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Since the definition of quasiperiodicity is intimately connected to the indexing of a Fourier
transform, for the case of an icosahedral solid, the step necessary to prove, using diffraction, that
an object is quasiperiodic, is described. Various coordinate systems are discussed and reasons are
given for choosing one aligned with a set of three orthogonal two-fold axes. Based on this
coordinate system, the main crystallographic projections are presented and several analyzed
single-crystal electron diffraction patterns are demonstrated. The extinction rules for three of
the five icosahedral Bravais quasilattices are compared, and some simple relationships with the
six-dimensional cut and projection crystallography are derived. This analysis leads to a simple
application for indexing powder diffraction patterns.

I. INTRODUCTION

The recent discovery of Shechtmanite,1'2 a metallic
phase with long-range icosahedral orientational sym-
metry and experimentally discrete diffraction patterns,
has revealed a new class of ordered structures. The ico-
sahedral symmetry is inconsistent with strict crystallo-
graphic periodicity, yet discrete diffraction implies qua-
siperiodicity. Schechtmanite is thus cited as an example
of a quasiperiodic crystal or quasicrystal, for short.
Since the two icosahedral groups are not part of the 32
crystallographic point groups, the possibility exists that
any of the infinity of noncrystallographic point groups
will be observed. Indeed, claims that specimens exhibit-
ing two other point groups, decagonal 10/m (Ref. 3)
and duodecagonal 12 (Ref. 4), have since been report-
ed.

These quasicrystalline phases present challenging
problems in crystallography. In this paper the mundane
housekeeping problems of coordinate systems, index-
ing, and extinction rules that are the essential language
of reporting experimental observations will be dis-
cussed. Indexing is not just a housekeeping procedure: it
is an essential part of proving that a structure is periodic,
quasiperiodic, or almost periodic. We will concentrate
on the icosahedral phases and the three-dimensional
aspects of descriptions that are most easily derived in
higher dimensions.

a) Present address: Center for Materials Research, The Johns Hopkins
University, Baltimore, MD 21218; also a guest worker at the Na-
tional Bureau of Standards, Gaithersburg, MD 20899.

II. QUASIPERIODICITY

The Fourier transform of a periodic function is a set
of delta functions that are periodically spaced and, in
general, vary in magnitude. Diffraction gives informa-
tion in the form of a Fourier transform of the correla-
tions of an object. If the object is a periodic crystal, the
diffraction pattern is a discrete set of spots of varying
intensity that are positioned on a reciprocal lattice.
Three reciprocal lattice vectors form a basis to locate
any spot in a three-dimensional reciprocal space.

A mathematical function is quasiperiodic by defini-
tion if its Fourier transform is a set of delta functions
that are not uniformly spaced as they would be for a
periodic function, but whose spacing can be described
by a finite set of lengths.5 If an infinite number of lengths
are required the function is called almost periodic.
Therefore specimens that give countable diffraction
spots that cannot be indexed with three reciprocal lat-
tice vectors are quasiperiodic if they can be indexed with
a finite set.

It has been shown that any Z>-dimensional quasiper-
iodic function requiring a basis of N vectors can be con-
sidered to be derived from a periodic iV-dimensional
function cut by a Z>-dimensional plane.5 If every spot in
the diffraction pattern can be indexed using a combina-
tion of TV reciprocal lattice vectors, then the object that
gave this diffraction pattern can be represented by a cut
of a TV-dimensional periodic object.

The icosahedral point group is not consistent with
translational periodicity. The icosahedral diffraction
pattern cannot consist of periodically spaced spots. If
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the diffraction pattern consists of discrete spots that can
be indexed by a finite number of basis vectors it is quasi-
periodic.

Several papers have already discussed ways of de-
riving quasiperiodic structures from cuts of periodic
higher dimensional structures6"10 including icosahedral
structures. The converse problem of taking a particular
diffraction pattern and indexing it has been attempted11

in a way that has been criticized.12'13 The problem
centers on the fact that with a combination of incom-
mensurate lengths any spot can be located approximate-
ly with any desired degree of accuracy. We will show
that with our indexing, the observed high-intensity
spots form a simple sequence in which none are missing
and none left out.

III. COORDINATE SYSTEMS

Taking basis vectors along important symmetry di-
rections simplifies the crystallographic formulation.
For any group with a unique rotation axis, the z axis is
taken parallel to that axis. This is the proper choice for
the crystallographic groups such as hexagonal and the
noncrystallographic groups such as decagonal. The ico-
sahedral groups have 6 fivefold axes, 10 threefold axes,
and 15 twofold axes. Taking one of the fivefold axes as
the z axis (Fig. 1) leaves the other five in a ring 63.43°
from this axis. Although these all would make acute
angles with the z axis, there are obtuse angles between
some of them. There is no choice of sign for the six axes
that would give equal angles between all of them. A co-

0/1 1/0 1/1

1/1 0/1 1/0
o/o o/o 0/2

1/1 0/1 I/O.

