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ABSTRACT   
Data-driven animation has become the industry standard for 

computer games and many animated movies and special 

effects.  In particular, motion capture data recorded from live 

actors, is the most promising approach offered thus far for 

animating realistic human characters. However, the 

manipulation of such data for general use and re-use is not yet a 

solved problem. Many of the existing techniques dealing with 

editing motion rely on indexing for annotation, segmentation, 

and re-ordering of the data. Euclidean distance is inappropriate 

for solving these indexing problems because of the inherent 

variability found in human motion. The limitations of 

Euclidean distance stems from the fact that it is very sensitive 

to distortions in the time axis. A partial solution to this 

problem, Dynamic Time Warping (DTW), aligns the time axis 

before calculating the Euclidean distance. However, DTW can 

only address the problem of local scaling. As we demonstrate 

in this paper, global or uniform scaling is just as important in 

the indexing of human motion. We propose a novel technique 

to speed up similarity search under uniform scaling, based on 

bounding envelopes. Our technique is intuitive and simple to 

implement. We describe algorithms that make use of this 

technique, we perform an experimental analysis with real 

datasets, and we evaluate it in the context of a motion capture 

processing system. The results demonstrate the utility of our 

approach, and show that we can achieve orders of magnitude of 

speedup over the brute force approach, the only alternative 

solution currently available. 
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1. INTRODUCTION 
Data-driven animation has now become the industry 

standard for the production of computer games and many 

animated movies and special effects.  The most promising 

and widely applied approach so far is the use of motion 

capture data. These are motion data recorded from live 

actors, which can subsequently be used for animating 

realistic human characters. Nevertheless, the manipulation 

of such data for general use and re-use is still an open 

problem. Among the issues at hand, the semi-automatic 

annotation [3][6] and re-ordering of motion data 

[4][22][23][25] are appearing in animation research 

conferences and slowly trickling their way into games 

where realism, interactivity, and speed drive innovation. 

Motion capture data, in its rawest form, is recorded with 

a few technologies, the most popular of which appears to be 

optical (see Vicon [38] and Motion Analysis [39] products) 

in which digital cameras record small reflective markers 

fixed to the human actor as he/she moves. Through multiple 

cameras and triangulation, three dimensional position traces 

for the markers are resolved faithfully.  The markers can 

then be identified (as outer left knee, for example) and 

filtered.  Motion capture allows the animation of a 3D 

model, where the data is mapped to the skeleton of the 

desired character and body orientations are determined 

(Figure 1). 

 

 

Figure 1: (Top Left) An actor being recorded using an Ascension 

magnetic system while playing table tennis.  In post-processing, 

the data recorded from the actor's motion is manually segmented 

into motion time series (Bottom) and placed in a library that is 

later used to animate the simulated player shown (Top Right).  

In practical applications, most motion capture data is 

stored in segmented sequences in a motion library, for 

example a modern sports game may contain thousands of 
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motion data “clips”.  The system, i.e. game engine in this 

case, selects and plays motions from the database [37]. Our 

approach aids in the creation and manipulation of such 

libraries by quickly finding instances of a given motion 

segment in the complete raw-data repository, e.g., kicks or 

punches in the case of a hand-to-hand combat game.  In 

addition to speeding up brute force searches, our main 

contribution is finding examples independent of the speed 

in which the actor performed these behaviors. 

A major difficulty in indexing and matching motion 

streams (hereafter used interchangeably with “time series”) 

is the variability in the speed of human motion. For 

example, an actor may perform a fast or slow punch. Such 

variability can manifest itself as uniform scaling, a global 

stretching or shrinking of the time series (i.e., with respect 

to the time axis). In this work we introduce the first 

indexing technique to support uniform scaling. Our 

contributions can be summarized as follows. 

• We motivate the need for similarity search under uniform 

scaling, and differentiate it from Dynamic Time Warping 

(DTW). Although the superiority of DTW over Euclidean 

distance is becoming increasing apparent [1][9][18][35], 

the need for similarity search which is invariant to 

uniform scaling is not well understood. 

• We introduce the first known lower bounding technique 

for uniform scaling. This technique allows us to index the 

time series in order to achieve fast similarity search under 

uniform scaling. 

• We demonstrate the efficiency and effectiveness of our 

techniques with a comprehensive empirical evaluation on 

real datasets. We also evaluate our techniques using a 

motion capture processing system. These experiments 

validate the utility of the approach we propose. 

The rest of this paper is organized as follows. In Section 2 

we motivate the need to index motion streams under 

uniform scaling. Section 3 considers related work on 

indexing time series. We introduce the problem at hand 

formally in Section 4, before introducing our solution in 

Section 5. In Section 6 we describe algorithms that solve the 

problem in secondary storage. Section 7 offers a 

comprehensive empirical evaluation of our technique, and 

we conclude in Section 8. 
 

2. MOTIVATING THE NEED FOR 

UNIFORM SCALING 
In addition to the classic Euclidean and Dynamic Time 

Warping distance measures, the last decade has seen the 

introduction of dozens of new similarity measures for time 

series. Recent empirical studies, however, suggest that the 

majority of these measures are of dubious utility for real 

world problems [21]. We will therefore take the time to 

motivate the need for uniform scaling in our domain. 

An important task in motion editing is the concatenation 

of short motion clips into a longer, plausible motion 

[30][37]. For clarity let us consider a concrete example. 

Imagine we have a motion sequence that contains several 

distinct motions, and then ends with a particular action, the 

drawing and aiming of a gun. We would like to append to 

this action sequence another sequence where the actor falls 

to the ground. While we have a library of perhaps thousands 

of sequences labeled “falling”, we must decide to which of 

these we should append our current sequence. The 

challenge in this case is to make sure that the transition is as 

smooth and natural as possible. For example, we do not 

want the character’s left arm to instantaneously move from 

his/her side to above his/her head. 

