
72

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.1

INDEXING OF MEDICAL XML DOCUMENTS STORED
IN WORM STORAGE*

Naim Aksu, Taflan İmre Gündem
Computer Engineering Dept., Boğaziçi University

34342 Bebek, İstanbul, Turkey
gundem@boun.edu.tr

Abstract. Write-Once-Read-Many (WORM) storage devices may be used to store critical medical data to prevent
them from easy modification. In this paper, we propose a novel indexing structure for encrypted medical XML
documents stored in WORM storage. The proposed indexing that uses Generalized Hash Tree (GHT) expedites
projection and selection operations on encrypted medical XML records stored in WORM storage. We implemented
and tested the proposed system.

Keywords: XML, indexing, WORM storage, medical documents.

1. Introduction

Some medical records containing sensitive infor-
mation such as organ donor information must be kept
unaltered. Write-Once-Read-Many (WORM) storage
devices [1, 2] may be used to enable the effective
preservation of sensitive medical records. The basic
property of WORM storage is not to allow updates on
the data inserted.*

Due to the large volume of records and increasing-
ly stringent query response time [3], some form of
direct access mechanisms such as indexes must be
available in order to access the records [4]. However,
if an index is not properly designed, the medical
records stored in WORM storage can in effect be
hidden or altered easily [5].

Currently, XML (eXtensible Markup Language)
[6] is rapidly becoming a standard for data represen-
tation and exchange over the Web. Another important
issue for medical records is the privacy of critical
medical data. Thus, some sensitive medical data may
be encrypted to satisfy the security requirements.

In this paper, we present a novel index structure
and a partial encryption schema for encrypted medical
XML documents stored in WORM storage. The pro-
posed index structure expedites the projection and
selection operations for the medical XML documents.
In our proposed system, the index structure is also
stored in WORM structure in an unaltered form like
the original medical XML data. The index structure
we propose expedites not only simple insert and

* This research is funded by Boğaziçi University research

fund under grant number 04A108.

search operations on text data, but also projection and
selection operations on the XML documents. Our
proposed system makes use of the generalized hash
tree index structure in [5] to query the medical XML
documents stored in WORM structure.

To the best of our knowledge, there is no work
about indexing encrypted medical XML documents
stored in WORM storages, in the literature. However,
there is some research on efficient indexing of records
stored in WORM structures. In the most recent study
on this type of indexing, fossilized index [5] that uses
a generalized hash tree structure to handle insertion
and search operations on text data is introduced. The
index proposed in [5] performs only basic key-word
insertion and look-up operations on text data. It does
not support selection and projection operations in
XML.

The rest of the paper is organized as follows. In
Section 2, we give an overview of the preliminary
concepts. In Section 3, we present our proposed index
structure and the encryption schema for medical
documents. In Section 4, we present the performance
evaluation of the proposed system. In Section 5, we
have the conclusion.

2. Preliminary Concepts and Related Work
2.1. Indexing in Rewritable Storage and WORM

Storage

Indexes expedite retrieval of records [5]. However,
if an index can be manipulated, then all of the records
are vulnerable to logical modification, since indexes in
rewritable storage allow altering or hiding the content.

Indexing of Medical XML Documents Stored in WORM Storage

73

The most important property that an index stored in
WORM storage must have is that once a record is
written in WORM storage, both the index entry for
that record and the path to that entry must be immut-
able. Once the insertion of a medical record into the
index has been committed in WORM storage, the re-
cord must be guaranteed to be accessible through that
index unless the WORM storage is compromised [5].
The next important property that an index for WORM
storage must have is that the index must support
incremental growth [5]. Especially indexes on medical
data must scale to large collections of medical records.
Also, the space overhead of the index must be
acceptable.

There has been much previous work on indexing
structures for WORM storages. However, as it is
explained in detail in [5], most of them do not meet
the requirements of a fossilized index. Indexes stored
in WORM storage are not suitable for indexing, if the
index can be suitably manipulated [5]. Some of the
approaches for indexes stored in WORM storages are
write-once Btree [7], multi-version B-tree [8] and the
append-only tree [9]. All of these approaches are vul-
nerable to tampering or are infeasible since they
require storing each version of the tree.

