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INDEX TRANSFORMS WITH THE SQUARE OF BESSEL FUNCTIONS

S. YAKUBOVICH

ABSTRACT. New index transforms, involving the square of Bessel functions of the first kind as the kernel are
considered. Mapping properties such as the boundedness and invertibility are investigated for these operators in
the Lebesgue spaces. Inversion theorems are proved. As an interesting application, a solution to the initial value
problem for the third order partial differential equation, involving the Laplacian, is obtained.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let f(x), g(1), x € Ry, T € R be complex -valued functions. The main goal of this paper is to investigate
mapping properties of the following index transforms [1], involving the square of Bessel’s function of the
first kind in the kernel, namely,

nyn_z&§%ﬁﬂﬂmpﬁﬁﬁﬂfuwx TER, (1.1)
(ng@::ij[:ReLﬁ(VGﬂ ﬁ%%%gﬁ,.xeR+, (1.2)

where i is the imaginary unit and Re denotes the real part of a complex -valued function. Bessel’s function
of the first kind Jy (z) [2], Vol. 11 satisfies the differential equation

d’u  d
Zzﬁ—FZdu—F(Zz—VZ)M:O. (13)
It has the asymptotic behavior
2 m m 3m
Jv(z) =/ —cos (z— —(2v+ 1)) 1+0(1/z)], z— o, —= <argz < —, (1.4)
I 4 4 2 2
Jv(z) =0(z"), z—0. (1.5)

and the following series expansion

) (Z/Z)ZkJrv

1.
HFk+v+U oV et (1.6)

where [(z) is Euler’s gamma function [2], Vol. 1. Using the reduction formula for the gamma function [2],
Vol. I we find for Rev > 0

IFk+v+1)|=[F(v+1D(1+V)2+V)...(k+V)| >kl (v+1)].
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Hence we derive from (1.6)

Iy (2)] < e Imvares i (=22 g (I2l/2)% g (I2/2)%
k'|r k+V+1)| ||'(v+1) e (k,)z

R
< e\z\flmva.rgz (|Z|/2) ¢
- rv+Dl
coming up to the following inequality for the Bessel function of the first kind

F Rev |z|-Imvargz
< = —, 7,V . 1.7
wels (B) S avec (17)
Taking into account the value
T
Ml+it)| =,/ ———
F(+im)] sinh(117)’
inequality (1.7) takes the form
Ji(x)| < €* Mx>OTER 1.8
| lT( )| = ’ ’

T

In the meantime, appealing to relation (8.4.19.17) in [4], Vol. III, we find the following Mellin-Barnes
integral representation for the kernel

®r(x) = W\/(T;TT) Re [/ (V)]
in (1.1), (1.2), namely,
1 e (sin)M(s—iT)l(1/2— )
q’f(")‘ﬁ/y,im T(s)M(1—s)r(1—s)

where y is taken from the interval (0, 1/4). It guarantees the absolute convergence of the integral (1.9) since
appealing to the Stirling asymptotic formula for the gamma- function [2], Vol. I

M(s+in) (s—in)M(1/2—5) )
Fs)r(1—s)r(l1—s) _0(|5|2y 3/2), |s| — oo.

Integral (1.9) can be involved to represent @ (x) for all x > 0, T € R as the Fourier cosine transform [5].
Indeed, we have
Lemmal. Let x > 0,T € R. Then ®¢(x) has the representation in terms of the Fourier cosine transform

ﬁax/ %Z/Tz")) L, (21'\/} cosh(g))du, (1.11)

where L1(z) is the modified Struve function of the index one [2], Vol. II.

x Yds, x>0, (1.9)

(1.10)

dr(x) =

Proof. Integrating in (1.9) with respect to x, we change the order of integration in the right-hand side of the
obtained equality by virtue of the absolute convergence of the iterated integral. As a result we obtain

1 [ 1y (s+in)M(s—iT)F(1/2—5) _

— [ ®:(y)dy=— °d 0 1.12

x./o r0)dy 27Tl../yfioo F)r(1—s)r(2—s) *an x>0, (1.12)
Hence, appealing to the reciprocal formulae via the Fourier cosine transform (cf. formula (1.104) in [1])

o T (2s)
[ (s+iT)T (s —iT)cos(Ty)dT = — ———) __ Res>0, 1.13
/0 (s4+1iT)T (s —iT)cos(Ty) 7 cost®(y)2) es (1.13)
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. I(2s) [* cos(Ty)
(5D (5= 1) = 55 /0 o (1.14)
we replace the gamma-product ' (s +iT) [ (s — iT) in the integral (1.12) by its integral representation (1.14)
and change the order of integration via the absolute convergence, which can be justified using the Stirling
asymptotic formula for the gamma-function. Then, employing the duplication formula for the gamma-
function [2], Vol. I, we derive