A simple way to guarantee natural plausible motion is to 

ensure that the suffix of the first motion, lets say the last n 

data points, is an approximate match to the prefix of the 

candidate sequence, the first n data points. This way, instead 

of concatenating the two sequences end to end, they are 

allowed to overlap by n data points. Averaging or time 

warping can be used to smooth out any slight 

inconsistencies within the n overlapping data points. Figure 

2 illustrates the basic idea with a simple problem, taken 

from a video segment. Although this example considers a 

one-dimensional time series, it can easily be extended to 

multi-dimensional time series, by combining the results for 

each degree of freedom, possibly weighted by their 

perceptual importance (i.e., arm motion may be more 

important than leg motion in some situations). 
 

 

Figure 2:  We can create a smooth transition between two video 

clips (Top and Center), by ensuring the prefix of one 

approximately matches the suffix of the other (Bottom). 

In Figure 2, our contrived example happens to have a 

closely matching prefix/suffix pair. More generally 

however, the motion streams may occur at different speeds. 

 .  
 

A video sequence ending 

with the actor drawing 

and aiming a gun. 

 

 

The Y-axis motion 

stream of the actor’s right 

hand. 

A video sequence 

beginning with the 

actor aiming a gun, and 

leading to a falling 

down sequence 

 

 

 

The Y-axis motion 

stream of the actor’s 

right hand. 

By aligning the motion streams 

carefully, we can also blend the 

original video and achieve smooth 

natural motion.  

 



Although the animator can trivially recognize this when 

he/she see it, human inspection does not scale to large 

databases. The importance of (time) scale invariance stems 

from the fact that small differences in scaling can greatly 

confuse distance calculations. This problem arises in the 

motion capture domain, and has also been observed in other 

similar domains. For example, in music retrieval has been 

reported [9]: “To achieve tempo invariance, the targets are 

stretched by 19 different scaling factors from 0.5 to 2.0.” 

Similar remarks can be found in the literature of gait 

analysis [14], handwritten archive indexing [28], 

bioinformatics [1] and data mining [8].  

We can reiterate here the utility of uniform scaling with a 

simple experiment. We created 3 pairs of time series, where 

each pair was created using one of 3 functions, sine wave, 

sawtooth I, and sawtooth II. Within each pair, the only 

difference between the time series is that we allow their 

length to vary in the range 256 ± 16. We clustered them 

using two different distance measures, the classic Euclidean 

distance [6][12][16][19][20][24], and using uniform scaling, 

where we search over the best possible scaling, truncating 

off any unmatched suffix (see Section 4 for more formal 

details). The results are shown in Figure 3. 

If these synthetic time series had been, examples of an 

actor’s gait, then using the Euclidean distance, a video clip 

corresponding to sequence 2 would be concatenated to its 

closest match, sequence 5. This would be a very abrupt and 

noticeable transition. In contrast, under uniform scaling, 

sequence 2 would be concatenated to sequence 1. In this 

case, the only difference in the resulting animation would be 

a slight change of pace (if we chose not to permanently 

rescale one of the sequences). This is why automatic 

matching of motion capture data must consider uniform 

scaling. 
 

 

Figure 3:  (Left) A clustering of 6 synthetic time series using 

Euclidean distance, and (Right) uniform scaling. Subjectively and 

objectively, the clustering on the right is correct. 

Note that the generally useful tool of DTW is not the 

answer to this problem [13][18][35]. On the dataset above 

DTW is about 200 times slower than uniform scaling, and 

returns a dendrogram (i.e., a visual representation of the 

result of a hierarchical clustering, like the ones shown in 

Figure 3) of ((2,((4,(6,3)),5)),1), which is no better than the 

Euclidean distance dendrogram. The problem is that DTW 

is designed to consider only local adjustments of the time 

axis, whereas it is global adjustments that are required to 

solve our problem.  

To further demonstrate the difference between DTW and 

uniform scaling, we perform the following experiment. We 

record twice a one second snippet of an individual’s 

electrocardiogram. On the first occasion, the time series 

captures two heartbeats, while on the second (during 

exercise), captures three heartbeats. When we use DTW to 

measure the similarity of the two sequences, we get 

meaningless results, because DTW must match every point, 

and there is simply no sensible way to map two heartbeats 

to three (Figure 4(left)). In contrast, uniform scaling can 

stretch the faster heartbeat until finding a near perfect 

alignment (Figure 4(right)). As mentioned above, DTW can 

be useful to remove subtle local differences after uniform 

scaling has located the best global match [9].  

 

3.  RELATED WORK  
The problem of indexing large time series databases has 

attracted great interest in the database community, and, at 

least for the Euclidean distance measure, may now be 

regarded as a solved problem [6][12][16][19][20][29]. 

However, in recent years, there has been an increasing 

awareness that Euclidean distance is inappropriate for many 

real world applications [1][9][35]. The limitations of 

Euclidean distance stems from the fact that it is very 

sensitive to distortions in the time axis. A partial solution to 

this problem, DTW, essentially aligns the time axis before 

calculating the Euclidean distance [18]. However DTW can 

only address the problem of local scaling, and as we 

demonstrated above, uniform scaling is just as important in 

the motion capture editing domain. Similar observations 

hold for the Longest Common SubSequence measure 

[10][32]. 

The utility of uniform scaling has been noted before 

[1][2][8][27]. However, all previous work has focused on 

speeding up similarity search, when the scaling factor is 

known [8][17][26]. The feature that differentiates our work 

from all the rest is that we allow a user to issue a single 

query, and find the best match at any scaling.  