2.2. Generalized Hash Tree

Generalized Hash Tree (GHT) [5] is the most re-
cent index structure proposed for WORM storage and
has all the properties (mentioned in the previous
subsection) that an index for WORM storage must
have. GHT data structure is a tree that grows from the
root down to the leaves without relocating committed
entries. Also it is balanced without requiring dynamic

adjustments to its structure. GHT has an efficient dy-
namic hashing schema that does not require rehashing
[5].

The basic properties of insertion and search algo-
rithms for GHT are summarized in the following.
Inserting or retrieving a record starts at the root node
of the tree. If it is unsuccessful, the process is repeated
at one or more of its children nodes. When a record
cannot be inserted into any of the existing nodes, a
new node is created and added to the tree as a leaf. At
each level, the possible locations for inserting the
record are determined by hashing the record’s key
field. Consequently, the possible locations for a record
in the tree are fixed and determined solely by that re-
cord. Moreover, inserted records are never rehashed or
relocated. The data structure is called generalized
because it represents a family of hash trees. By using
different parameters and hash functions, hash trees can
have different characteristics. We use Thin Tree in our
indexing system for encrypted medical XML data-
bases.

In basic GHT, a record is represented by a key and
a pointer to the actual data. A bucket is an entry in a
tree node to store a record. A tree node consists of
buckets and is the basic allocation unit of a tree. The
size of a tree node may vary with its level in the tree.
Let M = {m0, m1… mi …} where mi is the size of a
tree node at level i. A growth factor ki denotes that the
tree may have ki times as many buckets at level (i+1)
as at level i. The growth factor may vary for each
level. Let K = {k0, k1, …, ki, …} where ki is the growth
factor for level i. Let H = {h0, h1, …, hi, …} denote a
set of hash functions, where hi is the hash function for
level i.

h0(key) = 1

h1(key) = 4

 h3(key) = 2

 (a) Before Insertion

 h0(key) = 1

 h1(key) = 4

 h3(key) = 2

 h4(key) = 0

 (b) After Insertion

 Empty Bucket Old Record New Bucket Collision

Figure 1. Insertion of a record into a GHT where m =3 and k=2

N. Aksu, T. İ. Gündem

74

Figure 1 illustrates the insertion of a record (whose
key is designated as ‘key’) into a thin GHT tree where
m = 3, and k = 2 for all levels. Here, we assume that
(h0, h1, h2, h3) (key) = (1, 4, 2, 0) and use (level, node,
index) to denote a bucket in a tree node. We first try to
insert the record into the root node with first level
hash function value h0(key) = 1. However, the target
bucket (0, 0, 1) is not empty. Thus, we try again at the
next level, which is formed by the two children nodes
of the root. h1(key) = 4 indicates that the target bucket
is (1, 1, 1) which is not empty either. Since the colli-
sion happens in node 1, its two children nodes form
the next level hash table. But, the next attempt collides
in the bucket (2, 0, 2). The fourth attempt succeeds
since the tree node containing the target bucket does

not exist. We allocate a new tree node and insert the
record into the bucket (3, 0, 0). Intuitively, if the hash
functions are uniform, the tree grows from the root
down in a balanced fashion.

The search operation in GHT contains the steps to
retrieve a record given its key. The process returns the
record if it exists in the tree and NULL otherwise.
When a target bucket is full, we test if its key matches
the search key. If they match, then the record is found.
Otherwise we follow the same process as in insertion
to probe the next level of the tree. When a target
bucket is empty or the target tree node has not been
allocated, the search fails. Please refer to [5] for de-
tailed information on GHT.

Figure 2. General layout of the complete system

3. Proposed System

The various stages in inserting a document into
WORM storage and in processing a query using the
proposed system are explained in this section. Figure
2 gives a general layout of the proposed system.

3.1. Inserting a New XML Document into WORM
Storage

 When a medical XML document (to be stored
in WORM storage) is given as input, first the preorder
tree representation of the XML document is const-
ructed in the internal memory. Then the following sub
operations are applied. 1. Global Path Indexing (GPI)
of XML Document. 2. Preorder Traversing of XML

Indexing of Medical XML Documents Stored in WORM Storage

75

Document (Local Id Numbering). 3. Partial or Comp-
lete Encryption of XML Document by DES.