© vHio [ (s+1/2)(1/2 —s) s
/CD dy = 2n\/7_n/ Cos(Tu)/yiim FT— 2 ) (xcosh?(u/2)) " dsdu

1 [ cos(tu) u
_— L (2' h ( —)) dy,
VT Jo cosh(u/2) 12V cos 2)) 4
where the inner integral with respect to s is calculated via Slater’s theorem and relation (7.14.2.79) in [4],
Vol. III. Hence after the differentiation with respect to x we arrive at (1.11), completing the proof of Lemma

1.

O

Further, recalling the Mellin-Barnes representation (1.9) of the kernel ®;(x), we will derive an ordinary
differential equation whose particular solution is ®¢(x). Precisely, it is given by
Lemma 2. For each T € R the function
VT 2
O] =———Rel|/;
e cosh(1TT) e ir (v2)]

is a fundamental solution of the following third order differential equation with variable coefficients

o d*o do; @
2 T T T T
3
ad | ae a2
Proof. The asymptotic behavior (1.10) of the integrand in (1.9) and the absolute and uniform convergence
of the integral allow to integrate (1.9) twice with respect to x. Hence making use the reduction formula for

the gamma- function [2], Vol. I we obtain

Vi (s +it)l (s —it)[ (1/2—s) 5,
/du/ O (v 27Tl/y o Fr(1—sr3—ys) x> 75ds. (1.16)

Then, plainly, with the reduction formula for the gamma-function and simple changes of variables we get

(sfe) [ e o] = g [ R e

+ (2 +x-7)

=0, x>0. (1.15)

Ve (1 s+l (1+s— il (1/2—s)
= x2/ du/ d( dv+ﬁ/y7ioo Fs)r(1—s)r(3—s) b
Lyt (s 4iT)M (s —in)M(1/2=5)(1/2—5)
e fan [ oo | IS (e S (e (A

Hence after multiplication by x?, we differentiate three times the obtained equality and use (1.9) to find
2 d CDT

5_; lxz <x%>2 Liz /Oxdu/oudbr(v)dv] - —f = (Vi dr())

4P O
=—(1"+x) T (1.17)
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Meanwhile, the left-hand side of (1.17) can be simplified as follows

£ () [ Lol o]~ [ 3 oot o]

d3 X u X ) 2d3¢r dZCDT dCDT
:ﬁ[_él./o du./o CDT(v)dv—fvx./O P (v)dv+x (DT} =X +3x 2 _7W'

Finally, combining with (1.17), we arrive at the equation (1.15), completing the proof of Lemma 2. [

2. BOUNDEDNESS AND INVERSION PROPERTIES OF THE INDEX TRANSFORM (1.1)

In order to investigate the mapping properties of the index transform (1.1) we will use the Mellin trans-
form technique developed in [3]. Precisely, the Mellin transform is defined, for instance, in Ly ,(Ry), 1 <
p < 2 (see details in [5]) by the integral

£ = [ rowtar (2.1)

being convergent in mean with respect to the norm in L,(V — oo,V + i), ¢ = p/(p —1). Moreover, the
Parseval equality holds for f € Ly ,(R), g € Li—y 4(R;)

00 V-ioco
| rstodn =5 [ (o)1~ s)as 22)
The inverse Mellin transform is given accordingly
1 vtie * —s
O G 23)

where the integral converges in mean with respect to the normin Ly ,(R.)

1y = (] 1r0ar 1) " (24)

In particular, letting v = 1/p we get the usual space L;(R.). Further, denoting by C(R.) the space of
bounded continuous functions, we have

Theorem 1. The index transform (1.1) is well-defined as a bounded operator F : Ly (RJr;ezﬁdx) —
C(R) and the following norm inequality takes place

I fllew) = fggl(Ff)(T)l SV (R vra)- (2.5)

Moreover, let the Mellin transform (2.1) of f satisfy the condition

f(s)

m ELq(l—V—iOO,l—V+i°°), (26)
where
3 1 1 1
0<v<1—5,1<p<2,;+5:1. (2.7)
Then
o \/ﬁ ® . f —x/2
(FN® = s o Reltn (5)] 0 (wax (2.8)
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where I,(z) is the modified Bessel function of the first kind,

LR )
¢ (x) = o /lfvfioo ) x'ds, (2.9)

and integral (2.9) converges with respect to the norm in Ly ,(R4.) .

