

Indexing Spatio-Temporal Data Warehouses

Dimitris Papadias, Yufei Tao, Panos Kalnis, and Jun Zhang
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{dimitris, taoyf, kalnis, zhangjun}@cs.ust.hk

Abstract
Spatio-temporal databases store information about the
positions of individual objects over time. In many
applications however, such as traffic supervision or
mobile communication systems, only summarized data,
like the average number of cars in an area for a specific
period, or phones serviced by a cell each day, is
required. Although this information can be obtained
from operational databases, its computation is
expensive, rendering online processing inapplicable. A
vital solution is the construction of a spatiotemporal
data warehouse. In this paper, we describe a framework
for supporting OLAP operations over spatiotemporal
data. We argue that the spatial and temporal
dimensions should be modeled as a combined dimension
on the data cube and present data structures, which
integrate spatiotemporal indexing with pre-aggregation.
While the well-known materialization techniques
require a-priori knowledge of the grouping hierarchy,
we develop methods that utilize the proposed structures
for efficient execution of ad-hoc group-bys. Our
techniques can be used for both static and dynamic
dimensions.

1. Introduction
Spatio-temporal databases have received considerable
attention during the past few years due to the
accumulation of large amounts of multi-dimensional
data evolving in time, and the emergence of novel
applications such as traffic supervision, and mobile
communication systems. Research has focused on
modeling, indexing and query processing issues for
problems involving historical information retrieval
[GBE+00], motion and trajectory preservation [PJT00],
future location estimation [SJLL00] etc. All these
approaches assume that object locations are individually
stored, and queries ask for objects that satisfy some
spatio-temporal condition (e.g., mobile users inside a
query window during a time interval, or the first car
expected to arrive at a destination etc.).

The motivation of this work is that many (if not most)
current applications require summarized spatio-
temporal data, rather than information about the

locations of individual objects in time. As an example,
traffic supervision systems need the number of cars in
an area of interest, rather than their ids. Similarly mobile
phone companies use the number of users serviced by
individual cells in order to identify trends and prevent
potential network congestion. Other spatio-temporal
applications are by default based on arithmetic data
rather than object locations. As an example consider a
pollution monitoring system. The readings from several
sensors are fed into a database which arranges them in
regions of similar or identical values. These regions
should then be indexed for the efficient processing of
queries such as "find the areas near the center with the
highest pollution levels yesterday".

The potentially huge amount of data involved in the
above applications calls for pre-aggregation of results.
In direct analogy with relational databases, efficient
OLAP operations require materialization of summarized
data. The motivation is even more urgent for spatio-
temporal databases due to several reasons. First, in some
cases, data about individual objects should not be stored
due to legal issues. For instance, keeping the locations
of mobile phone users through history may violate their
privacy. Second, the actual data may not be important as
in the traffic supervision system discussed. Third,
although the actual data may be highly volatile and
involve extreme space requirements, the summarized
data are less voluminous and may remain rather constant
for long intervals, thus requiring considerably less space
for storage. In other words, although the number of
moving cars (or mobile users) in some city area during
the peak hours is high, the aggregated data may not
change significantly since the number of cars (users)
entering is similar to that exiting the area. This is
especially true if only approximate information is kept,
i.e., instead of the precise number we store values to
denote ranges such as high, medium and low traffic.

Throughout the paper we assume that the spatial
dimension at the finest granularity consists of a set of
regions (e.g., road segments in traffic supervision
systems, areas covered by cells in mobile
communication systems etc.). The raw data provide the
set of objects that fall in each region every timestamp
(e.g., cars in a road segment, users serviced by a cell).

Queries ask for aggregate data over regions that satisfy
some spatio-temporal condition. A fact that
differentiates spatio-temporal, from traditional OLAP is
the lack of predefined hierarchies (e.g., product types).
These hierarchies are taken into account during the
design of the system so that queries of the form "find
the average sales for all products grouped-by product
type" can be efficiently processed. An analogy in the
spatio-temporal domain would be "find the average
traffic in all areas in a 1km range around each hospital".

The problem is that the positions and the ranges of
spatio-temporal query windows usually do not conform
to pre-defined hierarchies, and are not known in
advance. Another query, for instance, could involve fire
emergencies, in which case the areas of interest would
be around fire departments (police stations and so on).
In the above example, although the hierarchies are ad-
hoc, the spatial dimension is fixed, i.e., there is a static
set of road segments. In other applications, the spatial
dimensions may be volatile, i.e., the regions at the finest
granularity may evolve in time. For instance, the area
covered by a cell may change according to weather
conditions, extra capacity allocated etc. This dynamic
behavior complicates the development of spatio-
temporal data warehouses.

This paper addresses these problems by proposing
several indexing solutions. First we deal with static
spatial dimensions and focus on queries that ask for
aggregated data in a query window over a continuous
time interval. An example would be "give me the
number of cars in the city center during the last hour".
For such queries we develop multi-tree indexes that
combine the spatial and temporal dimensions. In
contrast with traditional OLAP solutions, we use the
index structure to define hierarchies and we store pre-
aggregated data in internal nodes. As a second step we
extend our techniques to handle volatile regions;
alternatives are proposed and their performance is
evaluated experimentally. Our approach does not aim at
simply indexing, but rather replacing the data cube for
spatio-temporal data warehouses.

Depending on the type of queries posed, a spatio-
temporal OLAP system should capture different types of
summarized data. Since our focus is on indexing, we
assume some simple aggregate functions like count, or
average. In more complex situations we could also store
additional measures including the source and the
destination of data, direction of movement and so on.
Such information will enable analysts to identify certain
motion and traffic patterns which cannot be easily found
by using the raw data. The proposed methods can be
modified for this case.