<medical-treatments>
 <medical-treatment>
 <patient-info>
 <patient-name>Pelin Korkmaz</patient-name>
 <patient-age>45</patient-age>
 </patient-info>
 <diagnosis-info>
 <disease-name>breast cancer</disease-name >
 <diagnosis-date>12.10.2003</diagnosis-date>
 </diagnosis-info>
 <medicine-info>
 <medicine-name>salsalate</medicine-name>
 <medicine-name>palifermin</medicine-name>
 <medicine-name>busulfan</medicine-name>
 </medicine-info>
 </medical-treatment>
 <medical-treatment>
 <patient-info>
 <patient-name>Ayhan Ersoy</patient-name>
 <patient-age>54</patient-age>
 </patient-info>
 <diagnosis-info>
 <disease-name>tuberculosis</disease-name >
 <diagnosis-date>03.01.2004</diagnosis-date>
 </diagnosis-info>
 <medicine-info>
 <medicine-name>amoxicillin</medicine-name>
 <medicine-name>bisacodil</medicine-name>
 </medicine-info>
 </medical-treatment>
 </medical-treatments>

Figure 3. A sample medical XML document

Global Path Indexing of an XML Document

After constructing the preorder tree representation
of the given XML document, all possible paths which
end at a leaf node in the XML tree are given unique
identifiers (ID s). Two paths with the same label have
the same path ID. The path IDs are globally unique
among all the documents in the WORM storage. For
each of the XML documents stored in the WORM
structure, all possible paths and their corresponding
global path ID s are stored in the look-up table resi-
ding in WORM storage. Only insertions (and no modi-
fications) are performed on the look-up table. A record
in the global look-up table is in the form [Path Name,
Global Path Id]. Due to the security of sensitive medi-
cal data, the Path Name column of the look-up table is
encrypted using DES encryption algorithm. The glo-
bal path ID values of the document are inserted into
the 1st layer GHT structure. According to the insertion
algorithm of GHT storage structure, the inserted key
value is hashed by a hash function hi(x) for level i.

Preorder Traversal of XML Document

The next operation is to give local ID numbers to
each element, attribute and leaf node in the const-
ructed XML tree. This numbering operation is done by
using the preorder traversal algorithm. Unlike the
global path IDs, the scope of these IDs is the XML
document not the whole WORM storage. The reason
for numbering all the nodes is that we index both

structure and content. After giving the local ID num-
bers for all the nodes in the XML tree, an additional
number is computed for each node. As a result, each
node has a number pair (n1, n2). The second number
computed, n2, is the total number of descendant nodes
of node n1 (where n1 is the local id number of the
node). The second number, n2, in the number pair of
an XML tree node is used in the encryption phase. Our
encryption schema supports partial encryption. For
example, if a node with value pair <3, 4> has an
encryption flag set to TRUE, then the 4 nodes starting
from the node with n1 value equal to 3 (i.e. nodes with
n1 values 3, 4, 5, 6, 7) will be encrypted.

Figure 4 illustrates the XML tree of the document
in Figure 3 after the local parsing sub operation. In
Figure 4, some abbreviations are used due to space
constraint. MTs stands for Medical Treatments, MT
stands for Medical Treatment, PI stands for Patient
Info, DI stands for Diagnosis Info, MI stands for
Medicine Info, PN stands for Patient Name, PA stands
for Patient Age, DN stands for Diagnosis Name, DD
stands for Diagnosis Date, and MN stands for
Medicine Name. The leaf node values stand for the
values in our example XML document. The second
number, n2, in the number pair of a leaf node is always
zero. Thus it is not shown in the figure.

Partial Encryption Phase

Our encryption algorithm uses DES with key
length 112 bits. The proposed encryption schema per-
mits partial encryption. Also, it enables us to process
queries on encrypted XML data. An extra attribute
called “encryption flag” is added to the tag of the
element to be encrypted and is set to “TRUE” such as
<diagnosis-info encryptionFLAG = ‘TRUE’>. Let us
assume that the number pair of diagnosis-info element
is <8, 4>. This means that the start and end points of
the encrypted part are 8 and 12 (8+4=12). In other
words, nodes with local ID 8, 9, 10, 11, and 12 will be
encrypted.

Encrypted data are stored as CDATA in XML. Af-
ter encrypting the marked nodes of the XML tree, an
“encryption-data” element is inserted into the encryp-
ted part in the XML document. Also, start and end
point values are written between the encryption-data
tags. Then, the XML document mentioned in the pre-
ceding paragraph becomes as follows. <encrypted-
data start = “8” end = “12”> encrypted data (DES
algorithm used) </ encrypted-data >. After encrypting
the medical XML document using the proposed
encryption, the encrypted document is stored in the
WORM storage. The next operation is to insert the
global path ID values and the DES encrypted leaf
node values into our proposed index structure (as
explained in the following).

