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Abstract

This paper presents a new method for detecting scale in-

variant interest points. The method is based on two recent

results on scale space: 1) Interest points can be adapted

to scale and give repeatable results (geometrically stable).

2) Local extrema over scale of normalized derivatives in-

dicate the presence of characteristic local structures. Our

method first computes a multi-scale representation for the

Harris interest point detector. We then select points at which

a local measure (the Laplacian) is maximal over scales.

This allows a selection of distinctive points for which the

characteristic scale is known. These points are invariant to

scale, rotation and translation as well as robust to illumina-

tion changes and limited changes of viewpoint.

For indexing, the image is characterized by a set of scale

invariant points; the scale associated with each point al-

lows the computation of a scale invariant descriptor. Our

descriptors are, in addition, invariant to image rotation,

to affine illumination changes and robust to small perspec-

tive deformations. Experimental results for indexing show

an excellent performance up to a scale factor of 4 for a

database with more than 5000 images.

1 Introduction

The difficulty in object indexing is to determine the iden-

tity of an object under arbitrary viewing conditions in the

presence of cluttered real-world scenes or occlusions. Lo-

cal characterization has shown to be well adapted to this

problem. The small size of the characteristic regions makes

them robust against occlusion and background changes. To

obtain robustness to changes of viewing conditions they

should also be invariant to image transformations. Recent

methods for indexing differ in the type of invariants used.

Rotation invariants have been presented by [10], rotation

and scale invariants by [8] and affine invariants by [13].

Schmid and Mohr [10] extract a set of interest points

and characterize each of the points by rotationally invari-
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ant descriptors which are combinations of Gaussian deriva-

tives. Robustness to scale changes is obtained by comput-

ing Gaussian derivatives at several scales. Lowe [8] extends

these ideas to scale invariance by maximizing the output

of difference-of-Gaussian filters in scale-space. Tuytelaars

et al. [13] have developed affine invariant descriptors by

searching for affine invariant regions and describing them

by color invariants. To find these regions they simultane-

ously use interest points and contours. Instead of using an

initial set of features, Chomat et al. [2] select the appropriate

scale for every point in the image and compute descriptors

at these scales. An object is represented by the set of these

descriptors. All of the above methods are limited to a scale

factor of 2.

Similar approaches exist for wide-baseline matching [1,

3, 5, 9, 12]. The problem is however more restricted. Addi-

tional constraints can be imposed and the search complexity

is less prohibitive. For example, Prichett and Zisserman [9]

first match regions bound by four line segments. They then

use corresponding regions to compute the homography and

grow the regions. Such an approach is clearly difficult to ex-

tend to the problem of indexing. Two of the papers on wide-

baseline matching have specifically addressed the problem

of scale. Hansen et al. [5] present a method that uses cor-

relation of scale traces through multi-resolution images to

find correspondence between images. A scale trace is a set

of values for a pixel at different scales of computation. Du-

fournaud et al. [3] use a robust multi-scale framework to

match images. Interest points and descriptors are computed

at different scale levels. A robust homography based match-

ing algorithm allows to select the correct scale. These two

approaches are not usable in the context of indexing, as im-

age to image comparison is necessary. In the context of

indexing we need discriminant features which can be ac-

cessed directly. Storage of several levels of scale is pro-

hibitive, as it gives rise to additional mismatches and in-

creases the necessary storage space.

In this papers we propose an approach which allows in-

dexing in the presence of scale changes up to a factor 4.



The success of this method is based on a repeatable and

discriminant point detector. The detector is based on two

results on scale space: 1) Interest points can be adapted

to scale and give repeatable results [3]. 2) Local extrema

over scale of normalized derivatives indicate the presence of

characteristic local structures [7]. The first step of our ap-

proach is to compute interest points at several scale levels.

We then select points at which a local measure (the Lapla-

cian) is maximal over scales. This allows to select a subset

of the points computed in scale space. For these points we

know their scale of computation, that is their characteris-

tic scale. Moreover, it allows to select the most distinctive

points. Points are invariant to scale, rotation and transla-

tion as well as robust to illumination changes and limited

changes of viewpoint. This detector is the main contribution

of this paper. We show that its repeatability is better than

the one of other approaches proposed in the literature and

therefore allows to obtain better indexing results. The sec-

ond contribution is the quality of our indexing and matching

results.