0/1 1/0 1/1

0/1 1/0 1/1

1/1 "1/1

1/1 0/1 1/0

0/0 0/0 0/2 1/1 0/1 1/0

0/1 1/0 1/1

FIG. 1. The stereographic projection of the principal symmetry directions and mirror planes of the icosahedral group m35 as seen along the
fivefold direction. The number indicates the indexing system that will be described later in the text.
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ordinate system based on these axes is not only skewed
but encounters the difficulty of keeping track of obtuse
and acute angles. There are right angles between a five-
fold axis and five of the twofold axes, that could serve as
a coordinate system when comparing the icosahedral
phase with the decagonal phase.

If we examine the icosahedral group with a three-
fold axis along z (Fig. 2), we have three choices of coor-
dinate systems that are related to familiar crystallogra-
phic ones. The 6 fivefold axes now fall into two groups,
either of which could be used as a rhombohedral basis.
In one set the fivefold axes make acute angles with each
other. In the other set the angles are obtuse. A hexagon-
al coordinate system could be based on the threefold
axis and the three twofold axes at right angles to it. Of
special interest are the three twofold axes at 71° from z
that form an orthogonal set.

The simplest system is a cubic coordinate system in
which the axes of the coordinate system are aligned with
a set of three orthogonal twofold axes of the icosahedral
group (Fig. 3). The 15 twofold axes fall in five such sets
all equivalent to each other through the operation of a
fivefold axis. This is the coordinate system used in the
International Tables of Crystallography, and it is the
coordinate system we will use, even to describe the other
coordinate systems. It has all advantages of orthogonal
axes.

The three coordinate systems discussed here are all
based on subgroups of the icosahedral group, as shown
in Fig. 4. Using a coordinate system based on a lower
symmetry than icosahedral, requires special attention
for the icosahedral symmetries not used in that coordi-
nate system: equivalent reflections will not necessarily
have similar indices.

0/1 1/0 1/1

1/1 0/1 1/0

T/o 0/1 o/o

zone of 0/0 0/0 0/2
2-fold

1/0 1/1 0/1

zone of 0/0 1/0 0/1
5-fold

zone of 0/0 1/2 0/1
3-fold 0/1 1/0 1/1

FIG. 2. The stereographic projection of the icosahedral group m35 as seen along a threefold direction. Note the possibility of a rhombohedral
coordinate system using either set of fivefold axes, a hexagonal coordinate system using the twofold axes along the equator or the three twofold
axes at 71°. The thickened great circles show the three zone axes of the diffraction pattern indexed in Figs. 5-7, namely the twofold labeled
[0/0 1/0 0/1 ], the fivefold labeled [0/0 1/0 0/1 ] and the threefold axis labeled [0/0 1/2 0/1 ].
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1/0 0/1 o/o

0/0 0/2 0/0

0/2 0/0 0/0

i/2 0/1 0/0

i/0 0/1 0/0

0/0 0/2 0/0

1/0 0/1 0/0

1/2 0/1 0/0

FIG. 3. The standard stereographic projection for the icosahedral group aligns the axes of an orthogonal coordinate system with one of the five sets
of mutually perpendicular twofold axes. Note that four of the threefold axes are along the < 111 > directions.

Order of Decagonal/
Group Pentagonal

120

60
48
40

24
20

12
10 10 TO 5 5m 52

Icosahedral Cubic Rhombo
hedral

FIG. 4. The maximal subgroups of the ico-
sahedral group mil and the decagonal
group \0/mmm.
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IV. THE CUBIC COORDINATE SYSTEM

Having selected a coordinate system aligned along
three perpendicular twofold axes, we need to describe
vectors and planes in both the direct and reciprocal
spaces. An immediate advantage of the choice of a cubic
coordinate system is that the indices of a plane and the
direction normal to it are the same. We define unit
lengths a and a* in both spaces and dimensionless
lengths and position in terms of these. Consider a posi-
tion (UVW) or a plane {HKL). The set of all positions
or planes equivalent through the operations of the icosa-
hedral groups (235) and ml>5 is as follows:

1. The threefold axes give cyclic permutation, but
note that while (UVW), (WUV), and (VWU) are equi-
valent, (VUW), etc., is different.

2. The twofold axes give pairs of sign changes, the
mirrors give individual sign changes. Thus for 235,
(UVW)_, (UVW), (UVW), and (UVW) are equivalent
but (UVW), etc., is not. For m35 all sign changes are
equivalent positions.

3. The fivefold axes introduce a change of the mag-
nitude of U, V, and W and introduce the golden section
r = 2 cos 36° = (1 + V5)/2 = 1.618 034. Because the
International Tables have a misprint in the rotation ma-
trices, we repeat them here in Table I, using their nota-
tion G = r/2, g — \/2T = G — 1/2. Performing the ma-
trix multiplication we obtain

(HKL)Y

= \((H-K)+T(K-L),

(L-H)+r(H + K),

- (K + L) + T(L + H)). (1)

In this multiplication we make frequent use of the iden-
tities

12=l+T, (2)

l/r = r - l , (3)

G2+g2+(i)2=l. (4)

TABLE I. Matrices for fivefold rotation about [ I r 0] .