Proof. The proof of the norm inequality (2.5) is straightforward from (1.1) and inequality (1.8). The conti-
nuity of (F f)(7) follows from the absolute and uniform convergence of the corresponding integral. In fact,
we derive

vmoooe 2
< vV .
(FN) < gt o Ve (VAP 1@
tanh(717) [© ~
VRS [ VWl S VL iy
This proves (2.5). Next, f*(1 —s) € Ly(V — i,V +ic0) via condition (2.6). Indeed, we have

Voo 1—V-tioo s
[ a—sasi= [T ra -9 o =

i 1—v—ico [T (s)F(1—s)]4
1—V+ico B
<= [ Ot < 2.10)

Therefore, via Theorem 86 in [5] we see that f € L;_y ,(R,). Meanwhile, the asymptotic behavior (1.10) of
the integrand in (1.9) guarantees that it belongs to the space L,(V — ico, v +ioo) with v, satisfying condition
(2.7). Consequently, (1.9) and the Parseval identity (2.2) lead to the following representation

(FN)(T) = - /*: M(s+ irr)l('s()sr;(ilr)_l' S()l/z —5)

S 2m
Analogously to (2.10) we show that f*(1 —s)/I'(1 —s) € Ly(v —io,V + i) and hence (see (2.9)) ¢ €
Li_y p(Ry). But from the asymptotic behavior of the modified Bessel function of the first kind (see [2], Vol.
1) we find

(1 —=s)x"%ds. (2.11)

¢/ *Re [1,7 (%)} —0(1), x 0,

¢/’Re [1” (%)} -0 (%) x> o,

Therefore, the kernel of (2.8) belongs to Ly ,(R) and integral converges absolutely. Moreover, Lemma 1
in [7], the Parseval identity (2.2) and (2.11) establish equality (2.8), completing the proof of Theorem 1.
U

The inversion formula for the transform (1.1) is given by
Theorem 2. Under conditions of Theorem 1 let also the Mellin transform f*(s) be analytic in the strip

! 1<R 1 v<7 ! 1<p<2
——— es=1-— —-——
w4 4 2p °F
and
* 3 1
S 5) €Ly(1—v—ic, 1 —V+ie)NL(1—V—ico 1 —V+in), |V <> —— (2.12)

F(s)r(1—s) 4 2p

Then, assuming that the index transform (1.1) satisfies the integrability condition (F f)(T) € Ly (R4; Te™dT),
it has the following inversion formula for all x > 0
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o0 m 2 = ' -
f(x)zzx/ﬁ%/o T coth(7TT) [M_l {Jﬁ(\/)—c)w

sinh(7TT) i de £=0
v | o, 2.13)

where Im denotes the imaginary part of a complex -valued function and the corresponding integral converges
absolutely.

Proof. Following the same scheme as in [7], Th. 2, we verify conditions of the Lebedev expansion theorem
for the index transform with the square of the Macdonald function as the kernel K (1/x) [2], Vol. I, coming
up to the equality

1—V—+ic * - 2 ©
_ - 2
/ o /1 L r i _s)dsdy - nz—\ﬁ/o TsinhTDKE (VR (Ff)(T)dT, x> 0.  (2.14)
Fulfilling the integration in the left-hand side of (2.14) when v € (—=3/4+1/(2p), 0), it becomes

1 1—V—+ico f*(s)xlfs
_ﬁ/l,v,im F(s)F(2—ys) ds = n2f/

L L,
2miJo (x+y)?J1v_iw [(s)F(2—5)

_ nzfﬁr /0 v (xiyy)z /0 " rsinh (TR (V) (Ff)(T)dT

The interchange of the order of integration in both sides of the latter equality is allowed due to Fubini’s
theorem under imposed conditions. Thus, taking into account the value of the elementary beta-integral and
the inverse Mellin transform (2.3), we end up with the inversion formula of the index transform (1.1), namely

