Z → A
Z. Let r be a “large enough” integer, and Rr

φ the set of
4r -tuples of the form

(
c(0), . . . , c(2r − 1), (φc)(−r), . . . , (φc)(r − 1)

)
,

where c runs over all infinite configurations. Then the Welch index of φ is defined as

iW (φ) = |Rr
φ |

|A|3r . (33)

Clearly, for the identity only |A|3 different letters occur here, so iW (id) = 1. Similarly,
for a shift we get iW (S) = |A|, and parallel application of φ and φ′ to parallel chains
yields iW (φ × φ′) = iW (φ)iW (φ

′).
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The non-trivial results about the index, and the structure theory of reversible, trans-
lationally invariant classical cellular automata is developed in [10], with key results
analogous to our paper: the expression (33) does not depend on r (provided it is large
enough). The product formula holds, and an automaton φ is locally implementable iff
iW (φ) = 1. Moreover, every such automaton can be decomposed into shifts and locally
implementable ones. Since a classical “local implementation” implies a partitioned rep-
resentation of the quantum automaton, we can put these facts together to conclude that

iW (φ) = ind α, (34)

for any quantum cellular automaton which restricts on the diagonal subalgebra to a clas-
sical CA given by φ. In this sense our theory is a direct generalization of Kari’s work,
extended by the aspects of deformation classes (which make no sense in the classical dis-
crete setting) and local computability (which makes no sense in the translation invariant
setting).

7.5. Interlude: More analogies between walks and cellular automata. The two defini-
tions of the index, (16) for walks and (29) for cellular automata are not directly analogous.
Here we would like to point out the differences, and discuss how to make the analogy
between these two cases even tighter by supplying the missing analogous definitions.

The definition (29) considers a part of the system split into three parts L-M-R. Based
on suitable inclusions, it gives a formula for the index, which immediately makes obvi-
ous that it is always a positive rational. In contrast, the walk expression Eq. (16) is
a difference of numbers which can take arbitrary real positive values, and only one
cut of the system is considered. Moreover, (16) made it very easy to prove the continuity
of the index under deformations, whereas neither (29) nor the abstract considerations of
Sects. 4 and 5 clarify continuity for the index of cellular automata. Since continuity is
an important feature of our index theory, we will need an appropriate expression also for
the automaton case, and the analogies laid out in this subsection are intended to motivate
the form of this formula.

Dimension based formula for walks. Let us first set up an index formula for walks in
analogy with (29). The analog of the support algebra is the “support subspace of K12
in K2”, denoted S(K12,K2), which is defined for any subspace K12 ⊂ K1 ⊕ K2 of the
orthogonal direct sum of Hilbert spaces. Namely, it is the smallest subspace L ⊂ K2
such that K12 ⊂ K1 ⊕L. Then the analog of Lemma 8 holds in the sense that subspaces
K12 ⊂ K1 ⊕ K2 and K23 ⊂ K2 ⊕ K3 are orthogonal iff S(K12,K2) ⊥ S(K23,K2) are
orthogonal. Now consider subspaces HL ⊕HM ⊕HR ⊂ H chosen with the localization
constraints as in Sect. 7.2. In particular, we require UHL ⊥ HR , and UHR ⊥ HL . Then
the direct analog of (29) reads

ind U = dim S(U (HL ⊕ HM ),HM ⊕ HR)− dim HM

= rank (PM RU PL M )− dim HM . (35)

Here the second equality, in which PL M is the projection onto HL ⊕ HM etc., follows
with S(U (HL ⊕ HM ),HM ⊕ HR) = PL MU PM RH.

Proof (of Eq. (35)). Consider the block matrix for U with respect to the decomposition

H = H−∞ ⊕ HL ⊕ HM ⊕ HR ⊕ H+∞,



446 D. Gross, V. Nesme, H. Vogts, R. F. Werner

where the pieces at the ends contain the appropriate infinite half chains. Using the cau-
sality assumptions, we find that

U =

⎛

⎜⎜⎜⎝

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 * * ∗ 0
0 0 * ∗ ∗
0 0 0 ∗ ∗