 

Figure 4:  A visual contrast of DTW (left) and Uniform Scaling (right). 

Using DTW we cannot achieve an intuitive alignment between 2 

heartbeats and 3 heartbeats, even if the sequences happen to be the 

same length. However uniform scaling, by stretching the bottom 

sequence can achieve a meaningful alignment. 
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Note that although we don’t generally know the scaling 

factor in advance, we may know upper and lower limits on 

the scaling factor, based on limitations of human 

biomechanics. For example, most people can only speed up 

their natural walk about 20% before changing their gait into 

a run [14].  

There is exactly one other technique in the literature that 

allows similarity search under uniform scaling, while 

guaranteeing no false dismissals, the “CD-criterion” 

technique of [2]. While pioneering, we do not see this work 

as a complete solution to our problem for the following 

reasons. The algorithm can only test if sequences are within 

a user-supplied epsilon, and thus cannot be used for 

ranking, classification or clustering. The algorithm requires 

a parameter to be set; this parameter does not affect the 

accuracy, but it can affect the speedup. Finally the real 

weakness of the approach is that is only speeds up main 

memory search, and cannot be indexed. In fact, the authors 

suggest that indexing of uniform scaling “appears 

infeasible” [2], although this is exactly the contribution of 

this work. In spite of these limitations, we empirically 

compare this work to our approach in Section 7.1. 

 

4. THE UNIFORM SCALING PROBLEM  
We begin by formally defining the uniform scaling 

problem. Suppose we have two time series, a query Q, and a 

candidate match C, of length n and m respectively, where: 

Q = q1,q2,…,qi,…,qn (1) 

C = c1,c2,…,cj,…,cm (2) 

For clarity of presentation we will assume that n ≤ m, 

that is, C is always longer than or equal to Q. Thus, we are 

only interested in stretching the query to match some prefix 

of C. This assumption is only to simplify notation and does 

not preclude matching a time series by shrinking. For 

example, if the user wishes to perform a query of length 

100, with the flexibility to shrink or stretch by 10%, the 

system simply interpolates the data down to 90 data points, 

and then searches for matches stretched by up to 22%. 

If we wish to compare the two time series, and it happens 

that n = m, we can use the ubiquitous Euclidean distance 

[6][12][16][20]: 

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2
,  

(3) 

Since the square root function is monotonic and concave, 

we can remove the square root step to get the squared 

Euclidean distance which gives identical rankings, 

clustering and classifications [21].  

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2
,  

(4) 

In addition to the utility of slightly speeding up the 

calculations, working with this distance measure makes 

other optimizations possible, as well [21]. 

If n is smaller than m, then the distance measures 

introduced above are not defined. To compare the two time 

series in this case, we have several choices; we can truncate 

C, and compare Q to [c1,c2,…, cn], we can stretch Q to be of 

length m, or more generally, we can stretch Q to be of 

length p, (n ≤  p ≤ m), truncate off the last m-p values of C, 

and then use the squared Euclidean distance. The informal 

idea behind stretching can be captured in the more formal 

definition of scaling. In order to scale time series Q to 

produce a new time series QP of length p, we use the 

formula: 

QPj = Q  j * n/p  , 1 ≤ j ≤ p (5) 

Note that we can quickly obtain any scaling in O(p) time. 

We call the ratio p/n the scaling factor or sf. Similarly, we 

use sfmax to denote the ratio m/n, which can be thought of as 

the maximum scaling factor. Figure 5 visually summarizes 

the above definitions. 

 

If we wish to find the best scaled match between Q and 

C, we can simply test all possible scalings, as illustrated in 

Table 1.  

The algorithm takes O(p*(m-n)) time and seems 

unworthy of any optimization effort. However, for real 

world datasets, rather than having a single candidate time 

series C, we are typically confronted with massive 

collections of possible candidate time series, which will 

denote as D. In order to find the best scaled match to a 

query Q in database D, we can use a brute force algorithm 

as shown in Table 2.  

 

Figure 5.  A visual summary of the notation introduced in this 

section. A) From (left) to (right) A candidate time series C, and a 

shorter query Q. The squared Euclidean distance between Q 

and the first n datapoints in C can be visualized as the sum of 

the squared lengths of the gray hatch lines. B) From (left) to 

(right) The query Q can be stretched to length p, producing a 

new time series QP. In this case, QP is a good match to the first 

p datapoints in C. 
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Note that the time complexity for this algorithm is 

O(|D|*(m-n)), which is simply untenable for large datasets. 

Table 1. An algorithm to find the best scaled match between 

two time series 

procedure TestAllScalings(Q,C) 

BestMatchVal        = inf; 

BestScalingFactor = null; 

for p = n to m 

QP = rescale(Q,p); 

Distance = SquaredEuclideanDistance(QP, C[1..p]); 

if distance < BestMatchVal 

BestMatchVal = distance; 

BestScalingFactor = p/n; 

 

return(BestMatchVal, BestScalingFactor) 

 

Table 2. An algorithm to find the best scaled match to query 

from a set of possible matches.  

procedure SearchDatabaseforScaledMatch(Q) 

OverallBestTimeSeries = null; 

OverallBestMatchVal   = inf; 

OverallBestScaling    = null; 

for i = 1 to number of time series in (D)  

[dist, scale] = TestAllScalings(Q,Ci)  

if dist <  OverallBestMatchVal    

OverallBestTimeSeries = i; 

OverallBestMatchVal   = dist; 

OverallBestScaling    = scale; 

 

return(OverallBestTimeSeries, OverallBestMatchVal, OverallBestScaling) 

 

 

4.1 Speeding up Search with Lower Bounding  
To speed up matching under uniform scaling we will rely on 

the classic idea of lower bounding. The intuition is the 

following. Given some technique for quickly calculating the 

minimum possible distance between the query and a 

candidate sequence at any possible scaling, we can prune 

off many calculations. Before calling the subroutine 

TestAllScalings(),we first perform the quick lower bounding 

test. If the lower bound distance between the candidate and 

the query is greater than the distance of the best-scaled 

match already seen, we can simply discard the candidate 

from consideration. There are two important properties that 

a lower bounding measure should have.  

