
Multimedia Tools and Applications, Special Issue on Content-Based Multimedia Indexing CBMI’2009 

 

 

Indexing Music by Mood: Design and Integration of an 

Automatic Content-based Annotator 
 

Cyril Laurier, Owen Meyers, Joan Serrà, Martin Blech, Perfecto Herrera and Xavier Serra 

Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain 

 

 

contact: cyril.laurier@upf.edu 

 

Extended version of the CBMI 2009 paper: “Music Mood Annotator Design and Integration” 

 

 

 

Abstract In the context of content analysis for indexing and retrieval, a method for creating 

automatic music mood annotation is presented. The method is based on results from psychological 

studies and framed into a supervised learning approach using musical features automatically 

extracted from the raw audio signal. We present here some of the most relevant audio features to 

solve this problem. A ground truth, used for training, is created using both social network 

information systems (wisdom of crowds) and individual experts (wisdom of the few). At the 

experimental level, we evaluate our approach on a database of 1000 songs. Tests of different 

classification methods, configurations and optimizations have been conducted, showing that 

Support Vector Machines perform best for the task at hand. Moreover, we evaluate the algorithm 

robustness against different audio compression schemes. This fact, often neglected, is fundamental 

to build a system that is usable in real conditions. In addition, the integration of a fast and scalable 

version of this technique with the European Project PHAROS is discussed. This real world 

application demonstrates the usability of this tool to annotate large-scale databases. We also report 

on a user evaluation in the context of the PHAROS search engine, asking people about the utility, 

interest and innovation of this technology in real world use cases. 
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1. Introduction  

Psychological studies have shown that emotions conveyed by music are objective enough to be 

valid for mathematical modeling [4, 13, 24, 32]. Moreover, Vieillard et al. [43] demonstrated that 

within the same culture, the emotional responses to music could be highly consistent. All these 

results indicate that modeling emotion or mood in music is feasible.  

In the past few years, research in content-based techniques has been trying to solve the problem of 

tedious and time-consuming human indexing of audiovisual data. In particular, Music Information 

Retrieval (MIR) has been very active in a wide variety of topics such as automatic transcription or 

genre classification [5, 29, 41]. Recently, classification of music mood has become a matter of 

interest, mainly because of the close relationship between music and emotions [1, 20]. 

In the present paper, we present a robust and efficient mood annotator that automatically estimates 

the mood of a piece of music, directly from the raw audio signal. We achieve this task by using a 

supervised learning method. In Section 2, we report on related works in classification of music 

mood. In Section 3, we detail the method and the results we achieved. In Section 4, we describe the 

integration of this technique in the PHAROS project (Platform for searcHing of Audiovisual 

Resources across Online Spaces). In Section 5, we present the protocol and results of a user 

evaluation. Finally, in Section 6, we discuss future works. 

 

2. Scientific Background 

Although there exist several studies dealing with automatic content-based mood classification (such 

as [4, 26, 37, 47]), almost every work differs in the way that it represents the mood concepts. 

Similar to psychological studies, there is no real agreement on a common model [16]. Some 

consider a categorical representation based on mutually exclusive basic emotions such as 

“happiness”, “sadness”, “anger”, “fear” and “tenderness” [19, 26, 36, 39], while others prefer a 

multi-labeling approach (i.e., using a rich set of adjectives that are not mutually exclusive) like 

Wieczorkowska [45]. The latter is more difficult to evaluate since they consider many categories. 

The basic emotion approach gives simple but relatively satisfying results, around 70-90% of 

correctly classified instances, depending on the data and the number of categories chosen (usually 

between 3 and 5). Li and Ogihara [22] extract timbre, pitch and rhythm features from the audio 

content to train Support Vector Machines (SVMs). They consider 13 categories, 11 from the ones 

proposed in Farnsworth [10] plus 2 additional ones. However, the results are not that convincing, 

obtaining low average precision (0.32) and moderate recall (0.54). This might be due to the small 

dataset labeled by only one person and to the large number of categories they chose. Conversely, it 

is very advisable to use few categories and a ground truth annotated by hundreds of people (see 

Section 3.1).  

Other works use the dimensional representation (modeling emotions in a space), like Yang [47]. 

They model the problem with Thayer’s arousal-valence
1
 emotion plane [40] and use a regression 

approach (Support Vector Regression) to learn each of the two dimensions. They extract mainly 

spectral and tonal descriptors together with loudness features. The overall results are very 

encouraging and demonstrate that a dimensional approach is also feasible. In another work, Mandel 

et al. [27] describe an active learning system using timbre features and SVMs, which learns 

                                                           
1 In psychology, the term valence describes the attractiveness or aversiveness of an event, object or situation. For 

instance happy and joy have a positive valence and anger and fear a negative valence. 
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according to the feedback given by the user. Moreover, the algorithm chooses the examples to be 

labeled in a smart manner, reducing the amount of data needed to build a model, and has an 

accuracy equivalent to that of state-of-the-art methods.  

