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Abstract. We design two compressed data structures for the full-text indexing problem that support
efficient substring searches using roughly the space required for storing the text in compressed form.

Our first compressed data structure retrieves the occ occurrences of a pattern P[1, p] within a
text T [1, n] in O(p + occ log1+ε n) time for any chosen ε, 0 < ε < 1. This data structure uses at
most 5nHk(T ) + o(n) bits of storage, where Hk(T ) is the kth order empirical entropy of T . The space
usage is �(n) bits in the worst case and o(n) bits for compressible texts. This data structure exploits
the relationship between suffix arrays and the Burrows–Wheeler Transform, and can be regarded as
a compressed suffix array.

Our second compressed data structure achieves O(p + occ) query time using O(nHk(T ) logε n) +
o(n) bits of storage for any chosen ε, 0 < ε < 1. Therefore, it provides optimal output-sensitive
query time using o(n log n) bits in the worst case. This second data structure builds upon the first one
and exploits the interplay between two compressors: the Burrows–Wheeler Transform and the LZ78
algorithm.
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1. Introduction

We address the issue of simultaneously compressing and indexing data. We consider
the full-text indexing problem: Given a text T we want to build a data structure
which supports the efficient retrieval of the occurrences of an arbitrary pattern P .
We describe two full-text indexes that use space bounded in terms of the empirical
entropy of T , exploiting for the first time the regularity of the indexed text to reduce
the size of the index. This result is achieved studying the interplay between the
suffix array data structure [Manber and Myers 1993; Gonnet et al. 1992] and two
compressors: the Burrows–Wheeler Transform [Burrows and Wheeler 1994] and
the LZ78 algorithm [Ziv and Lempel 1978].

Let T [1, n] denote a text drawn from a constant-size alphabet �. Let P[1, p]
denote an arbitrary pattern, and let occ be the number of occurrences of P as a
substring of T . Our first data structure computes the number of occurrences in
O(p) time and reports the position of the occurrences in O(p + occ log1+ε n) time,
where 0 < ε < 1 is an arbitrary constant chosen when we build the index. The
model of computation is the RAM with a word size of �(log n) bits. This data
structure uses at most 5nHk(T ) + O(n/ logε n) bits, where Hk(T ) is the kth order
empirical entropy of T . This bound holds simultaneously for any k ≥ 0 and we
assume that k is a constant with respect to n since there is a |�|k term hidden in
the big-O notation (the significance of the |�|k term is discussed in Section 2.1).
Note that the kth order empirical entropy is defined for any text T and depends
only on the text structure, that is, we are not assuming that the text is generated by
an information source. We point out that the parameter k does not influence either
the design or the usage of our data structure, but it plays a role only in the analysis
of the space complexity. Since the empirical entropy Hk(T ) is at most log |�|, our
data structure uses �(n) bits in the worst case. However, the data structure can take
advantage of the compressibility of T in order to use o(n) space. For example, for
T = abn−1 we have nHk(T ) = O(log n) and the data structure uses o(n) bits. Note
that in this extreme case the term O(n/ logε n) dominates the term 5nHk(T ).

Our index1 exploits the relationship between the Burrows–Wheeler Trans-
form [Burrows and Wheeler 1994] and the suffix array data structure [Manber and
Myers 1993; Gonnet et al. 1992]. The key idea is to add some auxiliary information
to a text compressed via the Burrows–Wheeler Transform to turn the compressed
text into a full-text index. Our data structure is a compressed suffix array that encap-
sulates both the compressed text and the full-text indexing information. In Ferragina
and Manzini [2000, Theorem 3] we have shown how to modify our index to achieve
O(p + occ logε n) query time using O(nHk(T )) + o(n) bits of storage. We decided
not to include here the description of the modified data structure because it is rather
technical and does not introduce new algorithmic ideas.

1In the current literature (see, e.g., Ferragina et al. [2004], Grabowski et al. [2004], Grossi et al. [2003,
2004], and Hon et al. [2004b]) this first index is usually referred to as the FM-index, which stands for
Full-text index in Minute space.
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Our second contribution is a full-text index which reports the position of the
occurrences in O(p + occ) time using O(nHk(T ) logε n) + O(n/ log1−ε n) bits
of storage, where 0 < ε < 1 is an arbitrary constant chosen when we build the
index. The space bound holds simultaneously for any k ≥ 0; it is o(n) bits for
highly compressible texts and O(n logε n) bits in the worst case. Hence, this is
the first data structure in the literature to achieve o(n log n) space and optimal
output-sensitive query time without any restrictions on p and occ (more on this
in Section 1.1). The design of this second compressed index builds upon the first
one and the interplay between two compressors: the Burrows-Wheeler Transform
and the LZ78 algorithm [Ziv and Lempel 1978]. The key idea is to exploit text
regularities not only for space reduction but also for speeding up the retrieval of the
pattern occurrences.

1.1. RELATED RESULTS. The results of this article are similar in spirit to recent
results on succinct representation of dictionaries. A dictionary over a universe of
size n can be seen as a binary sequence B of length n. In Brodnik and Munro
[1999] and Pagh [2001], the authors describe data structures that represent B in
nH0(B) + o(n) bits and support membership queries in constant time. In Raman
et al. [2002], these results have been extended to support also Rank and Select queries
in constant time still using nH0(B) + o(n) bits. These results cannot be directly
compared with ours since they refer to a different problem. We point out that, in the
field of text indexing, achieving Hk rather than H0 can save a significant amount
of space. For example, for T = (ab)n/2 we have nH0(T ) = n and nHk(T ) = 0
for k ≥ 1.

For the full-text indexing problem, the best-known data structures are suffix
trees [McCreight 1976] and suffix arrays [Manber and Myers 1993; Gonnet et al.
1992]. They support the pattern search in O(p + occ) time (respectively, O(p +
log n + occ) time) using �(n log n) bits of storage. The major drawback of these
data structures is their large space usage and several authors have addressed the
problem of reducing the constants hidden in the �(n log n) term [Kurtz 1999;
Clark and Munro 1996; Munro et al. 2001; Colussi and De Col 1996]. Other authors
achieved asymptotically smaller space usage at the cost of either limiting the search
to q-grams [Kärkkäinen and Sutinen 1998] or worsening significantly the query
performance [Kärkkäinen and Ukkonen 1996].

Grossi and Vitter [2000] were the first to break the space barrier of �(n log n) bits
for a full-text index by proposing a succinct representation of the suffix array that
uses �(n) bits. Their data structure supports the lookup of the i th entry of the suffix
array in O(logε n) time. Using this representation, the authors built a compressed
full-text index that computes the number of occurrences in O(p/ log n+logε n) time
and reports the positions of the occurrences in additional O(occ logε n) time (these
results hold on a RAM with a word size of �(log n) bits). This data structure can be
further enriched to achieve O( p

log n +occ) query time when p = �(log3 n log log n)
or occ = �(nε).

The index in Grossi and Vitter [2000] is not a self-index since it requires the
text T in raw form. Sadakane [2000] proposed a variant of the index in Grossi and
Vitter [2000] that also encapsulates the text. Sadakane’s variant uses �(n) space
and answers queries in O(p log n + occ logε n) time. Although this variant has a
higher query time, the constants hidden in the �(n) space bound are smaller than
in the index in Grossi and Vitter [2000].
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The results of our article are theoretical in flavor. However, the compressed index
described in Section 3 has been implemented and extensively tested in Ferragina
and Manzini [2001]. The experiments show that our index, which also encapsulates
the input text, takes roughly the same space used by the traditional compressors
gzip and bzip2 that store the input text only. The retrieval of the occurrences of an
arbitrary pattern with our index takes a few milliseconds even within texts of several
megabytes on a desktop PC. Finally, we point out that recent experimental studies
have provided further evidence that compressed indexes are a valid alternative to
suffix trees and suffix arrays in several application fields [Grossi et al. 2004; Hon
et al. 2004b; Healy et al. 2003; Sadakane and Shibuya 2001].

1.2. STRUCTURE OF THE ARTICLE. Section 2 contains some background mate-
rial. In Section 2.1, we discuss the notion of empirical entropy and its differences
with respect to the Shannon’s entropy. In Section 2.2, we describe the Burrows–
Wheeler Transform and we review its basic properties. In Section 2.3, we introduce
the compression algorithm BW RLX that is based on the Burrows–Wheeler Trans-
form and is at the hearth of our indexing data structures. In Section 3, we describe
our first compressed index. This index has a relatively simple structure, as it con-
sists of the compressed file returned by BW RLX combined with two auxiliary data
structures. The first one is used to count the number of pattern occurrences, the
second one is used to locate the position in the indexed text of these occurrences.
In Section 4, we describe our second compressed index that builds upon the first
one and uses the LZ78 parsing of the indexed text to speed up the retrieval of the
pattern occurrences. In Section 5, we draw the conclusions of the article and discuss
the current research on compressed full-text indexes. The appendices contain the
proofs of some technical lemmas.

2. Background and Notation

Hereafter, we assume that T [1, n] is the text we wish to index, compress and query.
T is drawn from a constant size alphabet �. By T [i] we denote the i th character
of T , T [i, n] denotes the text suffix of length (n − i + 1), and T [1, i] denotes the
text prefix of length i . We write |A| to denote the number of elements in the set A,
and we write |w | to denote the length of string w .

In this article, we are interested in solving the full-text indexing problem. Given
the text T we aim at building an indexing data structure (also called an index) that
supports the search for the occurrences of an arbitrary pattern P[1, p] as a substring
of T . Pattern P is provided on-line whereas the text T is given to be preprocessed
in advance. The number of pattern occurrences in T will be hereafter indicated with
the parameter occ. The above index is called a full-text index to highlight that its
substring search operation is more powerful than the search for a word, or for a prefix
of word, usually supported by traditional word-based indexes [Witten et al. 1999].