• It must be fast to compute. A measure that takes as long 

to compute as TestAllScalings() is of little use. We would 

like the time complexity to be at most linear in the length 

of the time series. 

• It must be a relatively tight lower bound. A lower bound 

that is not tight, will not prune enough of the search 

space.  

The idea of speeding up search using lower bounding is not 

new. In fact, it is the cornerstone of virtually every time 

series similarity search algorithm. However, while dozens 

of lower bounding measures are known for Euclidean 

distance [6][12][16][19][20][29], and three lower bounding 

measures are known for DTW [18][35], only one, recently 

introduced measure, the CD-criterion, is known for uniform 

scaling [2]. As we mentioned above, the original authors 

believe this technique is non-indexable, and in any case, as 

we will show in Section 7, the bounds are quite weak. 

Therefore, we propose a novel, indexable, and tight lower 

bounding measure for uniform scaling.  

It is important to note here that the lower bounding 

technique and all the algorithms we describe in this study 

for the efficient solution of the uniform scaling problem are 

exact. This means that we are guaranteed to find all the 

solutions we are looking for, with no false dismissals. The 

essence of the techniques we propose is that they can 

effectively prune the search space, by excluding candidate 

time series that cannot be part of the solution. The result is 

considerable savings in computation time, since we do not 

have to perform the expensive distance calculations for 

every time series in the database.  

 

5. OUR SOLUTION 
We will begin by showing how we can lower bound 

sequences of arbitrary lengths in main memory. Since 

indexing structures degrade with dimensionality, we will 

further show how we can lower bound the dimensionality-

reduced representations of the time series. 
 
 

5.1 Lower Bounding in Main Memory  
In order to create a lower bounding distance measure for 

uniform scaling, we will generate a bounding envelope. 

Bounding envelopes were introduced in [18] to lower bound 

DTW, and since then they have sparked a flurry of research 

activity [13][24][28][32][35]. While the principle is the 

same here, the definitions of the envelope are very different. 

In particular, we create two sequences U and L, such that: 

Ui = max( c (i-1)*m/n +1,…, c i*m/n  ) (6) 

Li = min( c (i-1)*m/n +1,…, c i*m/n  ) (7) 

These sequences can be visualized as bounding the first n 

points of the time series C. Figure 6 shows some examples.  

Having defined U and L, we can now introduce the lower 

bounding function, LB_Keogh, which lower bounds the 

distance between Q and C for any scaling factor sf, 

max1 sfsf ≤< .  
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This function can be visualized as the squared Euclidean 

distance between any part of the query time series not 

falling within the envelope and the nearest (orthogonal) 



corresponding section of the envelope. Figure 7 illustrates 

this idea. 
 

Figure 6. (Top) A time series C of length 100. (Bottom Left) The 

time series shrouded by upper and lower envelopes U and L with 

lengths 80. (Bottom Right) The same time series shrouded by upper 

and lower envelopes U and L with lengths 60. 

 

Figure 7. (Left) A time series C and a shorter query Q. (Right) A 

visualization of the lower-bounding function LB_Keogh(Q,C). 

Note that any part of query time series Q that falls inside the 

bounding envelope is ignored. Otherwise the distance 

corresponds to the sum of the squared straight line distances 

from the query to the nearest point in the envelope (the gray 

hatch lines). 

We can now prove that LB_Keogh(Q,C) is a lower bound 

for the distance between Q and C under uniform scaling 

(the proof is in the full version of this paper). 

Lemma 1 The distance LB_Keogh(Q,C) lower bounds the 

squared Euclidean distance between any scaling of Q, and the 

appropriate prefix of C.  

 

5.2 Lower Bounding in Index Space 
As noted in Section 4.1, if we have a distance measure 

that is expensive in terms of CPU time, we can dramatically 

speed up similarity search using a tight lower bound. 

However, if the majority of the data exists on secondary 

storage, the CPU costs may be dwarfed by the disk (or tape) 

access time. The solution is to index the data. Having 

defined the bounding envelopes, we proceed in a manner 

similar to previous work [13] [18][24][28][32][35].  

We have previously denoted a time series as Q = q1,…, 

qn.  Let N be the dimensionality of the space we wish to 

index (1 ≤ N ≤ n). For convenience, we assume that N is a 

factor of n.  

A time series Q of length n can be represented in N 

dimensional space by a vector 
NqqQ ,,1 K= . The ith element 

of Q is calculated using the following equation: 

∑
+−=

=
i

ij

jn
N

i

N

n

N

n

qq
1)1(

   (9) 

In Section 5.1, we discussed the lowering bounding 

function LB_Keogh. However, calculating this function 

requires n values. Since n may be in the order of hundreds 

for realistic human motion, and multi-dimensional index 

structures begin to degrade rapidly somewhere above 16 

dimensions, we need a way to create a lower, N-

dimensional version of the function, where N is a number 

that can be reasonably handled by a multi-dimensional 

index structure. We also need this lower dimension version 

of the function to lower bound LB_Keogh (and therefore, by 

transitivity, uniform scaling). 