The rest of the paper is organized as follows. Section
2 describes related work in the context of spatio-

temporal access methods, traditional, temporal and
spatial OLAP. Section 3 proposes indexing techniques
for spatio-temporal OLAP applicable in the presence of
static regions. Section 4 discusses structures to capture
volatile regions. Section 5 contains an extensive
experimental evaluation and section 6 concludes the
paper with a discussion on future work.

2. Related Work
This section overviews background on access methods
employed in the rest of the paper. It also describes
previous work on the broad concept of storing
additional information in index structures in order to
accelerate aggregation queries. Furthermore, we discuss
traditional OLAP techniques and their extensions to
spatial and temporal data.

2.1 Spatio-temporal indexing – Aggregate trees
Numerous indexes have been proposed for indexing
spatial and temporal databases. Among spatial access
methods, the most popular one is the R-tree [G84] and
its variations, notably the R*-tree [BKSS90]. The R-tree
can be thought of as an extension of B+-trees in multi-
dimensional space. Figure 2.1 shows four regions and
the corresponding R-tree assuming node capacity of 2.
Regions R1 and R2 are grouped together in node R5, and
regions R3 and R4 in node R6. Each R-tree entry r has the
form <r.MBR, r.pointer> where r.MBR is the minimum
bounding rectangle of r, and r.pointer points to the
lower level node corresponding to r. For leaf entries
r.pointer points to the actual record of the entry.

R 5

R 1 R 3

R 4

R 6

R 2

R1 R2 R3 R4

R5 R6

ponters to the actual recor
Figure 2.1: Simple R-tree example

R-trees were developed for static points and regions.
Dynamic data can be indexed by multiple R-trees, each
capturing a different version of the data. This, however,
may lead to significant redundancy, if updates alter only
a small part of the existing tree. Historical R-trees (HR-
trees) [NS98] decrease the level of redundancy by
allowing consecutive R-trees to share common branches.
Assume that at timestamp 5, region R1 is modified (due
to movement, enlargement etc.) to a new version R'1.
This update propagates to the upper level of the tree,
meaning that the extent of the father entry R5 also
changes to R'5. The corresponding HR-tree structure is
shown in Figure 2.2. The first logical R-tree covers
timestamps 1-4, and the second one timestamp 5 and
onwards. Both trees share the child node of R6, because
the contents of this node were not affected by the update.

R1 R2 R3 R4

R5 R6

R-tree for timestamps 1-4

R'1 R2

R'5 R6

R-tree for timestamp 5

Figure 2.2: HR-tree example

Aggregate R-trees (aR-trees) [JL98, PKZT01] augment
the tree nodes with summarized data about the sub-
branch under them in order to answer aggregate queries.
Consider, for instance, a dataset of points indexed by an
R-tree. Each intermediate entry r in the R-tree, in
addition to r.MBR and r.pointer, stores information
about the value of an aggregate function (e.g., the
number of points indexed by the node). The same
concept is applied in [LM01] for a variety of high-
dimensional indexes in order to calculate approximate
answers. By traversing the index, a rough
approximation is obtained from the values at the higher
levels, which is progressively refined as the search
continues towards the leaves.

Similar structures have also been developed in the
context of main memory temporal databases: Kline and
Snodgrass [KS95] propose the aggregation tree, for
computing aggregations over temporal data. The tree
indexes constant intervals, i.e. the maximum continuous
intervals where the value of the aggregation function is
constant. The nodes store the difference of the
aggregation value between the current and the next tree
level; therefore, the aggregation function is computed
by accumulating all the values in the path from the root
to the leaves. The tree is built on-the-fly and the cost for
computing the aggregation function for every constant
interval is O(n2), where n is the number of tuples in the
base relation. A similar structure, called PA-tree
[KKK99], solves the problem in O(nlogn). SB-trees
[YW01] extend these techniques for secondary memory.

Our indexing methods are also based on aggregate
trees. However, unlike previous approaches that focus
on single spatial or temporal indexes, spatio-temporal
data warehouses require some elaborate integration of
spatial and temporal structures. The incorporation of
volatile regions further complicates the indexing
problem and the associated query mechanisms.

2.2 Data warehouses and OLAP
The most common conceptual model for data
warehouses is the multidimensional data view. In this
model, there is a set of numerical measures which are
the items of analysis, for example number of objects
(cars or mobile phone users). A measure depends on a
set of dimensions, Region and Time, for instance. Thus,
a measure is a value in the multidimensional space
which is defined by the dimensions. Each dimension is
described by a domain of attributes (e.g. days). The set

of attributes may be related via a hierarchy of
relationships, a common example of which is the
temporal hierarchy (day, month, year).

Figure 2.3 illustrates a simple case; observe that
although the set of regions are 2-dimensional, they are
mapped as one dimension in the warehouse. Region R1
contains 150 objects during the first two timestamps and
this number gradually decreases. The star schema [K96]
is a common way to map multi-dimensional data onto a
relational database. A main table (called fact table) F,
stores the multidimensional array of measures, while
auxiliary tables D1, D2, …, Dn store the details of the
dimensions. A tuple in F has the form <Di[].key, M[]>
where Di[].key is the set of foreign keys to the
dimension tables and M[] is the set of measures.

regions

T1 T2 T3 T5

R1

R2

R3

4R

150

75

132

12

150

80

127

12

145

85

125

12 12

127

90

130135

90

127

12

now

aggregate results over timestamps

369 369 367 364

T4

359

60

638

420

710

1828

aggregate results
over regions FACT TABLE

total sum

Figure 2.3: A data cube example

OLAP operations ask for a set of tuples in F, or for
aggregations on groupings of tuples. Assuming that
there is no hierarchy in the dimensions of the previous
example, we identify four possible groupings: i) Group-
by Region and Time, which is identical to F, ii-iii)
group-by Region (Time), which corresponds to the
projection of F on the region (time) –axis, and iv) the
aggregation over all values of F which is the projection
on the origin. Figure 2.3 depicts these groupings
assuming that the aggregation function is sum. The fact
table, together with all possible combinations of group-
bys, compose the data cube [GBLP96]. Although all
groupings can be derived from F, in order to accelerate
query processing some results may be pre-computed and
stored as materialized views.

