
Indexing Large Human-Motion Databases

ABSTRACT
Data-driven animation has become the industry standard for

computer games and many animated movies and special

effects. In particular, motion capture data recorded from live

actors, is the most promising approach offered thus far for

animating realistic human characters. However, the

manipulation of such data for general use and re-use is not yet a

solved problem. Many of the existing techniques dealing with

editing motion rely on indexing for annotation, segmentation,

and re-ordering of the data. Euclidean distance is inappropriate

for solving these indexing problems because of the inherent

variability found in human motion. The limitations of

Euclidean distance stems from the fact that it is very sensitive

to distortions in the time axis. A partial solution to this

problem, Dynamic Time Warping (DTW), aligns the time axis

before calculating the Euclidean distance. However, DTW can

only address the problem of local scaling. As we demonstrate

in this paper, global or uniform scaling is just as important in

the indexing of human motion. We propose a novel technique

to speed up similarity search under uniform scaling, based on

bounding envelopes. Our technique is intuitive and simple to

implement. We describe algorithms that make use of this

technique, we perform an experimental analysis with real

datasets, and we evaluate it in the context of a motion capture

processing system. The results demonstrate the utility of our

approach, and show that we can achieve orders of magnitude of

speedup over the brute force approach, the only alternative

solution currently available.

Keywords

Motion Capture, Animation, Time Series, Indexing

1. INTRODUCTION
Data-driven animation has now become the industry

standard for the production of computer games and many

animated movies and special effects. The most promising

and widely applied approach so far is the use of motion

capture data. These are motion data recorded from live

actors, which can subsequently be used for animating

realistic human characters. Nevertheless, the manipulation

of such data for general use and re-use is still an open

problem. Among the issues at hand, the semi-automatic

annotation [3][6] and re-ordering of motion data

[4][22][23][25] are appearing in animation research

conferences and slowly trickling their way into games

where realism, interactivity, and speed drive innovation.

Motion capture data, in its rawest form, is recorded with

a few technologies, the most popular of which appears to be

optical (see Vicon [38] and Motion Analysis [39] products)

in which digital cameras record small reflective markers

fixed to the human actor as he/she moves. Through multiple

cameras and triangulation, three dimensional position traces

for the markers are resolved faithfully. The markers can

then be identified (as outer left knee, for example) and

filtered. Motion capture allows the animation of a 3D

model, where the data is mapped to the skeleton of the

desired character and body orientations are determined

(Figure 1).

Figure 1: (Top Left) An actor being recorded using an Ascension

magnetic system while playing table tennis. In post-processing,

the data recorded from the actor's motion is manually segmented

into motion time series (Bottom) and placed in a library that is

later used to animate the simulated player shown (Top Right).

In practical applications, most motion capture data is

stored in segmented sequences in a motion library, for

example a modern sports game may contain thousands of

* Dr. Keogh is supported by NSF Career Award IIS-0237918.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Very Large Data Base Endowment. To copy otherwise,

or to republish, requires a fee and/or special permission from the

Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

Eamonn Keogh* Themistoklis Palpanas Victor B. Zordan Dimitrios Gunopulos Marc Cardle

Department of Computer Science

University of California, Riverside

{eamonn, themis, vbz, dg}@cs.ucr.edu

Computer Laboratory

University of Cambridge

mpc33@cl.cam.ac.uk

0 5 10 15 20 25 30 35 40
-1

0

1

motion data “clips”. The system, i.e. game engine in this

case, selects and plays motions from the database [37]. Our

approach aids in the creation and manipulation of such

libraries by quickly finding instances of a given motion

segment in the complete raw-data repository, e.g., kicks or

punches in the case of a hand-to-hand combat game. In

addition to speeding up brute force searches, our main

contribution is finding examples independent of the speed

in which the actor performed these behaviors.

A major difficulty in indexing and matching motion

streams (hereafter used interchangeably with “time series”)

is the variability in the speed of human motion. For

example, an actor may perform a fast or slow punch. Such

variability can manifest itself as uniform scaling, a global

stretching or shrinking of the time series (i.e., with respect

to the time axis). In this work we introduce the first

indexing technique to support uniform scaling. Our

contributions can be summarized as follows.

• We motivate the need for similarity search under uniform

scaling, and differentiate it from Dynamic Time Warping

(DTW). Although the superiority of DTW over Euclidean

distance is becoming increasing apparent [1][9][18][35],

the need for similarity search which is invariant to

uniform scaling is not well understood.

• We introduce the first known lower bounding technique

for uniform scaling. This technique allows us to index the

time series in order to achieve fast similarity search under

uniform scaling.

• We demonstrate the efficiency and effectiveness of our

techniques with a comprehensive empirical evaluation on

real datasets. We also evaluate our techniques using a

motion capture processing system. These experiments

validate the utility of the approach we propose.

The rest of this paper is organized as follows. In Section 2

we motivate the need to index motion streams under

uniform scaling. Section 3 considers related work on

indexing time series. We introduce the problem at hand

formally in Section 4, before introducing our solution in

Section 5. In Section 6 we describe algorithms that solve the

problem in secondary storage. Section 7 offers a

comprehensive empirical evaluation of our technique, and

we conclude in Section 8.

2. MOTIVATING THE NEED FOR

UNIFORM SCALING
In addition to the classic Euclidean and Dynamic Time

Warping distance measures, the last decade has seen the

introduction of dozens of new similarity measures for time

series. Recent empirical studies, however, suggest that the

majority of these measures are of dubious utility for real

world problems [21]. We will therefore take the time to

motivate the need for uniform scaling in our domain.

An important task in motion editing is the concatenation

of short motion clips into a longer, plausible motion

[30][37]. For clarity let us consider a concrete example.

Imagine we have a motion sequence that contains several

distinct motions, and then ends with a particular action, the

drawing and aiming of a gun. We would like to append to

this action sequence another sequence where the actor falls

to the ground. While we have a library of perhaps thousands

of sequences labeled “falling”, we must decide to which of

these we should append our current sequence. The

challenge in this case is to make sure that the transition is as

smooth and natural as possible. For example, we do not

want the character’s left arm to instantaneously move from

his/her side to above his/her head.

A simple way to guarantee natural plausible motion is to

ensure that the suffix of the first motion, lets say the last n

data points, is an approximate match to the prefix of the

candidate sequence, the first n data points. This way, instead

of concatenating the two sequences end to end, they are

allowed to overlap by n data points. Averaging or time

warping can be used to smooth out any slight

inconsistencies within the n overlapping data points. Figure

2 illustrates the basic idea with a simple problem, taken

from a video segment. Although this example considers a

one-dimensional time series, it can easily be extended to

multi-dimensional time series, by combining the results for

each degree of freedom, possibly weighted by their

perceptual importance (i.e., arm motion may be more

important than leg motion in some situations).