It may at first seem surprising that equivalent posi-
tions turn out to have designations with different nu-
merical values of the components, but this is unavoid-
able with a Cartesian coordinate system and groups
with such a high symmetry. The most symmetric crys-
tallographic group m3m has order 48. It has 48 unit
triangles. Taking all the permutations and sign changes
of (UVW) generates 48 equivalent general positions,
one in each unit triangle. It is impossible to generate the
60 or 120 equivalent positions needed (resp. for 235 or
m35) with just three symbols. Thus, the choice of a cu-
bic coordinate system results in the possibility that as
many as five different sets of indices may be necessary to
represent equivalent positions or planes.

Now consider a plane or reciprocal space position
with an index of the form

that is, where

H=h + h' = k + k'r, L =
in which the h, h',k,k', I, and / ' are all integers. We
introduce the six-index notation (h/h1, k/k', l/V)
or (h /h ' k /k'///') to designate such a reflection.

Operation of the fivefold rotation will change the
numerical value of the six integers.

T[(h-k') (5)

In order for this to be a close set, we impose the
parity conditions that the three sums h + k',k + I', and
I + h 'are even: after fivefold rotation the six integer in-
dices remain integers and the parity rules are conserved.

G

G = (V5 + 1 )/4 = T / 2 = cos 36° = 0.809017

g = (V5 - l ) / 4 = l /2r = G - i = cos 72° = 0.309017

YT=Y~'
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Finding that all spots in the diffraction pattern are of
this form implies quasiperiodicity.

We next turn to the indexing of the principal direc-
tions (Figs. 1-3). The six fivefold axes are all of the form
( ITO), or in the six-index notation (1/00/10/0).

The ten threefold axes have two different designa-
tions: four are along (111) or (1/0 1/0 1/0) and six
along (r2 1 0) or (1/1 1/0 0/0). Note that both vectors
have been chosen to have a length ^3.

Three of the twofold axes are along the cube axes.
The remaining 12 have the form (G,g, ±) or (0/1171 1/
0).

V. RECIPROCAL QUASILATTICES

Consider a quasilattice in three-dimensional reci-
procal space in which every spot occurs as a sum of
integer multiples of a finite number (greater than three)
of vectors. We will compare two lattices formed only of
equivalent vectors. In particular, let us first take the six
vectors along the fivefold axes,14

where the n, are integers and the q, are (lrO) which in
the six-index notation is

q1 = ( l /0 0/10/0),

q2 = (0/1 0/0 1/0),

q 3 = (0/0 1/0 0/1), (7)

q 4 = (1/0 0/1 0/0),

q5 = (0/1 0/0 I/O),

q 6 = (0/0 1/0 0/1).
[There are 384 ways for choosing the qt 's. All give equi-
valent results. The choice of the set (7) corresponds to
the two rhombohedral bases: q1; q2, q3 define the acute
rhombohedron and q4, q5, q6 the obtuse one (see Fig.
2).] The set of six numbers («,•) can be considered an
indexing of Q, and has been used in a number of papers.
This same set can also be considered to be a six-dimen-
sional lattice vector. To express Q in terms of the three-
dimensional cubic coordinates we substitute set (7) in
Eq. (6) and perform the summation,

Q = ((«! - «4)/(«2 + n5), («3 - «6)/(H! + «4),

(8)

TABLE II. Extinction rules for reciprocal quasilattices.

We can thus convert from the six-dimensional vec-
tor («1( n2, n3, «4, n5, n6) to the six-index three-dimen-
sional vector (h/h',k/k',l/l').

h = n1 — n4, h' = n2 + n5,

K = n3 — n6,

< = n2- n5,

' = ni+n4, (9a)

and vice versa

2n1=h+k

2n2 = l + h' (9b)

2«4 = —h + k',

2n5= - l + h',

2n3 = k + l', 2n6=—k + l'.

The form of Eq. (9b) demonstrates that Q in the six-
index notation obeys the parity rules. These restrictions
on the indices are extinction rules and are given in Table
II under the heading of the P quasilattice (to be defined
later).

These parity rules lead to four kinds of positions:
1. six even indices,
2. four even indices (odd/even, even/odd, even/

even),
3. two even indices (even/odd, odd/even, odd/

odd),
4. six odd indices.