Overview. This paper is organized as follows. In section 2

we introduce scale selection. In section 3 our scale invariant

interest point detector is described and section 4 presents al-

gorithms for matching and indexing. Experimental results

are given in section 5.

2. Scale selection

In the following we briefly introduce the concept of

scale-space and show how to select the characteristic scale.

We then present experimental results for scale selection.

Scale-space. The scale-space representation is a set of im-

ages represented at different levels of resolutions [14]. Dif-

ferent levels of resolution are in general created by convolu-

tion with the Gaussian kernel: L(x; s) = G(s) � I(x) with

I the image and x = (x; y). We can represent a feature (i.e.

edges, corners) at different resolutions by applying the ap-

propriate function (combinations of derivatives) at different

scales. The amplitude of spatial derivatives, in general, de-

creases with scale. In the case of scale invariant forms, like

step-edge, the derivatives should be constant over scales.

In order to maintain the property of scale invariance the

derivative function must be normalized with respect to the

scale of observation. The scale normalized derivative D of

order m is defined by:

Di1:::im(x; s) = smLi1:::im(x; s) = smGi1 :::im(s) � I(x)

Normalized derivatives behave nicely under scaling of

the intensity pattern. Consider two images I and I 0 imaged

at different scales. The relation between the two images is

then defined by: I(x) = I 0(x0); where x0 = tx. Image

derivatives are then related by:

smGi1:::im(s) � I(x) = tmsmGi1:::im(ts) � I(x
0)

Thus, for normalized derivatives we obtain:

Di1:::im(x; s) = D0

i1:::im
(x; ts)

We can see that the same values are obtained at corre-

sponding relative scales.

To maintain uniform information change between suc-

cessive levels of resolution the scale factor must be dis-

tributed exponentially. Let F be a function used to build the

scale-space and normalized with respect to scale. The set of

responses for a point x is then F (x; sn) with sn = kns0. s0
is the initial scale factor at the finest level of resolution and

sn denotes successive levels of the scale-space representa-

tion with k the factor of scale change between successive

levels.

Characteristic scale. The properties of local characteristic

scales were extensively studied in [7]. The idea is to select a

characteristic scale by searching for a local extremum over

scales. Given a point in an image we compute the func-

tion responses for several scale factors sn, see Figure 1.

The characteristic scale is the local maximum of the func-

tion. Note that there might be several maxima, therefore

several characteristic scales. The characteristic scale is rel-

atively independent of the image scale. The ratio of the

scales, at which the extrema were found for corresponding

points in two rescaled images, is equal to the scale factor

between the images. Instead of detecting extrema we can

also look for other easy recognizable signal shapes such as

zero-crossings of the second derivative.

Figure 1: The top row shows two images taken with dif-

ferent focal lengths. The bottom row shows the response

F (x; sn) over scales where F is the normalized Laplacian

(cf. eq.2). The characteristic scales are at 10.1 and 3.89 for

the left and right image, respectively. The ratio corresponds

to the scale factor (2.5) between the two images.

Several derivative based functions F can be used to com-

pute a scale representation of an image. These functions

should be rotation invariant. Illumination invariance is less

critical because we are looking for extrema. In the follow-

ing we present the differential expressions used for our ex-

periments. Note that all expressions are scale normalized.

Square gradient s2(L2
x(x; s) + L2

y(x; s)) (1)



Laplacian js2(Lxx(x; s) + Lyy(x; s))j (2)

Difference-of-Gaussian jI(x) �G(sn�1)� I(x) �G(sn)j
(3)

Harris function det(C)� � trace 2(C) (4)

withC(x; s; ~s) =

s2G(x; ~s) ?

�
L2
x(x; s) LxLy(x; s)

LxLy(x; s) L2
y(x; s)

�

Experimental results. The scale selection technique based

on local maxima has been evaluated for functions (1),(2),(3)

and (4). The evaluation was conducted on several sequences

with scale changes. The characteristic scale was selected for

every point in the image. Figure 2 displays image points for

which scale selection is possible (white and grey). Black

points are points for which the function (Laplacian) has no

maximum. Note that these points lie in homogeneous re-

gions and have no maximum in the range of considered

scales.