In this article, we split the pattern-searching process into two phases: counting
the number of pattern occurrences, and locating their positions. The counting phase
returns the single value occ, while the locating phase returns occ distinct values in
the range [1, n].

In the following, we assume that the model of computation is the RAM with
word-size �(log n) bits. In this model arithmetic and shift operations between
memory words require O(1) time.
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2.1. INDEXING AND ENTROPY. Let I denote a full-text index for a text T defined
over the alphabet �. We can use I to count the number of occurrences in T of all
strings in �i for i = 1, 2, . . . This procedure eventually leads to the identification
of the text T that is indexed by I. In other words, I contains enough information
to determine T . This observation suggests that a lower bound to the size of I is
given by the amount of data required to represent T . Following the well-established
practice in Information Theory, we measure this latter quantity using the notion of
empirical entropy.

The empirical entropy is similar to the entropy defined in the probabilistic setting
with the difference that it is defined in terms of symbol frequencies observed in T
rather than in terms of symbol probabilities. Let � = {α1, . . . , αh} and let ni denote
the number of occurrences of the symbol αi in T . The zeroth order empirical entropy
of T is defined as

H0(T ) = −
h∑

i=1

ni

n
log

(ni

n

)
, (1)

(in the following, all logarithms are taken to the base 2 and we assume 0 log 0 = 0).
The value nH0(T ) represents the output size of an ideal compressor which uses
− log ni

n bits for coding the symbol αi . It is well known that this is the maximum
compression we can achieve using a uniquely decodable code in which a fixed
codeword is assigned to each symbol. We can achieve a greater compression if
the codeword also depends on the k symbols immediately preceding the one to be
encoded. For any w ∈ �k and αi ∈ �, let nwαi denote the number of occurrences
in T of the string w followed by αi (i.e., the number of occurrences of the string
wαi in T ). Let nw = ∑

i nwαi . The value

Hk(T ) = −1

n

∑
w∈�k

nw

[
h∑

i=1

nwαi

nw
log

(nwαi

nw

)]
(2)

is called the kth order empirical entropy of T . The value nHk(T ) is a lower bound to
the output size of any compressor that encodes each symbol with a code that only
depends on the symbol itself and on the k immediately preceding symbols. Not
surprisingly, for any k ≥ 0 we have Hk(T ) ≥ Hk+1(T ). Note however that nHk(T )
does not include the cost of describing the codewords. Hence, a more realistic
lower bound would be the quantity nHk(T ) + �(|�|k) that also accounts for the
codewords description. We follow the established practice in Information Theory
and we only use nHk(T ).

We point out one important difference between empirical entropy and the
Shannon’s entropy defined in the probabilistic setting. Shannon’s entropy is an
expected value taken on an ensemble of strings, while empirical entropy is defined
pointwise for any string and can be used to measure the performance of compres-
sion algorithms as a function of the string structure, thus without any assumption
on the input source. In a sense, compression bounds produced in terms of empirical
entropy are worst-case measures.

Another important difference is that for strings with many regularities the value
Hk(T ) can be o(1) whereas Shannon’s entropy is always a constant. As an example,
for T = (ab)n/2 we have H0(T ) = 1 and Hk(T ) = O((log n)/n) for any k ≥ 1.
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FIG. 1. Example of Burrows–Wheeler transform for the string T = mississippi. The matrix on
the right has the rows sorted in lexicographic order. The output of the BWT is column L; in this
example the string ipssm#pissii.

2.2. THE BURROWS–WHEELER TRANSFORM. Burrows and Wheeler [1994]
introduced a new compression algorithm based on a reversible transformation now
called the Burrows–Wheeler Transform (BWT from now on). The BWT trans-
forms the input text T into a new string that is usually easier to compress. The
BWT consists of three basic steps (see Figure 1):

(1) append at the end of T a special character # smaller than any other text character;
(2) form a conceptual matrix MT whose rows are the cyclic shifts T # in lexico-

graphic order;
(3) construct the transformed text L by taking the last column of matrix MT .

Notice that every column of MT , hence also the transformed text L , is a per-
mutation of T #. In particular, the first column of MT , call it F , is obtained by
lexicographically sorting the characters of T # (or, equally, the characters of L).
Note also that when we sort the rows of MT we are essentially sorting the suffixes
of T because of the presence of the special character #. This shows that there is a
strong relation between MT and the suffix array built on T . The matrix MT has
also other remarkable properties. To illustrate them, we introduce the following
notation:

—C[·] denotes an array of length |�| such that C[c] contains the total number of
text characters which are alphabetically smaller than c.

—Occ(c, q) denotes the number of occurrences of character c in the prefix L[1, q]
of the transformed text L .

As an example, in Figure 1, we have C[s] = 8 and Occ(s, 10) = 4. The following
properties of MT have been proven in Burrows and Wheeler [1994]:

(a) Given the i th row of MT , its last character L[i] immediately precedes its first
character F[i] in the original text T .

(b) Let LF(i) = C[L[i]] + Occ(L[i], i). L F(·) stands for Last-to-First column
mapping since the character L[i] is located in F at position L F(i). For example,
in Figure 1, we have L F(10) = C[s] + Occ(s, 10) = 12 and both L[10] and
F[LF(10)] = F[12] correspond to the first s in the string mississippi.
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(c) If T [k] is the i th character of L , then T [k − 1] = L[LF(i)]. For example, in
Figure 1 T [3] = s is the 10th character of L and we correctly have T [2] =
L[LF(10)] = L[12] = i.

Property (c) makes it possible to retrieve T from L as follows. Initially set i = 1
and T [n] = L[1] (since the first row of MT is #T ). Then, for k = n, . . . , 2
set T [k − 1] = L[LF(i)] and i = LF(i). For example, to reconstruct the text
T = mississippi of Figure 1 we start by setting T [11] = L[1] = i. At the
first iteration (i.e., k = 11 and i = 1), we get T [10] = L[LF(1)] = L[C[i] +
Occ(i, 1)] = L[2] = p. At the second iteration (i.e., k = 10 and i = LF(1) = 2),
we get T [9] = L[LF(2)] = L[C[p] + Occ(p, 2)] = L[7] = p, and so on.

2.3. A BWT-BASED COMPRESSION ALGORITHM. The output of the BWT is
the last column L of the matrix MT . The BWT by itself is not a compression
algorithm since L is just a permutation of T #. However, consecutive characters
in L are adjacent to similar strings in T . Hence, L usually contains long runs
of identical characters and turns out to be highly compressible (see Burrows and
Wheeler [1994], Fenwick [1996], and Manzini [2001] for details).

Several compression algorithms based on the BWT have been proposed since its
introduction. To describe our results, we commit ourselves to a specific algorithm—
called BW RLX—which processes the string L in three steps (see also Manzini [2001,
Sect. 5]):

(1) Use move-to-front encoding [Bentley et al. 1986] to replace each character of L
with the number of distinct characters seen since its previous occurrence. The
encoder maintains a list, called the MTF-list, initialized with all characters of �
ordered alphabetically. When the next character arrives, the encoder outputs its
current rank in the MTF-list and moves it to the front of the list. At any instant,
the MTF-list contains the characters ordered by recency of occurrence. Note
that runs of identical characters in L are transformed into runs of zeroes in
the resulting string Lmtf = mtf(L). The string Lmtf is defined over the alphabet
{0, 1, 2, . . . , |�| − 1}.

(2) Encode each run of zeroes in Lmtf using a run-length encoder. More precisely,
replace any sequence 0m with the number (m + 1) written in binary, least
significant bit first, discarding the most significant bit. For this encoding, we
use two new symbols 0 and 1. For example, 05 is encoded with 01, and 07 is
encoded with 000. Note that the resulting string Lrle = rle(Lmtf) is defined
over the alphabet {0, 1, 1, 2, . . . , |�| − 1}.

(3) Compress Lrle with the following variable-length prefix code. Encode 0 and
1 using two bits (10 for 0, 11 for 1). For i = 1, 2, . . . , |�| − 1, encode the
symbol i using 1 + 2 �log(i + 1)� bits: �log(i + 1)� 0’s followed by the binary
representation of i + 1 that takes 1 + �log(i + 1)� bits. The resulting string is
the final output of algorithm BW RLX and is defined over the alphabet {0, 1}.

Despite the obvious inefficiencies of the above algorithm, we can bound its
compression ratio in terms of the empirical entropy of the input text. In Appendix
B, we show that for any k ≥ 0 and for any text T [1, n]

|BW RLX(T )| ≤ 5 n Hk(T ) + O(log n) (3)

where Hk(T ) is the kth order empirical entropy of T . The bound (3) holds assuming
that k and the alphabet size |�| are constant with respect to the text size n since
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FIG. 2. Algorithm backward search for finding the set of rows prefixed by P[1, p] in T [1, n].
Recall that C[c] is the number of text characters which are alphabetically smaller than c, and that
Occ(c, q) denotes the number of occurrences of character c in L[1, q].

there is a |�|k term hidden in the big-O notation. As we pointed out in Section 2.1,
the term |�|k represents an additional overhead that is naturally associated to the
kth order entropy Hk(T ).

The possibility of bounding the size of BW RLX(T ) in terms of Hk(T ) simul-
taneously for any k ≥ 0, is a remarkable property of this algorithm and shows
the effectiveness of the BWT for data compression. The algorithm BW RLX is
at the hearth of our indexing data structures. This means that any improvement
to the bound (3) automatically leads to an improvement to the space bounds for our
compressed indexes.

3. A Compressed Full-Text Index

We distinguish two phases in the pattern searching process: counting the pattern
occurrences (Sections 3.1 and 3.2), and locating their positions in T (Section 3.3).
This distinction has a twofold advantage: It simplifies the presentation and shows
that the locating phase builds on the top of the counting phase. The additional data
structures needed for locating the pattern occurrences may be dropped if we are
only interested in simple queries like, for example, “Does P occur in T ?” or “How
many times does P occur in T ?”.