If the coordinates of a spot (HKL) that is consistent
with the parity rules are multiplied by r, the results are

(THTKTL) =(h'/(h+h'),k'/(k + k'),

17(1 + 1')). (10)

Only if the original (HKL) = (h/h' k/k' I/I')
contains two or six even indices, will (TH TK TL) sa-
tisfy the parity rules. On the other hand, scaling by r3

= ((h + 2h')/(2h + 3h'),
(k + 2k')/(2k + 3kr),

/ ')) (11)

preserves the parity rules for all (HKL) that satisfy
them. These scaling rules are tabulated for the primitive
(P) reciprocal quasilattice in Table III.

In addition, the square of Q is of the form

Q2 = N + Mr,

where using Eqs. (2) and (3),

(12)

P{a*)
F(2a*)

direct lattice is I (a)
/(2a*)

direct lattice is F(a)

HKL
h + k1 = 2n
k + l' = 2n

same as P * plus all even plus

all integers = 2«

h + k + V + k' = An
O + k + h' + / ' = 4n)

all even or all odd
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TABLE III. Parity and scaling properties for the P and F reciprocal
quasilattices.

Parity of Q 2 = N + TM
indexes Scaling P F N M

six even r
four even T 3

two even r
six odd r 3

Present Present An Am
Present Absent An + 2 Am + 1
Present Present 4« 4m
Present Absent An+ 2 Am + 1

f £ ' 2 + / 2 + /'2, (13)

+ kk' + ll'). (14)

Equation (13) indicates that N, the integer part of Q2, is
twice the square of the length of the six-dimensional n
vector and therefore must be even. Because of the parity
rules, if ./Vis divisible by 4, M also is divisible by 4, and if
N is not divisible by 4, M is of the form Am + 1. In
addition, as we will show later, M conforms to the limits

-N/T<M<NT (15)

and that the most intense reflections occur for the lar-
gest value of M, which we shall denote by Mo. For N
divisible by 4

M0 = 4L(A^r) /4J , (16)

where L x J is the largest integer in x.
When N is not divisible by 4,

M —Am + \<NT.

The largest value of the integer m is

mo= L(NT- 1)/4J

and

Mo= l+4L(JVr- 1)/4J. (17)

We next define a two-parameter indexing Q(N,r)

Q2(N,r) =N + MOT - Arr,

r = 0,l,...< L (N/T + M0)/AJ, (18)

in which the Q0(N) will turn out to define the sequence
of intense reflections.

Q20(N)=Q2(N,0)=N + M0(N)T. (19)

The same procedure has been used by us to find the
quasilattice formed from the 15 vectors along the two-
fold axes. The same result is obtained in a simpler man-
ner by putting the face-centering restrictions F on the
six-dimensional lattice formed by the «,, and then using
Eq. (9a). The result for that and for the body-centered /
lattice are also given in Table II.

In Table III we make a simple comparison between
the P and F which share the same parity rules. It can be
seen that the F lattice scales by r, and has only N = An,
the P lattice comprises, in addition, N = An + 2 spots
that scale by r3. Figure 5 is a diffraction intensity calcu-
lation using the sphere approximation in the cut and
projection method.8'9

VI. INDEXING THE SINGLE QUASICRYSTAL
PATTERNS

Figures 6-8 show the indexing of the electron dif-
fraction patterns of Refs. 1 and 2. The stereographic
projection (Fig. 2) presents the three zone axes of these
diffraction patterns, namely, the [0/0 0/0 0/2] two-
fold, the [0/0 1/0 0/1 ] fivefold, and the [0/0 1/2 0/1 ]
threefold axes. Note that all of the reflections in the five-
fold and threefold zone axis conform to either the P or F
reciprocal quasilattices of Sec. V. These could not be
used to distinguish between the two reciprocal quasilat-
tices.

It is easy to show that the reflections for which
h ' + k' + / ' is odd will appear in neither the five- or

FIG. 5. Diffraction patterns calculated
by the cut and projection method for all
three reciprocal cubic quasilattices with
the same lattice parameter a* for the
two- and fivefold zone axes.
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1/2 3/5 2/3 3/4 3/5 2/3

1/1 2/3 1/2 3/5 2/3 1/2
1/3 2/3 1/2

0/1 1/2 1/1 2/3 1/2 1/1"

1/0 1/1 0/1

r2/1 1/2 1/1

- 1/2 1/1 0/T 3/4 1/1 0/1

0/0 0/0 0/0

1/1 0/1 1/0 1 / 3 Q / 1 T / o 3/5 0/1 1/0

3/3 0/1 7/0 ^

2/4 0/0 0/0 4/6 0/0 0/0

0/2 0/0 0/0

2/2 0/0 0/0
4/4 0/0 0/0

FIG. 6. Indexed diffraction pattern of a 108° sector of the [0/0 1/0 0/1 ] zone axis. Sizes of the circles represent calculated intensities based on the
inverse of the distance of a spot in the six-dimensional primitive reciprocal lattice from the cut plane.