The selected scale for a point is correct if the ratio

between characteristic scales in corresponding points is

equal to the scale factor between the images. Correspond-

ing points are determined by projection with the estimated

transformation matrix. In the case of multiple scale max-

ima, the point is considered correct, if one of the maxima

corresponds to the correct ratio. Points with correctly se-

lected scales are displayed in white (cf. Figure 2).

original scale=1.2, 80%

scale=2.5, 35% scale=4.3, 16%

Figure 2: Characteristic scale of points. Black–no charac-

teristic scale is detected. Gray–a characteristic scale is de-

tected. White–a characteristic scale is detected and is cor-

rect. The scale of the images is given above the images and

corresponds to scale = original

scaled
. The scaled images were

enlarged to increase the visibility.

We can observe that only a small percentage of selected

scales are correct for large scale factors. In table 1 we have

compared results for different functions F in the presence

of a scale factor of 4.3. Results are averaged over several se-

quences. The first row shows the function used. The second

shows the percentage of points for which a characteristic

scale is detected. We can observe that most points are de-

tected by the Laplacian. The percentage of correct points

with respect to detected points is given in row three. The

Laplacian and the DOG obtain the highest percentage. The

last row shows the overall percentage of correct detection.

Most correct points are detected by the Laplacian. The per-

centage is twice as high as for the gradient, and four times

higher than for the Harris function. Results are similar to

those of the DOG which is not surprising as this function is

very similar to the Laplacian.

Laplacian DOG gradient Harris

detected 46% 38% 30% 16%

correct/

detected 29% 28% 22% 23%

correct 13.3% 10.6% 6.6% 3.4%

Table 1: Row 2: percentage of points for which a charac-

teristic scale is detected. Row 3: percentage of points for

which a correct scale is detected with respect to detected

points. Row 4: percentage of correct / total.

We have observed that the performance degrades in the

presence of large scale changes. This can be explained by

the fixed search range of scales, which must be the same

for all images if we have no a priori knowledge about the

scale factor between the images. If the characteristic scale

found in a coarse resolution image is near the upper limit

of the scale range, the corresponding point at a finer scale

is likely to be too far from significant signal changes to be

detected in our scale limits. Our experiments shows, that

characteristic scale found by searching for extrema only in

the scale direction, are sensitive to this fact. Furthermore,

we cannot apply too large a range of scales as we lose the

local character, and the effect of image borders becomes too

important.

3. Scale invariant interest points

The previous section shows that using all points gives

unstable results. Feature points permit stabilizing the re-

sults.

Existing methods search for maxima in the 3D representa-

tion of an image (x; y and scale). A feature point represents

a local maximum in the surrounding 3D cube and its value

has to be higher than a certain threshold. In Figure 3 the

point m is a feature point, if 8� F (m; sn) > F (�; sl) with

l 2 fn� 1; n; n+ 1g and F (m; sn) > t.

Lindeberg [7] searches for 3D maxima of the Laplacian, as

well as the magnitude of the gradient and Lowe [8] uses the

difference-of-Gaussian.



Figure 3: Searching for maxima in scale-space.

Our approach does not use a single function to search in

3D, but uses the Harris function (cf. eq. 4) to localize points

in 2D and then selects points for which the Laplacian attains

a maximum over scales. In the following, it is referred to as

the Harris-Laplacian.

The Harris detector is used for 2D localization as it has

shown to be most reliable in the presence of image rota-

tion, illumination transformations and perspective deforma-

tions as shown in a comparative evaluation [11]. However,

the repeatability of this detector fails when the resolution

of images changes significantly. In order to deal with such

changes, the Harris detector has to be adapted to the scale

factor [3]. Repeatability results for such an adapted ver-

sion are excellent. The remaining problem is scale selec-

tion. During our experiments we noticed that the adapted

Harris function rarely attains maxima in 3D space. If too

few points are detected, the image representation is not ro-

bust. Therefore, we propose to use a different function, the

Laplacian, for scale maxima detection. We have seen in the

previous section that this function allows to find the highest

percentage of correct maxima.

Our detection algorithm works as follows. We first build

a scale-space representation for the Harris function. At each

level of the scale-space we detect interest points by detect-

ing the local maxima in the image plane:

F (x; sn) > F (xw; sn) 8xw 2 W

F (x; sn) > th

where W denotes the 8-neighbourhood of the point x.

In order to obtain a more compact representation, we ver-

ify for each of the candidate points found on different levels

if it forms a maximum in the scale direction. The Laplacian

is used for selection.