3.1. THE BACKWARD SEARCH PROCEDURE. In this section, we describe a sim-
ple algorithm for counting the number of occurrences of P in T using only the
matrix MT introduced in Section 2.2. Our algorithm exploits the following two
properties of the matrix MT : (i) all suffixes of T prefixed by the pattern P occupy
a contiguous set of rows of MT ; (i i) this set of rows has starting position First
and ending position Last, where First is the lexicographic position of the pattern P
among the ordered rows of MT . Clearly, the value (Last − First + 1) gives the total
number of pattern occurrences in T . For example, in Figure 1, for P = si, we have
First = 9 and Last = 10 for a total of two occurrences.

The procedure backward search works in p phases numbered from p to 1 (see the
pseudo-code in Figure 2). Each phase preserves the following invariant: At the end
of the i th phase the parameter First points to the first row of MT prefixed by P[i, p]
and the parameter Last points to the last row of MT prefixed by P[i, p]. We start
with i = p (Step (1)) so that First and Last are determined via the array C defined in
Section 2.2. After the final phase, First and Last delimit the rows of MT containing
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all the text suffixes prefixed by P . The following lemma proves the correctness of
backward search.

LEMMA 3.1. For i = p, p−1, . . . , 2, let us assume that First (respectively, Last)
stores the position of the first (respectively, last) row in MT prefixed by P[i, p].
If P[i − 1, p] occurs in T , then Step (4) (respectively, Step (5)) of backward search
correctly updates the value of First (resp. Last) thus pointing to the first (respectively,
last) row prefixed by P[i − 1, p]. If P[i − 1, p] does not occur in T , after Step (5),
we have Last < First and backward search correctly reports that P does not occur
in T .

PROOF. We only consider the computation of First since the argument for Last
is analogous. Let us inductively assume that First points to the first row of MT
prefixed by the string P[i, p]; the base case (i.e., i = p) is handled by Step (1)
whose correctness follows from the definition of the array C .

We first consider the case that P[i − 1, p] does occur in T . Let MT [s] be the
first row in MT prefixed by P[i − 1, p]. We have MT [s] = cP[i, p]w where
c = P[i − 1] and w is an arbitrary string over � ∪ {#}. At the next iteration, First
should point to row s. Hence, to prove the correctness of Step (4) we need to show
that s = C[c] + Occ(c, First − 1) + 1.

We rotate cyclically to the left the row MT [s] thus obtaining the row MT [s ′] =
P[i, p]wc, for a proper row index s ′. By hypothesis, First is the first row of MT
prefixed by P[i, p] and thus First ≤ s ′. We now show that s ′ is indeed the first
row that follows the position First and ends with the character c (i.e. L[s ′] = c
and L[ j] 	= c for j = First, . . . , s ′ − 1). If not, we would have a row MT [t ′]
occurring betweenMT [First] andMT [s ′] and ending with c.MT [t ′] would have the
form P[i, p]w ′c because the rows between MT [First] and MT [s ′] are all prefixed
by P[i, p]. Since MT [t ′] would precede lexicographically MT [s ′], w ′ would be
lexicographically smaller than w . But then, the row cP[i, p]w ′ would exist in MT
and should occur before MT [s] = cP[i, p]w , thus contradicting the definition
of s.

By property b. of Section 2.2, we know that s = L F(s ′). That is, s = C[c] +
Occ(c, s ′). Since s ′ is the first row following First and ending with c, we have
s = C[c] + Occ(c, First − 1) + 1 as claimed.

To complete the proof, we consider the case in which P[i − 1, p] does not occur
in T . Since the rows between MT [First] and MT [Last] are all prefixed by P[i, p],
the character c = P[i − 1] does not appear at the end of these rows and thus it does
not occur in the substring L[First, Last]. Hence, Occ(c, First − 1) = Occ(c, Last) and
after Step (5) we then have Last < First as claimed.

The running time of the procedure backward search is dominated by the cost of
evaluating Occ(c, q). Therefore, if we build a two-dimensional array OCC such that
OCC[c][q] = Occ(c, q) the procedure backward search runs in O(p) time. Note that
OCC requires O(|�| n log n) = O(n log n) bits. Hence, combining OCC with the
suffix array of T , we get a data structure of size O(n log n) bits with query time
O(p + occ). The use of OCC is a valid alternative to the classical approach of
enriching the suffix array with the LCP array. We summarize these observations
with the following corollary.
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COROLLARY 3.2. Combining the suffix array of T [1, n] with the array OCC
and using the backward search procedure, we get a full-text index of size O(n log n)
bits and query time O(p + occ).

3.2. COUNTING THE PATTERN OCCURRENCES IN O(p) TIME. In this section, we
describe an implementation of the backward search procedure that runs in O(p) time
and uses 5nHk(T )+o(n) bits. Our solution makes use of the string Z = BW RLX(T )
(the output of BW RLX on input T ) and of an auxiliary data structure of size o(n)
supporting the computation of Occ(c, q) in O(1) time. We compute Occ(c, q) using
the technique called word-size truncated recursion (also known as the four Rus-
sians trick, see, e.g., Brodnik and Munro [1999]). The idea is to split the problem
into “small enough” subproblems that are solved by indexing into a table of all
solutions.

We logically partition L into substrings of � = �(log n) characters2 each, called
buckets, and denote them by BLi = L[(i − 1)� + 1, i�], for i = 1, . . . , n/�. This
partition naturally induces a partition of Lmtf into n/� buckets BLmtf

1 , . . . , BLmtf
n/� of

size � too. We assume that each run of zeroes in Lmtf is entirely contained in a
single bucket. The general case in which a sequence of zeroes may span several
buckets is discussed in Appendix C. Under our assumption, the buckets BLmtf

i ’s
induce a partition of the compressed file Z into n/� variable-length compressed
buckets BZ1, . . . , BZn/�, where each BZi is obtained from BLmtf

i applying run-length
encoding and the prefix free code described in Section 2.3.

To compute Occ(c, q) we logically split L[1, q] into the following substrings:

(i) the longest prefix of L[1, q] having length a multiple of �2;
(ii) the longest prefix of the remaining suffix having length a multiple of �;

(iii) the remaining suffix of L[1, q]. Note that this last substring is a prefix of the
bucket containing the character L[q].

We compute Occ(c, q) by summing the number of occurrences of c in each one
of these substrings. For example, if � = 20, we compute Occ(c, 1393) summing the
number of occurrences of c in L[1, 1200], L[1201, 1380], and L[1381, 1393]. To
compute the number of occurrences of c into these substrings, we use the following
arrays and tables.

—For the substring of point (i):
• For j = 1, . . . , n/�2, the array NO j [1, |�|] stores in NO j [c] the number of

occurrences of c in L[1, j �2].
• The array W [1, n/�2] stores in W [ j] the value

∑ j �

h=1 |BZh| which is the sum of
the sizes of the compressed buckets BZ1, . . . , BZ j �. Note that BZ1, . . . , BZ j �

is the portion of the compressed file Z corresponding to L[1, j �2].
—For the substring of point (ii):

• For j = 1, . . . , n/�, the array NO′
j [1, |�|] stores in NO′

j [c] the number of
occurrences of c in the string L[̂ �2 + 1, j �], where ̂ = 
 j/�� − 1. In

2 Since L is a permutation of T # it has length n + 1 and is defined over an alphabet of size |�| + 1.
However, to simplify the notation, in the following, we will ignore this fact and pretend that L has
length n and is defined over an alphabet of size |�|. In addition, to avoid the use of ceilings and floors
we will assume that n is a multiple of �2.
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other words, NO′
j [1, |�|] stores the number of occurrences of each character

between position j� and the closest position to the left that is a multiple of �2.
Note that the string L[̂ �2 + 1, j �] has length at most �2.

• The array W ′[1, n/�] stores in W ′[ j] the value
∑ j

h=̂ �+1 |BZ j | which is the
overall size of the compressed buckets BẐ �+1, . . . , BZ j with ̂ = 
 j/�� − 1.
Note that BẐ �+1 · · · BZ j is the portion of the compressed file corresponding
to L[̂ �2 + 1, j �].

—For the substring of point (iii):
• The array MTF[1, n/�] stores in MTF[ j] a picture of the state of the MTF-list

at the beginning of the encoding of BL j . Note that each picture consists of
|�| log |�| bits.

• Table S stores in the entry S[c, h, BZ j , MTF[ j]] the number of occurrences
of c among the first h characters of BL j , where h ≤ �. This is possible since
BZ j and MTF[ j] completely determine BL j . We wrote S[c, h, BZ j , MTF[ j]]
to make clear how we use table S. However, we emphasize that for each
pair (c, h) table S contains an entry for each possible compressed bucket and
for each possible picture of the state of a MTF-list. Thus, if a compressed
bucket has size at most �′ bits, table S has overall |�| · � · 2�′ · 2|�| log |�|
entries.

To compute Occ(c, q), we first determine the bucket BLi containing the character
c = L[q] by setting i = 
q/��. Then, we compute the position h = q − (i − 1)�
of this character within BLi and the parameter t = 
i/�� − 1. The number of
occurrences of c in the prefix L[1, t�2] (point (i)) is given by N Ot [c]. Subsequently,
we compute the number of occurrences of c in the substring L[t�2 + 1, (i − 1)�]
(point (ii)): this number is zero if (i −1) is a multiple of �; otherwise, it is N O ′

i−1[c].
Finally, we retrieve the compressed bucket BZi from Z . The starting position of BZi
in Z is W [t]+1 if (i −1) is a multiple of �, otherwise it is W [t]+W ′[i −1]+1. Given
BZi we retrieve the number of occurrences of c within L[(i−1)�+1, q] = BLi [1, h]
(point (iii)). This number is the value stored in S[c, h, BZi , MTF[i]]. Summing up,
we have the following result.