0/1 1/2 3/5
2/3 1/2 3/5

4/5 T/2 3/5

1/2 1/1 2/3

0/0 0/2 2/4

1/0 1/1 2/3
1/2 1/12/3 3/4 1/12/3 3 / 6 T/7 2/3

1/1 0/1 1/2 1/1 0/1 1/2 3/5 0/1 1/2

2/3 li? 1/1o/T 1/0 1/1 0/1 1/0 1/1

0/0 0/0 0/0

0/2 0/0 0/0,

• I
2/2 0/0 0/0

FIG. 7. Indexed diffraction pattern of a 120° sector of the [0/0 1/2 0/1 ] zone axis.

2/5 1/0 1/1

2/4 0/0 0/0 4/6 0/0 0/0

'4/4 0/0 0/0
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0/0 4/6 0/0 2/4 4/6 0/0 4/6 4/6 0/0

0/2 4/6 0/0

2/2 4/6 0/0

0/0 2/4 0/0 2/2 2/4 0 / 0 2 M 2 / 4 0 / 0 4/6 2/4 0/0
0/2 2/4 0/0

1/2
1/0 2/3 0/0

0/0 2/2 0/0

2 2^/0 ^ — <
3/4 2/3 0/0

0/2 2/2 0/0 A

2/2 2/2 0/0

1/0 2/1 0/0

1/0 0/1 0/0

0/0 0/0 0/0

2/4 2/2 0/0 3 / 6 2 / 3 0 / 0

• * •
4/6 2/2 0/0

3/4 2/1 0/0

1/2 0/1 0/0 3/4 0/1 0/0 3/6 0/1 0/0

2/2 0/0 0/0

0/2 0/0 0/0

4/4 0/0 0/0

2/4 0/0 0/0

4/6 0/0 0/0

FIG. 8. Indexed diffraction pattern of the [0/0 0/0 0/2] zone axis. Note the square array made of all even and two-even spots that scale with r. If
only these spots were present, this pattern would have fourfold symmetry and scale by r.

threefold zone axes. For example, in order for a reflec-
tion to be in the [0/0 1/0 0/1 ] zone axis K + TL = 0.
This implies that k + / ' + r(k ' + / + / ' ) = 0, which
can only occur if (& + / ' ) = (&' + / + / ' ) = 0. Adding
the even number h' — I gives h ' + k' + / ' = 2n. The
same result is obtained with the [111] zone axis. Fitting
the two zone axes alone can not distinguish between P
and F. Indeed the model of Levine and Steinhardt seems
to fit only the three- or fivefold.14 In the [0/0 0/0 0/2]
zone axes / = / ' = O,but h + A: (and h ' + A:') can be
odd. This gives the spots with two odd indices, that can
be seen in Fig. 7. Spots with six odd indices derive from
these after some fivefold rotations. The twofold zone
axes thus show some spots with r3 scaling.

The twofold zone axis for the F quasilattice show
only spots with r scaling and may show an accidental
fourfold symmetry. Permutation of the x andy indices
preserves the parity rules and does not change Qc (see
Sec. VII). If the intensity is only a function of Qc the
pattern will show the fourfold axis.

Observing an icosahedral diffraction pattern in
which all the spots can be indexed with this six index
notation proves that we have a diffraction pattern of a
quasiperiodic structure. In particular the experimental
pattern is not the For /. Furthermore, because it can be

indexed with six integers, the object can be represented
as a slice and projection of a six-dimensional periodic
structure.

Several other methods of indexing with six numbers
have been successful.11"13 They have differed from each
other in ways that become significant after we examine
the cut and projection method.

VII. THE CUT AND PROJECTION FROM SIX
DIMENSIONS

In three dimensions the six vectors along the five-
fold axes are not orthogonal. We can choose the six-
dimensional cubic space in which each of these vectors is
a basis vector along a hypercube axis that is perpendicu-
lar to all the others. The set of the six numbers nt then
represents a position vector in the six-dimensional cubic
reciprocal lattice, and the equations (8) give the corre-
spondence between positions in the three- and six-di-
mensional spaces. The cut and projection is accom-
plished by rotating the six-dimensional space so that
what will become three axes in the three-dimensional
space are in the cut plane. The six-dimensional rotation
matrix corresponding to the chosen set (7) is
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0 -T

_ 0 -T 1 0 1
(20)

The three-by-six matrix constituting the top half of
the rotation matrix consists of the six fivefold directions
in three dimensions as column vectors [compare with
Eq. (7)], or the coordinates of the three-dimensional
cube axes in the six-dimensional space as row vectors.
The bottom three by six matrix consists of the comple-
mentary orthogonal space lost by the cut. It consists of
projection directions from six dimensions into the real
space. In the six-dimensional reciprocal space the dis-
tance of a spot from the cut plane is related to its intensi-
ty in the three-dimensional reciprocal space.