Tsinh(2m KA (V) (F ) (1)dT. (2.15)

Hence

F(x) = rrz\/_/ Tsinh(2mDK (v, 7)(F £)(T)dT, x> 0, (2.16)
where ,
_ mKir(\/y)dy
K(x,1) = /0 s (2.17)

In the meantime integral (2.17), which is absent in the literature, can be calculated in the following way.
Using relations (8.4.23.27) and (8.4.2.5) in [4], Vol. III and the Parseval equality (2.2), we write

“Ki(Vy)dy _Vmd v , - xS
— r OI(s—iT)I ()M (1 —5) ==————d 2.18
[ e [ T = P (1 =) g (2.18)
where 0 < y < 1. On the other hand, the Lebedev inequality for the Macdonald function (cf. [3], p. 99)
w174
Kit(x)] £ ===, x,T>0 (2.19)
sinh(77T)
and the estimate
~1/4 4
/ Tsinh(2m7) |K (x, T)(F f)(T )|dT<2/ Tcosh(2mT) [(Ff)(T / Y <oox>0
0
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under condition (F f)(1) € L1 (R;Te™dT) permit us to write (2.16) in the form
dydt

2 d o o ] )
0=y o [ Tsmh@IOR (R ENOTT (220)
where via the uniform convergence and (2.18)
© Kp(yy)dy /[yt . 2 X
/0 ﬁ_m/y,[m r(S+lT)r(S—lT)r (s)r(l—s)mds
y+ioo —8
:ﬁlim r(s+iT)r(s—iT)r(s—i-é‘)r(s—é‘)r(l—s)xids. (2.21)

r(1/2+s)

Hence the Slater theorem is applied, involving simple left-hand poles s = £iT —n, s = £ —n, n € Nj.
Calculating the corresponding residues and then passing to the limit when &€ — 0 with the use of relation
(7.15.1.3) in [4], Vol. III, we find the result

470 €0 Jy—joo

ﬁg%/yyﬂm (s+1iT1) (s—iT)I'(s+£)I'(s—£)I'(1—s)%zs_i_s)ds
mE D] e (Ve (VE) — Jemir (VA et (vX)
=TT [ sinh3(717) +l§% sin(77¢) (+cosh(2nr) - cos(2n£)§
_omwym Im[B(A)] 1 dein(V) oy Oerit(V)
= sinhz(HT) [ sinh(777) T |:-]1T(\/)—C) de SZO—F-LJ(\/;) Je g():|‘| .

Therefore, combining with (2.20), (2.21), we arrive at the inversion formula (2.13), completing the proof of

Theorem 2.
]

3. THE INDEX TRANSFORM (1.2)

The boundedness and invertibility properties for the index transform (1.2) will be examined below. We

begin with
Theorem 3. The g € Li(R). Then (Gg)(x) is bounded continuous on R, and it holds
SUIS|(G8)(X)| < Vgl w)- (3-1)
x>
Moreover, if (Gg)(x) € Ly 1(Ry), 0 <V < 1/2, then for ally > 0
1 Ve 2 * —5 o v/2 g(T)
o ./Viim F($)F2(1 —5)(Gg)* (s)y*ds = \/ﬁ/ e K (%) o T (3.2)

Proof. First we observe from the familiar Poisson integral for the Bessel function [2], Vol. II that for all
x>0

NG
|Jir(\/)_f)‘ < m

[Re U (VO] _ (3.3)

cosh(mrr) = 7

Therefore,

and we find the estimate

(GO <VT [ le(@ldT = Vgl
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which yields (3.1). Next, integrating both sides of (1.2) with respect to x and changing the order of integration
under condition g € L; (R), we get

/Gg ) dy = //qar T)du dT.

Hence, employing (1 .12), we derive

1 v+t°°|'s+l'[ Ms—in)l(1/2—y) —s

V-ico s+zT)r(s—lT) (1/2=s)
Zm/v / (M1 —=s5)F(2—5) x°dt ds, (3.4)

where the interchange of the order of integration is motlvated by the straightforward estimate
V-fico s—i-lT)r(s—iT)r(l/Z—s) l—s

/v / |‘ Frra—sr2—s

viio | (25 (1/2—3s)

Sx‘*"B(v,v)/m| (T)ldt /Vfioo F(F(1=$)(2-s)

and B(a,b) is Euler’s beta-function [2], Vol. I But under the condition (Gg)(x) € Ly ; (R, ) the Mellin
transform (2.1) of the left-hand side in (3.4) exists and we have

/Ooo)c“2 /Ox(Gg)(y) dydx = /Om(Gg)(y) /yooxsfzdxdy = %jis), Res=v e (O, %) .