We begin by creating special Piecewise Constant 

Approximations  (PAAs) [19] of U and L, which we will 

denote as Û  and L̂ . Although they are piecewise constant 

approximations, the definitions of Û  and L̂  differ from 

those we have seen in Eq. 6 and 7. In particular, we have 

( ) ( )( )
iii

N
n

N
n UUU ,...,maxˆ

11 +−=   (10) 

 
( ) ( )( )

iii
N
n

N
n LLL ,...,minˆ

11 +−=    (11) 

We can visualize Û  and L̂  as the piecewise constant 

functions which bound, without intersecting, U and L, 

respectively. Figure 8 illustrates this intuition.  
 

We are now able to define the low dimension, lower 

bounding function, which we denote as MINDIST(). Given 

a query sequence Q, transformed to Q  by Eq. 9, and a 

candidate sequence C, with its companion PAA functions 

R̂ ={Û , L̂ }, the following function lower bounds 

LB_Keogh 

 

Figure 8. We can readily visualize Û  and L̂  as the piecewise 

constant functions which bound, without intersecting, U and L, 

respectively. (Left) The Û  and L̂ for the time series shown in Figure 

5. (Right) The Û  and L̂ shown overlaid on top of the generating 

time series. 

                                          

                                          

      

  

      

  

      

  

      

  

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

0 10 20 30 40 50 60 70 80 90 100

U

L

^

^

^

^

1000 10 20 30 40 50 60 70 80 90

 

L 
0 10 20 30 40 50 60 70 80 90

U  

L 
0 10  20 30 40 50 60 70 80 90 100 

 

L  
0  10  20 30 40 50 60 70 80 90 100 

U  

L  

90

 

0 10 20 30 40 50 60 70 80 100

C   

0 10 20 30 40 50 60 70 80 100

C   

m = 100 

n = 60n = 80 

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 
m = 100

Q 
n = 80

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 
m = 100

Q 
n = 80

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 

Q 

0 10 20 30 40 50 60 70 80 90 100

C 
m = 100

Q 
n = 80



∑
= 








<−
>−

=
N

i

iiii

iiii

otherwise

LqifLq

UqifUq

N

n
RQMINDIST

1

2

2

0

ˆ)ˆ(

ˆ)ˆ(

)ˆ,(

  (12) 

This function is visualized in Figure 9.   
 

 Similarly to MINDIST(Q , R̂ ), we can also define 

MAXDIST(Q , R̂ ) (illustrated in Figure 10), which serves as 

an upper bound for the distance between a query Q and R̂ .  
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The use of this upper bound will become apparent in 

Section 6, when we discuss algorithms for fast similarity 

search under uniform scaling. 

Note that there is no inherent restriction in our 

framework that would prevent us from incorporating into it 

DTW indexing, as well. DTW can be used in conjunction 

with uniform scaling to allow small local adjustments to the 

time axis after uniform scaling has found the best global 

scaling. In this case, we simply have to compute the upper 

and lower bounding envelopes for the DTW transform, and 

then, apply the techniques described in this study on these 

envelopes. Since this is a straightforward extension, we do 

not pursue it any further in this work. 
 

6. ALGORITHMS FOR SECONDARY 

STORAGE 
Based on the discussion of the previous section, we can 

now present algorithms that solve the time series similarity 

problem under uniform scaling, when the time series 

database does not fit in main memory. In the following 

discussion, as well as in the experiments, we assume that all 

the time series data and their bounding envelopes are disk 

resident. For ease of exposition, we also make the 

simplifying assumption that we are only interested in the 

single best match to our query. The extensions to more 

general cases are straightforward, and we omit them for 

brevity. The interested reader can find additional 

considerations, techniques, and references elsewhere [33]. 

The pseudocode for all the algorithms presented in this 

section can be found in the full version of this paper. 
  

6.1 Linear Scan of the Time Series 
Linear scan is a brute force approach, where we do not 

make use of our lower bounding technique. This algorithm 

sequentially reads each time series C from the disk, and 

computes its minimum distance to the query series by trying 

all possible rescalings. The only optimization we can apply 

in this case, is to stop the computation of the Euclidean 

distance function as soon as it becomes larger than the 

currently minimum distance1. We call the above algorithm 

LinearScan, and we present it only as a baseline against 

which we compare our proposed algorithms. 

In order to improve the performance of LinearScan, we 

incorporate the use of the bounding envelopes as follows. 

Along with each time series C, we also store on disk its 

corresponding envelopes R. As before, we keep track of the 

minimum distance between the query and a candidate time 

series in variable OverallBestMatchVal. The algorithm 

starts by reading the envelopes R̂  of some time series C and 

computing the lower bound MINDIST(Q , R̂ ). If this lower 

bound is less than OverallBestMatchVal, then we have to 

call TestAllScalings(). Otherwise, we know that C cannot 

have a distance to Q less than OverallBestMatchVal, and we 

can simply discard C. We refer to this algorithm as 

LinearScanLB (Linear Scan Lower Bound), and we expect 

it to run faster than LinearScan, since it avoids using 

TestAllScalings() for all the time series in the database.  

                                                                 

1 We apply the same optimization to all the algorithms we present in this 

paper. However, the performance benefits are in all cases minimal. 

 

Figure 9. (Top Left) The time series C, and its bounding envelopes. 

(Top Right) The set of bounding envelopes R̂ ={Û , L̂ }. (Bottom 

Left) The query Q, and its approximation Q . (Bottom Right) 

Illustration of the MINDIST( Q , R̂ ) function. 

 

Figure 10. (Left) The query Q, and its approximation Q . (Right) 

Illustration of the MAXDIST( Q , R̂ ) function. 
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The rest of the algorithms we describe make a more 

informed use of the bounding envelopes. The premise is 

that these algorithms will more effectively prune the search 

space, and result in superior performance. 