There are five Bravais lattices consistent with icosa-
hedral symmetry in six dimensions.10 Three of these are
the P, I, F hypercubic. Consider first the primitive lat-
tice. Its reciprocal lattice is also primitive. Because the
projection of each six-dimensional lattice vector is a
(1/0 0/1 0/0) vector along the fivefold axes, the reci-
procal quasilattice observed experimentally to be one
composed of such vectors will be denoted P. The other
lattices in our example correspond to the six-dimension-
al face-centered F and body-centered / reciprocal lat-
tices F corresponding resp. to / and F direct lattices.

In the P six-dimensional lattice the location of a
spot in the dimensionless units that we have used in
three dimensions is, using Eq. (20):

Q6 = 2 ) (21)

spherical shell

FIG. 9. Two-dimensional representation of the cut and projection
procedure for the magnitude of Q and the distance from the cut plane

As a result, using Eqs. (2) and (13),

Ql = 2(2 + r) {n2 +n22+n\+nl + n\+n\)

= (2 + r)N. (22)

The length of Q6 is related to the N part of the length of Q
(Fig. 9). Since projection shortens Q

Q2<Ql (23)

Using Eqs. (12) and (22)

N + MT<(2 + T)N.

Therefore

M<[(1+T)/T]N=TN. (24)

Since Q2 > 0, we also have

-N/T<M (25)

proving the inequality (15). If we define Qc to be the
distance of a spot in the six-dimensional reciprocal space
from the cut plane (Fig. 8), we have

Ql = Ql-Q2

= T(NT-M). (26)

Thus the largest M for a given N will have the smallest

Qc-
Up to now we have been using a dimensionless Q.

We introduce a three-dimensional quasilattice constant
d0 such that the three-dimensional diffraction vector k
and the interplanar spacing are given by

(27)

(28)

The length of the six-dimensional reciprocal lattice con-
stant af is related to d0 by

r ) . (29)

In Table IV we give the values of Q0(N) and the
corresponding Qc that according to theory should be
inversely correlated with intensity. This sequence of Q 's
has an obvious beginning (TV = 2 ) and using
do= 1.7466 nm we produce for 0.155 nm radiation two
further columns, the diffraction vector k and the diffrac-
tion angle 26. Comparing these with our own and pub-
lished powder diffraction data11 indicates a one-to-one
correspondence with this list. The only omissions are
due to overlap with fee aluminum and low intensities in
the published data.11 The justification for our choice of
d0 is to match Table IV with experimental data. The
choice of d0 in Ref. 11 was different and this leads to
complications to be discussed.

In Table V we list the Q0(N) series in three different
notations each using six indices. The («,) and
{h /h' k/k' I /!') are representative of that particular
Q0(N). The six-dimension («,-) vector is that which
projects into the longest possible three-dimensional vec-

22 J. Mater. Res., Vol. 1, No. 1, Jan/Feb 1986

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 18 Dec 2014 IP address: 132.174.255.116

Cahn, Shechtman, and Gratias: Indexing of icosahedral quasiperiodic crystals

TABLE IV. Scattering variables for the P lattice.

N Mo

1
4
9
12
13
16
21
24
29
32
33
36
41
44
45
48
53
56
61
64
65
68
73
76
77
84
85
88
93
96
97
100
105
108
113
116
117
120
125
128
129
132
137
140
145
148
149
152
157
160
165

Dimensionless

Ql

3.62
10.47
20.56
27.42
31.03
37.89
47.98
54.83
64.92
71.78
75.40
82.25
92.34
99.19
102.81
109.67
119.76
126.61
136.70
143.55
147.17
154.03
164.12
170.97
174.59
187.91
191.53
198.39
208.48
215.33
218.95
225.80
235.89
242.75
252.84
259.69
263.31

270.16
280.25
287.11
290.73
297.58
307.67
314.52
324.61
331.47
335.09
341.94
352.03
358.89
368.98

Qc

1.90
2.00
1.07
1.24
2.27
2.35
1.64
1.75
0.45
0.76
2.05
2.14
1.32
1.45
2.39
2.47
1.80
1.91
0.89
1.08
2.19
2.27
1.52
1.64
2.51
0.47
1.96
2.05
1.17
1.32
2.32
2.40
1.70
1.81
0.65
0.90
2.10
2.19
1.40
1.53
2.44
2.52
1.87
1.97
1.00
1.18
2.24
2.32
1.59
1.71
0.25

d '(• ';

1.089
1.853
2.596
2.998
3.189
3.524
3.966
4.239
4.613
4.850
4.971
5.192
5.502
5.702
5.805
5.996
6.265
6.442
6.694
6.860
6.946
7.105
7.334
7.486
7.565
7.848
7.923
8.064
8.267
8.401
8.472
8.603
8.793
8.920
9.104
9.226
9.290
9.410
9.584
9.701
9.762
9.876
10.042
10.154
10.315
10.424
10.480
10.587
10.742
10.846
10.997

Dimensional
(do = 1.74657)

1 20

9.68
16.51
23.21
26.87
28.62
31.70
35.80
38.36
41.90
44.16
45.32
47.46
50.48
52.45
53.47
55.38
58.10
59.90
62.50
64.23
65.13
66.83
69.28
70.93
71.79
74.92
75.77
77.36
79.68
81.25
82.07
83.63
85.92
87.47
89.74
91.29
92.11
93.66
95.94
97.50
98.32
99.89
102.21
103.79
106.15
107.77
108.63
110.27
112.71
114.40
116.93

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
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TABLE V. Various indexing methods for the first 12 strong reflections.