⎞

⎟⎟⎟⎠ , (36)

where the asterisks stand for any possibly non-zero block. We have highlighted in bold-
face the block PM RU PL M appearing in (35), and introduced two separating lines, namely
the separation −∞, L ,M |R,+∞ on the domain side (i.e., a vertical line) and the hori-
zontal separation−∞, L|M, R,+∞on the range side of U . These separators do not cross
on the diagonal, which is why we cannot simply compute the index from the highlighted
block via Eq. (16). However, this is easily amended by multiplying with a suitable shift:
we can introduce a basis in each Hx , and hence in H, effectively making all underlying
cell dimensions one-dimensional. In this representation we can introduce a shift opera-
tion S, and clearly U ′ = S|M|U will be a unitary with the same matrix elements as U
shifted vertically by |M | = dim HM . Obviously, ind U ′ = ind U + |M |, which explains
the second term in (35), and leaves us with proving that ind U ′ = rank (PM RU PL M ).
Clearly, for this task the further subdivision of the blocks is irrelevant, and we can
consider a general block decomposed unitary operator

U =
(

U11 0
U21 U22

)

with a finite rank upper right corner. We have to show that rank U21 = Tr(U∗
21U21).

But from the unitarity equation it follows that U21 is a partial isometry, so U∗
21U21 is its

domain projection, whose dimension is indeed the rank of U21. ��

Half neighborhoods and one-cut dimension formulas. The proof of formula (35) was
essentially by reduction to the case of “half neighborhoods”, i.e., the case that [x−, x+] =
[x, x + 1], in which no influence ever spreads to the left. Then one of the off-diagonal
blocks of the unitary entering (16) vanishes, and we saw directly that the other block
gives an integer contribution, which can be interpreted as a dimension.

Similarly, for a half-neighborhood cellular automaton we demand α(Ax ) ⊂ Ax−1 ⊗
Ax , where once again we have chosen the convention to match information traveling to
the right, observing the Heisenberg picture. In particular, this condition is satisfied by
the shift. For such automata we can simplify the index formula in a way quite analogous
to the case of half-neighborhood walks. Indeed, setting

Tx = S(α(Ax ),Ax ) and Nx = S(α(Ax ),Ax−1), (37)

we can employ the same arguments as in Sect. 7 to conclude that these commute, and
must be full matrix algebras Tx ∼= Mt (x) and Nx ∼= Mn(x). Then, further following the
previous reasoning, α(Ax ) = Nx ⊗ Tx and Ax = TxNx+1. This yields the dimension
equation

d(x) = n(x)t (x) = t (x)n(x − 1). (38)
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Hence the integers n(x) do not depend on x . In fact, ind α = n(x). This follows readily
from the observation that

R2x+1 = S
(
α
(
A2x ⊗ A2x+1

)
,
(
A2x+1 ⊗ A2x+2

)) = T2x+1 ⊗ 12x+2.

Therefore, from Eq. (28) we get

ind α = d(2x + 1)/r(2x + 1) = d(2x + 1)/t (2x + 1) = n(2x + 1).

In fact, for any cell structure on which a shift is available, we could have used this
slightly simplified setup to define the index of any α by first shifting and regrouping to
a half-neighborhood automaton, and correcting by a factor depending on the size of the
necessary shift. However, since such a shift is not available in general, there was no gain
in this approach.

For nearest neighbor automata the structure of support algebras using just a single
cut, i.e., algebras of the form S(α(AL),AR) are not sufficient to define the index. As
a counterexample, consider a unitary evolution A �→ U∗ AU for U ∈ AL ⊗ AR with
AL = AR = Md . Clearly, as a locally implementable operation, this has always trivial
index. But the support algebra written above can be just about anything. For example,
taking a “controlled unitary” U =∑i |i〉〈i |⊗Ui , we have S(α(AR),AL) as the algebra
of diagonal matrices, and S(α(AL),AR) generated by the U∗

i U j , which for AR ∼= Mr
can easily be AR . On the other hand, one can easily construct an automorphism with the
same support algebras, but index d.

The algebraic structure of support algebras across a single cut is also insufficient for
us in another way: it is a discrete structure, hence does not go to any trivial value as we
deform an α to the identity. Therefore, if only to get the continuity of the index we need
to look at some continuously varying quantities. We found a formula with just these
properties by looking at cellular automaton analogs of the simple walk formula (16).
The following section is devoted to the proof of this formula.