Notice that a detailed group-by query can be used to
answer more abstract aggregations. In our example, the
total number of objects in all regions for all timestamps
(i.e. 1828) can be computed either from the fact table, or
by summing the projected results on the time or the
region axis. If one of these projections is materialized,
the cost of computing the total sum is lower, since less
data are accessed. Ideally the whole data cube should be
materialized, to enable efficient query processing.
However, there are O(2n) group-by combinations for a
data warehouse with n dimensional attributes and
materializing all possible results may be prohibitive in
practice. Therefore, several techniques have been

proposed for the view selection problem in OLAP
applications [SDN98, GM99]. Observe that all these
methods benefit only queries on a predefined hierarchy.
A query involving the shaded part of the data in Figure
2.3 would still need to access the fact table, even if the
entire data cube were materialized.

Han et al [HSK98, SHK00] extend the above
techniques to spatial data warehouses. They consider a
generalization of the star-schema in which the cube
dimensions can be both spatial and non-spatial and the
measures can be regions in the space, in addition to
numerical data. They focus on the spatial measures and
propose a method for selecting spatial objects for
materialization. The idea is similar to the algorithm of
[HRU96], the main difference being the finer
granularity of the selected objects.

Mendelzon and Vaisman [MV00] concentrate on
temporal data warehouses, where, unlike the traditional
approach, the dimensions are allowed to change over
time (i.e. schema versioning or schema evolution). They
propose a temporal multidimensional model and a query
language to support it, while in [HMV99] they present
an incremental update method for data cubes under
dimension updates. Our structure also supports schema
evolution by allowing the finest granularity objects of
the spatial dimension to change over time.

In the following sections, we will present indexing
techniques for spatio-temporal data warehouses, which
accelerate various types of aggregation queries (e.g.,
such as the one that corresponds to the shaded part of
Figure 2.3) without assuming pre-defined hierarchies.
To the best of our knowledge, there is no published
work on supporting spatio-temporal OLAP operations.

3. Indexing Static Spatial Dimensions
We first consider fixed spatial dimensions (e.g., a static
set of road segments) and the goal is to keep historical
aggregated information, i.e., statistical results about
each region during the time evolution. For simplicity, in
the following discussion we assume that there exists
only one measure (e.g., number of objects) although
additional measures (any non-holistic function) can be
easily incorporated. The typical query has the form:
"find the total number of objects in the regions
intersecting some window qs during a time interval qt",
where the total number is interpreted as the sum of
objects in each timestamp. Notice that the interpretation
of the query is not important, e.g., by dividing the total
number with the interval length we could get the
average number of objects per timestamp in the region.

3.1 Applications of existing techniques
Following a traditional OLAP approach we could create
a data cube, where one dimension corresponds to time,

the other to space, and keep the measure values in the
cells of this two-dimensional table (as in Figure 2.3).
Since, the spatial dimension has no one-dimensional
order we store the table in the secondary memory
ordered by time and build a B-tree index to locate the
blocks containing information about each timestamp.
The processing of a typical query employs the B-tree
index to retrieve the blocks (i.e., table columns)
containing information about qt and then all regions are
scanned sequentially. The aggregate data of those
qualifying qs is accumulated in the result. In the sequel,
we refer to this approach as column scanning.

Even if there exists an additional spatial index on the
regions, the simultaneous employment of both indexes
will not provide significant benefit. Assume that first a
window query (qs) is performed on the spatial index to
provide a set of ids for regions that qualify the spatial
condition. Aggregate information about these regions,
still needs to be retrieved from the columns
corresponding to qt (again, we find these columns
through the B-tree index). However, since the storage
method does not preserve spatial proximity, the data
from the spatially qualifying regions is expected to be
scattered in many pages, and the spatial index will only
have some effect on queries with very high spatial
selectivity. Furthermore, pre-materializing selected
results is essentially meaningless for general queries,
since the query windows qs and qt are usually ad-hoc
and do not correspond to well-defined hierarchies.

An alternative approach, which achieves
simultaneous indexing on both spatial and temporal
dimensions, can be obtained by the generalization of the
aR-tree (discussed in Section 2.1) to 3-dimensional
space. In particular, each entry of the aggregate 3DR-
tree (a3DR-tree) has the form <r.MBR, r.pointer,
r.lifespan, r.aggr[]>, i.e., for each region it keeps the
aggregate value and the interval during which this value
is valid. Whenever the aggregate information about a
region changes, a new entry is created. Using the
example of Figure 2.3, four entries are required for R1:
one for timestamps 1 and 2 where the aggregate value
remains 150, and three more entries for the other
timestamps where the aggregate value changes.
Although the a3DR-tree integrates spatial and temporal
dimensions in the same structure (and is, therefore,
expected to be more efficient than column scanning for
queries that involve both conditions), it has the
following drawbacks: (i) it wastes space by storing the
MBR each time there is an aggregate change (e.g., the
MBR of R1 is stored four times), and (ii) the large size
of the structure and the small fanout of the nodes
compromises query efficiency. Next, we present a novel
multi-tree structure which does not suffer from these
problems.