Comparing evaluations of these different techniques is an arduous task. With the objective to 

evaluate different algorithms within the same framework, MIREX (Music Information Retrieval 

Evaluation eXchange) [8] organized a first task on Audio Mood Classification in 2007
2
. MIREX is 

a reference in the MIR community that provides a solid evaluation of current algorithms in different 

tasks. The MIREX approach is similar to the Text Retrieval Conference (TREC)
3
 approach to the 

evaluation of text retrieval systems, or TREC-VID
4
 for video retrieval. For the Audio Mood 

Classification task, it was decided to model the mood classification problem with a categorical 

representation in mood clusters (a word set defining the category). Five mutually exclusive mood 

clusters were chosen (i.e, one musical excerpt could only belong to one mood cluster). In that 

aspect, it is similar to a basic emotion approach, because the mood clusters are mutually exclusive. 

They asked human evaluators to judge a collection of 1250 30-second excerpts (250 in each mood 

cluster). The resulting human-validated collection consisted of 600 30-second clips in total. The 

best results approached 60% of accuracy [14, 18]. In Table 1, we show the categories used and the 

results of different algorithms, including our submitted algorithm [18] (noted CL). One should note 

that the accuracies from the MIREX participants are lower than those found in most of the existing 

literature. This is probably due to a semantic overlap between the different clusters [14]. Indeed, if 

the categories are mutually exclusive, the category labels have to be chosen carefully. 

 

Mood Clusters CL GT TL ME 

rowdy,rousing,confident,boisterous,passionate 45.83% 42.50% 52.50% 51.67% 

amiable,good natured,sweet,fun,rollicking,cheerful  50% 53.33% 49.17% 45.83% 

literate,wistful,bittersweet,autumnal,brooding,poignant 82.50% 80% 75% 70% 

witty,humorous,whimsical,wry,campy,quirky,silly 53.33% 51.67% 52.50% 55% 

volatile,fiery,visceral,aggressive,tense/anxious,intense 70.83% 80% 69.17% 66.67% 

Mean accuracy 60.50% 61.50% 59.67% 57.83% 

 

Table 1. Extract from the Audio Mood Classification task results, MIREX 2007. Mean accuracies in 

percentage over a 3-fold Cross Validation. Comparison of our submitted algorithm (CL[18]), with 

the other top competitors (GT[42], TL[23], ME[28]). We used several of the audio features 

presented later in this paper and SVMs. 

 

Performing a statistical analysis on this data with the Tukey-Kramer Honestly Significantly 

Differently method (TK-HSD) [2], the MIREX organizers found that our algorithm had the first 

rank across all mood clusters despite its average accuracy being the second highest [14]. Another 

                                                           
2
 http://www.music-ir.org/mirex2007/index.php/Audio_Music_Mood_Classification 

3 http://trec.nist.gov/ 
4 http://www-nlpir.nist.gov/projects/trecvid/ 
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interesting fact from this evaluation is that, looking at all the submissions, the most accurate 

algorithms were using SVMs. The results of the MIREX task show that our audio feature extraction 

and classification method are state-of-the-art. Thus, to create a new music mood annotator, even 

though we tried different classification methods, we focused on the optimization of Support Vector 

Machines [3]. Moreover, we especially focused on using a relevant taxonomy and on finding an 

efficient and original method to create a reliable ground truth. 

 

3. Method 

To classify music by mood, we frame the problem as an audio classification problem using a 

supervised learning approach. We consider unambiguous categories to allow for a greater 

understanding and agreement between people (both human annotators and end-users). We build the 

ground truth to train our system on both social network knowledge (wisdom of crowds) and experts 

validation (wisdom of the few). Then we extract a rich set of audio features that we describe in 

Section 3.2. We employ standard feature selection and classification techniques and we evaluate 

them in Section 3.3. Once the best algorithm is chosen, we evaluate the contribution of each 

descriptor in 3.5 and the robustness of the system as reported in Section 3.4. In Figure 1, we show a 

general block diagram of the method. 

 

 

 

 

Figure 1. Schema of the method employed to create the ground truth, validate it and design the 

music mood annotator. 
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3.1 Ground Truth from wisdom of crowds and wisdom of the few  

For this study we use a categorical approach to represent the mood. We focus on the following 

categories: happy, sad, angry, and relaxed. We decided to use these categories because these moods 

are related to basic emotions from psychological theories (reviewed in [15]) and they cover the four 

quadrants of the 2D representation from Russell [34] with valence and arousal dimensions (see 

Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. “Circumplex model of affect” (adapted from Russel [34]). 

 

The Russell 2D model (called “circumplex model of affect”) is a reference widely accepted and 

cited in psychological studies on emotion. In this space, “happy” and “relaxed” have positive 

valence and, respectively, high and low arousal. “Angry” and “sad” have negative valence and, 

respectively, high and low arousal. As we do not want to be restricted to exclusive categories, we 

consider the problem as a binary classification task for each mood. One song can be “happy” or 

“not happy”, but also independently “angry” or “not angry” and so on. 