F (x; sn) > F (x; sn�1) ^ F (x; sn) > F (x; sn+1)
F (x; sn) > tl

Figure 5 shows the scale-space representation for two

real images with points detected by the Harris-Laplacian

method. For these two images of the same object imaged at

different scales we present for each scale level the selected

points. There are many point-to-point correspondences be-

tween the levels for which the scale ratio corresponds to the

real scale change between the images (indicated by point-

ers). Additionally, very few points are detected in the same

location but on different levels. Our points are therefore

characteristic to the image plane and the scale dimension.

A comparative evaluation of different scale invariant in-

terest point detectors is presented in the following. We

compare the approaches of Lindeberg (Laplacian and gra-

dient), Lowe as well as our Harris-Laplacian detector. To

show the gain compared to the non-scale invariant method,

we also present the results of the standard Harris detector.

The stability of detectors is evaluated using the repeatabil-

ity criteria introduced in [11]. The repeatability score is

computed as a ratio between the number of point-to-point

correspondences that can be established for detected points

and the mean number of points detected in two images:

r1;2 = C(I1;I2)

mean(m1;m2)
where C(I1; I2) denotes the number

of corresponding couples and m1; m2 the numbers of de-

tected points in the images. Two points correspond if the

error in relative location does not exceed 1:5 pixel in the

coarse resolution image and the ratio of detected scales for

these points does not differ from the real scale ratio by more

than 20%. Figure 4 presents the repeatability score for the

compared methods. The experiments were done on 10 se-

quences of real images. Each sequence consists of scaled

and rotated images for which the scale factor varies from 1.2

up to 4.5. Best results are obtained for the Harris-Laplacian

method. The results are 10% better than those of the second

best detector, the Laplacian.

Figure 4: Repeatability of interest point detectors with re-

spect to scale changes.

4. Robust matching and indexing

In the following we briefly describe our robust matching

and indexing algorithms. The two algorithms are based on

the same initial steps:

1. Extraction of Harris-Laplacian interest points (cf. sec-

tion 3).

2. Computation of a descriptor for each point at its char-

acteristic scale. Descriptors are invariant to image ro-

tation and affine illumination changes. They are robust

to small perspective deformations.
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Figure 5: Points detected on different resolution levels with the Harris-Laplacian method.

3. Comparison of descriptors based on the Mahalanobis

distance.

Interest points. To extract interest points we have used

a scale representation with 17 resolution levels. The initial

scale s0 is 1.5 and the factor k between two levels of resolu-

tion is 1.2. The parameter � is set to 0.06 and the thresholds

th and tl are set to 1500 and 10, respectively.

Descriptors. Our descriptors are Gaussian derivatives

which are computed at the characteristic scale. Invariance

to rotation is obtained by “steering” the derivatives in the

direction of the gradient [4]. To obtain a stable estimation

of the gradient direction, we use the peak in a histogram of

local gradient orientations. Invariance to the affine inten-

sity changes is obtained by dividing the derivatives by the

steered first derivative. Using up to 4th order derivatives,

we obtain descriptors of dimension 12.

Comparison of descriptors. The similarity of descriptors

is measured by the Mahalanobis distance. This distance

requires the estimation of the covariance matrix � which

encapsulates signal noise, variations in photometry, inaccu-

racy of interest point location, and so forth. � is estimated

statistically over a large set of image samples.

Robust matching. To robustly match two images, we first

determine point-to-point correspondences. We select for

each descriptor in the first image the most similar descrip-

tor in the second image based on the Mahalanobis distance.

If the distance is below a threshold the match is kept. This

allows us to obtain a set of initial matches. A robust esti-

mation of the transformation between the two images based

on RANdom SAmple Consensus (RANSAC) allows to re-

ject inconsistent matches. For our experimental results the

transformation is either a homography or a fundamental ma-

trix. A model selection algorithm [6] can of course be used

to automatically decide what transformation is the most ap-

propriate one.

Indexing. A voting algorithm is used to select the most

similar images in the database. This makes retrieval robust

to mismatches as well as outliers. For each point of a query

image, its descriptor is compared to the descriptors in the

database. If the distance is less than a fixed threshold , a vote

is added to the corresponding database image. Note that a

point cannot vote several times for the same database im-

age. The database image with the highest number of votes

is the most similar one.