LEMMA 3.3. We can compute Occ(c, q) in O(1) time using |Z | + O(n log log n
log n )

bits of storage, where Z is the output of the algorithm BW RLX on input T [1, n].

PROOF. An easy computation shows that each compressed bucket BZi has size
at most �′ = (1+2 �log |�|�)� bits. We choose the parameter � so that � = �(log n)
and �′ = γ log n with γ < 1. Under this assumption, every step of the above
algorithm consists of arithmetic operations or table lookups involving O(log n)-bit
operands. Consequently, the computation of Occ(c, q) takes constant time.

The arrays NO and W take O((n/�2) log n) = O(n/ log n) bits. The arrays
NO′ and W ′ take O((n/�) log(�2)) = O((n/ log n) log log n) bits. The array MTF
takes O((n/�)|�| log |�|) = O(n/ log n) bits. Table S consists of O(�2�′

) log �-bit
entries, and thus it uses O(2�′

� log �) = O(nγ log n log log n) bits, where γ < 1.
Hence, the data structures for computing Occ(c, q) takes O((n log log n)/ log n) bits
and the lemma follows.

Combining Lemma 3.3 with Lemma 3.1 and inequality (3) we get the main result
of this section.
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THEOREM 3.4. Using the backward search procedure we can compute the num-
ber of occurrences of a pattern P[1, p] in T [1, n] in O(p) time using space bounded
by 5nHk(T ) + O(n log log n

log n ) bits, for any k ≥ 0.

In the remainder of the article, we use Opp(T ) to denote the collection of data
structures used by algorithm backward search.3 For future reference, we summarize
the results of this section in terms of the data structure Opp(T ).

THEOREM 3.5. For any string T let Opp(T ) denote the collection of data struc-
tures used by backward search. Using Opp(T ) we can determine the rows of MT
prefixed by any pattern P[1, p] in O(p) time. The size of Opp(T ) is bounded by
5nHk(T ) + O(n log log n

log n ) bits, for any k ≥ 0.

3.3. LOCATING THE PATTERN OCCURRENCES. Assume that, using algorithm
backward search, we determined the range 〈First, Last〉 of rows of the matrix MT
prefixed by the pattern P . We now consider the problem of retrieving the positions
in T of these (Last − First + 1) pattern occurrences. This means that, for i =
First, First + 1, . . . , Last, we want to find the position in T of the suffix which
prefixes the i th row MT [i]. In the following, we write Pos(i) to denote such a
suffix position. For example, in Figure 1, we have Pos(4) = 5 because the fourth
row is prefixed by the text suffix T [5, 11] = issippi.

A fundamental tool for locating the occurrences of P is the following lemma
which shows that, given a row index i , we can compute in constant time the
row index j such that Pos( j) = Pos(i) − 1. In other words, even if we do
not know Pos(i), we can “jump” from the row prefixed by T [Pos(i), n] to the
row prefixed by T [Pos(i) − 1, n]. Since, in some sense, we are moving back-
wards in T the algorithm doing this computation is called backward step (see
Figure 3).

LEMMA 3.6. Given a row index i , algorithm backward step either establishes
that Pos(i) = 1 or returns the row index j such that Pos( j) = Pos(i)−1. Algorithm
backward step uses the data structure Opp(T ) and runs in O(1) time.

PROOF. By properties b. and c. of Section 2.2 we know that j = L F[i] =
C[L[i]] + Occ(L[i], i). Unfortunately Occ(L[i], i) cannot be directly computed
because the character L[i] is not available since L is compressed. Thus, algo-
rithm backward step determines L[i] by comparing Occ(c, i) and Occ(c, i − 1) for
every c ∈ � ∪ {#} (Step (1)). Clearly, the values Occ(c, i) and Occ(c, i − 1)
differ only for c = L[i]. Therefore, the above computation gives us both
L[i] and Occ(L[i], i). If L[i] = # then backward step reports that Pos(i) =
1 (Step (2)). Otherwise, backward step returns j = C[L[i]] + Occ(L[i], i)
(Step (3)). By Lemma 3.3, we know that using Opp(T ) each computation of
Occ() takes constant time. Since |�| = �(1), backward step takes O(1) time as
claimed.

3Opp stands for opportunistic. The concept of opportunistic algorithm has been introduced in Farach
and Thorup [1998] to denote an algorithm which takes advantage of the compressibility of the text to
speed up the search operations. Here, we turn this concept into the one of opportunistic data structure.
Our data structure is opportunistic in the sense that it takes advantage of the compressibility of the
input text to reduce its space usage.
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FIG. 3. Algorithms backward step and get position.

Let η = ⌈
log1+ε n

⌉
. We logically mark the rows of MT corresponding to text

positions of the form 1+ jη, for j = 0, 1, . . . , �n/η�. In other words, we mark each
row r j such that Pos(r j ) = 1 + jη. For each marked row r j we store explicitly its
position Pos(r j ) in a data structure S that supports membership queries in constant
time (see below). Now, given a row index i we compute Pos(i) as follows. If MT [i]
is a marked row, then its position is directly available in S and can be determined in
constant time. Otherwise, we use algorithm backward step to find the row i ′ such that
Pos(i ′) = Pos(i)−1 (Lemma 3.6). We iterate this procedure t times until rowMT [i ′]
is marked; then we retrieve Pos(i ′) from S and we compute Pos(i) = Pos(i ′) + t .
We call this algorithm get position and its pseudo-code is shown in Figure 3.

Note that our marking strategy ensures that a marked row is found in at most
η iterations. Since each iteration takes constant time, a single call to get position
takes O(η) = O

(
log1+ε n

)
time. Retrieving the occ occurrences of P in T takes

O
(
occ log1+ε n

)
time.

The crucial point of algorithm get position is the data structure S storing the
positions of the marked rows. S must be designed carefully in order to use suc-
cinct space and support membership queries in constant time. The design of S
is based (again) upon a bucketing scheme. We partition the rows of MT into
stripes of �(log2 n) rows each. For each stripe, we take all the marked rows
lying in it and store them in a Packet B-tree [Andersson 1996] using their dis-
tance from the beginning of the stripe as the key. Since a stripe contains at most
O(log2 n) keys, each O(log log n) bits long, membership queries take constant
time. Each Packed B-tree uses space proportional to the number of stored keys.
S uses overall O((n/η)(log log n + log n)) bits since with each marked row r j
we also keep the value Pos(r j ) using O(log n) bits. We conclude that algorithm
get position uses O(n/ logε n) bits for S plus the space used by the data structure
Opp(T ).

The parameter ε introduces a time/space tradeoff in our solution: the larger
the ε, the larger the query time and smaller the space. However, since Opp(T )
uses 5nHk(T ) + O(n(log log n/ log n)) space, reducing the space used by S below
O(n(log log n/ log n)) does not reduce the overall asymptotic space usage. For this
reason, the parameter ε should be taken in the range 0 < ε < 1. Summing up, we
have the following result.
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THEOREM 3.7. For any text T [1, n] we can build a compressed index such
that all the occ occurrences of a pattern P[1, p] in T can be retrieved in
O

(
p + occ log1+ε n

)
time, where 0 < ε < 1 is an arbitrary constant chosen

when we build the data structure. The space usage of this data structure is bounded
by 5nHk(T ) + ( n

logε n ) bits, for any k ≥ 0.

Algorithm get position can be improved in order to list all the occurrences of P in
O(p + occ logε n) time using (nHk(T ) + n log log n

logε n ) bits of storage. The improve-
ment is based on two basic ingredients: (i) a generalization of Lemma 3.6 which
makes it possible to move backwards in T by more than one position in O(1) time,
and (ii) a hierarchical marking of the rows of the matrix MT . We do not report here
the details of the improved algorithm since they are rather technical. The interested
reader can find in Ferragina and Manzini [2000, Theorem 3] a description of the
algorithm together with a sketch of the proof of its correctness.

4. Using LZ78-Parsing to Achieve O(p + occ) Query Time

In this section, we describe algorithms and indexing data structures for retrieving the
occ occurrences of a pattern P[1, p] in O(p +occ) time using O(nHk(T ) logε n)+
o(n) bits of storage. The key idea is to replace the logical marking scheme used in
Section 3.3 with a more sophisticated approach based on the LZ78 parsing of the
input text T .

The LZ78 parsing of T is defined inductively as follows [Ziv and Lempel 1978].
Assume we have parsed a prefix of T as the sequence of words T1T2 · · · Ti−1, that
is, T = T1T2 · · · Ti−1T̂i for some text suffix T̂i . The next word in the parsing, say Ti ,
is the longest prefix of T̂i that we can obtain adding a single character to a previous
word or to the empty word. Hence, either |Ti | = 1 or Ti = Tj c for some j < i and
c ∈ �.