3.2. Proposed Indexing System

The proposed indexing system contains a two
layered GHT data structure. The first layer of GHT

N. Aksu, T. İ. Gündem

76

contains the global path ids of the inserted documents
and is accessed using the global path ids as the key
values. The global path ID of each numbered path is
inserted into the 1st layer GHT. The 2nd layer GHT
contains several small-depth Generalized Hash Trees
which are pointed to by the nodes of the 1st level GHT.

This means that each 2nd layer GHT contains the
encrypted leaf node values of a specific path in the 1st
level GHT. Each global path ID in the 1st level GHT
has one small-depth GHT among the 2nd layer General
Hash Trees for storing its contents.

Figure 4. Local ID numbering of the XML tree of the document in Figure 3

Figure 5. Structure of an inserted record in 2nd layer GHT

Each GHT when considered in isolation in our
layered structure has the same properties (i.e. buckets,
nodes, hash function and extension factor properties)
as those of the basic GHT described in [5]. Our laye-
red structure is designed considering the structure of
XML documents. XML documents contain both the
structure and the data (content) together in the same
document. In our layered index, the first layer ma-
nages the structural part (i.e. paths) while the second
layer manages the data (contents) associated with each
path. Let us assume we have the path department/
patient/name in the first layer. In the 2nd layer corres-
ponding to this we have all the instances of this path.
Since there may be a lot of patient names, we have the
2nd level GHT to expedite finding a specific patient
name. In the 1st level GHT we also store all the
document ids and offsets for all the instances associa-
ted with a path. For example, for the path depart-
ment/patient/name the document id and offsets for all
the patient names are stored in the first level (i.e.
where they are stored in the document are present but
not the actual names). This expedites the projection
operation.

Insertions in the Indexing System

First, the global path IDs of paths in the given me-
dical XML document are inserted into the 1st layer
GHT data structure according to the basic insertion
algorithm of GHT. Then the encrypted leaf node va-
lues are inserted as explained in the following. To in-
sert an encrypted leaf node value into the 2nd layer
GHT, the global path ID of the owner path is searched
in the 1st layer GHT. If the search fails, then the global
path ID is inserted into 1st layer GHT. If the search is
successful, then the pointer value of this bucket is
checked. If the pointer of the bucket points to a 2nd
layer GHT, it means that an encrypted leaf node value
has been already inserted for this path. Then the DES
encrypted value of the leaf node of this path is inserted
into the pointed 2nd layer GHT data structure. On the
other hand, if the pointer to the 2nd layer GHT is
NULL, it means that no leaf node value for this path
has been inserted into the 2nd layer GHT yet. In this
case, a new 2nd layer GHT root is created in the
WORM structure, and the encrypted leaf node value is
inserted into the 2nd layer GHT. Also the document ID
and a local ID (offset) values are inserted into the 1st

PI DI MI

 PN

PI DITI

1,34

MTs

MT MT
2,17 20,15

3,4 8,4 13,6 26,4 31,4 21,4

4,1 6,1 9,1 11,1 14,1 16,1 18,1

 PA DN DD MN MN MN PN PA DN DD MN MN

22,1 24,1 27,1 29,1 32,1 34,1

5 7 10 12 15 17 19

 P K 45 B C 03 Sal Pal Bus

23 25 28 30 33 35

 A E 54 T 04 Am Be

1132, 12 2001, 34 1002, 21
qw@jhsd!ywfdk@lidkidç{7mkdt
(encrypted value of ‘qwjhsdywt’)

Indexing of Medical XML Documents Stored in WORM Storage

77

layer in order to expedite projection operation. All
these steps are repeated for every leaf node value asso-
ciated with this path, and also for every path in the
XML document.