Figure 2: We can create a smooth transition between two video

clips (Top and Center), by ensuring the prefix of one

approximately matches the suffix of the other (Bottom).

In Figure 2, our contrived example happens to have a

closely matching prefix/suffix pair. More generally

however, the motion streams may occur at different speeds.

 .

A video sequence ending

with the actor drawing

and aiming a gun.

The Y-axis motion

stream of the actor’s right

hand.

A video sequence

beginning with the

actor aiming a gun, and

leading to a falling

down sequence

The Y-axis motion

stream of the actor’s

right hand.

By aligning the motion streams

carefully, we can also blend the

original video and achieve smooth

natural motion.

Although the animator can trivially recognize this when

he/she see it, human inspection does not scale to large

databases. The importance of (time) scale invariance stems

from the fact that small differences in scaling can greatly

confuse distance calculations. This problem arises in the

motion capture domain, and has also been observed in other

similar domains. For example, in music retrieval has been

reported [9]: “To achieve tempo invariance, the targets are

stretched by 19 different scaling factors from 0.5 to 2.0.”

Similar remarks can be found in the literature of gait

analysis [14], handwritten archive indexing [28],

bioinformatics [1] and data mining [8].

We can reiterate here the utility of uniform scaling with a

simple experiment. We created 3 pairs of time series, where

each pair was created using one of 3 functions, sine wave,

sawtooth I, and sawtooth II. Within each pair, the only

difference between the time series is that we allow their

length to vary in the range 256 ± 16. We clustered them

using two different distance measures, the classic Euclidean

distance [6][12][16][19][20][24], and using uniform scaling,

where we search over the best possible scaling, truncating

off any unmatched suffix (see Section 4 for more formal

details). The results are shown in Figure 3.

If these synthetic time series had been, examples of an

actor’s gait, then using the Euclidean distance, a video clip

corresponding to sequence 2 would be concatenated to its

closest match, sequence 5. This would be a very abrupt and

noticeable transition. In contrast, under uniform scaling,

sequence 2 would be concatenated to sequence 1. In this

case, the only difference in the resulting animation would be

a slight change of pace (if we chose not to permanently

rescale one of the sequences). This is why automatic

matching of motion capture data must consider uniform

scaling.

Figure 3: (Left) A clustering of 6 synthetic time series using

Euclidean distance, and (Right) uniform scaling. Subjectively and

objectively, the clustering on the right is correct.

Note that the generally useful tool of DTW is not the

answer to this problem [13][18][35]. On the dataset above

DTW is about 200 times slower than uniform scaling, and

returns a dendrogram (i.e., a visual representation of the

result of a hierarchical clustering, like the ones shown in

Figure 3) of ((2,((4,(6,3)),5)),1), which is no better than the

Euclidean distance dendrogram. The problem is that DTW

is designed to consider only local adjustments of the time

axis, whereas it is global adjustments that are required to

solve our problem.

To further demonstrate the difference between DTW and

uniform scaling, we perform the following experiment. We

record twice a one second snippet of an individual’s

electrocardiogram. On the first occasion, the time series

captures two heartbeats, while on the second (during

exercise), captures three heartbeats. When we use DTW to

measure the similarity of the two sequences, we get

meaningless results, because DTW must match every point,

and there is simply no sensible way to map two heartbeats

to three (Figure 4(left)). In contrast, uniform scaling can

stretch the faster heartbeat until finding a near perfect

alignment (Figure 4(right)). As mentioned above, DTW can

be useful to remove subtle local differences after uniform

scaling has located the best global match [9].

3. RELATED WORK
The problem of indexing large time series databases has

attracted great interest in the database community, and, at

least for the Euclidean distance measure, may now be

regarded as a solved problem [6][12][16][19][20][29].

However, in recent years, there has been an increasing

awareness that Euclidean distance is inappropriate for many

real world applications [1][9][35]. The limitations of

Euclidean distance stems from the fact that it is very

sensitive to distortions in the time axis. A partial solution to

this problem, DTW, essentially aligns the time axis before

calculating the Euclidean distance [18]. However DTW can

only address the problem of local scaling, and as we

demonstrated above, uniform scaling is just as important in

the motion capture editing domain. Similar observations

hold for the Longest Common SubSequence measure

[10][32].

The utility of uniform scaling has been noted before

[1][2][8][27]. However, all previous work has focused on

speeding up similarity search, when the scaling factor is

known [8][17][26]. The feature that differentiates our work

from all the rest is that we allow a user to issue a single

query, and find the best match at any scaling.

Figure 4: A visual contrast of DTW (left) and Uniform Scaling (right).

Using DTW we cannot achieve an intuitive alignment between 2

heartbeats and 3 heartbeats, even if the sequences happen to be the

same length. However uniform scaling, by stretching the bottom

sequence can achieve a meaningful alignment.

1

3

6

4

2

5

1

2

3

4

6

5

1

3

6

4

2

5

1

3

6

4

2

5

1

2

3

4

6

5

1

2

3

4

6

5

Note that although we don’t generally know the scaling

factor in advance, we may know upper and lower limits on

the scaling factor, based on limitations of human

biomechanics. For example, most people can only speed up

their natural walk about 20% before changing their gait into

a run [14].

There is exactly one other technique in the literature that

allows similarity search under uniform scaling, while

guaranteeing no false dismissals, the “CD-criterion”

technique of [2]. While pioneering, we do not see this work

as a complete solution to our problem for the following

reasons. The algorithm can only test if sequences are within

a user-supplied epsilon, and thus cannot be used for

ranking, classification or clustering. The algorithm requires

a parameter to be set; this parameter does not affect the

accuracy, but it can affect the speedup. Finally the real

weakness of the approach is that is only speeds up main

memory search, and cannot be indexed. In fact, the authors

suggest that indexing of uniform scaling “appears

infeasible” [2], although this is exactly the contribution of

this work. In spite of these limitations, we empirically

compare this work to our approach in Section 7.1.

4. THE UNIFORM SCALING PROBLEM
We begin by formally defining the uniform scaling

problem. Suppose we have two time series, a query Q, and a

candidate match C, of length n and m respectively, where:

Q = q1,q2,…,qi,…,qn (1)

C = c1,c2,…,cj,…,cm (2)

For clarity of presentation we will assume that n ≤ m,

that is, C is always longer than or equal to Q. Thus, we are

only interested in stretching the query to match some prefix

of C. This assumption is only to simplify notation and does

not preclude matching a time series by shrinking. For

example, if the user wishes to perform a query of length

100, with the flexibility to shrink or stretch by 10%, the

system simply interpolates the data down to 90 data points,

and then searches for matches stretched by up to 22%.