Let T = T1T2 · · · Td denote the complete LZ78 parsing of T , and let D =
{T1, T2, . . . , Td}. The set D is usually called the LZ78 dictionary. By construction,
all words in D are distinct, with the possible exception of the last word in the
parsing.4 In addition, the set D is prefix-complete, that is, if Ti ∈ D then all the non-
empty prefixes of Ti also belong to D. The number of words in D can be bounded
in terms of the text size and the kth order empirical entropy of T . In Kosaraju and
Manzini [1999], it is shown that, for any string T [1, n] and for any k ≥ 0, we have

d log d ≤ nHk(T ) + O((n log log n)/log n) . (4)

Since the words in the LZ78 parsing are distinct (except possibly Td), we have
d = O(n/ log n) and thus d log(n/d) = O((n log log n)/ log n). From (4), we get
the following useful inequality

d log n = d log d + d log(n/d) ≤ nHk(T ) + O((n log log n)/ log n) . (5)

Let T = T1T2 · · · Td denote the LZ78 parsing of T and let $ denote a character
not belonging to �. We introduce the new string:

T$ = T1$T2$ · · · $Td$. (6)

4 To simplify the exposition in the following, we will ignore this exception and assume that all words
are distinct.
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The reason for which we introduce T$ is the following. The characters $’s in T$ will
be anchor points. For each $, we store explicitly its position in T , that is, for the $
following Ti we store the value 1+|T1|+ |T2|+ · · ·+ |Ti |. Hence, to determine the
position of a pattern occurrence we only need to determine the position of P with
respect to any one of the $’s. In this respect, the characters $’s play the same role
of the logically marked rows used in Section 3.3. We immediately point out that
storing the positions of the anchor points requires d log n bits; by (5), this amount
of space is bounded by nHk(T ) + o(n) bits.

Given a pattern P , we divide its occurrences in the text T into two subsets:
the occurrences completely contained in a single word Ti , and the occurrences
overlapping two or more words Tj−1Tj · · · Tj+h with h ≥ 0. We deal with this
two subsets of occurrences separately. In Section 4.1, we describe an algorithm
for retrieving the occurrences contained in a single word, and, in Sections 4.2
and 4.3, we deal with the overlapping occurrences. More precisely, in Section 4.2,
we describe a “simple” algorithm for retrieving the overlapping occurrences which
is not optimal by a factor log log n and, in Section 4.3, we show how to refine that
algorithm in order to achieve the desired O(p + occ) time bound.

Before proceeding further, we introduce some additional notation. Let T R
$ denote

the string T$ reversed, that is, T R
$ = $T R

d $ · · · $T R
2 $T R

1 . We write MT R
$

to denote

the cyclic shift matrix associated with the string T R
$ (see Section 2.2). Recall that,

given a pattern P ′ over the alphabet � ∪{$}, using Opp(T R
$ ) we can find in O(|P ′|)

time the range of rows 〈First, Last〉 of the matrix MT R
$

which are prefixed by P ′

(see Theorem 3.5). In Appendix D, we show that the size of Opp(T R
$ ) is bounded

by 5nHk(T ) + O(n log log n
log n ) bits for any k ≥ 0.

4.1. RETRIEVING THE INTERNAL OCCURRENCES. In this section, we describe an
algorithm for retrieving the internal occurrences of P[1, p], that is, the occurrences
that are completely contained in a single word Tj .

Since the dictionary D = {T1, . . . , Td} is prefix-complete, it is customary to
represent it using a trie T with every edge labelled with a single character. Each
node u of T corresponds to the word s(u) spelled out by the root-to-u path in T .
It is easy to see that all nodes descending from u correspond to the words in D
having s(u) as a prefix. Since all words are distinct, every node of T corresponds
to a single word of D. With a little abuse of notation, we will identify a dictionary
word with its corresponding trie node. For example, we write “the subtrie rooted
at Ti ” to denote the subtrie rooted at the node spelling out the dictionary word
Ti . Our algorithm for retrieving the internal occurrences makes use of the trie T
represented in the usual way: every node contains a pointer to each one of its
children. In addition, for i = 1, . . . , d, in the node corresponding to word Ti
we store the value vi = 1 + |T1| + · · · + |Ti−1| which is the starting position
of Ti in T .

Our high-level strategy for finding the internal occurrences of P is the following.
First, we find all LZ78-words Ti1, . . . , Tiz which have P as a suffix. Because of the
prefix-completeness property of D, every other internal occurrence will lie inside a
word Tj prefixed by one of the words Tik above. Hence, we can find all the internal
occurrences by simply visiting the subtries rooted at Ti1, . . . , Tiz . This takes time
proportional to the number of visited nodes, which coincides with the number of
internal occurrences.
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FIG. 4. An example for the listing of the internal occurrences of the pattern P = ab in the text
T = aabaaabababababbabbbaab. We have T$ = a$ab$aa$aba$b$abab$abb$abbb$aab$. The
figure shows a portion of the matrix MT R

$
on the left, and the trie T on the right. The value close

to each trie node is the starting position in T of the corresponding LZ78-word (i.e. for the word Ti

the value vi = 1 + |T1| + · · · + |Ti−1|). Step (1) of get internal determines the three rows of MT R
$

which are prefixed by $P R = $ba: these are rows 6, 7, and 8. The three pointers N [6],N [7],N [8],
shown as dashed arrows, lead to the corresponding trie nodes u, v, w . These nodes spell out the three
words suffixed by P , that is, ab, aab and abab. Step (2) of get internal visits the subtries descending
from these nodes and returns all the internal occurrences. The figure also shows the string T$ with the
internal occurrences underlined. For each internal occurrence we show the node triggering its retrieval.
Notice that the LZ78-word abab contains two occurrences both correctly detected by visiting the two
subtries rooted one at node u and the other at node w .

We now show how to efficiently implement the above strategy. The first step
consists in locating the trie nodes corresponding to the words which have P as
a suffix. We solve this problem using the matrix MT R

$
. Since each row of this

matrix contains a cyclic shift of the string T R
$ , there is a one-to-one correspondence

between the words T1, . . . , Td and the rows of MT R
$

prefixed by the symbol $. In
this correspondence the word Ti is matched to the unique row of MT R

$
prefixed by

$T R
i $ (see Figure 4).5 It is easy to see that the words ending with P are matched to

the rows which have $P R as a prefix. Since the rows of MT R
$

are lexicographically
sorted, these rows are contiguous in the matrix MT R

$
.

This property ofMT R
$

suggests the introduction of an arrayN [1, d] which stores
in N [i] a pointer to the trie node corresponding to the i th row of MT R

$
prefixed

by $. Given the pattern P we use the backward search procedure of Section 3.1
to retrieve the range 〈First, Last〉 of rows of MT R

$
prefixed by $P R . These rows

correspond to the words Ti1, . . . , Tiz ending with P . The trie nodes corresponding
to these words are those pointed by N [First], . . . ,N [Last]. See Figure 4 for
an example.

Our algorithm for retrieving the internal occurrences is summarized in Figure 5.
To prove its correctness, it remains to be shown that each value v j + (|Tik | − p)

5 There is an exception: word T1 is matched to the row prefixed by $T R
1 #.
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FIG. 5. Algorithm get internal for finding the internal occurrences of P[1, p] in T [1, n].

returned at Step (2) is the correct starting position of an occurrence of P in T . To
see this, recall that P is a suffix of Tik . Hence, Tik = w P for some string w of
length |Tik | − p. Assume now that the visit of the subtrie rooted at Tik reaches the
word Tj , and let v j denote the starting position of Tj in T (recall that v j is stored
into the trie node Tj ). We have Tj = Tik w

′ = w Pw ′ for some string w ′. Hence,
the occurrence of P contained in Tj starts at position v j + |w | = v j + (|Tik | − p)
as claimed.

Note that P may occur more than once in a dictionary word. For example, we
could have Tj = wPw ′Pw′′. Our algorithm correctly reports both occurrences of
P . The first one is reported when the algorithm visits the subtrie rooted at the
word w P , the second one when the algorithm visits the subtrie rooted at the word
w Pw ′ P . Summing up, we have the following result.

THEOREM 4.1. Let occI denote the number of internal occurrences of P[1, p] in
T [1, n]. The algorithm get internal retrieves the internal occurrences in O(p + occI )
time. get internal uses space bounded by O(nHk(T )) + O((n log log n)/ log n) bits
for any k ≥ 0.

PROOF. We first analyze the time complexity. In Step (1), we use the
backward search procedure with the Opp(T R

$ ) data structure. By Theorem 3.5, this
takes O(p) time. At Step (2), we output the position of one internal occurrence for
each visited word. Hence, Step (2) takes O(occI ) time overall.

To prove the bound on the space complexity, we observe that get internal
uses storage for the trie T , the array N , the values v1, . . . , vd , and the
data structure Opp(T R

$ ). The first three items all take O(d log n) bits which
is O(nHk(T )) + O((n log log n)/ log n) bits by (5). In Appendix D, we show
that Opp(T R

$ ) takes 5nHk(T ) + O((n log log n)/ log n) bits of storage and the
theorem follows.

4.2. LOCATING THE OVERLAPPING OCCURRENCES: A SIMPLE ALGORITHM. In
this section, we describe a first simple algorithm for retrieving the occurrences of
P which overlap more than one dictionary word. The algorithm described in this
section is not competitive in terms of running time. We describe it since it provides
a simple introduction to the rather complex algorithm described in the next section.
Our starting point is the following observation.

PROPERTY 4.2. An overlapping occurrence of the pattern P[1, p] starts inside
the dictionary word Tj−1, fully overlaps Tj · · · Tj+h−1 and ends inside Tj+h, for
some h ≥ 0, if and only if there exists m, 1 ≤ m < p, such that P[1, m] is a suffix
of Tj−1 and P[m + 1, p] is a prefix of Tj · · · Td.
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FIG. 6. Algorithm get overlapping for finding the overlapping occurrences of P[1, p] in T [1, n].

Reasoning as in Section 4.1, we call procedure backward search($P[1, m]R) over
Opp(T R

$ ) and thus retrieve the rows of the matrix MT R
$

prefixed by $P[1, m]R for
any 1 ≤ m < p. These rows corresponds to the LZ78-words which have P[1, m]
as a suffix. Similarly, calling the procedure backward search(P[m + 1, p]) over
Opp(T ), we can retrieve all suffixes of T which are prefixed by P[m + 1, p]. By
Property 4.2, to find the overlapping occurrences, we need to find which words
ending with P[1, m] are followed by a suffix of T prefixed by P[m + 1, p]. We
solve this problem using a geometric data structure.

