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Abstract 
Spatio-temporal databases store information about the 
positions of individual objects over time. In many 
applications however, such as traffic supervision or 
mobile communication systems, only summarized data, 
like the average number of cars in an area for a specific 
period, or phones serviced by a cell each day, is 
required. Although this information can be obtained 
from operational databases, its computation is 
expensive, rendering online processing inapplicable. A 
vital solution is the construction of a spatiotemporal 
data warehouse. In this paper, we describe a framework 
for supporting OLAP operations over spatiotemporal 
data. We argue that the spatial and temporal 
dimensions should be modeled as a combined dimension 
on the data cube and present data structures, which 
integrate spatiotemporal indexing with pre-aggregation. 
While the well-known materialization techniques 
require a-priori knowledge of the grouping hierarchy, 
we develop methods that utilize the proposed structures 
for efficient execution of ad-hoc group-bys. Our 
techniques can be used for both static and dynamic 
dimensions. 
 
1. Introduction 
Spatio-temporal databases have received considerable 
attention during the past few years due to the 
accumulation of large amounts of multi-dimensional 
data evolving in time, and the emergence of novel 
applications such as traffic supervision, and mobile 
communication systems. Research has focused on 
modeling, indexing and query processing issues for 
problems involving historical information retrieval 
[GBE+00], motion and trajectory preservation [PJT00], 
future location estimation [SJLL00] etc. All these 
approaches assume that object locations are individually 
stored, and queries ask for objects that satisfy some 
spatio-temporal condition (e.g., mobile users inside a 
query window during a time interval, or the first car 
expected to arrive at a destination etc.).  

The motivation of this work is that many (if not most) 
current applications require summarized spatio- 
temporal data, rather than information about the 

locations of individual objects in time. As an example, 
traffic supervision systems need the number of cars in 
an area of interest, rather than their ids. Similarly mobile 
phone companies use the number of users serviced by 
individual cells in order to identify trends and prevent 
potential network congestion. Other spatio-temporal 
applications are by default based on arithmetic data 
rather than object locations. As an example consider a 
pollution monitoring system. The readings from several 
sensors are fed into a database which arranges them in 
regions of similar or identical values. These regions 
should then be indexed for the efficient processing of 
queries such as "find the areas near the center with the 
highest pollution levels yesterday". 

The potentially huge amount of data involved in the 
above applications calls for pre-aggregation of results. 
In direct analogy with relational databases, efficient 
OLAP operations require materialization of summarized 
data. The motivation is even more urgent for spatio-
temporal databases due to several reasons. First, in some 
cases, data about individual objects should not be stored 
due to legal issues. For instance, keeping the locations 
of mobile phone users through history may violate their 
privacy. Second, the actual data may not be important as 
in the traffic supervision system discussed. Third, 
although the actual data may be highly volatile and 
involve extreme space requirements, the summarized 
data are less voluminous and may remain rather constant 
for long intervals, thus requiring considerably less space 
for storage. In other words, although the number of 
moving cars (or mobile users) in some city area during 
the peak hours is high, the aggregated data may not 
change significantly since the number of cars (users) 
entering is similar to that exiting the area. This is 
especially true if only approximate information is kept, 
i.e., instead of the precise number we store values to 
denote ranges such as high, medium and low traffic.  

Throughout the paper we assume that the spatial 
dimension at the finest granularity consists of a set of 
regions (e.g., road segments in traffic supervision 
systems, areas covered by cells in mobile 
communication systems etc.). The raw data provide the 
set of objects that fall in each region every timestamp 
(e.g., cars in a road segment, users serviced by a cell). 



 

 

Queries ask for aggregate data over regions that satisfy 
some spatio-temporal condition. A fact that 
differentiates spatio-temporal, from traditional OLAP is 
the lack of predefined hierarchies (e.g., product types). 
These hierarchies are taken into account during the 
design of the system so that queries of the form "find 
the average sales for all products grouped-by product 
type" can be efficiently processed. An analogy in the 
spatio-temporal domain would be "find the average 
traffic in all areas in a 1km range around each hospital".  

The problem is that the positions and the ranges of 
spatio-temporal query windows usually do not conform 
to pre-defined hierarchies, and are not known in 
advance. Another query, for instance, could involve fire 
emergencies, in which case the areas of interest would 
be around fire departments (police stations and so on). 
In the above example, although the hierarchies are ad-
hoc, the spatial dimension is fixed, i.e., there is a static 
set of road segments. In other applications, the spatial 
dimensions may be volatile, i.e., the regions at the finest 
granularity may evolve in time. For instance, the area 
covered by a cell may change according to weather 
conditions, extra capacity allocated etc. This dynamic 
behavior complicates the development of spatio-
temporal data warehouses.   