6.2 Linear Scan of the Bounding Envelopes 
The intuition behind our next algorithm, FastScan, is the 

following. Instead of retrieving a time series from disk 

every time that the lower bound distance is less than 

OverallBestMatchVal, start by retrieving from disk the time 

series in increasing order of their lower bound value. If the 

lower bounds we compute are tight enough, then best match 

to the query time series will be among the first time series to 

be retrieved. 

The FastScan algorithm (which is similar in nature to the 

VA-file method [34]) computes the solution in two phases. 

First, it performs a linear disk scan of the bounding 

envelopes of all the time series in the database D, and builds 

a minimum priority queue on the lower bound of the 

distance between the corresponding candidate time series 

and the query. Note that this process is relatively fast, since 

the size of the bounding envelopes is much smaller than the 

size of the time series themselves. During the second phase, 

the algorithm dequeues elements from the priority queue, 

reads from the disk the relevant candidate time series, and 

calls TestAllScalings() to determine the best match. The 

algorithm stops when the lower bound value for the 

dequeued element is larger than OverallBestMatchVal, or 

when the priority queue empties. It is easy to see that 

FastScan performs less work than LinearScanLB, and only 

in the worst case does it perform an equal amount of work.  

The FastScan algorithm requires inserting in the priority 

queue as many values as there are time series in the 

database. However, this is not a concern, even though it is a 

main memory data structure. For example, a heap would 

require 20 bytes2 per entry, a small amount even for 

databases with one million objects. The processing time 

required for the heap, O(log|D|), is not of concern either, 

since it is insignificant compared to the time required for 

disk I/O and for computing the distances between time 

series. Note that we can incorporate in the algorithm the use 

of the upper bound (MAXDIST) as well, which can help 

maintain the size of the priority queue small: usually less 

than 15% of the original size. However, this comes at a cost 

in time. In the version of FastScan we used in the 

experiments, we did not take into account this optimization. 
 

6.3 Algorithms based on R-trees 

Having the bounding envelopes R̂  in a sufficiently low 

dimensionality allows us to use an R-tree [5][15] for 

                                                                 

2 The elements we need to store are the lower bound value (8 bytes), a 

pointer to the time series in the file system (4 bytes), and two pointers to 

the children nodes (8 bytes). 

indexing them. The goal is to avoid reading all the bounding 

envelopes, which is what FastScan does. 

The use of the R-tree is straightforward. We associate 

each bounding envelope R̂ ={Û , L̂ } to a Minimum 

Bounding Rectangle MBR(l,h) as follows: 

l=(
NLLL ˆ,...,ˆ,ˆ

21
), and h=(

NUUU ˆ,...,ˆ,ˆ
21

). This allows to 

compute the lower bound distance MINDIST(Q , R̂ ) as 

usual. Along with each MBR that represents a set of 

bounding envelopes R̂ , we also store a pointer to the 

corresponding time series C in the file system. Then, we 

build the R-tree using one of the traditional construction 

algorithms [5][15].  

The R-tree search algorithm starts by reading an MBR r, 

and computing the lower bound MINDIST(Q ,r). If this 

lower bound is less than OverallBestMatchVal, and r is an 

inner node, then we process r recursively. If r is a leaf node, 

that is, it refers to bounding envelopes R̂  of candidate time 

series C, then we have to read C from disk, call 

TestAllScalings() to compute the best match for all possible 

rescalings, and update OverallBestMatchVal. If the lower 

bound is larger than OverallBestMatchVal, then we simply 

disregard r. We refer to this algorithm as RtreeBF (R-tree 

Brute Force). 

An optimization that we can apply to the above algorithm 

is to use the R-tree index to get a small number of candidate 

time series with the lowest lower bound values, and then 

test each of these candidates to determine the true best 

match. This is the same idea that FastScan uses. 

Now, the R-tree search algorithm needs to maintain a 

minimum priority queue on the lower bound values. 

However, unlike FastScan, we can also make use of the 

upper bound distance between the query and an MBR, 

MAXDIST(Q ,r), in order to further prune the search space 

(this optimization is not applicable to RtreeBF that only 

needs to compare the lower bound to 

OverallBestMatchVal). 

For each MBR r, we compute the lower and upper 

bounds, and maintain the lowest value for the upper bounds 

in variable LowestUpper. We recursively search the R-tree, 

following only the MBR nodes whose lower bound is less 

than LowestUpper. If this condition is true for a leaf MBR, 

then we insert an entry for the corresponding candidate time 

series in the priority queue. When we have finished 

processing the R-tree, we start calling TestAllScalings() to 

determine the best match among all the candidates stored in 

the priority queue. This processing follows the order 

specified by the queue. We call this algorithm RtreeProbe. 
 

7. EXPERIMENTAL RESULTS 
In this section we will empirically evaluate our approach. 

Although we are particularly interested in motion capture 

data, as we noted above, our algorithm may have utility in 

domains as diverse as music retrieval [7] and space 



telemetry [8]. We will therefore perform all experiments on 

the following two datasets. 

• Motion Capture: This dataset was distilled from several 

hours of recording with Vicon (an optical motion capture 

system), using 124 sensors. The data for our experiments 

are drawn uniformly at random from a pool of 250,000 

subsequences. 

• Mixed Bag: This dataset was created by concatenating 10 

diverse datasets from the UCR time series archive. The 10 

datasets are foetal ecg, steam generator, space shuttle, 

Photon Burst, Standard and Poor 500, ocean, power 

demand, leleccum, Koski ECG, and infrasound_beamd. 

The subsequences we use for our experiments are drawn 

at random from this pool, making sure that all 10 seed 

time series contribute equally. 

In both cases, the queries are random subsequences not 

present in the database of candidate time series. 
 