Thus (3.4) and the reduction formula for the gamma-function imply

F6)P2(1=5)(Ge)' () =T (1/2=5) [ g(OF (s+i0)F (s— i),

Hence the inverse Mellin transform (2.3) and relation (8.4.23.5) in [4], Vol. III will lead us to (3.2), com-
pleting the proof of Theorem 3. 0

drt |ds]|

1
|ds|<oo,0<v<§

The inversion formula for the index transform (1.2) is given by

Theorem 4. Let g(z/i) be an even analytic function in the strip D= {z € C: |Rez| < a < 1/2}, g(0) =
g'(0) = 0 and g(z/i) is absolutely integrable over any vertical line in D. If (Gg)(t) € L1((0,1);t~'dt) N
Li((1,00);dt), then for all x € R the inversion formula holds for the index transform (1.2)

e cos 2
g(x):./o (Gg)(v) l%-ﬁ-ﬂxycotb(m)dzy %
d £—ix 0 E+ix
A e L Rt |

Proof. Indeed, recalling (3.2), we multiply its both sides by e /2K;, (y/2)y¢~! for some positive & € (0,1)
and integrate with respect to y over (0,0). Hence changing the order of integration in the left-hand side of
the obtained equality due to the absolute convergence of the iterated integral, we appeal to relation (8.4.23.3)
in [4], Vol. III to find

M (s)F*(1=5)(Gg)"(s)ds

L/V““ MNe—s+ix)l(e—s—ix)
210 Jv—ico Mr(1/2+¢e-s)

_ /OMK,.X (%)y“l/:)&r (2) %drdy. (3.6)
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Meanwhile, the right-hand side of (3.6) can be treated in the same manner as in the proof of Theorem 4
in [7]. In fact, the evenness of g, a representation of the Macdonald function in terms of the modified Bessel
function of the first kind L (y) [2], Vol. II and a simple substitution give the equality

[ () it orn

—om a3 [ (3) £ (3)

On the other hand, according to our assumption g(z/i) is analytic in the vertical strip 0 <Rez < a < 1/2,
g(0) = g’(0) = 0 and integrable in the strip. Hence, appealing to the inequality for the modified Bessel
function of the first kind (see [3], p. 93)

IL(y)| < Irez(y) en\lmz\/z’ 0<Rez<a,

one can move the contour to the right in the latter integral in (3.7). Then
[T (XY et [ (¥ _8E/D)
o [ K (3) / L(3) L dza
l./() "\2)” |7 \2 sin(2711z) cay

o [T (YNt [Ty 8/
_zm/() ki (Z)y ./afioo IZ(Z) sin(ZHZ)dZdy'

Now Rez > 0, and it is possible to pass to the limit under the integral sign when &€ — 0 and to change the
order of integration due to the absolute and uniform convergence. Therefore the value of the integral (see
relation (2.16.28.3) in [4], Vol. II)

© dy 1
A Kix(y)lz(Y)7 iz

leads us to the equalities

2 [ (5)0 [ 1:(3) iy
- 2m'./a+im 8@,y </aim+ 'Him) __slefijdz (3.8)

a—io (X2 +2%)sin(27z) —atio  Ja—ie ) (z—ix) zsin(27z)’
Hence conditions of the theorem allow to apply the Cauchy formula in the right-hand side of the latter
equality in (3.8). Thus

lim 271 /OOOK (%)yH/m L(2) 8D g PCED) g gy (3.9)

£-0 _i - \2/ sin(271z) - xsinh(27mx)’
Now, recalling the Parseval identity (2.2), the left-hand side of (3.6) can be rewritten in the form
1 vt C(e—s+ix)l (€ —s—ix) ) /°° dy
— F(s)Mr=(1—s)(Gg)*(s)ds = G W —= 3.10
T e s T =(Ge (s = [ (@), (10
where o I )
1 VHR T (s+e—14+ix) I (s+&—1—ix) , 1—
Y =— M=(s)r(1— ds. 3.11
) =5 [ S (F(1=s)y' s (3.11)

