Applied Crystallography	
ISSN 0021-8898	
Editor: Anke R. Pyzalla	
Indexing of powder diffraction patterns for low-symmetric successive dichotomy method	ry lattices by the
A. Boultif and D. Louër	
A. Douitii and D. Louei	
This electronic document was scanned from an archival copy of material deposited to accompany a paper pumany cases the only accessible copy was a microfilm of a poor-quality original.	iblished in an IUCr journal. In
Supplement to <i>I. Appl. Cryst.</i> (1991). 24 . 987–993	SUP54279

Journal of

25.٧.9١ أيسه

54279

INDEXING OF POWDER DIFFRACTION PATTERNS FOR LOW SYMMETRY LATTICES BY THE SUCCESSIVE DICHOTOMY METHOD

BY A. BOULTIF AND D. LOUER*

Laboratoire de Cristallochimie (URA 254), Université de Rennes I,
Avenue du Général Leclerc, 35042 Rennes cedex, France.

^{*} To whom all correspondence should be addressed.

APPENDIX

ANALYSIS OF BOUNDS Q. AND Q_+ FOR MONOGLINIC SYMMETRY WHEN THE PRODUCT hi is negative

 $Q_{hkl} (= 1/d_{hkl}^2)$ is related to the direct parameters of the unit cell (a, b, c, β) through

$$Q = f(A, C, \beta) + g(B), \qquad (1)$$

where
$$f(A, C, \beta) = \frac{h^2}{A^2} + \frac{l^{2m}}{C^2} - \frac{2 h l \cos \beta}{AC}$$
 and $g(\beta) = \frac{k^2}{B^2}$,

with $A = a \sin \beta$, B = b and $C = c \sin \beta$.

The variable of the g-function is independent of the variables in the f-function. The bounds Q_{+} and Q_{+} are then:

$$Q_{-} = f_{min} + g_{min}$$
 and $Q_{+} = f_{max} + g_{max}$; (2)

 f_{min} and g_{min} are the smallest values taken by f and g in their respective defined ranges $F = [A_-, A_+] \times [C_-, C_+]$ and $G = [B_-, B_+]$; f_{max} and g_{max} are their greatest values.

I. Values of g_{min} and g_{max}

For the g-function, it is clear that

$$g_{min} = \frac{k^2}{B^2} \text{ and } g_{max} = \frac{k^2}{B^2}$$
 (3)

II. Determination of the values of f_{min} and f_{max}

II.1 Generalities

The determination of f_{min} and f_{max} is particularly laborious. First, note that the partial derivative $\frac{\partial f}{\partial \beta} = \frac{2 \ hl}{AC} \sin \beta$ is always negative. Then, f_{max} corresponds to $\beta = \beta$ and f_{min} to

 $\beta = \beta_+$ and also the f-function has no extremum in its domain F. Indeed, the value of A and C which should give these extrema must satisfy the following equations:

$$\begin{cases} \frac{\partial f}{\partial A} = 0 & \begin{cases} \frac{h}{A} = \frac{l \cos \beta}{C} & \vdots \\ & \Rightarrow \cos^2 \beta = 1 & \Rightarrow \beta = 0^{\circ} \text{ or } \beta = 180^{\circ} \end{cases} \\ \frac{\partial f}{\partial C} = 0 & \begin{cases} \frac{l}{C} = \frac{h \cos \beta}{A} \end{cases} \end{cases}$$
(4)

It is evident that these β values have no physical sense. Consequently, f_{min} and f_{max} necessarily correspond to points on the boundaries $M_1M_2M_3M_4$ and $N_1N_2N_3N_4$, respectively, of the domain F (Fig. 1).

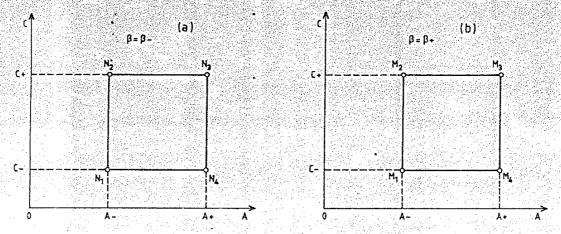


Fig. 1. Boundaries of the domain F: (a) $\beta = \beta_-$, the point of the maximum is located on the full line $N_1N_2N_3N_4$; (b) $\beta = \beta_+$, the point of the minimum is located on the full line $M_1M_2M_3M_4$.