TV

2
4
6

8
10
12

14

16
18

20
22
24

Mo

1
4
9

12
13
16

21

24
29

32
33
36

(100000)
(100100)
(111000)

(loiiol)
(111011)
(210010)
(111111)
(201101)

(21101T)
(211111)

(20120T)
(211201)
(222000)
(211211)

(h/h' k/k' l/l')

(1/0 0/10/0)
(0/0 0/2 0/0)
(1/1 1/1 1/1)

(0/0 2/2 0/0)
(1/2 2/10/0)
(2/2 0/2 0/0)
0/2 2/2 0/0)
(1/0 2/3 0/0)

(2/2 2/2 0/0)
(1/2 2/3 0/0)

(0/0 2/4 0/0)
(0/1 2/4 1/0)
(2/2 2/2 2/2)
(0/2 2/4 0/0)

multiplicity

12
30
20

30
60
60
12
60

60
12

30
120
20
60

Ref. 11

(211111)
(220011)
(110001)
(321112)
(111010)
(221020)
(311111)

(211001)
(331021)

(2lll01)
(100000)

[(321002)?]
(110000)

(220002)
[(561033)?]

tor, and the two are related by Eq. (9). For powder
pattern intensities the multiplicity of each spot is given.
The sequences of our indexing of course satisfies Eq.
(13) relating N to the sum of squares of indices. As was
noted earlier, the list11 of powder diffraction angles cor-
relates perfectly with this sequence, with only one omis-
sion in this range.

The last column gives the indexing of Ref. 11. The
fundamental (100000) vector was chosen in Ref. 11 to
have the length of Qo (18). As a result, all smaller reflec-
tions become higher index and the simple monotonic
relation between N and Q of Eq. (13) is lost. Because of
this there is no obvious start to the sequence, and it is
difficult to know if any intense spots are missing. Fur-
thermore, because of the incommensurability one can
approach any angle with arbitrary precision by using
high indices. The two assignments11 labelled with ques-
tion marks are probably such approximations. The
question of which vector one chooses as a fundamental
length in this case is uniquely resolved by the sequence
of the intense reflections. Choosing a longer vector leads
to the problems cited above. It will be difficult to choose
a shorter vector, because intensities are likely to be very
low.

We have so far concentrated on the Qo series. Table
V lists representative spots for all the spots that occur
for TV = 12 spherical shell in six dimensions (Fig. 9).
Two types of indices sum to N= 12. In six dimensions
there are 26 spots of type (111111) and 236!/(2!3!) of
type (211000). Six different lengths result from project-
ing in three dimensions ranging from Q20 = 37.89 to Q f
= 5.53. The longer Q 's are from six-dimensional vec-

tors nearly parallel to the cut plane; the shorter ones are
from those nearly perpendicular. By themselves the
(nt) give no clue about projected length until the projec-

tion has been defined in Eq. (20), but in the cubic in-
dexes the lengths obviously become shorter as the 2's
shift from primed to unprimed positions and sign differ-
ences appear in the indexes.

The (111111) are high symmetry axes in six dimen-
sions. They project into three dimensions as either
three- or fivefold axes with four different lengths. The
(211000) project onto mirror planes or (110) planes
with six different lengths. In powders the Qo (12) reflec-
tion will be a superposition of 72 individual diffraction
spots. These multiplicities are most readily apparent by
forming ratios of the cubic indices and comparing these
with the indexes of the three symmetry axes and the
mirror planes.

We hope to have demonstrated that the cubic coor-
dinate system has many advantages over either the skew
coordinate system or the six-dimensional one. In addi-
tion, there is an obvious simplification when a particular
lattice constant is chosen.

VIII. DISCUSSION

Several indexing methods have been introduced
and need to be compared. We have introduced a method
of indexing based on a three-dimensional cubic coordi-
nate system using icosahedral symmetry. Six indexes are
necessary and sufficient, indicating that the icosahedral
solid is quasiperiodic and can be represented as an irra-
tional cut of a six-dimensional periodic solid. Much of
the geometry is developed without recourse to six di-
mensions.

The six-index notation is merely a shorthand for
indexing irrational numbers of the form h + h V. Ordi-
nary vector addition generates the three-dimensional
diffraction pattern from a single vector replicated by the
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operations of the icosahedral group. There is a single
basic length: the w/5 rotations introduce the algebraic
number r and, therefore, incommensurability. Unlike
other incommensurate structures, in which the incom-
mensurate ratio varies with temperature and composi-
tion, the ratio r is part of fivefold rotation and remains
the same for large changes in composition15 and lattice
parameter and a wide variety of alloy systems. The cubic
coordinate system has many advantages that derive
from an orthogonal coordinate system. It incorporates
the cubic subgroup part of the icosahedral symmetry,
but it leaves the problem of multiple notation for equiva-
lent positions.