For i = 1, . . . , d, let xi denote the row of the matrix MT R
$

prefixed by
$T R

i−1$. Note that xi is the row matched to Ti in the one-to-one correspon-
dence described in Section 4.1. Similarly, let yi denote the row of the ma-
trix MT which is prefixed by Ti Ti+1 · · · Td#. Define the set of 2D-grid points
Q = {(x1, y1), (x2, y2), . . . , (xd, yd)}. Each pair (xi , yi ) “captures” the text sur-
rounding the i th symbol $. We can therefore restate Property 4.2 saying that there
is an occurrence of P starting inside Tj−1 and ending inside Tj+h iff there exists
m such that $P[1, m]R is a prefix of row x j and P[m + 1, p] is a prefix of row y j .
Hence, we need to find all pairs (x j , y j ) such that x j is in the range of (contiguous)
rows prefixed by $P[1, m]R , and y j is in the range of (contiguous) rows prefixed by
P[m +1, p], for some m < p. We can find these pairs with p −1 orthogonal range
queries on the setQ. This is done by the algorithm get overlapping shown in Figure 6.

To prove the correctness of get overlapping, assume the point (x j , y j ) is retrieved
at the mth iteration of Step (3). This means that row x j of MT R

$
is prefixed by

$P[1, m]R and row y j of MT is prefixed by P[m + 1, p]. From Property 4.2
it follows that there exists an occurrence of P that starts inside Tj−1, overlaps
Tj · · · Tj+h−1 and ends inside Tj+h , for some h ≥ 0. Since P[1, m] is a suffix of
Tj−1, this occurrence starts at position v j −m, which is the value correctly returned
at Step (4). With a similar argument one can prove that an occurrence of P that
satisfies Property 4.2 triggers the retrieval of the point (x j , y j ) at the mth iteration
of Step (3).

We highlight the importance of searching for $P[1, m]R in T R
$ instead of

just searching for P[1, m]R in T R . The presence in T R
$ of the anchor $ between

adjacent words implies that, if (x j , y j ) is retrieved at Step (3), the string P[1, m] is
completely contained in Tj−1. This ensures that a pattern overlapping more than two
words is retrieved only once. Assume for example that there is an occurrence such
that P[1, m] is a suffix of Tj−1 and P[1, m ′] is a suffix of Tj−1Tj for some m ′ > m.
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The pair (x j+1, y j+1) relative to the symbol $ that follows Tj is not retrieved by
get overlapping since the row x j+1 of MT R

$
is prefixed by $P[m, m ′]R$P[1, m]R

and not by $P[1, m ′]R (this is because the pattern P cannot contain the special
symbol $).

To analyze the complexity of get overlapping we make use of the following result,
proven in Alstrup et al. [2000].6

THEOREM 4.3. A set of 2D-grid points Q can be preprocessed in a data struc-
tureRT (Q) that occupies O(|Q| logγ |Q|) memory words and supports orthogonal
range queries in O(log log |Q|+ q) time, where q is the number of points retrieved
by a query and γ > 0 is an arbitrary constant chosen when we build the data
structure.

THEOREM 4.4. Let occO denote the number of overlapping occurrences of
P[1, p] in T [1, n]. Algorithm get overlapping retrieves them in O(p log log n +
occO ) time. The data structures used by get overlapping take O(nHk(T ) logε n)+
O(n/ log1−ε n) bits of storage overall, where 0 < ε < 1 is an arbitrary constant
chosen when we build the data structures.

PROOF. We first analyze the time complexity. At Step (1) with a single execution
of backward search with input P[1, p] we compute the values f1, �1, . . . , f p, �p in
O(p) time. Similarly at Step (2), we compute the values f ∗

1 , �∗
1, . . . , f ∗

p , �∗
p in O(p)

time. By Theorem 4.3, Step (3) takes overall O(p log log n + occO ) time, where
occO is the number of retrieved points (i.e., overlapping occurrences). We conclude
that the running time is O(p log log n + occO ).

The algorithm makes use of the data structures Opp(T ), Opp(T R
$ ), RT (Q), and

of the values vi for i = 1, . . . , d. By Theorem 3.5 and Lemma D.2 in Appendix D,
we know that Opp(T ) and Opp(T R

$ ) both use 5nHk(T ) + O((n log log n)/ log n)
bits. By Theorem 4.3, we know that RT (Q) takes O(d logγ d log n) bits which
dominates the O(d log n) bits required for storing the values v1, v2, . . . , vd . By (5)
and taking γ < ε, we get d(logγ d)(log n) = O(nHk(T ) logε n) + O(n/ log1−ε n)
as claimed.

4.3. LOCATING THE OVERLAPPING OCCURRENCES IN O(p + occO ) TIME. In
this section, we describe an algorithm for retrieving the overlapping occurrences
of a pattern P[1, p] in O(p + occO ) time. We distinguish two kinds of patterns
according to their length. If p ≤ (log log n), we say that the pattern is short;
otherwise, we say that the pattern is long. Short and long patterns are retrieved by two
different algorithms which are described in the following subsections. Hereafter,
we assume that log log n is an integer.

4.3.1. Case 1: Long Patterns. We retrieve long patterns using a refinement
of the geometric data structure described in Section 4.2. For k < |Tj | let T −k

j
denote the prefix of the word Tj having length |Tj | − k (i.e. Tj with the last k

6 The result in Alstrup et al. [2000] has been proven for a set of d points on a d × d grid. In our case,
we have d = |Q| points defined on a n ×n grid. Using standard range reduction techniques (see, e.g.,
Alstrup et al. [2000, Sect. 2.2]), we can apply the result of Alstrup et al. [2000] with a slowdown in
the query of O(log log n) time.
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FIG. 7. Algorithm get overlapping long for retrieving the overlapping occurrences of long
patterns.

characters removed), and let T +k
j denote the suffix of Tj having length k (i.e. the

last k characters of Tj ). Note that Tj = T −k
j T +k

j . We make use of the following
property, which refines Property 4.2:

PROPERTY 4.5. An overlapping occurrence of the pattern P[1, p] starts inside
the dictionary word Tj−1 and ends inside Tj+h (for some h ≥ 0) if and only if there
exist i ≥ 0 and k ∈ [0, log log n − 1] such that P[1, i log log n + 1] is a suffix of
T −k

j−1 and P[i log log n + 2, p] is a prefix of T +k
j−1 Tj · · · Td.

Property 4.5 states that within the last log log n positions of Tj−1 lies P[1 +
i log log n] for some i ≥ 0. Taking advantage of Property 4.5, we can find the over-
lapping occurrences of long patterns using the data structure RT of Theorem 4.3
built over a new set of 2D-grid points Q′. Recall that Q contains one grid point
(x j , y j ) for each anchor $ in T$. The new set Q′ contains log log n points for each
anchor. The idea is to define one grid point for each one of the log log n positions
immediately preceding an anchor.

Formally, for each word Tj−1 and for each k ∈ [0, log log n−1], with k < |Tj−1|,
we consider the pair of strings (T −k

j−1, T +k
j−1 Tj · · · Td). From the prefix-completeness

property of the LZ78 dictionary, the string T −k
j−1 is a dictionary word as well. Let x

be the row of MT R
$

prefixed by ($T −k
j−1$)R , and let y be the row of MT prefixed by

T +k
j−1 Tj · · · Td . We insert in Q′ the 2D-grid point p j,k = (x, y) and associate with

it the value v j,k = 1 + |T1| + · · · + |Tj−1| − k, which is the starting position of
T +k

j−1 Tj · · · Td in T .
Having defined Q′, we find the overlapping occurrences by executing

O(p/ log log n) range queries on RT (Q′), instead of p queries on RT (Q). The
reason is that now we can consider only the splitting of P at positions of the form
1 + i log log n for i = 0, 1, . . . , �p/(log log n)�. The resulting algorithm, called
get overlapping long, is shown in Figure 7.

THEOREM 4.6. Let occO denote the number of overlapping occurrences of a
long pattern P[1, p] in T [1, n]. Algorithm get overlapping long retrieves them in
O(p + occO ) time using O(nHk(T ) logε n)+ O(n/ log1−ε n) bits of storage, where
0 < ε < 1 is an arbitrary constant chosen when we build the data structures.
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PROOF. We first prove the correctness of the algorithm. Assume that an oc-
currence of P overlaps two or more dictionary words. By Property 4.5 there exist
i , j , and k ∈ [0, log log n − 1] such that P[1, i log log n + 1] is a suffix of T −k

j−1
and P[i log log n + 2, p] is a prefix of T +k

j−1 Tj · · · Td . By construction the set Q′
contains a point p j,k corresponding to the pair of strings (T −k

j−1, T +k
j−1 Tj · · · Td).

Since $P[1, i log log n + 1]R is a prefix of ($T −k
j−1$)R , and P[i log log n + 2, p]

is a prefix of T +k
j−1 Tj · · · Td , point p j,k will be retrieved at Step (3) of algo-

rithm get overlapping long when h = i log log n + 1. It is easy to see that the value
v j,k − (i log log n + 1) returned at Step (4) is the correct starting position of the
occurrence.

Conversely, assume that the point (x, y) is retrieved at the i-th iteration of Step (3).
This means that row x of MT R

$
is prefixed by the string $P[1, h]R and row y of

MT is prefixed by P[h + 1, p], where h = i log log n + 1. In addition, there exist
j, k such that row x of MT R

$
is prefixed by ($T −k

j−1$)R , and row y of MT is prefixed
by T +k

j−1 Tj · · · Td . We conclude that P[1, h] is a suffix of T −k
j−1 and P[h + 1, p]

is a prefix T +k
j−1 Tj · · · Td . Hence, (x, y) corresponds to an occurrence of P whose

starting position is correctly reported at Step (4).
To analyze the time and space complexity of get overlapping long, we first observe

that Q′ contains O(d log log n) points. From Theorem 4.3, we get that RT (Q′)
uses O(d(logγ n) log log n) memory-words and answers orthogonal range-queries
in O(log log n +q) time, where q is the number of retrieved points. Hence, Step (3)
takes overall O(
 p

log log n � log log n + occO ) = O(p + occO ) time. Since Steps (1)
and (2) take O(p) time, and Step (4) takes O(occO ) time, we conclude that the
running time of get overlapping long is O(p + occO ) as claimed.