7.6. One-cut quotient formula. Notation for normalized traces. A continuously vary-
ing quantity measuring the difference between subalgebras and going to a trivial value
as they come to coincide may be some kind of angle, or overlap, between the linear
subspaces. It is natural to measure such angles with respect to the only scalar product
between algebra elements, which is canonically defined in our context. Indeed, let τ
denote the normalized trace on the algebra A of the entire chain. That is, on any matrix
subalgebra B ⊂ A, B ∼= Md , we define τ(A) = 1

d Tr(A), where Tr is the usual matrix
trace on Md , which is 1 on minimal projections. The reason for this normalization is
that in contrast to the matrix trace, the value of τ does not change if we consider A to be
embedded as A ⊗1 in some larger subalgebra B ⊗ B1, and is hence a well defined state
on chain algebra A. In fact, it is the unique state (normalized positive functional) on A
with the property that τ(AB) = τ(B A). This characterization is purely algebraic, which
implies that, for every automorphism α of A and any A ∈ A, we have τ(α(A)) = τ(A).

We now define the scalar product between algebra elements by

〈x |y〉 = τ(x∗y). (39)

The completion of the algebra A as a Hilbert space with this scalar product is called the
GNS-Hilbert space Hτ of the tracial state τ . We write |x〉 ∈ Hτ for the vector obtained
by embedding x ∈ A in the completion. The trace of operators on Hτ will be denoted
by Tr, to avoid confusion with the matrix trace Tr of some elements of A, which is also
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used later. Since τ is preserved by any automorphism α, we can define a unitary operator
Vα on Hτ with

Vα|x〉 = |α(x)〉. (40)

Consider now a finite or infinite dimensional subalgebra B ⊂ A. By P we denote
the orthogonal projection onto the closure of B in Hτ . For finite matrix algebras B ∼=
Md the matrix units ei j ∼= |i〉〈 j | clearly form a basis B, and one readily verifies that
{√d |ei j 〉}d

i, j=1 is an orthonormal basis of this d2-dimensional subspace. It is sometimes
also helpful to represent the projection P as an integral over unitaries. That is, for a finite
dimensional subalgebra B ⊂ A we have

P = d2
∫

dU |U 〉〈U |, (41)

where the integral is over the unitary group of B, and dU denotes the normalized Haar
measure. For infinite dimensional subalgebras such formulas are not available. We will
only need infinite dimensional projections of this type for half chain algebras, which are
the closure of an increasing net of finite dimensional subalgebras Bn . In this case the
family of projections Pn associated with the approximating algebras is also increasing,
and converges strongly to P .

When B1 ⊂ A and B2 ⊂ A are commuting matrix subalgebras, the corresponding
matrix units, say e(1)i j and e(2)ab , can be taken together as a set of matrix units for B1 ⊗B2,
and we get

〈e(1)i j |e(2)ab 〉 = τ(e(1)j i e(2)ab ) = 1

d1d2
δi jδab.

Therefore we get

P1 P2 = |1〉〈1|. (42)

This equation also holds for infinite pieces of the chain, e.g., a right and a left half
chain localized on disjoint subsets of Z. This is readily seen by approximating each half
chain by finite matrix algebras and using the strong convergence of projections. Note
that (42) also implies that P1 and P2 commute, and the projections Pi − |1〉〈1| with the
intersection removed are orthogonal.

Overlap of algebras. Of course, if two algebras do not commute, which requires that
the localization regions of B1 and B2 overlap, the geometric position of the subspaces
PiHτ is not so simple. Even if the algebras have trivial intersection B1 ∩ B2 = C1,
so that (P1Hτ ) ∩ (P2Hτ ) = C|1〉 the vectors in the remainder can now have angles
different from π/2, and may even approximate each other. This leads to the following
definition of a quantitative notion of the overlap of two algebras, which will be the basis
of the index formula we develop in this section. We state it together with a few of its
basic properties. A matrix algebra here always means a subalgebra, which is isomorphic
to Md for some d < ∞ and contains the identity of A.

Lemma 12. For any two subalgebras B1,B2 ⊂ A, with corresponding orthogonal pro-
jections P1, P2 on Hτ , we define their overlap as

η(B1,B2) = √Tr(P1 P2) ∈ [0,∞]. (43)
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Then

1. η(B1,B2) = 1, for commuting matrix algebras.
2. η(B1,B2) ≥ 1, for any two subalgebras (with unit).
3. Let B1,B2 ⊂ B12 and B3,B4 ⊂ B34 be matrix subalgebras such that B12 and B34

commute. Then

η(B1B3,B2B4) = η(B1,B2)η(B3,B4). (44)

4. Let B1,B2,B3,B4 be a chain of matrix algebras such that [Bi ,B j ] = {0}, except
for i, j = 2, 3. Then η(B1B2,B3B4) = η(B2,B3).