The extrema located on each of the segments M_1M_2 , M_3M_4 , N_1N_2 and N_3N_4 (Fig. 1) have coordinates A, C, β which satisfy equation (5). Then:

$$\beta = \beta_0 = \beta_{\pm} ; A = A_0 = A_{\pm} ; C = C_e = \frac{l A_{\pm}}{h \cos \beta_{\pm}} \text{ (if } \beta_{\pm} \neq 90^{\circ}).$$
 (6)

Likewise, if $\beta_{\pm} \neq 90^{\circ}$, the coordinates of the extrema on the segments M_1M_4 , M_2M_4 , N_1N_4 and N_2N_4 are:

$$\beta = \beta_o = \beta_{\pm}; \ A = A_e = \frac{h \ C_{\pm}}{l \cos \beta_{\pm}} \ [\text{see (4)}]; \ C = C_o = C_{\pm}. \tag{7}$$

At these points, the respective extrema have the value:

$$f_{A} = f(A_{e}, C_{\pm}, \beta_{\pm}) = \frac{l^{2} \sin^{2} \beta_{\pm}}{C_{+}^{2}} \text{ and } f_{C} = f(A_{\pm}, C_{e}, \beta_{\pm}) = \frac{h^{2} \sin^{2} \beta_{\pm}}{A_{+}^{2}}.$$
 (8)

If $\beta_{\pm} = 90^{\circ}$ (only possible for β_{-} , because β is an obtuse angle), the extrema f_A and f_C do not exist, since the equations (4) and (5) are not satisfied (h and l not equal to zero). In these cases, f_{min} corresponds to one of the four corners M_1, M_2, M_3, M_4 (Fig. 1a) and f_{max} to one of the four other corners N_1, N_2, N_3, N_4 (Fig. 1b).

Let us show that f_A (or f_C) is a minimum and not a maximum. When C and β are fixed, f becomes a single-variable function: $f(A, C_0, \beta_0) = \Phi(A)$. Then:

$$\frac{d\Phi}{dA} = -\frac{2h^2}{A^3} + \frac{2hl\cos\beta_o}{A^2C_o};$$

 $\frac{d\Phi}{dA}$ has the same sign as $\frac{A^3}{2h^2} \frac{d\Phi}{dA}$. Since A_e is given by (7), it follows that:

$$\frac{A^3}{2h^2} \frac{d\Phi}{dA} = \frac{A}{A_e} \cdot 1 \implies \frac{dF}{dA} > 0 \text{ when } A > A_e \text{ and } \frac{dF}{dA} < 0 \text{ when } A < A_e$$

It can be seen that f_A is thus a minimum. The minimum f_A (or f_C) has only to be taken into account when A_e (or C_e) is included in the range $[A_-, A_+]$ (or $[C_-, C_+]$).

It is now necessary to demonstrate that the values A_e and the values C_e [see (6) and (7)] cannot belong simultaneously to the domain $[A_-, A_+] \times [C_-, C_+]$. Indeed, in the reverse case, one should have:

$$\frac{hC_{\pm}}{l\cos\beta_o} \le A_{+} \tag{9}$$

and
$$\frac{lA_{\pm}}{h\cos\beta'_{0}} \le C_{+} , \qquad (10)$$

where $\beta_0 = \beta_+$ or $\beta_0 = \beta_-$ and $\beta'_0 = \beta_+$ or $\beta'_0 = \beta_-$. (9) and (10) imply that:

$$(\cos \beta_o) (\cos \beta') \ge \frac{C_{\pm}}{C_{+}} \frac{A_{\pm}}{A_{+}}$$

$$\Rightarrow |\cos \beta_{+}| \ge \min \left(\frac{C_{-}}{C_{+}}, \frac{A_{-}}{A_{+}}\right). \tag{11}$$

Let the minimum values of $\frac{C_{\perp}}{C_{+}}$, $\frac{A_{\perp}}{A_{+}} = \frac{X_{\perp}}{X_{\perp} + \varepsilon}$ be φ (X.), where ε is the dichotomy step

(the initial value is 0.4 Å). Then, to determine the smallest value of $\phi(X)$,

$$\frac{d\varphi}{dX} = \frac{\varepsilon}{\frac{2}{(X+\varepsilon)}} > 0 \Rightarrow \frac{X}{X+\min} = \frac{x_{\min}\sin\beta}{x_{\min}\sin\beta + \varepsilon} = \frac{x_{\min}}{x_{\min}+\varepsilon/\sin\beta},$$

where x_{min} is the minimum value of the dimensions of the direct unit cell. In the program, this value is fixed at 2.5 Å and the maximum value of the β angle is fixed at 140°; then

$$\frac{X}{(X_+)} = 0.8007 \implies \beta > 143^\circ$$

Condition (11) is not possible for $\beta < 140^{\circ}$, therefore A_e and C_e cannot both be in the domain $[A_-, A_+] \times [C_-, C_+]$. Note that inequalities (9) and (10) are not compatible.