The main idea of the present method is to exploit information extracted from both a social network 

and several experts validating the data. To do so, we have pre-selected the tracks to be annotated 

using last.fm
5
 tags (textual labels). Last.fm is a music recommendation website with a large 

community of users (30 million active users based in more than 200 countries) that is very active in 

associating tags with the music they listen to. These tags are then available to all users in the 

community. In Figure 3, we show an example of a “tag cloud”, which is a visualization of the tags 

assigned to one song with the font size weighted by the popularity of the tag for this particular song.  

                                                           
5
 http://www.last.fm 
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Figure 3. Tag cloud of the song “Here comes the sun” from the Beatles. The tags recognized as 

mood tags are underlined. The bigger the tag is, more people have used it to define that song. 

 

In the example shown in Figure 3, we can see that “happy” is present and quite highly weighted 

(which means that many people have used this tag to describe the song). In addition to “happy”, we 

also have “cheerful”, “joy”, “fun” and “upbeat”. To gather more data, we need to extend our query 

made to last.fm with more words related to mood. For the four chosen mood categories, we 

generated a set of related semantic words using Wordnet
6
 and looked for the songs frequently 

tagged with these terms. For instance “joy”, “joyous”, “cheerful” and “happiness” are grouped 

under the “happy” category to generate a larger result set. We query the social network to acquire 

songs tagged with these words and apply a popularity threshold to select the best instances (we keep 

the songs that have been tagged by many users). 

Note that the music for the “not” categories (like “not happy”) was evenly selected using both 

music tagged with antonyms and a random selection to create more diversity. Afterwards, we asked 

listeners to validate this selection. We considered a song to be valid if the tag was confirmed by, at 

least, one listener, as the pre-selection from last.fm granted that the song was likely to deserve that 

tag. We included this manual tag confirmation in order to exclude songs that could have received 

the tag by error, to express something else, or by a ”following the majority” type of effect. The 

listeners were exposed to only 30 seconds of the songs to avoid changes in the mood as much as 

possible and to speed up the annotation process. Consequently, only these 30 second excerpts have 

been included in the final dataset. In total, 17 different evaluators participated and an average of 

71% of the songs originally selected from last.fm was included in the training set. We observe that 

the “happy” and “relaxed” categories have a better validation rate than the “angry” and “sad” 

categories. This might be due to confusing terms in the tags used in the social networks for these 

latter categories or to a better agreement between people for “positive” emotions. These results 

indicate that the validation by experts is a necessary step to ensure the quality of the dataset. 

Otherwise, around 29% of errors, on average, would have been introduced. This method is relevant 

to pre-selecting a large number of tracks that potentially belong to one category.  

 

 
                                                           
6
 Wordnet is a large lexical database of English words with sets of  synonyms http://wordnet.princeton.edu/ 
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At the end of the song selection process, the database was composed of 1000 songs divided between 

the 4 categories of interest plus their complementary categories (“not happy”, “not sad”, “not 

angry” and “not relaxed”), i.e. 125 songs per category. The audio files were 30-second stereo clips 

at 44khz in a 128kbps mp3 format. 

 

3.2 Audio Feature Extraction  

In order to classify the music from audio content, we extracted a rich set of audio features based on 

temporal and spectral representations of the audio signal. For each excerpt, we merged the stereo 

channels into a mono mixture and its 200ms frame-based extracted features were summarized with 

their component-wise statistics across the whole song. In Table 2, we present an overview of the 

extracted features by category. 

 

Timbre Bark bands, MFCCs, pitch salience, hfc, loudness, spectral: flatness, flux, 

rolloff, complexity, centroid, kurtosis, skewness, crest, decrease, spread 

Tonal dissonance, chords change rate, mode, key strength, tuning diatonic strength, 

tristimulus 

Rhythm bpm, bpm confidence, zero-crossing rate, silence rate, onset rate, danceability 

 

Table 2. Overview of the audio features extracted by category. See [31], [12] and [25] for a 

detailed description of the features. 

 

For each excerpt we obtained a total of 200 feature statistics (minimum, maximum, mean, variance 

and derivatives), and we standardized each of them across the whole music collection values. In the 

next paragraphs, we describe some of the most relevant features for this mood classification task, 

with results and figures based on the training data. 

 

3.2.1 Mel Frequency Cepstral Coefficients (MFCCs) 

MFCCs [25] are widely used in audio analysis, and especially for speech research and music 

classification tasks. The method employed is to divide the signal into frames. For each frame, we 

take the logarithm of the amplitude spectrum. Then we divide it into bands and convert it to the 

perceptually-based Mel spectrum. Finally we take the discrete cosine transform (DCT). The number 

of output coefficients of the DCT is variable, and is often set to 13, as we did in the present study. 