5. Let B1,B2,B3 be commuting matrix algebras with B2 ∼= Md . Then
η(B1B2,B2B3)=d.

6. Let B1 ∼= Md and B2 be finite dimensional matrix algebras, and α an automorphism
of the ambient algebra such that ‖α(x)− x‖ ≤ ε‖x‖ for x ∈ B1. Then

|η(α(B1),B2)− η(B1,B2)| ≤ εd2.

Proof. Item 1 follows directly from Eq. (42). For Item 2, note that Pi ≥ |1〉〈1|. Since
we are only considering subalgebras containing the identity of the ambient algebra, the
parenthetical remark is only added for emphasis. Item 3 follows by observing that the
normalized trace on B12B34 ∼= B12 ⊗B34 is fixed to be the product of normalized traces
on the subalgebras. In this tensor product representation one readily verifies that the
projection belonging to B1B3 is the tensor product P1 ⊗ P3, and similarly for P2, P4.
Then the formula follows because the trace Tr also factorizes.
Finally Item 4 follows by taking B1B4 and B2B3 as the pairing of Item 2, and using Item
1 to conclude that η(B1,B3) = 1.

To prove the continuity estimate in Item 6, note that overlaps are ≥ 1, so that by a
gradient estimate on the square root function

|η(α(B1),B2)− η(B1,B2)| ≤ 1

2

∣∣Tr((P̃1 − P1)P2)
∣∣ ≤ 1

2
‖P̃1 − P1‖1,

where P̃1, P1, P2 are the projections belonging to α(B1),B1,B2, and ‖X‖1 denotes the
trace norm of X . We use the representation of P1 in the form (41), so that

P̃1 − P1 = d2
∫

dU
(
|α(U )〉〈α(U )| − |U 〉〈U |

)
.

We will estimate the trace norm of this expression by estimating the integrand, and using
that, for any unit vectors φ,ψ in a Hilbert space, ‖ |φ〉〈φ| − |ψ〉〈ψ | ‖1 ≤ 2‖φ − ψ‖.
Indeed, for unitaries like U and α(U ) the vectors |U 〉 and |α(U )〉 have norm 1 in Hτ .

Moreover, ‖|α(U )−U 〉‖2 = τ
(
(α(U )−U )∗(α(U )−U )

)
≤ ε2‖U‖τ(1) = ε2. Hence

1

2
‖P̃1 − P1‖1 ≤ 2d2

2
ε

∫
dU = d2ε.

��
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Index formula. With these preparations we can state the main result of this section:

Proposition 13. Let A< = A(−∞,0] and A> = A[1,∞), and AL ,AR be the algebras of
any two neighboring cell algebras for a nearest neighbor grouping of the chain. Then

ind (α) =
η
(
α(A<),A>

)

η
(
α(A>),A<

) =
η
(
α(AL),AR

)

η
(
α(AR),AL

) . (45)

Moreover, if t �→ αt is a strongly continuous family of cellular automata with the same
cell structure and neighborhood scheme, then ind (αt ) is constant.

Proof. The square of the numerator of the second index expression is TrVαPL V ∗
α PR ,

and we first verify that this expression is unchanged if we choose a larger L and R, say
L ′ = L1 ∪ L and R′ = R ∪ R1. Indeed, the algebras α(AL1), α(AL),AR,AR1 satisfy
the conditions of Lemma 12, Item 4. Moreover, arguing as for formula (42) we see that
not only the trace, but even the operator is independent of an enlargement. Hence taking
a strong limit we obtain the corresponding expression for the infinite half-chains.

From Lemma 12, Item 3, it is clear that the expression thus defined satisfies the tensor
product property, in fact, numerator and denominator do so independently. Moreover,
the formula is valid for shift automorphisms by virtue of Item 5 of the lemma.

Now let σ be a tensor product of shifts with ind σ = ind α, and let ind ′α be the value
the formula in the proposition gives for any automorphism α. Then we have ind ′(α ⊗
σ−1) = ind ′(α)(ind σ)−1 = ind ′α/(ind α). So it remains to prove that ind ′α = 1 for
every α with ind α = 1, which by Thm. 9 means that α is implemented by two layers
of block unitaries. Moreover, we can forget all unitaries acting only on one side of the
separation, since they do not change the algebras. Only one unitary UL R ∈ AL ⊗ AR
connecting the cells immediately adjacent to the cut remains. Hence it only remains to
prove the lemma below.