3.2 The aggregate RB-tree
The aggregate R- B-tree (aRB-tree) is based on the
following concept: the regions that constitute the spatial
hierarchy are stored only once and indexed by an R-tree.
For each entry of the R-tree (including intermediate
level entries), there is a pointer to a B-tree which stores
historical aggregated data about the entry. In particular,
each R-tree entry r has the form <r.MBR, r.pointer,
r.btree, r.aggr[]> where MBR and pointer have their
usual meaning; r.aggr[] keeps summarized data about r
accumulated over all timestamps (e.g., the total number
of objects in r throughout history), and r.btree is a
pointer to the B-tree which keeps historical data about r.
Each B-tree entry b, has the form <b.time, b.pointer,
b.aggr[]> where b.aggr[] is the aggregated data for
b.time. If the value of b.aggr[] does not change in
consecutive timestamps, it is not replicated.

Figure 3.1 illustrates the aRB-tree for the regions of
Figure 2.1 using the data of the cube in Figure 2.3. For
instance, the number 1130 stored with the R-tree entry
R5, denotes that the total number of objects in R5 is 1130.
The first leaf entry of the B-tree for R5 (1, 225) denotes
that the number of objects in R5 at timestamp 1 is 225.
Similarly the first entry of the top node (1, 685) denotes
that the number of objects during the interval [1,3] is
685. The topmost B-tree corresponds to the root of the
R-tree and stores information about the whole space. Its
role is similar to that of the extra row in Figure 2.3, i.e.,
answer queries involving only temporal conditions.

R-tree for spatial dimension

1 150 3 145 4 135 5 130

1 445 4 265

1 75 2 80 3 85 4 90

1 155 3 265

1 132 2 127 3 125 4 127

1 259 3 379

1 12

B-tree for R1

B-tree for R2 B-tree for R3

B-tree for R4

1 225 2 230 4 225 5 220

1 685 4 445

B-tree for R5

1 144 2 139 3 137 4 139

1 283 3 405

B-tree for R61 369 3 367 4 364 5

1 3 723

B-tree for the whole space

359

1105

R1 710 R2 420 R3 638 R4 60

R5
1130 R6 698

Figure 3.1: Example of aRB-tree

The aRB-tree facilitates the processing of aggregate
queries, by eliminating the need to visit nodes which are
totally enclosed by the query. As an example, consider
that a user is looking for all objects in some region
overlapping the (shaded) query window qs of Figure 3.2
during the time interval [1,3]. Search starts from the
root of the R tree. Entry R5 is totally contained inside
the query window and the corresponding B-tree is
retrieved. The top node of this B-tree has the entries (1,
685), (4, 445) meaning that the aggregated data
correspond to the intervals [1,3], [4,5]. Therefore, the
next level of the B-tree does not need to be accessed and
the contribution of R5 to the query result is 685. The
second root entry of the R-tree, R6, partially overlaps the

query window so the corresponding node is visited.
Inside this node only entry R3, intersects qs, and its B-
tree is retrieved. The first entry of the top node suggests
that the contribution of R3, for the interval [1,2] is 259.
In order to complete the result we will have to descend
the second entry and retrieve the aggregate value of R3
for timestamp 3 (i.e., 125). The final result (i.e., total
number of objects in these regions in the interval [1,3])
is the sum 685+259+125. This corresponds to the sum
of aggregate data in the gray cells of Figure 2.3.

R 5

R 1 R 3

R 4

R 6

R 2

q s
Figure 3.2: Query example

aRB-trees can also answer group-by queries, as, for
instance, “for every district of the city, find the average
traffic during peak hours”. The grouping attribute (i.e.
district), defines a set of query windows, for which we
want the aggregated value. The union of all grouping
windows does not necessarily cover all the space, and
the windows may intersect with each other. A grouping
aggregation query can be processed by employing the
previous algorithm for every query window (e.g.,
indexed nested loops). In this case, the nodes of the
aRB-tree that overlap multiple windows will be
accessed more than once. A more efficient approach is
to extend spatial join algorithms that join an R-tree-
indexed data set with a non-indexed one (i.e., the query
windows).

In summary, the aRB-tree is more than just an index,
since it replaces the data cube. If the aggregate data is
not very dynamic, the size of structure is expected to be
smaller than the data cube because it does not replicate
information that remains constant for adjacent intervals.
Even in the worst case that the aggregate data of all
regions change each timestamp, the size of aRB-trees is
about double that of the cube since the leafs (needed
also for the cube) consume at least half of the space.
Furthermore, aRB-trees are beneficial regardless of the
selectivity, since: (i) if the query window (qs, qt) is large,
many nodes in the intermediate levels of the aRB-tree
will be contained in (qs, qt) so the pre-calculated results
are used and visits to the lower tree levels are avoided;
(ii) If (qs, qt) is small, the aRB-tree behaves as a spatio-
temporal index. This is also the case for queries that ask
for aggregated results at the finest granularity. Next, we
extend these concepts for volatile regions.

4. Indexing Dynamic Spatial Dimensions
In this section we consider that the finest granularity
regions in the spatial dimension, can change their
extents over time and/or new regions may appear/

disappear. Obviously, when the leaf-level regions
change, the spatial tree structure is altered as well. We
propose two solutions to this problem by employing
alternative multi-tree indexes.

4.1 The aggregate Historical RB-tree
A simple approach to deal with volatile regions is to
create a new R-tree every time there is a change.
Assume that at timestamp 5, region R1 is modified to R'1
and this update alters the father entry R5 to R'5. Then, a
new R-tree is created at timestamp 5, while the first one
dies. In order to avoid replicating the objects that were
not affected by the update, we propose the aggregate
Historical R-B-tree (aHRB-tree), which combines the
concepts of aRB-trees and HR-trees (discussed in
section 2.1). For example in Figure 4.1, the two R-trees
share node C, because the extents of regions R3 and R4
did not change. Each node1 in the HR-tree, stores a
lifespan, which indicates its valid period in history. The
lifespans of nodes A and B are [1,4], while that of C is
[1,*), where * means that the node is valid until the
current time. The form of the entries is the same as in
aRB-trees except that r.aggr[], keeps aggregated
information about the entry during the lifespan of the
node that contains it, instead of the whole history.