5. Experimental results

In the following, we validate our detection algorithm by

matching and indexing results. Figure 6 illustrates the dif-

ferent steps of our matching algorithm. In this example the

two images are taken from the same viewpoint, but with a

change in focal length and image orientation. The top row

shows the detected interest points. There are 190 and 213

points detected in the left and right images, respectively.

The number of detected points is about equivalent to results

obtained by a standard interest point detector. This clearly

shows the selectivity of our point detection method. If no

scale peak selection had been used, more than 2000 points

would be detected. The middle row shows the 58 matches

obtained during the initial matching phase. The bottom row

displays the 32 inliers to the estimated homography, all of

which are correct. The estimated scale factor between the

two images is 4.9 and the estimated rotation angle is 19 de-

grees.

Figure 7 shows an example for a 3D scene where the

fundamental matrix is used for verification. There are 180



and 176 detected points detected in the left and right im-

ages. The number of initial matches is 23 and there are 14

inliers to the robustly estimated fundamental matrix, all of

them correct. Note that the images are taken from different

viewpoints, the transformation includes a scale change, an

image rotation as well as a change in the viewing angle. The

building in the middle is almost half occluded.

Extracted interest points

Initial points matches

Inliers to the estimated homography

Figure 6: Robust matching: there are 190 and 213 points

detected in the left and right images, respectively (top). 58

points are initially matched (middle). There are 32 inliers

to the estimated homography (bottom), all of which are cor-

rect. The estimated scale factor is 4:9 and the estimated

rotation angle is 19 degrees.

In the following we show the results for retrieval from a

database with more than 5000 images. The images in the

database are extracted from 16 hours of video sequences

which include movies, sport events and news reports. Sim-

ilar images are excluded by taking one image per 300

frames. Furthermore, the database contains one image from

each of our 10 test sequences. The total number of descrip-

tors in our database is 2539342.

The second row of figure 8 shows five images of the test

sequences which are contained in the database. The top row

displays images for which the corresponding image in the

database (second row) was correctly retrieved, that is it was

the most similar one. The approximate scale factor is given

in row three. The changes between the image pairs (first and

second row) include important changes in the focal length,

for example 5.8 for the image pair (a). They also include

important changes in viewpoint, for example for pair (b).

Furthermore, they include important illumination changes

(image pair (e)).

Figure 7: Example of images taken from different view

points. There are 14 inliers to a robustly estimated funda-

mental matrix, all of them are correct. The estimated scale

factor is 2:7.

The test sequences where used to systematically evalu-

ate the performance of retrieval. Results are shown in ta-

ble 2. For each of the 10 test sequences, we have evaluated

the performance at different scale factors (1.4 to 4.4). For

each scale factor, we have evaluated the percentage that the

corresponding image is the most similar one or among the

five or ten most similar images. We can see that up to a



(a) 1/5.8 (b) 3.7 (c) 1/4.4 (d) 1/4.1 (e) 5.7

Figure 8: The first row shows some of the query images. The second row shows the most similar images in the database, all

of them are correct. The approximative scale factor between query image and database image is given in row three.

scale factor of 4.4, the performance is very good. At the

scale of 4.4, 30% of the images are correctly retrieved, 50%

are among the 5 best matches and 70% are among the 10

best matches. These results were obtained with 12 dimen-

sional descriptors. If we use derivatives up to order 3, that is

7 dimensional descriptors, the results degrade significantly.

This justifies using the fourth order derivatives.

# retrieved scale factor

1.4 1.8 2.4 2.8 3.4 4.4

1 60 60 60 50 30 30

5 100 90 60 80 50 50

10 100 100 90 90 80 70

Table 2: Indexing results for our test sequences at different

scale factors. The first row of the table gives the percentage

of correct retrieval, that is the corresponding image is re-

trieved as the most similar one. The second/third row give

percentages that the corresponding image is among the 5/10

most similar images.

6. Conclusions and perspectives

We have presented an algorithm for interest point detec-

tion that is invariant to important scale changes. A com-

parison with existing detectors shows that our interest point

detector gives better results. Experimental validation for

matching and indexing was carried out on a significant

amount of data. Matching and indexing results are very

good up to a scale factor of 4. To our knowledge none of

the existing approach allows to deal with such scale factors

in the context of indexing. Furthermore, our approach is in-

variant to image rotation and translation as well as robust to

illumination changes and limited changes in viewpoint. Per-

formance could be further improved by using more robust

point descriptors. In our future research, we intend to focus

on the problem of affine invariance of point descriptors.
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