Intuitively, lower coefficients represent spectral envelope, while higher ones represent finer details 

of the spectrum. In Figure 4, we show the mean values of the MFCCs for the “sad” and “not sad” 

categories. We note from Figure 4 a difference in the shape of the MFCCs. This indicates a 

potential usefulness to discriminate between the two categories. 
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Figure 4. MFCC mean values for coefficients between 2 and 13 for the “sad” and “not sad“ 

categories of our annotated dataset. 

 

3.2.2 Bark bands 

The Bark band algorithm computes the spectral energy contained in a given number of bands, 

which corresponds to an extrapolation of the Bark band scale [31, 38]. For each Bark band (27 in 

total) the power-spectrum is summed. In Figure 5, we show an example of the Bark bands for the 

“sad” category. 

 

 

Figure 5. Bark band mean values for coefficients between 1 and 25 for the “sad” and “not sad 

“categories of our annotated dataset. 

 

As with the MFCCs, the Bark bands appear to have quite different shapes for the two categories, 

indicating a probable utility for classification purposes. 

 

3.2.3 Spectral Complexity 

The spectral complexity descriptor [31] is based on the number of peaks in the input spectrum. We 

apply peak detection on the spectrum (between 100Hz and 5Khz) and we count the number of 

peaks. This feature describes the complexity of the audio signal in terms of frequency components. 

In Figures 6 and 7, we show the box-and-whisker plots of the spectral complexity descriptor’s 

standardized means for the “relaxed”, “not relaxed”, “happy” and “not happy” categories. These 

results are based on the entire training dataset. These plots illustrate the intuitive result that a 
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relaxed song should be less “complex” than a non-relaxing song. Moreover, Figure 7 tells us that 

happy songs are on average spectrally more complex. 

 

Figure 6. Box-and-whisker plot of the 

standardized spectral complexity mean 

feature for “relaxed” and “not relaxed”. 

 Figure 7. Box-and-whisker plot of the 

standardized spectral complexity mean feature 

for “happy” and “not happy”. 

 

3.2.4 Spectral Centroid and Skewness 

The spectral centroid and skewness descriptors [31] (as well as spread, kurtosis, rolloff and 

decrease) are descriptions of the spectral shape. The spectral centroid is the barycenter of the 

spectrum, which considers the spectrum as a distribution of frequencies. The spectral skewness 

measures the asymmetry of the spectrum’s distribution around its mean value. The lower the value, 

the more energy exists on the right-hand side of the distribution, while more energy on the left side 

indicates a higher spectral skewness value. In Figure 8 we show the spectral centroid’s box-and-

whisker plot for “angry” and in Figure 9 the spectral skewness for “sad”. 

Figure 8 shows a higher spectral centroid mean value for “angry” than “not angry”, which 

intuitively means more energy in higher frequencies. For the spectral skewness, the range of mean 

values for the “sad” instances is bigger than for the “not sad” ones. This probably means that there 

is a less specific value for the centroid. In any case, it seems to have on average a lower value for 

the “not sad” instances. 
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Figure 8. Box-and-whisker plot of the 

standardized spectral centroid mean for 

“angry” and “not angry”. 

 Figure 9. Box-and-whisker plot of the 

standardized spectral skewness mean for 

“sad” and “not sad”. 

 

 

 

 

 

 

 

 

Figure 10. Box-and-whisker plot of the 

standardized dissonance mean for the 

“relaxed” and “not relaxed” categories. 

 Figure 11. Box-and-whisker plot of the 

dissonance mean for the “angry” and “not 

angry” categories. 

 

3.2.5 Dissonance  

The dissonance feature (also known as “roughness” [35]) is defined by computing the peaks of the 

spectrum and measuring the spacing of these peaks. Consonant sounds have more evenly spaced 

spectral peaks and, on the contrary, dissonant sounds have more sporadically spaced spectral peaks. 

In Figures 10 and 11, we compare the dissonance distributions for the “relaxed” and “angry” 
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categories. These figures show that “angry” is clearly more dissonant than “not angry”. Listening to 

the excerpts from the training data, we noticed many examples with distorted sounds like electric 

guitar in the “angry” category, which seems to be captured by this descriptor. This also relates to 

psychological studies stating that dissonant harmony may be associated with anger, excitement and 

unpleasantness [13,44]. 

 

3.2.6  Onset rate, Chords change rate 

From psychological results, one important musical feature when expressing different mood types is 

rhythm (generally, faster means more arousal) [15]. The basic measure/element of rhythm is the 

onset, which is defined as an event in the music (any note, drum, etc.). The onset times are 

estimated by looking for peaks in the amplitude envelope. The onset rate is the number of onsets in 

one second. This gives us the number of events per second, which is related to a perception of the 

speed. The chords change rate is a rough estimator of the number of chords change per second. 