R-tree for spatial dimension

B-tree for R3

R1 R2 R3 R4

R5 R6

timestamps 1-4

R'1 R2

R'5 R6

R-tree for spatial dimension

timestamp 5

B-tree for R4

B-tree for R5

B-tree for R'1R2

A

B C

D

E

B-tree for R1 B-tree for R6

B-tree for R'5
B-tree for

Figure 4.1: Example of aHRB-tree
Assume that the current time is after timestamp 5, and a
query asks for objects in some region overlapping the
query window qs of Figure 4.2 during the time interval
[1,5]. The figure illustrates the old and the new versions
after the update at timestamp 5. Both R-trees of Figure
4.1 are visited. In the first tree, since R5 is inside qs its
child node B is not accessed. Furthermore, as the
lifespan of R5 (i.e., [1,4]) is entirely within the query
interval, we retrieve the aggregate data in R5 without
visiting its associated B-tree. On the other hand, node C
is accessed (R6 partially overlaps qs) and we retrieve the
aggregate value of R3 (for interval [1,5]) from its R-tree
entry. Searching the subsequent R-trees is similar,
except that shared nodes are not accessed. Continuing
the above example, node E is reached and the B-trees of
R'1 and R2 are searched, while we do not follow the

1 Notice that this is different for a3DR-trees where lifespans are kept
for each entry. Although traditional HR-trees do not store lifespans,
we need this information in order to record the validity period of
aggregate data in the R-tree nodes and avoid visiting the B-trees.

pointer of R6 (to node C) as C is already visited2.

R'5

R'1
R 3

R 4

R 6

R 2

 extent of R1

extent of R5

qs

Figure 4.2: Query example for aHRB-trees

In order to avoid multiple visits to the same R-tree node
via different roots, we use positive and negative pointers
to distinguish exclusive and shared nodes. In Figure 4.1,
for instance, when the root D of the new tree is created,
its pointers to nodes B and C are negative. Then, as new
nodes are created in the current tree (e.g., E), the
negative pointers (e.g., to B) are replaced with positive
ones (to E), while pointers to shared nodes (e.g., to C)
remain negative. A query can now be answered as
follows: the R-tree associated with the earliest
timestamp is searched first and all (positive and negative)
qualifying pointers are followed. Next the trees
associated with the other timestamps are searched in
chronological order by following only positive pointers.

Notice that independently of the query length (qt), in
the worst case the algorithm will visit the B-trees of two
R-trees. These are the R-trees at the two ends of qt. The
lifespans of nodes in the trees for intermediate
timestamps of qt are entirely contained in qt, so the
relevant aggregate data stored with the R-tree entries are
used directly. Furthermore, although in Figure 4.1 we
show a separate B-tree for each HR-tree entry, the B-
trees of various entries may be stored together in a space
efficient storage scheme, described in section 4.3.

4.2 The aggregate 3DRB-tree
In HR-trees, a node (e.g., B) will be duplicated even if
only one of its entries (e.g., R1) changes. This introduces
data redundancy and increases the size of aHRB-trees.
The a3DRB-tree (aggregate 3-dimensional R-B-tree)
avoids this problem, by combining B-trees with 3DR-
trees. Every version of a region is modeled as a 3D box,
so that the projection on the temporal axis corresponds
to a time interval when the spatial extents of the region
are fixed; different versions/regions are stored as
distinct entries in the 3DR-tree. In particular, a 3DR-tree
entry has the form <r.MBR, r.lifespan, r.pointer, r.btree,
r.aggr[]>, where r.MBR, r.pointer, r.btree are defined as
in aRB-trees; r.aggr[] stores data over r.lifespan3.

2 To be specific, the B-trees should be visited only if node E remains
alive after timestamp 5. Otherwise, the aggregate values of R'1 and R2
for timestamp 5 are stored in E.
3 The 3DR-tree structure of a3DRB-trees is similar to the a3DR-tree,
but now each version is generated by an extent (rather than aggregate)
change. Thus, there is no redundancy since the storage of MBRs is
required to capture the new extent.

A typical query involving both spatial and temporal
aspects ("find the total number of objects in the regions
intersecting some window qs during a time interval qt")
is also modeled as a 3D box. Searching starts from the
root of the 3DR-tree; for each entry r one of the
following conditions may hold:
1. The entry is covered by both (qs and qt) query

extents. In this case all required aggregate data are
stored in r.aggr[].

2. The entry's spatial extent is covered by qs, and its
temporal extent partially overlaps qt. The B-tree
pointed by r.btree is accessed to retrieve aggregate
information for qt.

3. The entry's spatial extent partially overlaps qs, and
its temporal extent overlaps (or is inside) qt. In this
case r.pointer is followed to the next R-tree level
and the same process is applied recursively.

4. Otherwise, the node pointed by the entry and its B-
tree are not visited.

Although both aHRB- and a3DRB- trees are aimed at
volatile regions they have two important differences: (i)
a3DRB-trees maintain a large 3DR-tree for the whole
history, while aHRB-trees maintain several small trees,
each responsible for a relatively short interval. This fact
has implications on their query performance. (ii) The
aHRB-tree is an on-line structure, while the a3DRB-tree
is off-line, meaning that the lifespans of its entries
should be known before the structure is created;
otherwise, we have to store unbounded boxes inside the
3DR-tree, which affects query performance severely.

aHRB- and a3DRB- trees permit temporally disjoint
entries to share B-trees in order to save space. Next we
discuss the B-file, a B-tree-based organization that
permits this sharing without compromising query
performance.