If we wish to compare the two time series, and it happens

that n = m, we can use the ubiquitous Euclidean distance

[6][12][16][20]:

() ()∑ −≡
=

n

i
ii cqCQD

1

2
,

(3)

Since the square root function is monotonic and concave,

we can remove the square root step to get the squared

Euclidean distance which gives identical rankings,

clustering and classifications [21].

() ()∑ −≡
=

n

i
ii cqCQD

1

2
,

(4)

In addition to the utility of slightly speeding up the

calculations, working with this distance measure makes

other optimizations possible, as well [21].

If n is smaller than m, then the distance measures

introduced above are not defined. To compare the two time

series in this case, we have several choices; we can truncate

C, and compare Q to [c1,c2,…, cn], we can stretch Q to be of

length m, or more generally, we can stretch Q to be of

length p, (n ≤ p ≤ m), truncate off the last m-p values of C,

and then use the squared Euclidean distance. The informal

idea behind stretching can be captured in the more formal

definition of scaling. In order to scale time series Q to

produce a new time series QP of length p, we use the

formula:

QPj = Q  j * n/p , 1 ≤ j ≤ p (5)

Note that we can quickly obtain any scaling in O(p) time.

We call the ratio p/n the scaling factor or sf. Similarly, we

use sfmax to denote the ratio m/n, which can be thought of as

the maximum scaling factor. Figure 5 visually summarizes

the above definitions.

If we wish to find the best scaled match between Q and

C, we can simply test all possible scalings, as illustrated in

Table 1.

The algorithm takes O(p*(m-n)) time and seems

unworthy of any optimization effort. However, for real

world datasets, rather than having a single candidate time

series C, we are typically confronted with massive

collections of possible candidate time series, which will

denote as D. In order to find the best scaled match to a

query Q in database D, we can use a brute force algorithm

as shown in Table 2.

Figure 5. A visual summary of the notation introduced in this

section. A) From (left) to (right) A candidate time series C, and a

shorter query Q. The squared Euclidean distance between Q

and the first n datapoints in C can be visualized as the sum of

the squared lengths of the gray hatch lines. B) From (left) to

(right) The query Q can be stretched to length p, producing a

new time series QP. In this case, QP is a good match to the first

p datapoints in C.

0 100 200 300 400
QP

D (QP, C [1:p])B)

0 100 200 300 400

Q

D (QP, C [1:p])B)

0 100 200 300 400

C

Q

D (Q,C [1:n])A)

0 100 200 300 400

C

Q

D (Q,C [1:n])A)

Note that the time complexity for this algorithm is

O(|D|*(m-n)), which is simply untenable for large datasets.

Table 1. An algorithm to find the best scaled match between

two time series

procedure TestAllScalings(Q,C)

BestMatchVal = inf;

BestScalingFactor = null;

for p = n to m

QP = rescale(Q,p);

Distance = SquaredEuclideanDistance(QP, C[1..p]);

if distance < BestMatchVal

BestMatchVal = distance;

BestScalingFactor = p/n;

return(BestMatchVal, BestScalingFactor)

Table 2. An algorithm to find the best scaled match to query

from a set of possible matches.

procedure SearchDatabaseforScaledMatch(Q)

OverallBestTimeSeries = null;

OverallBestMatchVal = inf;

OverallBestScaling = null;

for i = 1 to number of time series in (D)

[dist, scale] = TestAllScalings(Q,Ci)

if dist < OverallBestMatchVal

OverallBestTimeSeries = i;

OverallBestMatchVal = dist;

OverallBestScaling = scale;

return(OverallBestTimeSeries, OverallBestMatchVal, OverallBestScaling)

4.1 Speeding up Search with Lower Bounding
To speed up matching under uniform scaling we will rely on

the classic idea of lower bounding. The intuition is the

following. Given some technique for quickly calculating the

minimum possible distance between the query and a

candidate sequence at any possible scaling, we can prune

off many calculations. Before calling the subroutine

TestAllScalings(),we first perform the quick lower bounding

test. If the lower bound distance between the candidate and

the query is greater than the distance of the best-scaled

match already seen, we can simply discard the candidate

from consideration. There are two important properties that

a lower bounding measure should have.

• It must be fast to compute. A measure that takes as long

to compute as TestAllScalings() is of little use. We would

like the time complexity to be at most linear in the length

of the time series.

• It must be a relatively tight lower bound. A lower bound

that is not tight, will not prune enough of the search

space.

The idea of speeding up search using lower bounding is not

new. In fact, it is the cornerstone of virtually every time

series similarity search algorithm. However, while dozens

of lower bounding measures are known for Euclidean

distance [6][12][16][19][20][29], and three lower bounding

measures are known for DTW [18][35], only one, recently

introduced measure, the CD-criterion, is known for uniform

scaling [2]. As we mentioned above, the original authors

believe this technique is non-indexable, and in any case, as

we will show in Section 7, the bounds are quite weak.

Therefore, we propose a novel, indexable, and tight lower

bounding measure for uniform scaling.

It is important to note here that the lower bounding

technique and all the algorithms we describe in this study

for the efficient solution of the uniform scaling problem are

exact. This means that we are guaranteed to find all the

solutions we are looking for, with no false dismissals. The

essence of the techniques we propose is that they can

effectively prune the search space, by excluding candidate

time series that cannot be part of the solution. The result is

considerable savings in computation time, since we do not

have to perform the expensive distance calculations for

every time series in the database.

5. OUR SOLUTION
We will begin by showing how we can lower bound

sequences of arbitrary lengths in main memory. Since

indexing structures degrade with dimensionality, we will

further show how we can lower bound the dimensionality-

reduced representations of the time series.

5.1 Lower Bounding in Main Memory
In order to create a lower bounding distance measure for

uniform scaling, we will generate a bounding envelope.

Bounding envelopes were introduced in [18] to lower bound

DTW, and since then they have sparked a flurry of research

activity [13][24][28][32][35]. While the principle is the

same here, the definitions of the envelope are very different.

In particular, we create two sequences U and L, such that:

Ui = max(c (i-1)*m/n +1,…, c i*m/n) (6)

Li = min(c (i-1)*m/n +1,…, c i*m/n) (7)

These sequences can be visualized as bounding the first n

points of the time series C. Figure 6 shows some examples.

Having defined U and L, we can now introduce the lower

bounding function, LB_Keogh, which lower bounds the

distance between Q and C for any scaling factor sf,

max1 sfsf ≤< .

∑

= 







<−
>−

=
n

i

iiii

iiii

otherwise

LqifLq

UqifUq

CQKeoghLB
1

2

2

0

)(

)(

),(_
 (8)

This function can be visualized as the squared Euclidean

distance between any part of the query time series not

falling within the envelope and the nearest (orthogonal)

corresponding section of the envelope. Figure 7 illustrates

this idea.