In Figure 12, we compare the onset rate values for the “happy” and “not happy” categories. It shows 

that “happy” songs have higher values for the onset rate, which confirms the psychological results 

that “happy” music is fast [15]. In Figure 13, we look at the chords change rate, which is higher for 

“angry” than “not angry”. This is also a confirmation of the studies previously mentioned, 

associating higher arousal with faster music. 

 

 

 

 

 

 

 

 

Figure 12. Box-and-whisker plot of the 

standardized onset rate value mean for the 

“happy” and “not happy” categories. 

 Figure 13. Box-and-whisker plot of the 

chords change mean for the “angry” and 

“not angry” categories. 

 

3.2.7 Mode 

In Western music theory, there are two basic modes: major and minor. Each of them has different 

musical characteristics regarding the position of tones and semitones within their respective musical 

scales. Gómez [11] explains how to compute an estimation of the mode from raw audio data.  

The signal is first pre-processed using the direct Fourier transform (DFT), filtering frequencies 

between 100 Hz and 5000 Hz and locating spectral peaks. The reference frequency (tuning 
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frequency) is then estimated by analyzing the frequency deviation of the located spectral peaks. 

Next the Harmonic Pitch Class Profile (HPCP) feature is computed by mapping frequency and pitch 

class values (musical notes) using a logarithmic function [11]. The global HPCP vector is the 

average of the instantaneous values per frame, normalized to [0,1] to make it independent of 

dynamic changes. The resulting feature vector represents the average distribution of energy among 

the different musical notes. Finally, this vector is compared to minor and major reference key 

profiles based on music theory [17]. The profile with the highest correlation with the HPCP vector 

defines the mode. 

In Figure 14, we represent the percentages of estimated major and minor music in the “happy” and 

“not happy” categories. We note that there is more major music in the “happy” than in the “not 

happy” pieces. In music theory and psychological research, the link between valence (positivity) 

and the musical mode has already been demonstrated [15]. Still, having empirical data from an 

audio feature automatically extracted showing the same tendency is an interesting result. We note 

also that the proportion of major music is also high in the “not happy” category, which is related to 

the fact that the majority, 64%, of the whole dataset is estimated as major. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Bar plot of the estimated mode proportions (in percentage) for the “happy” and “not 

happy” categories. 

 

We have mentioned here some of the most relevant features showing their potential to individually 

discriminate between categories, however, we keep all the descriptors in our “bag-of-features”; 

those that are not obviously useful could be significant when combined with others in a linear or 

non-linear way. To capture these relationships and build the model, we tried several kinds of 

classification algorithms. 
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3.3 Classification Algorithms 

Once the ground truth was created and the features extracted, we performed a series of tests with 8 

different classifiers. We evaluated the classifiers using their implementations in Weka [46] with 10 

runs of 10-fold cross-validation and parameter optimizations (See Table 3 for the mean accuracies). 

Next, we list the different classifiers we employed. 

 

3.3.1 Support Vector Machines (SVMs) 

Support Vector Machines [3], is a widely used supervised learning classification algorithm. It is 

known to be efficient, robust and to give relatively good performance. Indeed, this classifier is 

widely used in MIR research. In the context of a two-class problem in n dimensions, the idea is to 

find the “best” hyperplane separating the points of the two classes. This hyperplane can be of n-1 

dimensions and found in the original feature space, in the case that it is a linear classifier. 

Otherwise, it can be found in a transformed space of higher dimensionality using kernel methods 

(non-linear). The position of new observations compared to the hyperplane tells us in which class 

belongs the new input. For our evaluations, we tried different kernel methods: linear, polynomial, 

radial basis function (RBF) and sigmoid respectively called SVM linear, SVM poly, SVM RBF and 

SVM sigmoid, as shown in Table 3. To find the best parameters in each case we used the cross-

validation method on the training data. For the linear SVM we looked for the best value for the cost 

C (penalty parameter), and for the others we applied a grid search to find the best values for the pair 

(C, gamma) [3]. For C, we used the range [2
-15

,2
15

] in 31 steps. For gamma, we used the range 

[2
15

,2
3
] in 19 steps. In the other cases than the linear SVM, once we have the best pair of values 

(C,gamma), we conduct a finer grid search on the neighborhood of these values. We note that from 

our data, the best parameter values highly depends on the category. Moreover, even if a RBF kernel 

is not always recommended for large feature sets compared to the size of the dataset [3], we 

achieved the best accuracy using this kernel for almost all categories. We used an implementation 

of the Support Vector Machines called libsvm [6]. 

 

3.3.2 Trees and Random Forest 

The decision tree algorithm splits the training dataset into subsets based on a test attribute value. 

This process is repeated on each subset in a recursive manner (recursive partitioning). The random 

forest classifier uses several decision trees in order to improve the classification rate. We used an 

implementation of the C4.5 decision tree [33] (called J48 in Weka and in Table 3). To optimize the 

parameters of the decision tree, we performed a grid search on the two main parameters: C (the 

confidence factor used for pruning) from 0.1 to 0.5 in 10 steps and M (the minimum number of 

instances per leaf) from 2 to 20. 