For the continuity statement observe that we can make a nearest neighbor grouping
jointly for all αt , so we can apply Lemma 12, Item 6, to see that both denominator and
numerator of the second fraction in (45) are continuous. Moreover, the denominator is
≥1, so ind (αt ) is a continuous function of t . On the other hand, numerator and denom-
inator of ind α have to divide every cell dimension, so there is only a finite choice of
possible values, given the neighborhood structure. Hence ind (αt ) is constant. ��

In order to state the remaining lemma, let us consider any automorphism α of a tensor
product AL ⊗AR of two finite dimensional matrix algebras. We can take Ax = B(Hx ),
for some dx -dimensional Hilbert spaces Hx ). In that case, the automorphism α is imple-
mented by conjugation with a unitary: α(x) = U xU∗, for some U ∈ U (HL ⊗HR). We
will express the fraction appearing in (45) in terms of U .

In the following calculation, it turns out to be convenient to introduce orthonormal
bases in the Hilbert spaces involved. Denote these bases by {|i〉} ⊂ HL and {|a〉} ⊂ HR
respectively. These bases allow us to define the notion of a partial transpose UΓ of U .
We set

〈ia|(UΓ )| jb〉 = 〈 ja|U |ib〉.
While the partial transpose depends on the basis used to define it, one may easily con-
vince oneself that the expression appearing in next lemma is independent of that choice.
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Lemma 14. When α(x) = U xU∗ is an automorphism of the tensor product AL ⊗ AR
of finite dimensional matrix algebras, we have

η(α(AL),AR)
2 = 1

dAdB
Tr
((

UΓUΓ ∗)2) . (46)

Moreover, this expression is invariant under the substitution AL ↔ AR.

Proof. We introduce matrix units ei j = |i〉〈 j | as above and use that the
√

d ei j form
an orthonormal basis of AL . Thus the projection PL on Hτ corresponding to this alge-
bra is PL = dL

∑
i j |ei j 〉〈ei j |. Of course, the transformed projection P̃L for α(AL) is

obtained by substituting |α(ei j )〉 for |ei j 〉. Similarly, we set fab = |a〉〈b| and, accord-
ingly, PR = dR

∑
ab | fab〉〈 fab|. Then the left hand side of (46) becomes

η(α(AL),AR)
2 = Tr(P̃L PR) = dLdR

∑

i jab

∣∣〈 fab|α(ei j )〉
∣∣2 ,

with the scalar products

〈 fab|α(ei j )〉 =
∑

kc

τ(ekk fbaUei j fccU∗)

= 1

dLdR

∑

kc

〈ka|U |ic〉〈 jc|U∗|kb〉

= 1

dLdR

∑

kc

〈ia|UΓ |kc〉〈kc|UΓ ∗| jb〉

= 1

dLdR
〈ia|UΓUΓ ∗| jb〉.

(47)

Altogether we get Eq. (46).
The second claim becomes a simple corollary: we must verify that the right-hand

side is unchanged by the substitution U �→ U∗. Since the adjoint operation commutes
with the partial transpose, this amounts to a cyclic rearrangement under the trace. ��

8. Outlook

Two directions of generalization of the theory presented here are especially suggestive
and are, in fact, the subject of ongoing work in our group. We briefly comment on the
prospects.

8.1. Approximate causality. In many situations in physics causality is only approxi-
mately satisfied, e.g., as a bound ‖Uxy‖ ≤ f (|x − y|) for some function f going to zero
at infinity. For example, the unitary groups generated by finite range Hamiltonians would
satisfy this, but are never strictly causal in the sense required here. For the Key Lemma 4
powerful generalizations exist [3]. From these it is clear that the index of approximately
causal unitaries is definable, integer valued, satisfies a product formula, and is zero for
the unitaries arising from Hamiltonian subgroups. The part of the theory which is less
clear is related to the converses, namely the construction of strictly causal unitary walks
with the same index, approximating a given approximately causal unitary.
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In the case of cellular automata the right notions of approximate causality are not
clear. Ideally, one would only demand that α be an automorphism of the quasi-local
algebra [5]. By definition, this means that the image of any localized element can be
approximated in norm by localized ones. The idea of support algebras (which largely
relies in its present form on picking a finite basis) is certainly too simplistic, and in any
case it is unlikely that such algebras will always turn out to be finite dimensional matrix
algebras. One may speculate whether the index should take on also irrational values,
but this seems unlikely, because of its dependence on the cell structure: for chains of
homogeneous cell dimension 2, the index is always a power of 2, and not a dense set of
rationals.