Figure 6. (Top) A time series C of length 100. (Bottom Left) The

time series shrouded by upper and lower envelopes U and L with

lengths 80. (Bottom Right) The same time series shrouded by upper

and lower envelopes U and L with lengths 60.

Figure 7. (Left) A time series C and a shorter query Q. (Right) A

visualization of the lower-bounding function LB_Keogh(Q,C).

Note that any part of query time series Q that falls inside the

bounding envelope is ignored. Otherwise the distance

corresponds to the sum of the squared straight line distances

from the query to the nearest point in the envelope (the gray

hatch lines).

We can now prove that LB_Keogh(Q,C) is a lower bound

for the distance between Q and C under uniform scaling

(the proof is in the full version of this paper).

Lemma 1 The distance LB_Keogh(Q,C) lower bounds the

squared Euclidean distance between any scaling of Q, and the

appropriate prefix of C.

5.2 Lower Bounding in Index Space
As noted in Section 4.1, if we have a distance measure

that is expensive in terms of CPU time, we can dramatically

speed up similarity search using a tight lower bound.

However, if the majority of the data exists on secondary

storage, the CPU costs may be dwarfed by the disk (or tape)

access time. The solution is to index the data. Having

defined the bounding envelopes, we proceed in a manner

similar to previous work [13] [18][24][28][32][35].

We have previously denoted a time series as Q = q1,…,

qn. Let N be the dimensionality of the space we wish to

index (1 ≤ N ≤ n). For convenience, we assume that N is a

factor of n.

A time series Q of length n can be represented in N

dimensional space by a vector
NqqQ ,,1 K= . The ith element

of Q is calculated using the following equation:

∑
+−=

=
i

ij

jn
N

i

N

n

N

n

qq
1)1(

 (9)

In Section 5.1, we discussed the lowering bounding

function LB_Keogh. However, calculating this function

requires n values. Since n may be in the order of hundreds

for realistic human motion, and multi-dimensional index

structures begin to degrade rapidly somewhere above 16

dimensions, we need a way to create a lower, N-

dimensional version of the function, where N is a number

that can be reasonably handled by a multi-dimensional

index structure. We also need this lower dimension version

of the function to lower bound LB_Keogh (and therefore, by

transitivity, uniform scaling).

We begin by creating special Piecewise Constant

Approximations (PAAs) [19] of U and L, which we will

denote as Û and L̂ . Although they are piecewise constant

approximations, the definitions of Û and L̂ differ from

those we have seen in Eq. 6 and 7. In particular, we have

() ()()
iii

N
n

N
n UUU ,...,maxˆ

11 +−= (10)

() ()()

iii
N
n

N
n LLL ,...,minˆ

11 +−= (11)

We can visualize Û and L̂ as the piecewise constant

functions which bound, without intersecting, U and L,

respectively. Figure 8 illustrates this intuition.

We are now able to define the low dimension, lower

bounding function, which we denote as MINDIST(). Given

a query sequence Q, transformed to Q by Eq. 9, and a

candidate sequence C, with its companion PAA functions

R̂ ={Û , L̂ }, the following function lower bounds

LB_Keogh

Figure 8. We can readily visualize Û and L̂ as the piecewise

constant functions which bound, without intersecting, U and L,

respectively. (Left) The Û and L̂ for the time series shown in Figure

5. (Right) The Û and L̂ shown overlaid on top of the generating

time series.

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

1000 10 20 30 40 50 60 70 80 90

L
0 10 20 30 40 50 60 70 80 90

U

L
0 10 20 30 40 50 60 70 80 90 100

L
0 10 20 30 40 50 60 70 80 90 100

U

L

90

0 10 20 30 40 50 60 70 80 100

C

0 10 20 30 40 50 60 70 80 100

C

m = 100

n = 60n = 80

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C

Q

0 10 20 30 40 50 60 70 80 90 100

C
m = 100

Q
n = 80

∑
= 








<−
>−

=
N

i

iiii

iiii

otherwise

LqifLq

UqifUq

N

n
RQMINDIST

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(

)ˆ,(

 (12)

This function is visualized in Figure 9.

 Similarly to MINDIST(Q , R̂), we can also define

MAXDIST(Q , R̂) (illustrated in Figure 10), which serves as

an upper bound for the distance between a query Q and R̂ .

∑
= 




−<−>−
−<−<−

=
N

i iiiiiiii

iiiiiiii

LqqUorUqifLq

qULqorLqifUq

N

n
RQMAXDIST

1
2

2

)ˆˆ()ˆ(,)ˆ(

)ˆˆ()ˆ(,)ˆ(
)ˆ,(

 (13)

The use of this upper bound will become apparent in

Section 6, when we discuss algorithms for fast similarity

search under uniform scaling.

Note that there is no inherent restriction in our

framework that would prevent us from incorporating into it

DTW indexing, as well. DTW can be used in conjunction

with uniform scaling to allow small local adjustments to the

time axis after uniform scaling has found the best global

scaling. In this case, we simply have to compute the upper

and lower bounding envelopes for the DTW transform, and

then, apply the techniques described in this study on these

envelopes. Since this is a straightforward extension, we do

not pursue it any further in this work.

6. ALGORITHMS FOR SECONDARY

STORAGE
Based on the discussion of the previous section, we can

now present algorithms that solve the time series similarity

problem under uniform scaling, when the time series

database does not fit in main memory. In the following

discussion, as well as in the experiments, we assume that all

the time series data and their bounding envelopes are disk

resident. For ease of exposition, we also make the

simplifying assumption that we are only interested in the

single best match to our query. The extensions to more

general cases are straightforward, and we omit them for

brevity. The interested reader can find additional

considerations, techniques, and references elsewhere [33].

The pseudocode for all the algorithms presented in this

section can be found in the full version of this paper.

6.1 Linear Scan of the Time Series
Linear scan is a brute force approach, where we do not

make use of our lower bounding technique. This algorithm

sequentially reads each time series C from the disk, and

computes its minimum distance to the query series by trying

all possible rescalings. The only optimization we can apply

in this case, is to stop the computation of the Euclidean

distance function as soon as it becomes larger than the

currently minimum distance1. We call the above algorithm

LinearScan, and we present it only as a baseline against

which we compare our proposed algorithms.

In order to improve the performance of LinearScan, we

incorporate the use of the bounding envelopes as follows.

Along with each time series C, we also store on disk its

corresponding envelopes R. As before, we keep track of the

minimum distance between the query and a candidate time

series in variable OverallBestMatchVal. The algorithm

starts by reading the envelopes R̂ of some time series C and

computing the lower bound MINDIST(Q , R̂). If this lower

bound is less than OverallBestMatchVal, then we have to

call TestAllScalings(). Otherwise, we know that C cannot

have a distance to Q less than OverallBestMatchVal, and we

can simply discard C. We refer to this algorithm as

LinearScanLB (Linear Scan Lower Bound), and we expect

it to run faster than LinearScan, since it avoids using

TestAllScalings() for all the time series in the database.