 

3.3.3 k-Nearest Neighbor (k-NN) 

For a new observation, the k-NN algorithm looks for a number k of the closest training samples to 

decide on the class to predict. The result relies mostly on the choice of distance function, which 

might not be trivial in our case, and also in the choice of k. We tested different values of k (between 

1 and 20) with the Euclidean distance function. 
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3.3.4 Logistic Regression 

Logistic regression can predict the probability of occurrence of an event by fitting data to a logistic 

curve. It is a generalized linear model used for binomial regression. To optimize it, we varied the 

ridge value [21]. 

 

3.3.5 Gaussian Mixture Models (GMMs) 

GMM is a linear combination of Gaussian probability distributions. This approach assumes that the 

likelihood of a feature vector can be expressed with a mixture of Gaussian distributions. GMMs are 

universal approximations of density, meaning that with enough Gaussians, any distribution can be 

estimated. In the training phase, the parameters of the Gaussian mixtures for each class are learnt 

using the Expectation-Maximization algorithm, which iteratively computes maximum likelihood 

estimates [7]. The initial Gaussian parameters (means, covariance, and prior probabilities) used by 

the EM algorithm are generated via the k-means method [9]. 

 

3.4 Evaluation results 

After independent parameter optimization for each classifier, the evaluation was made with 10 runs 

of 10 fold cross-validation. For comparison purposes, we show the mean accuracies obtained for 

each mood category and algorithm configuration separately. Each value in a cell represents the 

mean value of correctly classified data in the test set of each fold. Considering that each category is 

binary (for example, “angry” vs. “not angry”), the random classification accuracy is 50%. 

The SVM algorithm with different kernels and parameters, depending on the category, achieved the 

best results. Consequently, we will choose the best configuration (SVM with polynomial kernel 

except for happy where we will use a linear SVM) for the integration in the final application. 

 

The accuracies we obtained using audio-based classifiers are quite satisfying and even exceptional 

when looking at the “angry” category with 98%. All four categories reached classification 

accuracies above 80%, and two categories (“angry” and “relaxed”) peaked above 90%. Even though 

these results might seem surprisingly high, this is coherent with similar studies [37]. Also, the 

training examples were selected and validated only when they clearly belonged to the category or 

its complementary. This can bias the database and the model towards detecting very clear between-

class distinctions.  
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Angry Happy Relaxed Sad 

Mean 

Accuracy 

Duration 

10 folds 

SVM linear 95.79% 84.57% 90.68% 87.31% 89.58% 14 s 

SVM poly 98.17% 84.48% 91.43% 87.66% 90.44% 24 s 

SVM RBF 95.19% 84.47% 89.79% 87.52% 89.24% 17 s 

SVM sigmoid 95.08% 84.52% 88.63% 87.31% 88.89% 17 s 

J48 95.51% 80.02% 85.25% 85.87% 86.66% 5 s 

Random 

Forest 
96.31% 82.55% 89.47% 87.26% 88.90% 13 s 

k-NN 96.38% 80.89% 90.08% 85.48% 88.21% 4 s 

Logistic 

Reg 
94.46% 73.60% 82.54% 76.38% 81.75% 20 s 

GMMs 96.99% 79.91% 91.13% 86.54% 88.64% 12 s 

 

Table 3: Mean classification accuracy with 10 runs of 10-fold cross-validation, for each category 

against its complementary. In bold is the highest accuracy for each category. The last column is the 

duration, in seconds, for a 10-fold cross-validation (computed on a 1.86 Ghz Intel Core Duo). 

 

 

 
Angry Happy Relaxed Sad 

All features 98.17% 84.57% 91.43% 87.66% 

MFCCs 89.47% 57.59% 83.87% 81.74% 

Bark bands 90.98% 59.82% 87.10% 83.48% 

Spectral 

complexity 
95.86% 55.80% 88.71% 86.52% 

Spectral centroid 89.47% 50% 85.48% 83.04% 

Spectral skewness 77.44% 52.23% 73.38% 73.48% 

Dissonance 91.73% 62.05% 82.66% 79.57% 

Onset rate 52.63% 60.27% 63.31% 72.17% 

Chords change rate 74.81% 50% 69.35% 68.26% 

Mode 71.43% 64.73% 52.82% 52.08% 

 

Table 4. Mean classification accuracy with 10 runs of 10-fold cross-validation, for each category 

against its complementary with feature sets made of one descriptor statistic. 



Multimedia Tools and Applications, Special Issue on Content-Based Multimedia Indexing CBMI’2009 

 

3.5 Audio feature contribution 

In this part, we evaluated the contribution of the audio features described in 3.2. In order to achieve 

this goal, we chose the best overall classifier for each category and we made 10 runs of 10-fold 

cross-validation with only one descriptor type statistic. We show in Table 4 the resulting mean 

accuracies for each configuration compared to the best accuracy obtained with all the features in the 

first row. 