Reasoning as in the proof of Theorem 4.4 we get that the space complexity of
the algorithm is dominated by the storage of the data structure RT (Q′) which
takes overall O(d(logγ n)(log n) log log n) bits. Using (5) and taking ε > γ , we get
d(logγ n)(log n) log log n = O(nHk(T ) logε n) + O(n/ log1−ε n) as claimed.

4.3.2. Case 2: Short Patterns. We now consider the retrieval of the overlapping
occurrences when the pattern P[1, p] is short, that is, p < (log log n). The key
observation here is that there cannot be too many of such occurrences and it is
therefore feasible to store explicitly their positions in T .

Let S = {p1, p2, . . . , p�} denote a lexicographically ordered list of all short
patterns which overlap two or more words. We build an array AS contain-
ing the positions in T of all overlapping occurrences of p1, followed by the
positions of all overlapping occurrences of p2, and so on. Note that at most
O((log log n)2) occurrences of short patterns may overlap any given word bound-
ary since there are O(log log n) possible starting positions before the boundary and
O(log log n) possible ending positions after the boundary. Since there are d−1 word
boundaries, the array AS contains (d(log log n)2) entries each requiring O(log n)
bits. Hence the array AS takes overall O(d log n(log log n)2) bits of storage.
By (5), this amount is bounded by O(n Hk(T ) (log log n)2)+O(n(log log n)3/ log n)
bits.

To access the array AS , we build a table TS indexed by all possible short
patterns, which are O(|�|log log n) in total. Table TS is defined as follows: Given a
short pattern P:
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(1) if P ∈ S, then TS[P] = (b, e), where AS[b],AS[b + 1], . . . ,AS[e] are the
positions of the overlapping occurrences of P in T ;

(2) if P 	∈ S, then TS[P] = (0, 0).

Note that TS requires O(|�|log log n log n) = O(polylog(n)) bits of storage. Now,
given a short pattern P , we can list its overlapping occurrences in T by performing
one access to TS and occO accesses to AS . Since these operations involve O(log n)
bits operands, the running time of this procedure is proportional to the number of
overlapping occurrences.

THEOREM 4.7. If the pattern P[1, p] is short, we can retrieve the occO over-
lapping occurrences of P in T [1, n] in O(p + occO ) time. The data structures
supporting the retrieval of short patterns take overall O(nHk(T ) (log log n)2) +
O(n(log log n)3/ log n) bits of storage.

Finally, combining Theorem 4.1 (for the retrieval of the internal occurrences)
with Theorems 4.6 and 4.7 (for the retrieval of the overlapping occurrences), we
get the following result.

THEOREM 4.8. For any text T [1, n] we can build a compressed full-text
index with O(p + occ) query time. The size of the index is bounded by
O(nHk(T ) logε n) + O(n/ log1−ε n) bits for any k ≥ 0, where 0 < ε < 1 is
an arbitrary positive constant chosen when we build the index.

5. Conclusions and Open Problems

In this article, we described two full-text indexes whose size is bounded in terms
of the kth order empirical entropy of the indexed text. This result shows that it
is possible to simultaneously compress and index textual data. Subsequent to our
work, there have been several new results on compressed full-text indexes. A new
ingredient of recent research has been a greater attention to the influence of the
alphabet size |�| on the space and time bounds. The bounds given in this article
assume that the alphabet size is constant with respect to n. Hidden in the big-O
notation, there is an exponential dependence on the alphabet size for the space
bounds, and a linear dependence on the alphabet size for the time bounds. The
recent research on compressed indexes has produced data structures that are more
“alphabet-friendly” and achieve various tradeoffs between space usage and query
time [Grossi et al. 2003; Rao 2002; Sadakane 2002, 2003; Grabowski et al. 2004;
Navarro 2004; Mäkinen et al. 2004; Mäkinen and Navarro 2004].

Currently, the most space economical compressed indexes [Grossi et al. 2003;
Ferragina et al. 2004] take nHk(T ) + o(n) bits for k < α log|�| n with α < 1.
These data structures report the pattern occurrences in O(log |�|(p +polylog(n)+
occ log2 n/ log log n)) time. These “second generation” compressed indexes make
use of new algorithmic tools such as succinct dictionaries [Raman et al. 2002],
wavelet trees [Grossi et al. 2003] and compression boosting [Ferragina et al. 2005].

Despite these recent developments, the field of compressed indexes still offers
many challenging open problems. For example, it is still open whether we can
achieve O(p + occ) query time using O(nHk(T )) + o(n) bits of storage. Another
challenging question is how locality of reference may be introduced in compressed
indexes to take advantage of the blocked access to disk memory. We aim at achieving
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O(p + occ/B) I/Os for the pattern search, where B is the disk-page size. Such an
index might compete successfully with the String B-tree [Ferragina and Grossi
1999] that is the I/O-fastest full-text index but uses �(n log n) bits of storage.
Finally, it would be interesting to extend the operations supported by compressed
full-text indexes to include text updates, regex, and approximate searches. Some
preliminary results in this direction are reported in Ferragina and Manzini [2000],
Chan et al. [2004], Hon et al. [2004a], and Huynh et al. [2004].

Appendix

A. Some Properties of the Empirical Entropy Hk(T )

A.1. Hk(T ) VERSUS Hk(T R). Let T R denote the string T reversed. In gen-
eral Hk(T ) is different from Hk(T R); however, these two values cannot be too far
away: In this section, we show that their difference is bounded by O((log n)/n).
For any string w of length k > 0, we define mw as the number of occurrences of
w in T [1, n]T [1, k − 1]. The value mw can be seen also as the number of occur-
rences of w in T counting also the occurrences which wrap around the boundaries
of T . For example, for T = aabaa, we have maa = 3, and maaa = 2. Note that∑

w∈�k mw = n. We define the value Ĥ k(T ) as

Ĥ k(T ) = −1

n

∑
w∈�k

mw

[
h∑

i=1

mwαi

mw
log

(mwαi

mw

)]
. (7)

The reason for which we introduce Ĥ k(T ) is that its value does not change if we
reverse the input string.

LEMMA A.1. For any k > 0 and for any string T , Ĥ k(T ) = Ĥ k(T R).

PROOF. Let Fk(T ) = ∑
w∈�k mw log mw . A simple algebraic calculation shows

that Ĥ k(T ) = Fk+1(T ) − Fk(T ). Since mw is equal to the number of occurrences
of w R in T R , we have Fk(T ) = Fk(T R). Hence,

Ĥ k(T ) = Fk+1(T ) − Fk(T ) = Fk+1(T R) − Fk(T R) = Ĥ k(T R).

LEMMA A.2. For any k > 0 and for any string T [1, n], we have

Hk(T ) ≤ Ĥ k(T ) ≤ Hk(T ) +
(

k

n

)
log(ne).

PROOF. Let t1, t2, . . . , th be non negative values and let t = ∑h
i=1 ti . We define

G(t1, t2, . . . , th) = −
h∑

i=1

ti log

(
ti
t

)
. (8)

Clearly G(t1, . . . , th) ≥ 0 and the value G(t1, . . . , th) does not change if we permute
the positions of the variables ti ’s. Moreover, using elementary calculus one can
prove that

G(t1, t2, . . . , th) ≤ G(t1 + 1, t2, . . . , th) (9)
≤ G(t1, t2, . . . , th) + log(1 + t1 + · · · + th) + log e. (10)
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By (2) and (7) we have that using G we can rewrite the values Hk(T ) and Ĥ k(T ) as

Hk(T ) = 1

n

∑
w∈�k

G(nwα1, . . . , nwαh ), (11)

Ĥ k(T ) = 1

n

∑
w∈�k

G(mwα1, . . . , mwαh ). (12)

By construction, for any string w and for any character αi we have mwαi ≥ nwαi .
We also have ∑

w∈�k

∑
αi ∈�

nwαi = n − k,
∑

w∈�k

∑
αi ∈�

mwαi = n.

This means that starting from Hk(T ) we can get the value Ĥ k(T ) increasing k
terms nwαi by one. These terms correspond to the strings which wrap around T ’s
boundaries (these strings are counted in Ĥ k(T ) but not in Hk(T )). By (9), we see
that increasing a term nwα j by one never decreases G and increases it by at most
log(1 + ∑

i nwαi ) + log e. Since (1 + ∑
i nwαi ) ≤ n, we conclude that k increments

can increase G by at most k log(ne) and the lemma follows.

THEOREM A.3. For any fixed k ≥ 0 and for any string T [1, n], we have

nHk(T ) − O(log n) ≤ nHk(T R) ≤ nHk(T ) + O(log n).

PROOF. For k = 0 we have H0(T ) = H0(T R). For k > 0, using Lemmas A.1
and A.2, we get

nHk(T R) ≤ nĤ k(T R) = nĤ k(T ) ≤ nHk(T ) + O(log n).

To complete the proof, we simply replace T R with T .

A.2. Hk(T ) VERSUS H∗
k (T ). The empirical entropy Hk is not the only reason-

able measure of the compressibility of a string. Recalling the function G defined
by (8), we define

G∗(t1, . . . , th) =
{

1 + �log(t1 + · · · + th)� if∃i : ti 	= 0 and t j = 0 for j 	= i,
G(t1, . . . , th) otherwise.