4.3 Management of B-trees
In real life situations, the rate of changes may differ
significantly for different objects. For instance, some
objects may update their extents so often, that there
exist very few aggregate values for each version.
Keeping a separate B-tree for every version of such
objects would seriously compromise space utilization.
This problem led to the development of the B-File (BF),
which is a space-efficient storage scheme for multiple
B-trees. A BF possesses the following properties: (i) the
B-trees stored in a BF index disjoint sets of keys (i.e.,
there can be at most one alive B-tree at any timestamp)
(ii) since deletions never happen, all the nodes (except,
possibly, for the last node of each level) are full, and (iv)
the search algorithms and their cost are the same as
those for conventional B-trees.

Figure 4.5a illustrates an example BF, which stores
the B-trees of two regions R and R' (for simplicity, in

each entry we show only the timestamps and not the
aggregate values). The lifespan of R is [1,19], while that
of R' is [20,*) (R' is currently alive). The B-tree of R
consists of two levels while, up to timestamp 30, the B-
tree of R' has only one level. Note that the root pointers
of R and R' point to nodes at different levels. The
insertion of 35 (in the B-tree of R') causes node B to
overflow, and a new node C is created (Figure 4.5b). An
entry 35, pointing to node C, is inserted into A, which
becomes the root of the B-tree of R'.

R R'
[1, 19] [20, *)

1 10

10 13. . . 15 20 25

B

30

A

R R'
[1, 19] [20, *)

1 10

10 13. . . 15 20 25

B

30

C

A

35

35

(a) Before insertion (b) After insertion

Figure 4.5: A B-file example
If the live B-tree dies (e.g., R' ceases to exist), the
corresponding BF becomes vacant and may be used for
any B-tree created at later timestamps. Whenever a new
B-tree needs to be created, we first search for vacant
BFs. If such a BF does not exist, a new one is initiated.
In practice, the creation of new BFs is infrequent
because, when an object changes its position or extent,
the new entry (in the HR- or 3DR-trees) can use the
vacant BF of the previous version. Due to space
constraints we will not describe in detail the insertion
algorithms, but it is easy to verify that query processing
with the BF is as efficient as independent B-trees. On
the other hand, the BF can achieve significant space
savings, especially for highly dynamic datasets.

5. Experimental Evaluation
In this section, we evaluate the performance of the
proposed methods through experimental evaluation.
Each dataset contains aggregate data of 10,000
uniformly distributed regions (density 0.2) collected
over (unless specifically stated) 1,000 timestamps. At
each timestamp, the aggregate data of Aagi of the regions
is modified, where Aagi is a dataset parameter called the
aggregate agility. Selected values for Aagi are 4%, 8%,
16%, 32%, and 64%. For example, Aagi = 4% denotes
that 400 regions update their aggregate data per
timestamp. The region agility Ragi corresponds to the
percentage of regions that issue position changes per
timestamp. For datasets of static regions Ragi = 0%,
while for volatile regions, Ragi is fixed to 0.01% (to
capture the fact that the spatial dimension changes much
slower than the aggregate data). With these parameters,
the number of records in a dataset ranges from 500,000
to 6,500,000.

Performance of various methods is measured by the
number of nodes accessed during the processing of
workloads, each consisting of 500 queries. Every query
involves two parameters that affect performance: (i) the
side of the query window (qs), represented as the
percentage of its length over the spatial universe, and (ii)
interval length (qt). These parameters have identical
values for all queries in the same workload. The
selected values for qs and qt are 1%, 3%, 5%, 7%, 9% of
the universe and 1, 25, 50, 75, 100 timestamps (up to
10% of the history length) respectively. In the sequel,
we refer to a workload as WRKLDqs,qt to indicate its
parameters. Queries are generated so that (i) the position
of each query window is distributed uniformly in the
spatial universe; (ii) each interval distributes uniformly
in [1,1000]. The node size is fixed to 1024 bytes in all
cases. With this size, the fanouts of aggregate R-trees,
B-trees, HR-trees are 36, 82, 36, and 36 respectively.
The fanouts of the 3DR-trees used in a3DR-trees and
a3DRB-trees are 31 and 28 respectively. R-tree
implementations are based on R*-trees [BKSS90], and
B-tree implementations on B+-trees.

5.1 Static regions
For static regions, we compare the performance of aRB-
trees to the two applications of existing techniques
described in section 3.1, namely, the a3DR-tree and data
cube (column scanning). In addition to the 2D array
with aggregate data, the data cube approach maintains a
1D array for region extents. Each column of the 2D
array consists of 40 blocks, while the 1D array contains
160 blocks. Columns are linked through a doubly linked
list to support sequential scans and are indexed by a B-
tree so that the first entry of each column (i.e.,
timestamp) can be easily located. Notice that the
aggregate information of each region should be stored
for each timestamp even if it does not change. There is
no obvious way to avoid replicating aggregate
information, since storage is according to columns in
order to preserve temporal proximity.

For the first experiment we employ static datasets
with aggregate agilities ranging from 4% to 64%. Figure
5.1(a) shows the space requirements of the three
methods, as a function of Aagi. For low agilities, both
a3DR-tree and aRB-tree consume less space than the
cube because they avoid the replication of aggregate
data that do not change. On the other hand, since the
size of the cube is constant, above Aagi =16% it becomes
the most economical method. The a3DR-tree increases
linearly with Aagi and for high values it involves huge
space requirements. The behavior of aRB-tree is much
better, since the increase of Aagi affects only the sizes of
the B-trees where entries are much smaller. As predicted,

even for Aagi =64%, the aRB-tree requires less than
twice the size of the data cube.