After these general considerations, f_{min} and f_{max} , will be determined for the different possible cases. It should be remembered that:

- a) the product hl is negative;
- b) the parameter A is always greater than, equal to, parameter C;
- c) the inequality (11) is impossible if β < 140°;
- d) the inequalities (9) and (10) are inconsistent if β < 140°;
- e) the β coordinate of f_{min} is β_+ ; likewise, the β coordinate of f_{max} is β_- ;
- f) because the extrema f_A and f_C considered above are minima, it can be deduced that :
 - (i) f_{min} is either one of these extrema or the f value at one of the four corners M_1, M_2, M_3 and M_4 (Fig. 1a),
 - (ii) f_{max} necessarily occurs at one of the four corners N_1 , N_2 , N_3 and N_4 (Fig. 1b).

Let the boundaries be $M_1M_2M_3M_4$ and $N_1N_2N_3N_4$ (Fig. 1). The different possible cases will now be analysed.

II.2 Calculation of f_{min} and f_{max} for the different cas

II.2.1 Existence of the minimum point on the M_2M_3 segment

Let f_A , be this extremum: $f_{A_+} = \frac{l^2}{C_+^2} \sin^2 \beta_+$. By taking into account the above derivations, extremum points cannot exist on the segments M_1M_2 , M_3M_4 , N_1N_2 and N_1N_4 .

Consequentely, f_{min} is equal to $f_{A_{+}}$, since the other extremum $f_{A_{-}}$ ($=\frac{l^2}{C_{-}^2}\sin^2\beta_{+}$) located on

the line M_1M_4 is greater than $f_{A_*}(f_{A_*}$ and f_{A_*} are directly comparable)

$$f_{min} = \frac{i^2}{C_+^2} \sin^2 \beta_+ ...$$

Morever the extremum point on M_2M_3 is located between M_2 and M_3 ; consequently

$$\frac{hC_{+}}{l\cos\beta_{+}} \leq A_{+} \Rightarrow \cos\beta_{+} \leq \frac{hC_{+}}{lA_{+}} \Rightarrow \cos\beta_{\pm} \geq \frac{lA_{\pm}}{hC_{\pm}} \qquad [\text{see II}:1(d)]$$

$$\Rightarrow C_{\pm} \leq \frac{lA_{\pm}}{h\cos\beta_{\pm}} ;$$

it can be concluded that the value of f-function at N_1 is greater than at N_2 (Fig. 2); in the same way its value, at N_4 is greater than at N_3 . Therefore f_{max} corresponds to C_- .

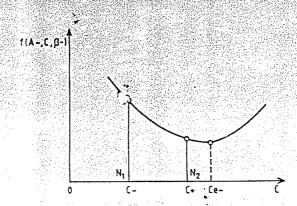


Fig. 2. Choice of the value of the maximum of f-function: $C_{e_-} = lA_-/h \cos \beta$ being the minimum point on line N_1N_2 , the value of the f-function at N_1 is greater than at N_2 .

In order to compare the values of the function f at the points N_1 and N_4 , a change in the variable $X = \frac{1}{A}$ can be made: $X_+ = \frac{1}{A}$ and $X_- = \frac{1}{A}$. At a point M, between N_1 and N_4 and having a

coordinate A, it follows that:
$$f(A,C_{-},\beta) = \frac{h^{2}}{A^{2}} + \frac{l^{2}}{C_{-}^{2}} - \frac{2hl\cos\beta_{-}}{AC_{-}} = h^{2}X^{2} + \frac{l^{2}}{C_{-}^{2}} - \left(\frac{2hl\cos\beta_{-}}{C_{-}}\right)X = T(X).$$

If X_o is the minimum point of this parabolic function T(X), then:

• for $X_o > \frac{X_o + X_o}{2}$, the maximum of f is obtained for X. (dotted line in Fig. 3),

• for
$$X_o < \frac{X_o + X_+}{2}$$
, the maximum of f is obtained for X_+ (full line in Fig. 3).