1 We apply the same optimization to all the algorithms we present in this

paper. However, the performance benefits are in all cases minimal.

Figure 9. (Top Left) The time series C, and its bounding envelopes.

(Top Right) The set of bounding envelopes R̂ ={Û , L̂ }. (Bottom

Left) The query Q, and its approximation Q . (Bottom Right)

Illustration of the MINDIST(Q , R̂) function.

Figure 10. (Left) The query Q, and its approximation Q . (Right)

Illustration of the MAXDIST(Q , R̂) function.

MINDIST(Q , R)

_

Q

Q

^

_

Q

Q

MAXDIST (Q,R)

^

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

0 10 20 30 40 50 60 70 80 90 100

U

0 10 20 30 40 50 60 70 80 90 100

U R = {U, L}
^ ^ ^

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

0 10 20 30 40 50 60 70 80 90 100

U

0 10 20 30 40 50 60 70 80 90 100

U R = {U, L}
^ ^ ^

The rest of the algorithms we describe make a more

informed use of the bounding envelopes. The premise is

that these algorithms will more effectively prune the search

space, and result in superior performance.

6.2 Linear Scan of the Bounding Envelopes
The intuition behind our next algorithm, FastScan, is the

following. Instead of retrieving a time series from disk

every time that the lower bound distance is less than

OverallBestMatchVal, start by retrieving from disk the time

series in increasing order of their lower bound value. If the

lower bounds we compute are tight enough, then best match

to the query time series will be among the first time series to

be retrieved.

The FastScan algorithm (which is similar in nature to the

VA-file method [34]) computes the solution in two phases.

First, it performs a linear disk scan of the bounding

envelopes of all the time series in the database D, and builds

a minimum priority queue on the lower bound of the

distance between the corresponding candidate time series

and the query. Note that this process is relatively fast, since

the size of the bounding envelopes is much smaller than the

size of the time series themselves. During the second phase,

the algorithm dequeues elements from the priority queue,

reads from the disk the relevant candidate time series, and

calls TestAllScalings() to determine the best match. The

algorithm stops when the lower bound value for the

dequeued element is larger than OverallBestMatchVal, or

when the priority queue empties. It is easy to see that

FastScan performs less work than LinearScanLB, and only

in the worst case does it perform an equal amount of work.

The FastScan algorithm requires inserting in the priority

queue as many values as there are time series in the

database. However, this is not a concern, even though it is a

main memory data structure. For example, a heap would

require 20 bytes2 per entry, a small amount even for

databases with one million objects. The processing time

required for the heap, O(log|D|), is not of concern either,

since it is insignificant compared to the time required for

disk I/O and for computing the distances between time

series. Note that we can incorporate in the algorithm the use

of the upper bound (MAXDIST) as well, which can help

maintain the size of the priority queue small: usually less

than 15% of the original size. However, this comes at a cost

in time. In the version of FastScan we used in the

experiments, we did not take into account this optimization.

6.3 Algorithms based on R-trees

Having the bounding envelopes R̂ in a sufficiently low

dimensionality allows us to use an R-tree [5][15] for

2 The elements we need to store are the lower bound value (8 bytes), a

pointer to the time series in the file system (4 bytes), and two pointers to

the children nodes (8 bytes).

indexing them. The goal is to avoid reading all the bounding

envelopes, which is what FastScan does.

The use of the R-tree is straightforward. We associate

each bounding envelope R̂ ={Û , L̂ } to a Minimum

Bounding Rectangle MBR(l,h) as follows:

l=(
NLLL ˆ,...,ˆ,ˆ

21
), and h=(

NUUU ˆ,...,ˆ,ˆ
21

). This allows to

compute the lower bound distance MINDIST(Q , R̂) as

usual. Along with each MBR that represents a set of

bounding envelopes R̂ , we also store a pointer to the

corresponding time series C in the file system. Then, we

build the R-tree using one of the traditional construction

algorithms [5][15].

The R-tree search algorithm starts by reading an MBR r,

and computing the lower bound MINDIST(Q ,r). If this

lower bound is less than OverallBestMatchVal, and r is an

inner node, then we process r recursively. If r is a leaf node,

that is, it refers to bounding envelopes R̂ of candidate time

series C, then we have to read C from disk, call

TestAllScalings() to compute the best match for all possible

rescalings, and update OverallBestMatchVal. If the lower

bound is larger than OverallBestMatchVal, then we simply

disregard r. We refer to this algorithm as RtreeBF (R-tree

Brute Force).

An optimization that we can apply to the above algorithm

is to use the R-tree index to get a small number of candidate

time series with the lowest lower bound values, and then

test each of these candidates to determine the true best

match. This is the same idea that FastScan uses.

Now, the R-tree search algorithm needs to maintain a

minimum priority queue on the lower bound values.

However, unlike FastScan, we can also make use of the

upper bound distance between the query and an MBR,

MAXDIST(Q ,r), in order to further prune the search space

(this optimization is not applicable to RtreeBF that only

needs to compare the lower bound to

OverallBestMatchVal).

For each MBR r, we compute the lower and upper

bounds, and maintain the lowest value for the upper bounds

in variable LowestUpper. We recursively search the R-tree,

following only the MBR nodes whose lower bound is less

than LowestUpper. If this condition is true for a leaf MBR,

then we insert an entry for the corresponding candidate time

series in the priority queue. When we have finished

processing the R-tree, we start calling TestAllScalings() to

determine the best match among all the candidates stored in

the priority queue. This processing follows the order

specified by the queue. We call this algorithm RtreeProbe.

7. EXPERIMENTAL RESULTS
In this section we will empirically evaluate our approach.

Although we are particularly interested in motion capture

data, as we noted above, our algorithm may have utility in

domains as diverse as music retrieval [7] and space

telemetry [8]. We will therefore perform all experiments on

the following two datasets.

• Motion Capture: This dataset was distilled from several

hours of recording with Vicon (an optical motion capture

system), using 124 sensors. The data for our experiments

are drawn uniformly at random from a pool of 250,000

subsequences.

• Mixed Bag: This dataset was created by concatenating 10

diverse datasets from the UCR time series archive. The 10

datasets are foetal ecg, steam generator, space shuttle,

Photon Burst, Standard and Poor 500, ocean, power

demand, leleccum, Koski ECG, and infrasound_beamd.

The subsequences we use for our experiments are drawn

at random from this pool, making sure that all 10 seed

time series contribute equally.

In both cases, the queries are random subsequences not

present in the database of candidate time series.