The insertion algorithm, Algorithm 1, uses the fol-
lowing functions. The EXTRACT function separates
the path value from the leaf value. For example, given
the query (/medical-treatments/medical-treatment/me-
dicine-info[medicine-name= ’palifermin’] /medicine-
name), EXTRACT separates the path value “/medical-
treatments/medical-treatment/medicine-info /medici-
ne-name” from the leaf value ’palifermin’ . The
ENCRYPT function encrypts a string with DES accor-
ding to the encryption flag value, and returns the
encrypted value. The RETRIEVE function returns the
global path ID value of a path, by accessing the look-
up table. The INSERT and SEARCH functions are the
basic insertion and search functions of the basic GHT.
The search function of our proposed system is used
for projection and selection operations as explained in
the next section. The CHECK function controls if the
pointer value of a bucket in the 1st layer GHT is
NULL. The CREATE function allocates new space in
the WORM structure for the root of the new 2nd layer
GHT. Finally, the POINT function points to the root of
the newly created 2nd layer GHT.

Algorithm 1 - LAYERED-GHT-INSERT
1. EXTRACT the path value of the leaf node
2. ENCRYPT the path value with DES
3. RETRIEVE the global path ID of the encrypted

path from look-up table
4. SEARCH the global path ID in the 1st layer GHT
5. IF the global path ID is NOT found THEN

{SEARCH returns FAILURE}
 INSERT the global path ID into the 1st layer GHT;

also insert the array of
document ID and a local ID value pairs (to expedite
projection operation)

ELSE IF the global path ID is found THEN
{SEARCH returns the BUCKET}
CHECK the 2nd layer GHT pointer value of the

bucket
 IF the pointer is NULL THEN
 CREATE the root for a new 2nd layer GHT
 POINT to the root of the 2nd layer GHT from

the 1st layer GHT
 END IF
 ENCRYPT the leaf node value with DES
 INSERT the encrypted value into the 2nd layer

GHT
 insert the array of document ID and a local ID

value pairs into 1st layer
 (to expedite projection operation)
 Return SUCCESS
END IF

The inserted record of the encrypted leaf node
value in the 2nd layer GHT contains the encrypted
value of the leaf node and an array. The array consists
of records where each record contains a document ID
and a local ID. The local ID is an offset which is used
in expediting the search with a document ID. A sample
record is given in Figure 5. The record in Figure 5
states that the encryption of ‘qwjhsdywt’ (i.e.
qw@jhsd!ywfdk@lidkidç{7mkdt) is present in docu-
ments with document IDs 1132, 2001, and 1002. The
offset values of these documents are 12, 34 and 21,
respectively.

Searching in the Indexing System

 Search operation finds the address of the document
for a specific value associated with a path. First, the
value searched and its path are encrypted using DES.
Then, the global path ID of the path is retrieved from
the global look-up table. The global path ID is sear-
ched in the 1st layer GHT (using the search algorithm
of basic GHT). If the ID is found, then the 2nd layer
GHT pointed to by the global path ID is searched. The
search in the 2nd layer GHT is materialized using the
basic GHT search algorithm.

Algorithm 2 - LAYERED-GHT-SEARCH
Steps 1 to 4 in Algorithm 1 are also used here.
IF the global path ID is NOT found THEN {SEARCH
returns FAILURE}
 Return FAILURE
ELSE IF the global path ID is found THEN

{SEARCH returns the BUCKET}
 CHECK the 2nd level GHT pointer value of the

bucket
 IF the pointer is NULL THEN
 Return FAILURE
 ELSE IF the pointer is NOT NULL THEN
 ENCRYPT the leaf node value with DES
 SEARCH the encrypted leaf node value in the

2nd level GHT
 IF it is NOT found THEN {SEARCH returns

FAILURE}
 Return FAILURE
 ELSE IF encrypted value is found THEN
 Return the BUCKET
END IF
 END IF
 END IF

If the record is found in the 2nd level GHT, then the
function returns the bucket. The document ID (let us
call x) and the local ID (let us call y) in the bucket
may be used to locate the record in document with
document ID x. The local ID, y, of the record is used
to decrypt the appropriate part of the encrypted me-
dical XML document. The comparison operations for
finding the appropriate part of the encrypted XML
document are done without decrypting the document.

N. Aksu, T. İ. Gündem

78

When the location of the searched data in the medical
XML document is found with the comparison opera-
tions on the encrypted data, then only this part of the
whole medical XML document may be decrypted.
Next the essential data can be retrieved from the par-
tially decrypted part of the XML document specified
with document ID x.