With the original variable A, it follows that:

$$X_{o} = \frac{1}{A_{e}} = \frac{l \cos \beta_{-}}{h C_{-}}; \frac{X_{-} + X_{+}}{2} = \frac{1}{2} (\frac{1}{A_{-}} + \frac{1}{A_{+}}),$$

$$f_{max} = f(A_{+}, C_{-}\beta_{-}) \quad \text{if} \quad \frac{1}{2} (\frac{1}{A_{-}} + \frac{1}{A_{+}}), < \frac{l \cos \beta_{-}}{h C_{-}}$$
and
$$f_{max} = f(A_{-}, C_{+}\beta_{-}) \quad \text{if} \quad \frac{1}{2} (\frac{1}{A_{-}} + \frac{1}{A_{+}}) \ge \frac{l \cos \beta_{-}}{h C_{-}}$$

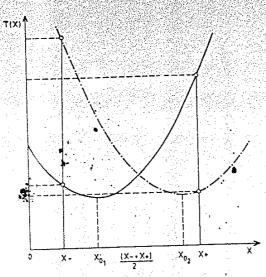
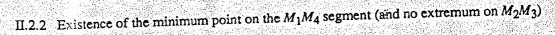


Fig. 3 - Determination of f_{max} according to the position of X_o with respect to $\frac{X_- + X_+}{2}$



Let A_{ϵ_i} be the coordinate A of this extremum and $\chi(C) = f(A_{\epsilon_i}, C, \beta_+)$ (Fig. 4).

Then:

$$\frac{d\chi}{dC} = \left(\frac{\partial f}{\partial C}\right)_{A,..,\beta_{+}} = -\frac{2l}{C^{2}} \left(\frac{l}{C} - \frac{\cos^{2}\beta_{+}}{A_{e,.}}\right) = -\frac{2l^{2}}{C^{2}} \left(\frac{l}{C} - \frac{\cos^{2}\beta_{+}}{C_{-}}\right)$$

$$\frac{d\chi}{dC} = 0 \implies C = C_{1} = \frac{C_{-}}{\cos^{2}\beta_{+}} \quad (l \neq 0).$$

where
$$C_1$$
 is a minimum point for the function χ . Morever, C_+ is lower than C_1 , otherwise $C_+ \ge C_1 \Rightarrow C_+ \ge \frac{C_+}{\cos^2 \beta_+} \Rightarrow \cos^2 \beta_+ \ge \frac{C_-}{C_+} \Rightarrow |\cos \beta_+| > \frac{C_-}{C_+} (|\cos \beta_+| < 1)$.

This inequality is impossible, as is the inequality (11) [see II.1(c)]. It follows that

 $f(A_{\epsilon_-}, C_-, \beta_+) > f(A_{\epsilon_-}, C_+, \beta_+)$, which means that the minimum corresponds to C_+ and not to C_{-} . This minimum is either $f(A_{-}, C_{+}, \beta_{+})$ or $f(A_{+}, C_{+}, \beta_{+})$, depending on whether the value $A_{e.} = \frac{h C_{+}}{l \cos \beta_{+}}$ is lower than A_ or greater than A+.

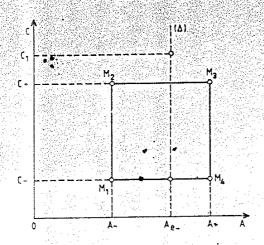


Fig. 4 - Comparison of χ (C₊) and χ (C₊). On the line (Δ): A = A_e = constant, the minimum of χ (C) is obtained from $C_1: C_1 > C_+$; then $\chi(C_1) > \chi(C_+)$.

Now, the minimum point on M_1M_4 is located between M_1 and M_4 ; then:

$$\frac{hC_{\perp}}{l\cos\beta_{+}} > A_{\perp} \Rightarrow \frac{hC_{+}}{l\cos\beta_{+}} > A_{\perp}.$$

A graphical representation, as in Fig. 2, of the function $H(A) = f(A, C_+, \beta_+)$, should show that:

$$f_{min} = f(A_+, C_+, \beta_+).$$

The same demonstration as in case II.2.1, gives

$$f_{max} = f(A_{+}, C_{-}\beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_{-}} + \frac{1}{A_{+}} \right) < \frac{l \cos \beta}{h C_{-}}$$
and $f_{max} = f(A_{-}, C_{-}\beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_{-}} + \frac{1}{A_{+}} \right) \ge \frac{l \cos \beta}{h C_{-}}$

II.2.3 Existence of the minimum point on the M_3M_4 segment (and no extremum on M_2M_3 and M_1M_4)