7.1 Main Memory Experiments
In the first set of experiments, we evaluate the

effectiveness of our lower bounding technique when the

datasets fit in main memory. We use the main memory

version of algorithm LinearScanLB, which we call

LB_Keogh. We compare only to the brute force search

algorithm defined in Table 2, and to the recently introduced

CD-criterion technique [2], because there are no other

techniques in existence that support uniform scaling queries.

To eliminate the possibility of implementation bias [18],

and because CD-criterion does not support indexing, we

consider the speedup obtained in main memory. To compare

the three competing techniques we report the Pruning

Power, i.e., the fraction of times that each approach must

call the squared Euclidean distance function.

searchforcebrutebyfunctionncestaditocallsofNumber

approachproposedbyfunctionncestaditocallsofNumber
PowerruningP =

(13)

This measure depends only on the tightness of the lower

bounds, and is independent of language, platform, caching

or any other implementation details. As an additional sanity

check we also measured the CPU time. However, since it is

almost perfectly correlated with the Pruning Power, we

omit it for brevity. Note that by definition, the pruning

power of brute force is always 1.

As noted earlier, the CD-criterion algorithm can only test

whether the distance of two sequences is within a user-

supplied epsilon. In order to allow direct comparison with

the two other approaches, we supply to the algorithm the

exact epsilon that will return the single nearest neighbor.

 Since the speed-up obtained for our approach clearly

depends on the range of scaling factors and the length of the

time series, we test our approach for the cross product of

maximum scaling factors sfmax = {1.05, 1.10, 1.20} and

candidate time series lengths of {64, 128, 256}. These

represent realistic parameters in our motion capture domain,

and seem representative of other domains as well

[9][14][35].

We conduct our experiments as follows. We randomly

remove a subsequence of the appropriate length from the

data to use as a query, and randomly choose 10,000 other

subsequences to act as the database. We then search for the

best scaled match. We repeated this 500 times for every

combination of scaling factors and candidate lengths. Figure

11 shows the results.

The results are quite impressive for the proposed

approach, which essentially needs to perform an order of

magnitude less work than CD-criterion, over all parameter

settings on both datasets. In addition, our approach is two to

three orders of magnitude more efficient than the brute

force algorithm. The above experiments demonstrate that

our technique can effectively reduce the amount of required

effort by avoiding a considerable number of unnecessary

computations.

Figure 11. The pruning power of CD-criterion and LB_Keogh

algorithm on two datasets, over a range of scaling factors and

candidate lengths.

7.2 Secondary Storage Experiments
In this section, we evaluate the performance of our

techniques when the time series database D does not fit in

main memory. The experiments were performed on an

Athlon 1.6GHz Linux machine, with 1GB of main memory.

All the data were stored on its local disk. In the interest of

space, we only report the results for the motion capture

dataset; the results for the mixed bag dataset exhibit similar

trends.

In all the following experiments, we measure the time (in

seconds) it takes each algorithm to process a single query.

We repeated each experiment 500 times, and report the

average time. Note that we only need to compare the

algorithms in terms of their running-time performance.

Since all algorithms are exact, they return in every case the

same (correct, based on the distance definition) answer.

7.2.1 Exploring the Properties of the Algorithm
In the first set of experiments, we compare the

performance of the algorithms LinearScan, LinearScanLB,

FastScan, RtreeBF, and RtreeProbe, for the cross product

of maximum scaling factors sfmax = {1.05, 1.10, 1.20} and

candidate time series lengths of {64, 128, 256} (Figure 12).

The dimensionality of the approximated bounding

25612864
256128 64

1.20
1.10

1.05

0

0.05

0.1

0.15

0.2

0.25

Mixed Bag

LB_KeoghCD - c riterion

25612864
256128 64

1.20
1.10

1.05

0

0.05

0.1

0.15

0.2

0.25

Mixed Bag

LB_KeoghCD - c riterion

P
ru

n
in

g
 P

o
w

e
r

25612864
25612864

1.20
1.10

1.05

0

0.05

0.1

0.15

0.2

0.25
Motion Capture

LB_KeoghCD-criterion

25612864
25612864

1.20
1.10

1.05

0

0.05

0.1

0.15

0.2

0.25
Motion Capture

LB_KeoghCD-criterion

envelopes is fixed to 16, and the number of candidate time

series to 10,000.

The results clearly show that LinearScan cannot compete

with the other alternatives, which can actually offer

interactive response times, a crucial factor for the real-life

applications we have in mind. Note that all the other

algorithms outperform LinearScan by up to more than an

order of magnitude, exactly because they make use of the

techniques we introduce in this paper. For the rest of the

discussion, we will disregard LinearScan, and focus on the

comparison among the other algorithms.

Figure 12. Average time to answer a query for algorithms

LinearScan, LinearScanLB, FastScan, RtreeBF, and RtreeProbe,

over a range of scaling factors and candidate lengths.

In Figure 13, we zoom in on the results of the four

algorithms that use our proposed technique. As expected,

the trends are that the query response time increases with

both the length of the candidate time series and the scaling

factor. Out of the two, the latter seems to be the dominant

factor. All four algorithms exhibit similar trends.

In terms of absolute numbers, FastScan and RtreeProbe

perform better than the other two algorithms, executing up

to 3.5 times faster. Note that these two are the algorithms

that first determine the most promising order in which to

access the candidate time series, and only then start

accessing them.

7.2.2 Scalability Experiments
We now turn our attention to the scalability issues, and

examine the behavior of the algorithms when we vary the

size of the time series database. The default values we use

are, unless otherwise noted, 10,000 for the number of

candidate time series, 128 for their length, and 16 for the

dimensionality of the approximated representations of the

bounding envelopes.

In the first set of experiments we vary the number of

candidate time series from 5,000 to 80,000. The results are

shown in Figure 14. We observe that the query response

time for FastScan is better than RtreeBF for the small

database sizes, but then deteriorates faster as the database

size increases. This is due to the fact that it still needs to

read from disk the bounding envelopes for all the series in

the database. RtreeBF can effectively prune the search

space. Yet, for the smaller database sizes, it pays the price

of not determining in advance the most promising order in

which to test the candidate time series. The performance of

RtreeProbe is consistently the best among the proposed

approaches (2 to 9 times faster), combining the advantages

of both FastScan and RtreeBF.

Figure 15 depicts the results of the experiments where

we varied the length of the candidate time series (from 64 to

1024). At the high end of the length spectrum, with the

exception of RtreeProbe, all the algorithms tend to behave

the same. The experimental results indicate that the

algorithms fail to prune a significant amount of the

candidate time series. On the other hand, RtreeProbe

manages to do a slightly better job in this respect, which

results in significant savings in terms of time. Its

performance is 2.5 to 4 times better than the best alternative.

Figure 14. Average time to answer a query for algorithms

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying the

number of candidate time series.