Figure 5.1b shows the average number of node
accesses (NA) in answering workloads WRKLD5%,50 as a
function of Aagi. The aRB-tree outperforms the a3DR-
tree significantly. Notice that, the cost of aRB-trees
remains stable up to Aagi = 8%, at which point there is a
step in the query cost. This is caused by the increment
of the height of B-trees, as each of them indexes more
entries when the agility increases. The performance of
column scanning is omitted because its cost is
prohibitively high (more than 2,000 node accesses for
scanning 50 columns). This is expected because the
spatial condition is not taken into account during query
processing. Therefore, in the sequel we omit the naïve
cube implementation from our experiments since it is
always outperformed by the other methods.

0

50

100

150

200

250

300

350

400

4 8 16 32 64

aRB a3DR

col. scan

aggregate agility (%)

Mega bytes

0

30

60

90

120

150

180

4 8 16 32 64

aRB
a3DR

aggregate agility (%)

node accesses

(a) Size vs. aggregate agility (b) NA vs. aggregate agility

Figure 5.1: Size and performance comparisons
The next set of experiments compares aRB-trees and
a3DR-trees as a function of the query (spatial) extent
and length. In Figure 5.2a, we fix qs to 5% of the spatial
axis and vary qt from 1 to 100 timestamps; in Figure
5.2b, we fix qt to 50 timestamps (i.e., 5% of the total
history), and vary qs from 1% to 9% of the axis. In both
cases the aggregate agility is fixed to 16%. According to
the first diagram, the performance of aRB-trees does not
depend on the query length. This is not surprising
because the number of B-trees accessed remains
constant; furthermore, long intervals have a high chance
to be answered by the top B-tree nodes. On the other
hand, the cost of a3DR-trees grows linearly with the
query length because the probability that the aggregate
information of a node changes also increases. Thus,
several versions of the same node (each with different
aggregate values) may be retrieved. For short query
intervals, the probability of retrieving different versions
of the same node is small and a3DR- outperform aRB-
trees because they avoid accessing the B-trees. In Figure
5.2b, a3DRB-trees are better in all cases of window
extents. The difference is reduced for large query
windows, because as the window increases, so does the
number of B-trees that need to be accessed.

0

30

60

90

120

150

180

1 25 50 75 100

aRB
a3DR

query length

node accesses

0

30

60

90

120

150

180

1 3 5 7 9

aRB

a3DR

query extent (%)

node accesses

(a) NA vs. query length (b) NA vs. qs

Figure 5.2: Effect of query parameters
In summary, although the cube implementation is the
most space-efficient alternative for very high agilities, it
is unsuitable in practice due to extreme query cost. aRB-
trees consume a fraction of the space required by a3DR-
trees, while they outperform them in all cases except for
very short query intervals. Furthermore, unlike a3DR-
trees where all the data must be known a priori, aRB-
trees are on-line structures.

5.2 Volatile regions
The methods applicable to volatile regions are column
scanning, a3DR-, aHRB-, and a3DRB-trees. Figure 5.3a
shows the sizes of the methods as a function of Aagi
assuming region agility 0.01%. The cube approach
requires more space than the static case, because the
extents of the regions are now stored in a 2D array since
they are no longer fixed. The a3DR-tree is still very
space-consuming. The sizes of the a3DRB- and aHRB-
tree are almost identical because the sizes of the B-Files
in the two structures (the dominant factor in the overall
size), are similar. The a3DRB-tree is slightly smaller
due to the redundancy in HR-trees.

0

50

100

150

200

250

300

350

400

4 8 16 32 64

a3DR a3DRB

aHRB col. scan

aggregate agility (%)

Mega bytes

0

30

60

90

120

150

180

4 8 16 32 64

a3DR a3DRB

aHRB

aggregate agility (%)

node accesses

(a) Size vs. aggregate agility (b) NA vs. aggregate agility

Figure 5.3: Size and performance comparisons
Figure 5.3b compares the structures on query
performance using WRKLD5%,50. The column scanning
approach is again omitted due to its prohibitive cost.
The relative performance of a3DRB- and a3DR-trees is
similar to the case of static regions. The cost of aHRB-
trees is comparable to that of a3DR-trees. Their high
cost (compared to a3DRB-trees) is explained as follows.
Since the region agility is 0.01% and there exist 10,000

objects in the dataset, on the average one object issues
an extent change per timestamp. Thus, a new logical
tree is created each timestamp. Although consecutive
trees share a large number of nodes, a query in
WRKLD5%,50 has to access at least the 50 roots that
correspond to its qt (duplicate visits to lower level nodes
are avoided). Notice that the difference between aHRB-
and a3DRB-trees is about 50 NA.

To study the effects of query parameters, we adopt
the same approach as in the static case using the dataset
with Aagi=16% and Ragi=0.01%. In Figure 5.4a, qs is
fixed to 5% and the query length varies. Like aRB-trees
(and for the same reasons), the a3DRB-tree is not
sensitive to the query length, while the costs of the other
two structures grow linearly. The behavior of a3DR-
trees is similar to the static case. aHRB-trees are also
favored by short queries, because the number of logical
trees that need to be accessed is small. In Figure 5.4b,
qt is fixed to the standard value 5% of the history length
while qs is varied. Similar to aRB-trees, the a3DRB-tree
is more efficient than the a3DR-tree, but the difference
decreases with the window size. The performance of
aHRB-trees is comparable to that of a3DR-trees.

0

50

100

150

200

1 25 50 75 100

a3DR a3DRB

aHRB

node accesses

query length
0

50

100

150

200

1 3 5 7 9

a3DR a3DRB
aHRB

query extent (%)

node accesses

(a) NA vs. query length (b) NA vs. qs

Figure 5.4: Effect of query parameters
In general, the a3DRB-tree has the best overall
performance in terms of size and query cost. Since
however, it is an off-line structure, aHRB-trees are the
best alternative for applications requiring on-line
indexing.