We observe that most of the descriptors give worst results for the “happy” category. This reflects 

also the results with all features, with a lower accuracy for “happy”. Moreover, some descriptors 

like the spectral centroid and the chords change rate do not seem to contribute positively for this 

category. We also note that the mode helps to discriminate between “happy” and “not happy”, like 

seen in Figure 14. It is also relevant for the “angry” category. However it does seem useful for 

“sad” against “not sad”. It is also worth noticing that if some individual descriptors can give 

relatively high accuracies, the global system combining all the features is significantly more 

accurate. 

 

3.6 Audio encoding robustness 

The cross-validation evaluation previously described gives relatively satisfying results in general. It 

allows us to select the best classifier with the appropriate parameters. However, since the goal is to 

integrate this model into a working platform, we have to test the stability and robustness of the 

mood classification with low quality encodings. Indeed it should be able to process musical content 

of different quality (commercial or user generated). The original encodings of the training set were 

mp3 at 128 kbps (kilobits per second). We generated two modified versions of the dataset, lowering 

the bit rate to 64 kbps and 32kbps. In Figure 15, we represent the accuracy degradation of the 

classifier trained with the entire dataset and tested on the same one with the previously mentioned 

low-rate encodings. We decided to train and test with full datasets, as this classifier model would be 

the one to be used in the final integrated version. Please note that the accuracies are different from 

Table 3 because in this case we are not performing cross-validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Effect of the audio bit rate reduction on the accuracy (in percentage) for the entire 

dataset. 
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We observe degradation due to encoding at a lower bit rate. However, in all cases, this does not 

seem to have a strong impact. The degradation, in percentage, compared to the original version at 

128 kbps is acceptable. For instance, we observe that for the “angry” category, at 32 kbps, only 

0.7% of the dataset is no longer correctly classified as before. We also notice that the highest 

percentage of degradation is 3.6% obtained for the “relaxed” category (with 32 kbps). Even though 

there is a slight drop in the accuracy, the classification still gives satisfying results. 

 

 

4. Integration in the PHAROS Project 

After explaining the method we used to build the ground truth, extract the features, select the best 

classification model and evaluate the results and robustness, we discuss here the integration of this 

technology in the PHAROS search engine framework. 

 

4.1 The PHAROS project 

PHAROS
7
 (Platform for searcHing of Audiovisual Resources across Online Spaces) is an 

Integrated Project funded by the European Union under the Information Society Technologies 

Programme (6th Framework Programme) - Strategic Objective ’Search Engines for Audiovisual 

Content’. PHAROS aims to advance audiovisual search from a point-solution search engine 

paradigm to an integrated search platform paradigm. One of the main goals of this project is to 

define a new generation of search engine, developing a scalable and open search framework that 

lets users search, explore, discover, and analyze contextually relevant data. Part of the core 

technology includes automatic annotation of content using integrated components of different kinds 

(visual classification, speech recognition, audio and music annotations, etc.). In our case, we 

implemented and integrated the automatic music mood annotation model previously described.  

 

4.2 Integration of the mood annotator 

As a search engine, PHAROS uses automatic content annotation to index audiovisual content. 

However, there is a clear need to make the content analysis as efficient as possible (in terms of 

accuracy and time). To integrate mood annotation into the platform, we first created a fast 

implementation in C++ with proprietary code for audio feature extraction and dataset management 

together with the libsvm library for Support Vector Machines [6]. The SVMs were trained with full 

ground truth datasets and optimal parameters. Using a standard XML representation format defined 

in the project, we wrapped this implementation into a webservice, which could be accessed by other 

modules of the PHAROS platform. Furthermore, exploiting the probability output of the SVM 

algorithm, we provided a confidence value for each mood classifier. This added a floating point 

value that is used for ranking the results of a query by the annotation probability (for instance from 

the less to the most happy). 

The resulting annotator extracts audio features and predicts the music’s mood at a high speed (more 

than twice real-time), with the same performance level than what was presented in the previous 

section (using the same database). This annotator contributes to the overall system by allowing for a 

flexible and distributed usage. In our tests, using a cluster of 8 quad-core machines, we can annotate 

                                                           
7
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1 million songs (using 30-seconds of each) in 10 days. The mood annotation is used to filter 

automatically the content according to the needs of users and helps them to find the content they are 

looking for. This integrated technology can lead to an extensive set of new tools to interact with 

music, enabling users to find new pieces that are similar to a given one, providing recommendations 

of new pieces, automatically organizing and visualizing music collections, creating playlists or 

personalizing radio streams. Indeed, the commercial success of large music catalogs nowadays is 

based on the possibility of allowing people to find the music they want to hear. 

 

5. User evaluation 

In the context of the PHAROS project, a user evaluation has been conducted. The main goal of 

these evaluations was to assess the usability of the PHAROS platform and in particular, the utility 

of several annotations.  