In the last set of experiments (Figure 16), we evaluate the

effect of the dimensionality of the approximated bounding

envelopes on the performance of the algorithms. An

Figure 13. Average time to answer a query for algorithms

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, over a range of

scaling factors and candidate lengths.

256
12864

256
12864

25612864
256

128
64

256
128

64

1.20
1.10

1.05

0

5

10

15

20

25

LinearScan

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e
c
o
n
d
s

sf
max

256
12864

256
12864

25612864
256

128
64

256
128

64

1.20
1.10

1.05

0

5

10

15

20

25

LinearScan

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e
c
o
n
d
s

sf
max

256
12864

25612864
256128

64
256

128
64

1.20
1.10

1.05

0

0.5

1

1.5

2

2.5

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e
c
o
n
d
s

sf
max

256
12864

25612864
256128

64
256

128
64

1.20
1.10

1.05

0

0.5

1

1.5

2

2.5

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e
c
o
n
d
s

sf
max

S
e
c
o
n
d

s

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5000
10000

20000
40000

80000

S
e
c
o
n
d

s

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5000
10000

20000
40000

80000

5000
10000

20000
40000

80000

of time series

S
e
c
o
n
d

s

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5000
10000

20000
40000

80000

5000
10000

20000
40000

80000

S
e
c
o
n
d

s

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe

LinearScanLB

FastScan

RtreeBF

RtreeProbe

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5000
10000

20000
40000

80000

5000
10000

20000
40000

80000

5000
10000

20000
40000

80000

5000
10000

20000
40000

80000

of time series

increase in the dimensionality results in more accurate

representations, and consequently, in more precise lower

and upper bounds. The experiments show that this is, in

general, beneficial for all the algorithms. However, the

benefits are diminishing as the dimensionality increases. In

fact, we may also get the reverse effect, as is the case with

RtreeBF for dimensionality 16. In this case, the bounding

envelopes of the candidate time series do not form tight

clusters in the high-dimensional R-tree, and consequently,

lead to poor performance. RtreeProbe avoids the cost of this

problem, because it postpones the expensive

TestAllScalings() operation till the end.

The experimental evaluation indicates that it is beneficial

to first identify the most promising candidates entirely in the

reduced dimensionality space (i.e., using only R̂), and then

test the query against the candidate time series, despite the

fact that these calculations are not as precise. Though, the

above may not be true for large databases (see Figure 14). It

is also interesting to note that the behavior of the R-tree

algorithms is not always predictable. Consider, for example,

the non-intuitive RtreeBF results for database sizes 5,000

and 10,000 (Figure 14), and dimensionalities of 12 and 16

(Figure 16). In both cases, the results worsen when the

parameters become seemingly more favorable.

Nevertheless, one of the R-tree-based algorithms,

RtreeProbe, exhibits a consistently superior performance

across all experiments, outperforming the best alternative by

up to 4 times. As a last remark, we should note that

FastScan, which does not require the use of any indexing

structures, performs in many cases competitively to

RtreeProbe. This makes FastScan an attractive alternative

for the case where we cannot afford to build an index on the

time series in the database.

Figure 15. Average time to answer a query for algorithms

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying

the length of the candidate time series.

7.3 Case Study
In addition to the comprehensive experiments on the

efficiency of indexing discussed above, we also used a

motion capture processing system to evaluate our

techniques. We conducted numerous experiments to test the

quality of matches obtained by uniform scaling, allowing

both stretching and shrinking.

The experimental setup was as follows. We randomly

selected a query motion from our motion capture database

(sitting up, stretching arms, etc.), and searched the database

for the closest (non-self) match. We evaluated the returned

sequences in two ways. Objectively, by measuring the

Euclidean distance of the sequences (which express the

orientations of the joints in the body), and subjectively, by

creating and reviewing animations based on the matched

sequences. These animations show the query sequence and

its best matches superimposed on each other.

 The results of the experiments validate the utility and

effectiveness of our approach, and also demonstrate that

uniform scaling produces better results than DTW. Since

such experiments do not lend themselves to a text and

graphic exposition, we have created a website with full

video examples [40], and only present here a single figure

to give the flavor of these experiments.

In Figure 17, we show the best match under uniform

scaling (top) and the best match under DTW (bottom) for a

query involving a motion of the arms. In the figures and

graphs, we have superimposed the query with each of the

best match sequences. It is obvious that when we allow

uniform scaling we are able to find a match that is much

closer to the query sequence (Euclidean distance 51.83)

than when we use DTW (Euclidean distance 154.16).

Figure 16. Average time to answer a query for algorithms

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying

the dimensionality of the approximated representations.

8. CONCLUSIONS
In this work, we motivated the need for uniform scaling

similarity matching, which has applications in several

domains where human variability necessitates this type of

matching flexibility (e.g., motion libraries, music retrieval,

and historical handwritten archives). We introduced the first

technique for indexing time series with invariance to

uniform scaling, based on bounding envelopes. This

technique enables fast similarity searching in large time

series databases. We presented several algorithms that make

use of the above technique, and evaluated our proposed

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e

c
o
n
d
s

64

0

10

20

30

40

50

60

70

80

1282565121024

time series length

LinearScanLB

FastScan

RtreeBF

RtreeProbe

S
e

c
o
n
d
s

64

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

1282565121024

time series length

8 12
16

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe
S

e
c
o
n
d

s

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R-tree dim

8 12
16

0

LinearScanLB

FastScan

RtreeBF

RtreeProbe
S

e
c
o
n
d

s

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R-tree dim

approaches with a comprehensive set of experiments on real

data, over realistic parameter choices suggested by domain

experts. The experimental results demonstrate the

significant advantages of our indexing technique, and

evaluate the relative benefits of the different alternatives.

Finally, we describe the application of our method in a

motion capture processing system, and illustrate its

usefulness and the superiority of the results it returns when

compared to other alternatives.

Figure 17: Sample results from a motion-capture similarity search

experiment. A query motion (upper body only) was submitted to a

motion capture database. (Top Left) The stick figure is a superposition

of both the query and the best matching sequence under uniform

scaling. Since both figures are so similar (after scaling the match back

to the query length) we can only see a single figure. (Bottom Left) The

superposition of the query and the best DTW match show considerable

mismatch. (Right) The corresponding time series (only the Z-axis is

shown) illustrates the source of the difference.

9. REFERENCES
[1] Aach, J. and Church, G. (2001). Aligning gene expression time series with time

warping algorithms. Bioinformatics. Volume 17, pp 495-508.

[2] Argyros, T & Ermopoulos, C. (2003). Efficient subsequence matching in time series

databases under time and amplitude transformations. IEEE ICDM pp 481-484.

[3] Arikan, O., Forsyth, D. & O'Brien, J. (2003). Motion synthesis from annotations.