7.1 Main Memory Experiments 
In the first set of experiments, we evaluate the 

effectiveness of our lower bounding technique when the 

datasets fit in main memory. We use the main memory 

version of algorithm LinearScanLB, which we call 

LB_Keogh. We compare only to the brute force search 

algorithm defined in Table 2, and to the recently introduced 

CD-criterion technique [2], because there are no other 

techniques in existence that support uniform scaling queries. 

To eliminate the possibility of implementation bias [18], 

and because CD-criterion does not support indexing, we 

consider the speedup obtained in main memory. To compare 

the three competing techniques we report the Pruning 

Power, i.e., the fraction of times that each approach must 

call the squared Euclidean distance function. 
 

searchforcebrutebyfunctionncestaditocallsofNumber

approachproposedbyfunctionncestaditocallsofNumber
PowerruningP =

 

 

(13) 

This measure depends only on the tightness of the lower 

bounds, and is independent of language, platform, caching 

or any other implementation details. As an additional sanity 

check we also measured the CPU time. However, since it is 

almost perfectly correlated with the Pruning Power, we 

omit it for brevity. Note that by definition, the pruning 

power of brute force is always 1.  

As noted earlier, the CD-criterion algorithm can only test 

whether the distance of two sequences is within a user-

supplied epsilon. In order to allow direct comparison with 

the two other approaches, we supply to the algorithm the 

exact epsilon that will return the single nearest neighbor. 

 Since the speed-up obtained for our approach clearly 

depends on the range of scaling factors and the length of the 

time series, we test our approach for the cross product of 

maximum scaling factors sfmax = {1.05, 1.10, 1.20} and 

candidate time series lengths of {64, 128, 256}. These 

represent realistic parameters in our motion capture domain, 

and seem representative of other domains as well 

[9][14][35]. 

We conduct our experiments as follows. We randomly 

remove a subsequence of the appropriate length from the 

data to use as a query, and randomly choose 10,000 other 

subsequences to act as the database. We then search for the 

best scaled match. We repeated this 500 times for every 

combination of scaling factors and candidate lengths. Figure 

11 shows the results. 

The results are quite impressive for the proposed 

approach, which essentially needs to perform an order of 

magnitude less work than CD-criterion, over all parameter 

settings on both datasets. In addition, our approach is two to 

three orders of magnitude more efficient than the brute 

force algorithm. The above experiments demonstrate that 

our technique can effectively reduce the amount of required 

effort by avoiding a considerable number of unnecessary 

computations. 
 

Figure 11. The pruning power of CD-criterion and LB_Keogh 

algorithm on two datasets, over a range of scaling factors and 

candidate lengths. 
 

7.2 Secondary Storage Experiments 
In this section, we evaluate the performance of our 

techniques when the time series database D does not fit in 

main memory. The experiments were performed on an 

Athlon 1.6GHz Linux machine, with 1GB of main memory. 

All the data were stored on its local disk. In the interest of 

space, we only report the results for the motion capture 

dataset; the results for the mixed bag dataset exhibit similar 

trends. 

In all the following experiments, we measure the time (in 

seconds) it takes each algorithm to process a single query. 

We repeated each experiment 500 times, and report the 

average time. Note that we only need to compare the 

algorithms in terms of their running-time performance. 

Since all algorithms are exact, they return in every case the 

same (correct, based on the distance definition) answer. 
 

7.2.1 Exploring the Properties of the Algorithm 
In the first set of experiments, we compare the 

performance of the algorithms LinearScan, LinearScanLB, 

FastScan, RtreeBF, and RtreeProbe, for the cross product 

of maximum scaling factors sfmax = {1.05, 1.10, 1.20} and 

candidate time series lengths of {64, 128, 256} (Figure 12). 

The dimensionality of the approximated bounding 
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envelopes is fixed to 16, and the number of candidate time 

series to 10,000.  

The results clearly show that LinearScan cannot compete 

with the other alternatives, which can actually offer 

interactive response times, a crucial factor for the real-life 

applications we have in mind. Note that all the other 

algorithms outperform LinearScan by up to more than an 

order of magnitude, exactly because they make use of the 

techniques we introduce in this paper. For the rest of the 

discussion, we will disregard LinearScan, and focus on the 

comparison among the other algorithms. 

 

Figure 12. Average time to answer a query for algorithms 

LinearScan, LinearScanLB, FastScan, RtreeBF, and RtreeProbe, 

over a range of scaling factors and candidate lengths. 

In Figure 13, we zoom in on the results of the four 

algorithms that use our proposed technique. As expected, 

the trends are that the query response time increases with 

both the length of the candidate time series and the scaling 

factor. Out of the two, the latter seems to be the dominant 

factor. All four algorithms exhibit similar trends. 

In terms of absolute numbers, FastScan and RtreeProbe 

perform better than the other two algorithms, executing up 

to 3.5 times faster. Note that these two are the algorithms 

that first determine the most promising order in which to 

access the candidate time series, and only then start 

accessing them. 
 

7.2.2 Scalability Experiments 
We now turn our attention to the scalability issues, and 

examine the behavior of the algorithms when we vary the 

size of the time series database. The default values we use 

are, unless otherwise noted, 10,000 for the number of 

candidate time series, 128 for their length, and 16 for the 

dimensionality of the approximated representations of the 

bounding envelopes. 

In the first set of experiments we vary the number of 

candidate time series from 5,000 to 80,000. The results are 

shown in Figure 14. We observe that the query response 

time for FastScan is better than RtreeBF for the small 

database sizes, but then deteriorates faster as the database 

size increases. This is due to the fact that it still needs to 

read from disk the bounding envelopes for all the series in 

the database. RtreeBF can effectively prune the search 

space. Yet, for the smaller database sizes, it pays the price 

of not determining in advance the most promising order in 

which to test the candidate time series. The performance of 

RtreeProbe is consistently the best among the proposed 

approaches (2 to 9 times faster), combining the advantages 

of both FastScan and RtreeBF. 