The value of this extremum is $f_C = \frac{h^2 \sin^2 \beta_+}{A_+^2}$; this is lower than the extremum $f_C = \frac{h^2 \sin^2 \beta_+}{A_-^2}$, which exists on the line $M_1 M_2$; f_C , and f_C are lower than the values of the function at the points M_1, M_2, M_3 and M_4 , because f_C and f_C are the minimum quantities on the segments $M_1 M_2$ and $M_3 M_4$, respectively. Consequently, $f_{min} = f_{C_+}$, ie:

$$f_{min} = \frac{h^2 \sin^2 \beta_+}{A_+^2} \ .$$

Due to the symmetry of C and A in equation (1), a similar demonstration as in case II.2.1, applied to the parameter C, gives:

$$f_{max} = f(A_{-}, C_{+}\beta_{-})$$
 if $\frac{1}{2}(\frac{1}{C_{-}} + \frac{1}{C_{+}}) < \frac{h\cos\beta_{-}}{lA_{-}}$
and $f_{max} = f(A_{-}, C_{-}\beta_{-})$ if $\frac{1}{2}(\frac{1}{C_{-}} + \frac{1}{C_{+}}) \ge \frac{h\cos\beta_{-}}{lA_{-}}$

II.2.4 Case where the minimum point exists only on M_1M_2

The same demonstration as in case II.2.2 can be applied here. The results are:

$$f_{min} = f(A_+, C_+, \beta_+)$$

$$f_{max} = f(A_-, C_+, \beta_-) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_-} + \frac{1}{C_+} \right) < \frac{h \cos \beta_-}{lA_-}$$
and
$$f_{max} = f(A_-, C_-, \beta_-) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_-} + \frac{1}{C_+} \right) \ge \frac{h \cos \beta_-}{lA_-}$$

II.2.5 Case where no minimum point exist on the line $M_1M_2M_3M_4$

To select between the points (corners) giving the lowest and the greatest value of f, two conditions have to be tested:

II.2.5.1 Case where
$$\cos \beta_{\perp} < \frac{lA_{\perp}}{hC_{\perp}}$$
 (12)

In this case, the following inequalities occur simultaneously:

$$C: > \frac{lA_{+}}{h\cos\beta_{-}} \qquad [\sec (12)],$$

$$C: > \frac{lA_{-}}{h\cos\beta_{-}} \qquad (A.

$$C: > \frac{lA_{+}}{h\cos\beta_{+}} \qquad (|\cos\beta_{-}| > |\cos\beta_{-}|),$$

$$C: > \frac{lA_{-}}{h\cos\beta_{+}} \qquad (A.$$$$

The two last expressions show that the minimum points on the lines M_1M_2 and M_3M_4 have coordinates $\frac{lA_-}{h\cos\beta_+}$ and $\frac{lA_+}{h\cos\beta_+}$ and lower than C_- . The graphic representations of $f(A_-, C, \beta_+)$ and $f(A_+, C, \beta_+)$, similar to Fig. 2, confirm that f_{min} corresponds to C_- and f_{max} to

. Morever, the relation $A_c = \frac{hC_c}{l\cos\beta_+} < A_c$ is inconsistent with inequality (12) [see II.1(d)].

 A_{ϵ} is not within $[A_1, A_+]$, and is greater than A_1 ; consequentely, A_{ϵ} is greater than A_+ . Then

$$f_{min} = f(A_+, C_*, \beta_+).$$

Also, it follows that $\frac{hC_+}{I\cos\beta_-} > A_+$ and consequently

$$f_{max} = f(A_-, C_+, \beta_-)$$

II.2.5.2 Case where $\cos \beta$. $\geq \frac{|A|}{hC}$

i) If
$$\cos \beta_- \le \frac{lA_-}{hC_+} \Rightarrow \cos \beta_+ \le \frac{lA_-}{hC_+} \Rightarrow C_+ \ge \frac{lA_-}{h\cos \beta_+}$$

 $\Rightarrow C \ge \frac{lA}{h\cos\beta_+} \text{ [in the inverse case the minimum point } \frac{lA}{h\cos\beta_+} \text{ is on the}$ $\text{segment } M_1M_2 \text{ (Fig. 1)]}$

$$\Rightarrow C_{+} \ge \frac{lA_{+}}{h\cos\beta_{+}} \text{ [because } \frac{C_{+}}{A_{+}} > \frac{C_{-}}{A_{-}} \text{ given by II.1(b)]}$$