The multiple notation is really not a problem. We
have found two convenient methods. For a particular
index, multiplication by the rotation matrices quickly
gives all the other notations for equivalent reflections.
When dealing with a large number of indexed positions,
they are quickly sorted by calculating Q2 and sorting by
NandM (orr). Just as (330) and (411) coincide in bcc
powder patterns, this sorting will put nonequivalent
spots in the same (N,r) box. However, since all the spots
in the same (N,r) box originate from the spots in the six-
dimensional reciprocal space that are the same distance
from the cut plane, they are likely to have similar inten-
sities. The other three-dimensional coordinate systems
have skewed axes aligned along equivalent symmetry
axes. They have all the problems of skewed axes includ-
ing the problem that permutation of indices not only
cause length changes but can cause the vector to rotate
to a nonequivalent direction. In the cubic indexing, be-
cause the indices are primed and unprimed, cyclic per-
mutations of (HKL) can only lead to equivalent vec-
tors. Odd permutations do not change the length.

In six dimensions there is an orthogonal system, but
the rotation matrix that defines the cut plane requires
arbitrary choices of the signs of the fivefold basis vectors
in three dimensions. Thus the various six-dimensional
vectors of type (110000) represented two different
lengths in three-dimensions differing by a factor of r,
depending on the relative orientation with respect to the

cut plane, or equivalently whether the angles between
the various (100000) type (010000) vectors in three
dimension are acute or obtuse.

There is a geometric way of understanding the dis-
crepancy between the various indexing methods. It
might seem that any reflection along the fivefold axis
could serve to define the unit length, but it must satisfy
several criteria. The first is that all other spots must then
be indexable with six integers that obey the parity rules.
The spots that survive this criterion differ from each
other in length by powers of r3. In six dimensions all of
these vectors lie on the same (xyyyyy) fivefold plane.
The shortest distance in this plane is (100000) and this
is the one which must be found. Only one of the fivefold
reflections corresponds to this minimum distance and
generates an orthogonal basis in six dimensions. The one
chosen in Ref. 11 happens to be the (211111), which
leads to a skewed six-dimensional basis. This destroys
the hypercubic geometry that is so important to the sim-
plicity of the indexing we have proposed. As a result the
indexing fails to fit the criterion of a simple hierarchy.
There are inifinitely many reflections along the fivefold
axis, both longer and shorter than the one which meets
this criterion. For the P quasilattice, it is the longest
fivefold reflection that is shorter than any intense reflec-
tion in any direction. All shorter reflections are then
projections of longer six-dimensional vectors with long
Qc and weak intensities.

These criteria not only point to a natural and unique
indexing but solves the important problem of what con-
stitutes the unit reciprocal lattice vector. Comparison of
Table V indicates that while a different choice of this
unit still gives a completely consistent set of indexing,
there is a simplicity and completeness to the choice
based on the strong reflections. The Qo series fits the
observed intense reflections without omission and, qual-
itatively, is inversely correlated with Qc, the distance
from the cut plane. The next in the sequence (Table VI)
Q2(N,\) =Q20{N) - 4r all have Qc >2^r which, of
course, is longer than Qc for any of the Qo spots, and are
readily distinguished from the main sequence by their

TABLE VI. A complete listing of the A'= 12 reflections.

M h/h' k/k' I/I' Multiplicity

fio(12)

2(12,1)

2(12,2)
6(12,3)
2(12,4)

16

12

8
4
0

4

(210010)
(llllll)
(llllll)
(201001)
(201001)
(2100T0)
(lilTTT)
(010210)
(TnilT)
(201001)

(2/2 0/2 0/0)
(0/2 2/2 0/0)
(0/2 0/2 0/2)
(2/0 2/2 0/0)
(2/0 0/2 0/2)
(2/0 0/2 2/0)
(2/0 2/0 2/0)
(2/2 0/2 0/0)
(2/2 2/0 0/0)
(2/0 2/2 0/0)

60
12
20
60
120
120
20
60
12
60
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weak intensity. Our indexing method therefore uniquely
identifies the quasilattice parameter d0 in a way that is
quite equivalent to that chosen by Elser12 based on an
examination of the Fourier transform of the cut func-
tion along a systematic row. Because our method is
purely geometric and does not refer to any specific cut
function, it is in a sense more general.

In this paper we have taken for granted that the
symmetry is truly icosahedral. The choice of the cubic
axes for a coordinate system does not imply that we
believe that this is a cubic crystal, as has been suggested
by others.16'17 We will address this issue in a separate
paper. 18
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