Meanwhile, relations (8.4.23.3), (8.4.11.3) in [4], Vol. III and the Parseval equality (2.2) give the represen-
tation (3.11) accordingly

We(x,y) = \)/)—STT/Om/looexp (u(l—t)—zy—u) Kix (%) dttucglu
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d /°° dt /°° ( t yu)K (yu) du

=— | — | expl—— — = )Ku(=
Vo Tailo P\ T 2) e\ ) e

£ 0o (<)

y di d/ (t ) K (21
S LMy (2 L £>0,

ﬁ/o TrarJo P\ — ) K7 )u du >0

where the interchange of the order of integration and differentiation under the integral sign are permitted
owing to the absolute and uniform convergence. Integrating by parts in the latter integral with respect to ¢
and using relation (2.16.9.3) in [4], Vol. II, we find

ix)|? £ e ' u U\ e
Weleo) = o~ e [t [ee (<L - Ykt )

Moreover, it is possible now to pass to the limit under the integral sign in (3.12) when &€ — 0 and then to
employ relation (2.16.9.1) in [4], Vol. II. Hence, reminding (2.17), we obtain

+2yK (y,x). (3.13)

o _Jm 2 PKi(Wndt T
9("7”—2%%("’”_xsinh(nx)_\_ﬁr./o (1+1)?  xsinh(7mx)

In the meantime, passing to the limitin (3.10) when € — 0, we do it under the integral sign in its right-hand
side for each x € R\{0}, appealing to the dominated convergence theorem due to the condition (Gg)(x) €
Li((0,1);x 'dx) N Ly ((1,);dx) and the absolute and uniform convergence with respect to € € [0, 1]. In
fact, since from (3.12)

IF(e+ix)>  »f /°° dt /’1 o yu yu\ du
<cPAETHL ) - _ _ 2z ol Wt
el < iy h e b o0 (n - 3) R (F)5
i/m di /00 _r_ u
+\/ﬁ.0 (14+0)* /i exp( u Z)KO(Z)dM

<|r(e+ix)|2 2_y£/°°Kg(\/y_t)dt
T r(e+1/2) " ymlo  (1+41)?

g-1 joo o u u
+y\/7_T/0 (1172)2/0 eXp(_E)KO(E) du
=o()+0(* "),

we have
00 1 0
LG < [ 1601 E+ea [ 1Galdy <

where Cy,C, > 0 are absolute constants. Hence, combining with (3.9) and (2.21) we arrive at the inversion
formula (3.5). Theorem 4 is proved.

O
4. INITIAL VALUE PROBLEM

In this section we will apply the index transform (1.2) to investigate the solvability of an initial value
problem for the following third order partial differential equation, involving the Laplacian

0 0 VX24+y?—=8[ du  du u 2
22 o YED oo e R 4.1
(xdx+yﬁy+ ) ut |:xﬁx+yﬁy] N 0, (x,y) € R°\{0}, (4.1)
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where A = ;—;2 + g_yzz is the Laplacian in R?. In fact, writing (4.1) in polar coordinates (r, 8), we end up with
the equation

Pu 1 u 0%u 710u u
’ﬁﬁm”ﬁ%l‘;}zﬁ—“ (42)
Lemmas3. Let g(1) € Ly (R;ePITldt), B € (0,2m). Then the function
0o ot
2 e’'g(r)dt
u(r,0) = VT [ Re[7% (v7)] e (43)

satisfies the partial differential equation (4.2) on the wedge (r,0) : r > 0, 0 < 0 < B3, vanishing at infinity.

Proof. The proof is straightforward by substitution (4.3) into (4.2) and the use of (1.15). The necessary
differentiation with respect to r and 6 under the integral sign is allowed via the absolute and uniform conver-
gence, which can be verified using inequality (3.3) and the integrability condition g € L; (R;emr‘d T) , Be
(0,2m) of the lemma. Finally, the condition u(r,8) — 0, r — oo is due to the asymptotic formula (1.4) for
Bessel function at infinity. 0

Finally we will formulate the initial value problem for equation (4.2) and give its solution.

Theorem 5. Let g(x) be given by formula (3.5) and its transform (Gg)(t) = G(t) satisfies conditions of
Theorem 4. Then u(r,0), r >0, 0 < 8 < B by formula (4.3) will be a solution of the initial value problem
Sfor the partial differential equation (4.2) subject to the initial condition

u(r,0) = G(r).
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