 $\Rightarrow C \ge \frac{lA_+}{h\cos\beta_+}$ [in the inverse case the minimum point is on the segment $M_3M_4 \text{ (Fig.1)}].$

In other respects, hypothesis (i) imposes the condition : $\cos \beta_{\pm} \ge \frac{hC_{\pm}}{lA_{\pm}}$ [see II.1(d)]. Then,

 $A_{\pm} < \frac{h C_{\pm}}{l \cos \beta_{\pm}}$. Consequently, f_{min} corresponds to A_{+} and f_{max} to A_{-} . This results combined

with the hypothesis (i), gives

$$f_{min} = f(A_+, C_-, \beta_+),$$

$$f_{max} = f(A_-, C_+, \beta_-).$$

ii) If
$$\cos \beta_- > \frac{lA_-}{hC_+} \Rightarrow \cos \beta_- > \frac{lA_\pm}{hC_\pm}$$
 (because $\frac{lA_\pm}{hC_\pm} \le \frac{lA_-}{hC_+}$)
$$\Rightarrow C_\pm < \frac{lA_\pm}{h\cos \beta_-}.$$

The coordinates of the minimum points on the segment N_1N_2 and N_3N_4 ($\frac{lA_+}{h\cos\beta_-}$ and $\frac{lA_-}{h\cos\beta_-}$) are greater than C+. Then finax corresponds to C-. In order to see if it is A- or A+ which gives this maximum, it is necessary to proceed as in II.2.1:

$$f_{max} = f(A_{+}, C_{-}\beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_{-}} + \frac{1}{A_{+}} \right) \le \frac{l \cos \beta}{h C_{-}}$$
and
$$f_{max} = f(A_{-}, C_{-}\beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_{-}} + \frac{1}{A_{+}} \right) \ge \frac{l \cos \beta}{h C_{-}}$$

a) If
$$\cos \beta_+ < \frac{hC_+}{lA_-} \Rightarrow \cos \beta_{\pm} \ge \frac{lA_{\pm}}{hC_{\pm}}$$
 [see II.1(d)];

it follows that f_{min} corresponds to $A_{..}$, ie:

$$f_{min} = f(A_-, C_+\beta_+).$$

b) If
$$\cos \beta_{+} \geq \frac{hC_{+}}{lA_{-}} \Rightarrow A_{-} \leq \frac{hC_{+}}{l\cos \beta_{+}}$$

— if $\cos \beta_{+} < \frac{lA_{+}}{hC_{-}} \Rightarrow \cos \beta_{\pm} \geq \frac{hC_{\pm}}{lA_{\pm}}$ [see II.1(d)]; (13)

then f_{min} corresponds to A_+ . Taking into account this hypothesis, it follows that:

$$f_{min} = f(A_+, C_-, \beta_+).$$

Note: In this latter case, it is possible to deduce f_{max} directly without a supplementary test. Indeed, from (13), f_{max} corresponds to $A_{.}$:

$$f_{max} = f(A_-, C_-, \beta_-).$$

$$-\inf \cos \beta_+ \ge \frac{lA_+}{hC_-}$$

$$\Rightarrow C_{+} \leq \frac{IA_{+}}{h \cos \beta_{+}} \text{ (because the extremum } \frac{IA_{-}}{h \cos \beta_{+}} \notin [C_{-}, C_{+}])$$
 (14)

$$\Rightarrow C_{-} \leq \frac{lA_{-}}{h \cos \theta_{+}} \quad \left[\frac{C_{-}}{A_{-}} \leq \frac{C_{+}^{2}}{A_{+}} \text{ given by II.1(b)} \right]$$

$$\Rightarrow C_{+} \leq \frac{lA_{-}}{h \cos \beta_{+}} \text{ [in the inverse case, the minimum point is on the segment } M_{1}M_{2} \text{ (Fig. 1)]}$$

From (14) and (15) f_{min} corresponds to C_+ . This result used with the hypothesis (b) shows that f_{min} corresponds to A_+ :

$$f_{\min} = f(A_+, C_+, \beta_+).$$

To conclude, from the f_{min} and f_{max} expressions, rigorously derived for all possible cases when hi < 0 (§ II), and from the g_{min} and g_{max} expressions (§ I), the bounds $Q_{+}(hkl)$ and $Q_{+}(hkl)$ are calculated according to equations (2). The results of these mathematical calculations are summarised elsewhere in Table 1 and have been incorporated in the computer program DICVOL91.