 

Figure 15 depicts the results of the experiments where 

we varied the length of the candidate time series (from 64 to 

1024). At the high end of the length spectrum, with the 

exception of RtreeProbe, all the algorithms tend to behave 

the same. The experimental results indicate that the 

algorithms fail to prune a significant amount of the 

candidate time series. On the other hand, RtreeProbe 

manages to do a slightly better job in this respect, which 

results in significant savings in terms of time. Its 

performance is 2.5 to 4 times better than the best alternative. 

 

 

Figure 14. Average time to answer a query for algorithms 

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying the 

number of candidate time series. 

In the last set of experiments (Figure 16), we evaluate the 

effect of the dimensionality of the approximated bounding 

envelopes on the performance of the algorithms. An 

 

Figure 13. Average time to answer a query for algorithms 

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, over a range of 

scaling factors and candidate lengths. 
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increase in the dimensionality results in more accurate 

representations, and consequently, in more precise lower 

and upper bounds. The experiments show that this is, in 

general, beneficial for all the algorithms. However, the 

benefits are diminishing as the dimensionality increases. In 

fact, we may also get the reverse effect, as is the case with 

RtreeBF for dimensionality 16. In this case, the bounding 

envelopes of the candidate time series do not form tight 

clusters in the high-dimensional R-tree, and consequently, 

lead to poor performance. RtreeProbe avoids the cost of this 

problem, because it postpones the expensive 

TestAllScalings() operation till the end. 

The experimental evaluation indicates that it is beneficial 

to first identify the most promising candidates entirely in the 

reduced dimensionality space (i.e., using only R̂ ), and then 

test the query against the candidate time series, despite the 

fact that these calculations are not as precise. Though, the 

above may not be true for large databases (see Figure 14). It 

is also interesting to note that the behavior of the R-tree 

algorithms is not always predictable. Consider, for example, 

the non-intuitive RtreeBF results for database sizes 5,000 

and 10,000 (Figure 14), and dimensionalities of 12 and 16 

(Figure 16). In both cases, the results worsen when the 

parameters become seemingly more favorable. 

Nevertheless, one of the R-tree-based algorithms, 

RtreeProbe, exhibits a consistently superior performance 

across all experiments, outperforming the best alternative by 

up to 4 times. As a last remark, we should note that 

FastScan, which does not require the use of any indexing 

structures, performs in many cases competitively to 

RtreeProbe. This makes FastScan an attractive alternative 

for the case where we cannot afford to build an index on the 

time series in the database. 

 

Figure 15. Average time to answer a query for algorithms 

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying 

the length of the candidate time series. 

7.3 Case Study 
In addition to the comprehensive experiments on the 

efficiency of indexing discussed above, we also used a 

motion capture processing system to evaluate our 

techniques. We conducted numerous experiments to test the 

quality of matches obtained by uniform scaling, allowing 

both stretching and shrinking.  

The experimental setup was as follows. We randomly 

selected a query motion from our motion capture database 

(sitting up, stretching arms, etc.), and searched the database 

for the closest (non-self) match. We evaluated the returned 

sequences in two ways. Objectively, by measuring the 

Euclidean distance of the sequences (which express the 

orientations of the joints in the body), and subjectively, by 

creating and reviewing animations based on the matched 

sequences. These animations show the query sequence and 

its best matches superimposed on each other. 

  The results of the experiments validate the utility and 

effectiveness of our approach, and also demonstrate that 

uniform scaling produces better results than DTW. Since 

such experiments do not lend themselves to a text and 

graphic exposition, we have created a website with full 

video examples [40], and only present here a single figure 

to give the flavor of these experiments. 

In Figure 17, we show the best match under uniform 

scaling (top) and the best match under DTW (bottom) for a 

query involving a motion of the arms. In the figures and 

graphs, we have superimposed the query with each of the 

best match sequences. It is obvious that when we allow 

uniform scaling we are able to find a match that is much 

closer to the query sequence (Euclidean distance 51.83) 

than when we use DTW (Euclidean distance 154.16). 
 

 

Figure 16. Average time to answer a query for algorithms 

LinearScanLB, FastScan, RtreeBF, and RtreeProbe, when varying 

the dimensionality of the approximated representations. 

 

8. CONCLUSIONS 
In this work, we motivated the need for uniform scaling 

similarity matching, which has applications in several 

domains where human variability necessitates this type of 

matching flexibility (e.g., motion libraries, music retrieval, 

and historical handwritten archives). We introduced the first 

technique for indexing time series with invariance to 

uniform scaling, based on bounding envelopes. This 

technique enables fast similarity searching in large time 

series databases. We presented several algorithms that make 

use of the above technique, and evaluated our proposed 
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approaches with a comprehensive set of experiments on real 

data, over realistic parameter choices suggested by domain 

experts. The experimental results demonstrate the 

significant advantages of our indexing technique, and 

evaluate the relative benefits of the different alternatives. 

Finally, we describe the application of our method in a 

motion capture processing system, and illustrate its 

usefulness and the superiority of the results it returns when 

compared to other alternatives.  
 

 
Figure 17: Sample results from a motion-capture similarity search 

experiment. A query motion (upper body only) was submitted to a 

motion capture database.  (Top Left) The stick figure is a superposition 

of both the query and the best matching sequence under uniform 

scaling. Since both figures are so similar (after scaling the match back 

to the query length) we can only see a single figure. (Bottom Left) The 

superposition of the query and the best DTW match show considerable 

mismatch. (Right) The corresponding time series (only the Z-axis is 

shown) illustrates the source of the difference. 
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