Projections and Selection operations

Processing a projection operation is equivalent to
retrieving all the data for a specified path. The follow-
ing is an example of projection: List the disease names
diagnosed so far in the hospital (/medical-treatments/
medical-treatment/diagnosis-info/disease-name). In
processing a projection query, first the path value in
the query is encrypted with DES algorithm and then
the corresponding global path ID information is
retrieved for that path from the look-up table. Next,
the global path ID is searched for in the 1st layer GHT
with the basic search operation of the GHT (using the
global path ID as a key). If the key is found in the 1st
layer GHT, the document ID and local ID value pairs
of all elements that have the path that we searched for
are found in the 1st layer GHT bucket. Let us assume
we obtain the document ID and local ID pairs [5, 10]
and [5, 28]. Number 5 is the document ID value of the
document in the WORM structure. Then, these values
are used to access the partially encrypted document
with Document ID 5. Local ID offset values are used
for fast localization of data on the encrypted data
(without decryption) in the found document.

Performing a selection operation is explained in
the following. Let us consider the query: List the me-
dicine names used in treatments together with medi-
cine ‘palifermin’ (/medical-treatments/medical-treat-
ment/medicine-info[medicine-name=’palifermin’]
/medicine-name).

The global path ID of this path, say 197, is re-
trieved from the global look-up table. The path 197 is
searched for in the 1st layer GHT with the basic search
operation of the GHT data structure. If the key is
found in the 1st GHT, the pointer information of this
bucket is retrieved, and the 2nd layer GHT that this
bucket points to is accessed in the WORM storage.
Let us assume that key 197 is found in the 1st layer
GHT, and the 2nd layer GHT that the bucket with
global path ID 197 points to is accessed. Then, another
search operation is performed in the 2nd layer GHT.
For that purpose, the ‘palifermin’ value is encrypted
using the DES algorithm, and the encrypted value is
searched for according to the basic GHT search
algorithm. When it is found in the 2nd layer GHT, the
document ID and local ID value pair of the found
bucket is retrieved. Let us assume the value pair found
is [5, 17]. Then, the corresponding part of the docu-
ment, with document ID 5, is decrypted. Let us as-
sume the corresponding part is the encrypted part
between the starting local ID = 13 and ending local ID
= 19. This interval is decrypted and the decrypted me-

dicine names are obtained after the decryption phase
in the actual XML document.

A way to process a join operation involves perfor-
ming two projection operations (one for the left and
the other for the right hand side of the = sign). Since
the proposed system expedites the projection opera-
tion, it also indirectly helps expedite the join opera-
tion. An example to a join operation would be “List
the diagnosis dates of diseases which had a surgical
operation” (/medical-treatments/medical-treatment/
diagnosis-info [disease-name = /surgery-operations/
surgery-operation/disease-info/disease-name]/diagno-
sis-date). Processing this query involves processing
the projections associated with paths /medical-treat-
ments/medical-treatment/diagnosis-info/disease-name
and /surgery-operations/surgery-operation/disease-in-
fo/disease-name.

4. Performance Analysis

We have implemented the proposed indexing sys-
tem and its associated algorithms given in Section III
to measure their performance. The programs for the
implementation are coded in Java 1.5, and tested on a
pc that has an Intel(R) Pentium(R) 4 CPU with 3.00
GHz, and 2 GB internal memory.

We created a synthetic dataset that contains medi-
cal XML documents for various departments in a hos-
pital. The dataset contains 60,000 medical documents
from 15 departments. Each department has 4,000 do-
cuments. Each document contains 50 records, and
each record contains approximately 12 leaf node
values and 12 path values. This means that, inserting a
document corresponds to inserting 600 leaf node and
600 path values, in other words, 1200 items. Thus, the
number of all items in the dataset which contains
60,000 documents is 72,000,000. The total size of the
complete dataset is approximately 1.22 Gigabytes.

4.1. Time and Space Performance Results

The space to store the layered GHT for the amount
of data (1.22 GB) in WORM storage is approximately
0.6 GB. Figure 6 compares the time performance of
search, projection, and selection operations on the
inserted 72,000,000 items. The results in Figure 6 are
the average results of many different search, projec-
tion, and selection query processing times.

The search operation is the fastest one since the
search operation only tries to find the searched value
in the layered GHT. The other operations take more
time because of the time losses resulting from
retrieving the query results from the specified XML
documents in WORM storage. Also, the projection
operation is faster than the selection operation. This is
mainly due to saving all the document ids and offsets
for a specified path in the 1st layer GHT buckets. By
the help of this property, there is no need to parse all
the nodes in the 2nd layer GHT which is pointed to by
the path in the 1st layer GHT.