This paper addresses these problems by proposing 
several indexing solutions. First we deal with static 
spatial dimensions and focus on queries that ask for 
aggregated data in a query window over a continuous 
time interval. An example would be "give me the 
number of cars in the city center during the last hour". 
For such queries we develop multi-tree indexes that 
combine the spatial and temporal dimensions. In 
contrast with traditional OLAP solutions, we use the 
index structure to define hierarchies and we store pre-
aggregated data in internal nodes. As a second step we 
extend our techniques to handle volatile regions; 
alternatives are proposed and their performance is 
evaluated experimentally. Our approach does not aim at 
simply indexing, but rather replacing the data cube for 
spatio-temporal data warehouses. 

Depending on the type of queries posed, a spatio-
temporal OLAP system should capture different types of 
summarized data. Since our focus is on indexing, we 
assume some simple aggregate functions like count, or 
average. In more complex situations we could also store 
additional measures including the source and the 
destination of data, direction of movement and so on. 
Such information will enable analysts to identify certain 
motion and traffic patterns which cannot be easily found 
by using the raw data. The proposed methods can be 
modified for this case.  

The rest of the paper is organized as follows. Section 
2 describes related work in the context of spatio-

temporal access methods, traditional, temporal and 
spatial OLAP. Section 3 proposes indexing techniques 
for spatio-temporal OLAP applicable in the presence of 
static regions. Section 4 discusses structures to capture 
volatile regions. Section 5 contains an extensive 
experimental evaluation and section 6 concludes the 
paper with a discussion on future work.  

 
2. Related Work  
This section overviews background on access methods 
employed in the rest of the paper. It also describes 
previous work on the broad concept of storing 
additional information in index structures in order to 
accelerate aggregation queries. Furthermore, we discuss 
traditional OLAP techniques and their extensions to 
spatial and temporal data. 

 
2.1 Spatio-temporal indexing – Aggregate trees 
Numerous indexes have been proposed for indexing 
spatial and temporal databases. Among spatial access 
methods, the most popular one is the R-tree [G84] and 
its variations, notably the R*-tree [BKSS90]. The R-tree 
can be thought of as an extension of B+-trees in multi-
dimensional space. Figure 2.1 shows four regions and 
the corresponding R-tree assuming node capacity of 2. 
Regions R1 and R2 are grouped together in node R5, and 
regions R3 and R4 in node R6. Each R-tree entry r has the 
form <r.MBR, r.pointer> where r.MBR is the minimum 
bounding rectangle of r, and r.pointer points to the 
lower level node corresponding to r. For leaf entries 
r.pointer points to the actual record of the entry.  

R 5

R 1 R 3

R 4

R 6

R 2

R1 R2 R3 R4

R5 R6

ponters to the actual recor 
Figure 2.1: Simple R-tree example 

R-trees were developed for static points and regions. 
Dynamic data can be indexed by multiple R-trees, each 
capturing a different version of the data. This, however, 
may lead to significant redundancy, if updates alter only 
a small part of the existing tree. Historical R-trees (HR-
trees) [NS98] decrease the level of redundancy by 
allowing consecutive R-trees to share common branches. 
Assume that at timestamp 5, region R1 is modified (due 
to movement, enlargement etc.) to a new version R'1. 
This update propagates to the upper level of the tree, 
meaning that the extent of the father entry R5 also 
changes to R'5. The corresponding HR-tree structure is 
shown in Figure 2.2. The first logical R-tree covers 
timestamps 1-4, and the second one timestamp 5 and 
onwards. Both trees share the child node of R6, because 
the contents of this node were not affected by the update. 
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Figure 2.2: HR-tree example 

Aggregate R-trees (aR-trees) [JL98, PKZT01] augment 
the tree nodes with summarized data about the sub-
branch under them in order to answer aggregate queries. 
Consider, for instance, a dataset of points indexed by an 
R-tree. Each intermediate entry r in the R-tree, in 
addition to r.MBR and r.pointer, stores information 
about the value of an aggregate function (e.g., the 
number of points indexed by the node). The same 
concept is applied in [LM01] for a variety of high-
dimensional indexes in order to calculate approximate 
answers. By traversing the index, a rough 
approximation is obtained from the values at the higher 
levels, which is progressively refined as the search 
continues towards the leaves.  