 

Protocol 

26 subjects participated in the evaluation. They were from the general public, between 18 and 40 

years old (27 in average), all of them self-declared eager music listeners and last.fm users. The 

content processed and annotated for this user evaluation was made of 2092 30-second music videos. 

After a presentation of the functionalities on site, the users were then directly using an online 

installation of the system from their home. During 4 weeks, they could test it with some tasks they 

were asked to do every two days. The task related to our algorithm was to search for some music 

and to refine the query using a mood annotation. One query example could be to search for “music” 

and then refine with the mood annotation “relaxed”. They had to answer a questionnaire at the end 

of the study: 

 

-“Do you find it interesting to use the mood annotation to refine a query for music?” 

-“Do you find the “mood” annotation innovative?” 

-”Does the use of the mood annotation correspond to your way of searching for audiovisual 

information?”  
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Figure 16. Screenshot of the PHAROS interface used for the user evaluation. 

 

Results 

As a general comment, there is difficulty for users to understand directly a content-based 

annotation. Some effort and thinking has to be done to make it intuitive and transparent. For 

instance what is “sad=0.58” (music annotated sad with a confidence of 0.58), is it really sad? Is it 

very sad? The confidence, or probability, value of one annotation is quite relative to other instances 

and most of all to the training set. This can be used for ranking results but might not be shown to 

the end-user directly. We should prefer nominal values like “very sad” or “not sad” for instance. 

Another important point seen when analyzing the comments from the users is the need to focus on 

precision. Especially in the context of a search engine, people will only concentrate on the first 

results and may not go to the second page. Instead, they are more likely to change their query. 

Several types of musical annotations were proposed to the user (genre, excitement, instrument, 

color, mode and key). From this list, mood was ranked as the second best in utility, just after 

musical genre (which is often given as metadata). Users had to rate on a scale from 0 to 10 their 

answer to several questions (0 would be “I strongly disagree” and 10 “I strongly agree”). We 

summarize here the answers to the questions related to the mood annotation: 

-“Do you find it interesting to use the mood annotation to refine a query for music?” Users 

answered positively with a mean of 8.66, standard deviation of 1.85, showing a great interest to use 

this annotation. 

-“Do you find the “mood” annotation innovative?” The mean of answers was also positive with  

6.18  in average (standard deviation 3.81). 

-”Does the use of the mood annotation correspond to your way of searching for audiovisual 

information?” Here users agreed with an average of 6.49 (standard deviation 3.47).  
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In all cases the mood annotation and its integration into the PHAROS platform was greatly accepted 

and highly considered by users. They also rated it as the most innovative musical annotation 

overall. In Figure 16, we show a screenshot of the version of the PHAROS platform installed for the 

user evaluation. As an open framework, a PHAROS installation can be instantiated with different 

configurations, features and user interfaces. In this study we used an instance created by taking 

advantage of Web Ratio
8
 (an automatic tool to generate web interface applications). In this 

screenshot, the user is searching for “relaxed” music. They enter “relaxed” as a keyword and are 

browsing the musical results. The ones shown here were rated as “relaxed” (respectively 100% and 

99%) thanks to the automatic music mood annotator we describe in this article. 

 

6. Discussion and Conclusion 

We presented an approach for automatic music mood annotation introducing a procedure to exploit 

both the wisdom of crowds and the wisdom of the few. We detailed the list of audio features used 

and revealed some results using those most relevant. We reported the accuracies of optimized 

classifiers and tested the robustness of the system against low bit rate mp3 encodings. We explained 

how the technology was integrated in the PHAROS search engine and used it to query for, refine 

and rank music. We also mentioned the results from a user evaluation, showing a real value for the 

users in an information retrieval context. However, one may argue that this approach with 4 mood 

categories is simple when compared to the complexity of human perception. This is most likely 

true. Nevertheless, this is an important first step for this new type of annotation. So what could be 

done to improve it? First, we can add more categories. Although there might be a semantic overlap, 

it can be interesting to annotate music moods with a larger vocabulary, if we can still have high 

accuracies and add useful information (without increasing the noise for the user). Then, we can try 

to make better predictions by using a larger ground truth dataset or by designing new audio 

descriptors especially relevant for this task. Another option would be to generate analytical features 

[30], or to combine several classifiers to try to increase the accuracy of the system. We could also 

consider the use of other contextual information like metadata, tags, or text found on the Internet 

(from music blogs for instance). It has also been shown that lyrics can help to classify music by 

mood [19]. Indeed, multimodal techniques would allow us to capture more emotional data but also 

social and cultural information not contained in the raw audio signal. We should also focus on the 

user’s needs to find the best way to use the technology. There is a clear need to make the annotation 

more understandable and transparent. Mood representations can be designed to be more usable than 

only textual labels. Finally, the mood annotation could be personalized, learning from the user’s 

feedback and his/her perception of mood. This would add much value, although it might require 

more processing time per user, thus making the annotation less scalable. Nevertheless, it could 

dramatically enhance the user experience.  
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