The kth order modified empirical entropy H∗
k (T ) was defined in Manzini [2001] as

H∗
k (T ) = 1

n

∑
w∈�k

G∗(nwα1, . . . , nwαh ). (13)

The value H∗
k (T ) represents the maximum compression we can achieve using for

each symbol a code which only depends the k immediately preceding k symbols,
with the additional assumption that the coding of a string takes at least enough bits
to write down its length in binary. This additional assumption makes nH∗

k (T ) a
more realistic lower bound than nH∗

k (T ). The modified empirical entropy H∗
k (T )

has been used in Manzini [2001] and Ferragina et al. [2005] for the analysis of
BWT-based compression algorithms. The following lemma bounds the entropy
H∗

k (T ) in terms of Hk(T ).
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LEMMA A.4. For any fixed k ≥ 0 and for any string T [1, n] ,

nHk(T ) ≤ nH∗
k (T ) ≤ nHk(T ) + O(log n).

PROOF. Comparing (11)–(12) with (13), we see that

nH∗
k (T ) − nHk(T ) =

∑
w∈�k

[G∗(nwα1, . . . , nwαh ) − G(nwα1, . . . , nwαh )].

Since G∗(t1, . . . , th) ≥ G(t1, . . . , th) and G∗(t1, . . . , th) > G(t1, . . . , th) implies
G(t1, . . . , th) = 0 we have

0 ≤ nH∗
k (T ) − nHk(T ) ≤

∑
w∈�k

(1 + �log n�) ≤ |�|k(1 + �log n�).

B. The Compression Ratio of Algorithm BW RLX

In this appendix, we prove the bound (3) on the compression achieved by the algo-
rithm BW RLX. Our proof is based on some results about BWT-based compressors
given in Manzini [2001].

Following the notation in Manzini [2001, Sec. 5], we denote by mtfπ the move-
to-front encoder in which the recency list initially contains the alphabet symbols
ordered according to the permutation π . We define the algorithm Aπ = mtfπ +
rle+PC as the algorithm that encodes a given string s using mtfπ followed by rle
(run-length encoding) followed by PC (the variable length prefix code described in
Section 2.3). For any string s, we denote with π (s) the ordering which maximizes
the output size of Aπ and define A∗ = mtfπ (s) + rle + PC. Note that algorithm A∗
first computes the worst case ordering π (s) and then uses it as the initial ordering for
move-to-front encoding. Although the definition of A∗ may appear rather unnatural,
its worst-case structure makes it a very useful tool.

By Lemma 5.7 in Manzini [2001], we know that for every k, the output size
|A∗(bwt(T ))| is bounded by 5nH∗

k (T )+ gk , where H∗
k (T ) is the modified empirical

entropy defined in Section A.2 and gk = |�|k+1 log |�|. Since A∗ uses the worst
possible ordering, the algorithm BW RLX will certainly produce an output of smaller
size. Hence, for any string T [1, n], we have

|BW RLX(T )| ≤ |A∗(bwt(T ))| ≤ 5nH∗
k (T ) + gk .

Using Lemma A.4, we get the desired bound

|BW RLX(T )| ≤ 5nHk(T ) + O(log n) .

C. Managing Long Runs of Zeroes

In this appendix, we discuss the computation of Occ(c, q) in the general case in
which Lmtf contains one or more runs of zeroes that cross the border of the buckets
BLmtf

i ’s. Recall that run-length encoding replaces each (maximal) run of zeroes 0m

in Lmtf with the string bin(m) defined as the binary representation of (m + 1) in
reverse order (least significant bit first) and with the most significant bit discarded.
This encoding is also known as 1/2 encoding since if bin(m) = b0b1 · · · bk , with
bi ∈ {0, 1}, then m = ∑k

j=0(b j + 1)2 j . Because of this property, from bin(m), we
can retrieve 0m by simply replacing each bit b j with a sequence of (b j +1)2 j zeroes.
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FIG. 8. Procedure for computing the number of occurrences of a character c among the first j
characters of the i th bucket BLi .

Suppose now that a sequence of a +b zeroes is split between two buckets: let say
BLmtf

i−1 ends with a zeroes and BLmtf
i starts with b zeroes (a similar argument holds for

a sequence overlapping an entire bucket). We define the compressed buckets BZi−1
and BZi as follows: We know that run-length encoding transforms the sequence
0a+b into the string σ = bin(a + b). We interpret every digit of σ according to the
1/2 decoding scheme mentioned above and we assign to BZi−1 the shortest prefix
of σ whose 1/2 decoding is greater or equal than a. The remaining digits of σ are
assigned to BZi . For example, if a = 3 and b = 14, we have σ = bin(17) = 0100.
We assign to BZi−1 the symbols 01 (whose 1/2 decoding is 05), and to BZi the
symbols 00 (whose 1/2 decoding is 03).

It should be clear that table S introduced in Section 3.2 can be used to count
the number of occurrences of any character in a prefix of BLi−1 but the same table
does not work for BLi . Indeed, BZi−1 is a faithful7 encoding of BLmtf

i−1 whereas
the leading b zeroes of BLmtf

i are usually not faithfully encoded by the digits of σ
assigned to BZi . In the above example we have b = 14 and we have assigned to
BZi the symbols 00 whose 1/2 decoding is 03; hence, there are 11 missing zeroes.
It is easy to prove that the digits of σ assigned to BZi never encode more than b
zeroes and therefore there is always a non-negative number of missing zeroes.

These observations suggest the introduction of an array MZ[1, n/�] such that
MZ[i] contains the number of leading zeroes of BLmtf

i not encoded by BZi . In the
above example, we would have MZ[i] = 11. Note that, if α is the first symbol in
MT F[i] (i.e., the first character in the MTF-list when the i th bucket is encoded),
then BLi consists of MZ[i] copies of α followed by the decoding of BZi . It follows
that we can compute the number of occurrences of any character c among the first
j characters of BLi using the procedure described in Figure 8. Since the array MZ
takes O((n/�) log �) = O((n/ log n) log log n) bits, its introduction does not change
the asymptotic space used by the procedure backward search.

D. Size of Opp(T R
$ )

Let T [1, n] be a string over the alphabet � = {α1, . . . , αh}, and let T = T1T2 · · · Td
denote its LZ78 parsing. We recall that T R

$ is defined as T R
$ = $T R

d $T R
d−1$ · · · $T R

1
where $ is a character not belonging to �. In order to upper bound the size of
Opp(T R

$ ), we first need a preliminary lemma relating the entropies of T and T$.

7 Note that BZi−1 encodes BLmtf
i−1 possibly followed by some additional zeroes. However, these addi-

tional zeroes do not cause any problem in the use of table S because S is queried with positions lying
within the bucket and therefore to the left of the additional zeroes.
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LEMMA D.1. For any fixed k ≥ 0 and for any string T [1, n], we have

|T$|Hk(T$) ≤ nHk(T ) + O(n/ log n) .

PROOF. We recall that |T$|Hk(T$) is a lower bound to the output size of any
uniquely decodable encoder in which the code for each symbol only depends on the
symbol itself and on the k preceding symbols. We now define an encoder, called
Aux, which has this property and therefore produces an output Aux(T$) whose
size is greater than |T$|Hk(T$). We prove the lemma by showing that |Aux(T$)| ≤
nHk(T ) + O(n/ log n).

For any w ∈ �k and for any αi ∈ �, let twαi denote the number of occurrences of
the string wαi in T$, thus tw = ∑

i twαi . The algorithm Aux encodes each character
α ∈ T$ as follows:

(1) if both α and the k characters preceding it are in �, then α is encoded using
− log(twα/tw ) bits, where w is the length-k string preceding α;

(2) otherwise, α is encoded using log(|�| + 1) bits.

In other words, if α and the k characters preceding it are in � we use the best possible
conditional code, otherwise (that is, if α or one of the k characters preceding it is
the $ character) we use a code of length equal to the logarithm of the alphabet size
(which means no compression at all). Note that Aux is only an ideal compressor
since a code may consists of a fractional number of bits. However, it is still true
that |Aux(T$)| ≥ |T$|Hk(T$).

From the definition of Aux, we get

|Aux(T$)| ≤ −
[ ∑

w∈�k

h∑
i=1

twαi log

(
twαi

tw

)]
+ (k + 1)d log(|�| + 1).

Recalling that d = O(n/ log n), and using the function G defined by (8), we have

|Aux(T$)| ≤
[ ∑

w∈�k

G(twα1, . . . , twαh )

]
+ O(n/ log n) .

We complete the proof showing that∑
w∈�k

G(twα1, . . . , twαh ) ≤ nHk(T ).

Let nwαi denote the number of occurrences of the string wαi in T (by construction
wαi does not contain the special character $). Since every occurrence of wαi in T$

corresponds to an occurrence in T , we have nwαi ≥ twαi . By the proof of Lemma A.2,
we know that G is monotonically increasing in each of its components. Hence,
we have ∑

w∈�k

G(twα1, . . . , twαh ) ≤
∑

w∈�k

G(nwα1, . . . , nwαh ) = nHk(T ).

LEMMA D.2. For any k ≥ 0 and for any text T [1, n], the space used by the
data structure Opp(T R

$ ) is bounded by 5nHk(T ) + (n log log n
log n ) bits.
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PROOF. Since |T R
$ | = n + d and d = O(n/ log n), by Theorem 3.5, we get

∣∣Opp
(
T R

$

)∣∣ ≤ 5
∣∣T R

$

∣∣Hk
(
T R

$

) +
(

n
log log n

log n

)
.

Using Theorem A.3 and Lemma D.1, we get

∣∣Opp
(
T R

$

)∣∣ ≤ 5|T$|Hk(T$) +
(

n
log log n

log n

)

≤ 5nHk(T ) +
(

n
log log n

log n

)
,

as claimed.
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