ACM Transactions on Graphics. V22(3). pp. 402-408.

[4] Arikan, O, &. Forsyth, D. (2002). Synthesizing constrained motions from examples.

ACM Transactions on Graphics, 21(3):483-490. ISSN 0730-0301.

[5] Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: an

efficient and robust access method for points and rectangles. In Proc of ACM

SIGMOD, pp. 220-231.

[6] Cardle, M., Vlachos, M., Brooks, S., Keogh, E., Gunopulos, D. (2003). Fast Motion

Capture Matching with Replicated Motion Editing. In Proc of ACM SIGGRAPH

Sketches and Applications.

[7] Chan, K. & Fu, A. W. (1999). Efficient time series matching by wavelets. In

proceedings of the 15
th
 IEEE Int'l Conference on Data Engineering. Sydney,

Australia. pp 126-133.

[8] Chu, K., Lam., S. & Wong, M. (1998). An efficient hash-based algorithm for

sequence data searching. The Computer Journal 41 (6): 402-415.

[9] Dannenberg, R., Birmingham, W., Tzanetakis, G., Meek, C., Hu, N., and Pardo, B.

(2003). The MUSART testbed for query-by-humming evaluation. ISMIR 2003, 4th

International Conference on Music Information Retrieval Baltimore, Maryland.

[10] Das, G., Gunopulos, D., Mannila, H. (1997). Finding similar time series. In Proc. of

the First PKDD Symp, pp. 88-100.

[11] DeCoste, D. and Levine, M (2000). Automated event detection in space instruments: a

case study using IPEX-2 data and support vector machines. SPIE Conference

Astronomical Telescopes and Instrumentation.

[12] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence

matching in time-series databases. In Proc. ACM SIGMOD Conf., Minneapolis. pp.

419-429.

[13] Fung,. W & Wong., M. (2003). Efficient subsequence matching for sequences

databases under time warping. The 7
th
 International Database Engineering and

Application Symposium.

[14] Gavrila, D. M. & Davis, L. S.(1995). Towards 3-d model-based tracking and

recognition of human movement: a multi-view approach. In International Workshop

on Automatic Face- and Gesture-Recognition.

[15] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In

Proceedings ACM SIGMOD Conference. pp 47-57.

[16] Hetland, M. (2003). A survey of recent methods for efficient retrieval of similar time

sequences. To appear in an Edited Volume, Data Mining in Time Series Databases.

Published by the World Scientific Publishing Company.

[17] Kahveci, T. & Singh, A. (2001). Variable length queries for time series data. In

proceedings of the 17
th
 Int'l Conference on Data Engineering. Heidelberg, Germany,

pp 273-282.

[18] Keogh, E. (2002). Exact indexing of dynamic time warping. In 28
th
 International

Conference on Very Large Data Bases. Hong Kong. pp 406-417.

[19] Keogh, E,.Chakrabarti, K,. Pazzani, M. & Mehrotra (2000). Dimensionality reduction

for fast similarity search in large time series databases. Journal of Knowledge and

Information Systems. pp 263-286.

[20] Keogh, E,.Chakrabarti, K,. Pazzani, M. & Mehrotra (2001). Locally adaptive

dimensionality reduction for indexing large time series databases. In Proc of ACM

SIGMOD Conference on Management of Data. pp 151-162.

[21] Keogh, E. and Kasetty, S. (2002). On the need for time series data mining

benchmarks: a survey and empirical demonstration. In the 8
th
 ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. Edmonton,

Canada. pp 102-111.

[22] Kovar, L., Gleicher, M., & Pighin. F (2002). Motion graphs. Proceedings of ACM

SIGGRAPH.

[23] Lee, J., J. Chai, P.S.A. Reitsma, J. K. Hodgins, & N. S. Pollard. (2002). Interactive

control of avatars animated with human motion data. ACM Transactions on Graphics.

V21(3) pp. 491-500.

[24] Li, Q., Lopez, I, & Moon, B. (2004). Skyline index for time series data. To appear in

TKDE.

[25] Li, Y., Wang, T. & Shum. H.-Y. (2002). Motion texture: a two level statistical model

for character motion synthesis. ACM Transactions on Graphics, 21(3):465-472.

[26] Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient searches for similar

subsequences of different lengths in sequence databases. In proceedings of the 16
th

Int'l Conference on Data Engineering. San Diego, CA, pp 23-32.

[27] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000). Landmarks: a new model for

similarity-based pattern querying in time series databases. In proceedings of 16
th

International Conference on Data Engineering. pp 33-42.

[28] Rath, T. & Manmatha, R. (2002). Lower-bounding of dynamic time warping distances

for multivariate time Series. Tech Report MM-40, University of Massachusetts

Amherst.

[29] Roddick, J. F. and Spiliopoulou, M. (2001). A survey of temporal knowledge

discovery paradigms and methods. IEEE Tran’s on Knowledge and Data Engineering.

pp. 750-767.

[30] Rose, C., Guenter, B., Bodenheimer, B., & Cohen, M.F. (1996). Efficient generation

of motion transitions using spacetime constraints. In Proc of ACM SIGGRAPH, New

Orleans, USA, pp. 147-154.

[31] Vlachos, M., Kollios, G., & Gunopulos, G. (2002). Discovering similar

multidimensional trajectories. In Proc 18
th
 International Conference on Data

Engineering.

[32] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., & Keogh, E. (2003). Indexing

multi-dimensional time-series with support for multiple distance measures. In Proc

ACM SIGKDD, Washington DC, USA.

[33] Vries, A. P. de, Mamoulis, N., Nes, N., Kersten, M. (2002). Efficient k-NN Search on

Vertically Decomposed Data. In Proc of ACM SIGMOD, pp. 322-333.

[34] Weber, R., Schek, H & Blott S. (1998) A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. VLDB pp. 194-205.

[35] Yi, B.-K., Faloutsos, C. (2000). Fast Time Sequence for Arbitrary Lp Norms. VLDB.

[36] Zhu, Y. & Shasha, D. (2003). Query by humming: a time series database approach.

SIGMOD 2003.

[37] Zordan, V. B., Hodgins, J. K., (2002). Motion capture-driven simulations that hit and

react, ACM SIGGRAPH Symposium on Computer Animation.

[38] Vicon, http://www.vicon.com/

[39] Motion Analysis, http://www.motionanalysis.com/

[40] Videos from Case Study, available at:

http://www.cs.ucr.edu/~eamonn/VLDB2004/VLDB.htm

0

20

40

0

20

40

Query

Uniform Scaling Match1

Query

DTW Match1

0

20

40

0

20

40

Query

Uniform Scaling Match1

Query

Uniform Scaling Match1

Query

DTW Match1

Query

DTW Match1