8.2. Higher lattice dimension. As we have shown, in lattice dimension 1 three possible
classifications of walks and automata coincide: (1) the classification by locally com-
putable invariants, (2) the classification modulo locally implementable, unitaries, and
(3) the classification up to homotopy. It is very unlikely that these three coincide in
higher dimension as well. In the one-dimensional theory we could allow the local sys-
tems to grow, but also the localization regions. In the higher dimensional case we will
use a translation invariant metric to bound the neighborhood sizes of a “local” system.
Generalizations can be built on coarse geometry [14].

Locally computable invariants are probably trivial. For example, an arbitrarily large
patch of the shift automorphism can be connected to the identity outside a finite enlarge-
ment of the patch. In this sense the shifts have the same invariants as the identity. To get
a more interesting theory, one should take other regions for the definition of “locally”
computable, e.g., computability on cones [6], or computability outside of any arbitrarily
large region.

The classification modulo local implementability is especially interesting from the
physical point of view, but it might turn out to be rather wild. For example, consider
some self-intersection free path in the lattice, which comes from infinity and goes to
infinity. Fix walks/cellular automata, which are equal to the identity off this path and
allow any of the one-dimensional systems along this path. As long as we fix the path,
we can apply the one dimensional theory. For two paths, which keep a finite distance
from each other, it is easy to envisage local swap-type unitaries taking one path to the
other, which would bring the corresponding path-related indices under the same roof.
However, if the paths move away from each other, there will be no such local operation
connecting them, so systems with non-trivial indices along these paths fall into different
equivalence classes modulo local implementability. However, the equivalence classes of
paths modulo “keeping a finite distance” are a rather unmanageably large set. A useful
classification cannot be expected. Incidentally, the same class of examples shows that
the “invariants computable outside any finite region” will give a wild set.

For the homotopy classification of walks there is already a theory, based on the K-
theory of C*-algebras and its connection with coarse geometry. Indeed, the K1 group
of a C*-algebra just classifies the connected components of its automorphism group.
This theory will most naturally apply to approximately causal walks, since strict cau-
sality cannot even be stated simply in terms of the C*-algebra of the whole system. The
connection with coarse geometry is being explored, for example, by Ralf Meyer and
his group in Göttingen. Surprisingly (to us) it turns out that using Bott periodicity one
can see that the K1 group of approximately causal walks alternates between Z in odd
dimension and 0 in even dimension. Unfortunately, this theory does not apply readily to
the case of cellular automata.
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8.3. Higher dimensional translation invariant systems. In order to tame the wildness
indicated in the previous subsection, one can restrict attention to translationally invari-
ant systems. Immediately, the index of walks gets an obvious definition. The Fourier
transform Û of the walk is now a Laurent polynomial in the variables exp(i pk), where
(p1, . . . , ps) is the momentum vector. Then det Û is an invertible polynomial and we
again conclude det Û (p) = exp(i

∑
k nk pk) for some integers nk . The lattice vector

(n1, . . . , ns) can be called the index, in direct generalization of the one-dimensional case.
For cellular automata, which are products of partial shifts and local block unitaries,

we can just define the index via the shift content contained in such a representation,
obtaining some vector with rational components. Since it is not known, whether any
QCA is of this form, this is very unsatisfactory. As a step in the right direction, one can
define an index by reduction to the 1D case, without using any special decomposition:
Suppose we choose vectors a1, . . . , an−1 in an n-dimensional lattice, and we identify
sites differing by integer multiples of these vectors. Then if the ak are large enough
with respect to the interaction length of the automaton, this gives a well-defined cellular
automaton evolution α[a1, . . . , an−1] on the quotient lattice, which now has only one
unbounded direction, so we can assign an index to it. Then we call a vector q ∈ R

n the
index of α, if

ind α[a1, . . . , an−1] = det[q, a1, . . . , an−1], (48)

where on the right-hand side the square bracket denotes the matrix with the specified
column vectors. It can be verified easily that this gives the result indicated before, for
any cellular automaton, which has a decomposition into partial shifts and partitioned
unitaries. But in general it is not even clear that the left hand side must depend linearly
on each ak .
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