Indexing of Medical XML Documents Stored in WORM Storage

79

4.2. Sensitivity to Encryption

We tested the effect of encryption on insertion and
selection. In the tests, we considered the case where
we have only the content information encrypted and
also the case where we have both the path and content
information of the documents encrypted. The look-up
table, which stores the path information, is also en-
crypted in the later case. Approximately half of the
dataset is encrypted for the test runs.

The insertion of 72 million items with only content
encryption and with path and content encryption takes
up to 35% and 47% more time, respectively, than that
without encryption. The insertion of 72 million items
into the layered GHT and the WORM storage with
content encryption takes 8% more space than that
without encryption. If both path and content are
encrypted, then up to 21% more space is used than
that for the unencrypted version. In search operation,
if encryption is applied to both path and content data,
the time loss is around 5% while the time loss in
content encryption alone is around 3%. In selection, if

encryption is applied to both path and content data, the
time loss may go up to 24% while the time loss in
content encryption alone is 17%.

4.3. Comparisons with B-Tree

In this section, we compare the indexing system
that we propose (write-once layered GHT) with the
rewritable B-tree. The layered GHT structure has an
advantage in space efficiency over the B-tree that
exceeds 7%. The time performance comparisons of
the search operation for both indexing structures are
summarized in Figure 7.

B-tree performs well but is vulnerable to logical
tampering of records [5]. Layered GHT satisfies the
requirements of an index for WORM storage and still
its time performance is equal to or up to 9% better
than that of B-tree. We can not compare projection and
selection performance of our layered GHT with that of
a B-tree since B-Tree does not support these ope-
rations.

Time Performances

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70

of Records (x1,000,000)

Ti
m

e
(m

ill
is

ec
)

Search
Projection
Selection

Figure 6. Average processing times of search, projection and selection operations

Search Time Comparison

0

50
100

150
200

250
300

350
400

450

10 20 30 40 50 60 70

of Records (x1,000,000)

Ti
m

e
(m

ill
is

ec
)

Layered GHT
B-Tree

Figure7. Time performance comparison with B-tree for search operation

N. Aksu, T. İ. Gündem

5. Conclusion

Some medical records have to be kept untampered
due to regulations. In this paper, we presented a novel
indexing structure for encrypted medical XML
documents stored on WORM structures. We showed
how our indexing is used to process projection and
selection operations on encrypted medical XML
documents kept in WORM storage. We have tested the
indexing system and its associated algorithms. The
experiments demonstrated that the proposed system
performs slightly better than a B-tree which is not
suitable for WORM indexing.

To the best of our knowledge, we are not aware of
any other indexing method for expediting projection
and selection operations on encrypted or plaintext
medical XML documents in WORM storage, in the
literature.

REFERENCES
 [1] EMC Corp. EMC Centera Content Addressed Storage

System. 2003,
http://www.emc.com/products/systems/centera_ce.jsp.

 [2] BM Corp. IBM TotalStorage DR550. 2004,
http://www-1.ibm.com/servers/storage/disk/dr.

 [3] Cohasset Associates, Inc.. The Role of Optical Storage
Technology. White Paper, 2003,
http://www.nexstor.co.uk/Resources/cohasset.pdf.

 [4] H. Wang, S. Park, W. Fan, P.S. Yu. ViST: a dyna-
mic index method for querying XML data by tree
structures. Proceedings of the 2003 ACM SIGMOD In-
ternational Conference on Management of Data,
2003, 110-121.

 [5] Q. Zhu, W.W. Hsu. Fossilized index: the linchpin of
trustworthy non-alterable electronic records. Procee-
dings of the 2005 ACM SIGMOD International Confe-
rence on Management of Data, 2005, 395-406.

 [6] World Wide Web Consortium. Extensible Markup
Language (XML) 1.1. April 2004,
http://www.w3.org/TR/2004/REC-xml11-20040204/.

 [7] M. C. Easton. Key-Sequence Data Sets on Indelible
Storage. IBM Journal of Research and Development,
Vol.30, Issue 3, 1986, 230-241.

 [8] D.R. Stinson. Cryptography: Theory and Practice.
CRC Press, 2nd edition, 2002.

 [9] P. Rathmann. Dynamic Data Structures on Optical
Disks. Proceedings of the 1st International Confe-
rence on Data Engineering, 1984, 175-180.

Received July 2008.