6. Conclusion
Numerous real-life applications require fast access to
summarized spatio-temporal information. Although data
warehouses have been successfully employed in similar
problems for relational data, traditional techniques have
three basic impediments when applied directly in spatio-
temporal applications: i) no support for ad-hoc
hierarchies, unknown at the design time ii) lack of
spatio-temporal indexing methods and iii) limited
provision for dimension versioning and volatile regions.

Here, we provide a unified solution to these
problems by developing spatio-temporal structures that

integrate indexing with the pre-aggregation technique.
The intuition is that, by keeping summarized
information inside the index, aggregation queries with
arbitrary groupings can be answered by the intermediate
nodes, thus saving accesses to detailed data. We first
consider static dimensions and describe the basic
structure (aRB-tree). Subsequently, we present a
generalization of aRB-trees, which supports dynamic
dimensions (aHRB-tree). For the same case, we also
develop a solution based on a 3-dimensional modeling
of the problem (a3DRB-tree). We demonstrate the
applicability of our methods through a set of
experiments that attempt to simulate realistic situations.

We believe that spatio-temporal OLAP is a new and
very promising area, both from the theoretical and
practical point of view. Since this is an initial approach,
we limited this work to simple numerical aggregations.
In the future, we will focus on supporting spatio-
temporal “measures” like the direction of movement.
This will enable analysts to ask sophisticated queries in
order to identify interesting numerical and
spatial/temporal trends. The processing of such queries
against the raw data is currently impractical considering
the huge amounts of information involved in most
spatio-temporal applications.

Another interesting area concerns the extension of
the proposed techniques to different access methods.
For instance, we could apply the R-tree insertion
algorithms of [BJSS98] in order to obtain on-line
structures based on 3DR-trees. Furthermore, the
integration of multi-version data structures may provide
on-line methods more efficient than aHRB-trees. The
problem with such methods (and all methods
maintaining multiple R-trees) is the avoidance of
multiple visits to the same node via different ancestors.
Although various techniques have been proposed in the
context of spatio-temporal data structures (e.g.,
[vBS96]), it is not clear how they can be applied within
our framework.

Acknowledgments
This work was supported by grants HKUST
6081/01E and 6070/00E from Hong Kong RGC.

References
[BJSS98] Bliujute, R., Jensen, C., Saltenis, S., Slivinskas, G.

R-Tree Based Indexing of Now-Relative
Bitemporal Data. VLDB, 1998.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger,
B. The R*-tree: an Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[G84] Guttman, A. R-trees: A Dynamic Index Structure
for Spatial Searching. SIGMOD, 1984.

[GBE+00] Güting, R., Böhlen, M., Erwig, M., Jensen, C.,
Lorentzos, N., Schneider, M., Vazirgiannis, M. A
Foundation for Representing and Querying
Moving Objects. To appear in ACM TODS.

[GBLP96] Gray, J., Bosworth, A., Layman, A., Pirahesh, H.
Data Cube: a Relational Aggregation Operator
Generalizing Group-by, Cross-tabs and Subtotals.
ICDE, 1996.

[GM99] Gupta, H., Mumick, I. Selection of Views to
Materialize Under a Maintenance-Time Constraint.
ICDT, 1999.

[HRU96] Harinarayan, V., Rajaraman A., Ullman, J.
Implementing Data Cubes Efficiently. SIGMOD,
1996.

[HSK98] Han, J., Stefanovic, N., Koperski, K. Selective
Materialization: An Efficient Method for Spatial
Data Cube Construction. PAKDD, 1998.

[JL98] Jurgens M., Lenz H.J. The Ra*-tree: An improved
R-tree with Materialized Data for Supporting
Range Queries on OLAP-Data. DEXA Workshop,
1998.

[K96] Kimball, R. The Data Warehouse Toolkit. John
Wiley, 1996.

[KKK99] Kim, J., Kang, S., Kim, M. Effective Temporal
Aggregation using Point-based Trees. DEXA, 1999.

[KS95] Kline, N., Snodgrass, R. Computing Temporal
Aggregates. ICDE, 1995.

[LM01] Lazaridis, I., Mehrotra, S. Progressive
Approximate Aggregate Queries with a Multi-
Resolution Tree Structure. SIGMOD, 2001.

[MV00] Mendelzon, A., Vaisman, A. Temporal Queries in
OLAP. VLDB, 2000.

[NS98] Nascimento, M., Silva, J. Towards Historical R-
trees. ACM SAC, 1998.

[PJT00] Pfoser, D., Jensen, C., Theodoridis, Y. Novel
Approaches to the Indexing of Moving Object
Trajectories. VLDB, 2000.

[PKZT01] Papadias, D., Kalnis, P., Zhang, J., Tao, Y.
Efficient OLAP Operations in Spatial Data
Warehouses. SSTD, 2001.

[SDN98] Shukla, A., Deshpande, P., Naughton, J.
Materialized View Selection for Multidimensional
Datasets. VLDB, 1998.

[SHK00] Stefanovic, N., Han, J., Koperski, K. Object-Based
Selective Materialization for Efficient
Implementation of Spatial Data Cubes. TKDE,
12(6), 2000.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.
Indexing the Positions of Continuously Moving
Objects. SIGMOD, 2000.

[vBS96] Van den Bercken, Seeger, B. Query Processing
Techniques for Multiversion Access Methods.
VLDB 1996.

[YW01] Yang, J., Widom, J. Incremental Computation of
Temporal Aggregates. ICDE, 2001.