Similar structures have also been developed in the 
context of main memory temporal databases: Kline and 
Snodgrass [KS95] propose the aggregation tree, for 
computing aggregations over temporal data. The tree 
indexes constant intervals, i.e. the maximum continuous 
intervals where the value of the aggregation function is 
constant. The nodes store the difference of the 
aggregation value between the current and the next tree 
level; therefore, the aggregation function is computed 
by accumulating all the values in the path from the root 
to the leaves. The tree is built on-the-fly and the cost for 
computing the aggregation function for every constant 
interval is O(n2), where n is the number of tuples in the 
base relation. A similar structure, called PA-tree 
[KKK99], solves the problem in O(nlogn). SB-trees 
[YW01] extend these techniques for secondary memory. 

Our indexing methods are also based on aggregate 
trees. However, unlike previous approaches that focus 
on single spatial or temporal indexes, spatio-temporal 
data warehouses require some elaborate integration of 
spatial and temporal structures. The incorporation of 
volatile regions further complicates the indexing 
problem and the associated query mechanisms.  

 
2.2 Data warehouses and OLAP 
The most common conceptual model for data 
warehouses is the multidimensional data view. In this 
model, there is a set of numerical measures which are 
the items of analysis, for example number of objects 
(cars or mobile phone users). A measure depends on a 
set of dimensions, Region and Time, for instance. Thus, 
a measure is a value in the multidimensional space 
which is defined by the dimensions. Each dimension is 
described by a domain of attributes (e.g. days). The set 

of attributes may be related via a hierarchy of 
relationships, a common example of which is the 
temporal hierarchy (day, month, year).  

Figure 2.3 illustrates a simple case; observe that 
although the set of regions are 2-dimensional, they are 
mapped as one dimension in the warehouse. Region R1 
contains 150 objects during the first two timestamps and 
this number gradually decreases. The star schema [K96] 
is a common way to map multi-dimensional data onto a 
relational database. A main table (called fact table) F, 
stores the multidimensional array of measures, while 
auxiliary tables D1, D2, …, Dn store the details of the 
dimensions. A tuple in F has the form <Di[].key, M[]> 
where Di[].key is the set of foreign keys to the 
dimension tables and M[] is the set of measures.  
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Figure 2.3: A data cube example 

OLAP operations ask for a set of tuples in F, or for 
aggregations on groupings of tuples. Assuming that 
there is no hierarchy in the dimensions of the previous 
example, we identify four possible groupings: i) Group-
by Region and Time, which is identical to F, ii-iii) 
group-by Region (Time), which corresponds to the 
projection of F on the region (time) –axis, and iv) the 
aggregation over all values of F which is the projection 
on the origin. Figure 2.3 depicts these groupings 
assuming that the aggregation function is sum. The fact 
table, together with all possible combinations of group-
bys, compose the data cube [GBLP96]. Although all 
groupings can be derived from F, in order to accelerate 
query processing some results may be pre-computed and 
stored as materialized views.  

Notice that a detailed group-by query can be used to 
answer more abstract aggregations. In our example, the 
total number of objects in all regions for all timestamps 
(i.e. 1828) can be computed either from the fact table, or 
by summing the projected results on the time or the 
region axis. If one of these projections is materialized, 
the cost of computing the total sum is lower, since less 
data are accessed. Ideally the whole data cube should be 
materialized, to enable efficient query processing. 
However, there are O(2n) group-by combinations for a 
data warehouse with n dimensional attributes and 
materializing all possible results may be prohibitive in 
practice. Therefore, several techniques have been 



 

 

proposed for the view selection problem in OLAP 
applications [SDN98, GM99]. Observe that all these 
methods benefit only queries on a predefined hierarchy. 
A query involving the shaded part of the data in Figure 
2.3 would still need to access the fact table, even if the 
entire data cube were materialized. 

Han et al [HSK98, SHK00] extend the above 
techniques to spatial data warehouses. They consider a 
generalization of the star-schema in which the cube 
dimensions can be both spatial and non-spatial and the 
measures can be regions in the space, in addition to 
numerical data. They focus on the spatial measures and 
propose a method for selecting spatial objects for 
materialization. The idea is similar to the algorithm of 
[HRU96], the main difference being the finer 
granularity of the selected objects.  

Mendelzon and Vaisman [MV00] concentrate on 
temporal data warehouses, where, unlike the traditional 
approach, the dimensions are allowed to change over 
time (i.e. schema versioning or schema evolution). They 
propose a temporal multidimensional model and a query 
language to support it, while in [HMV99] they present 
an incremental update method for data cubes under 
dimension updates. Our structure also supports schema 
evolution by allowing the finest granularity objects of 
the spatial dimension to change over time. 

In the following sections, we will present indexing 
techniques for spatio-temporal data warehouses, which 
accelerate various types of aggregation queries (e.g., 
such as the one that corresponds to the shaded part of 
Figure 2.3) without assuming pre-defined hierarchies. 
To the best of our knowledge, there is no published 
work on supporting spatio-temporal OLAP operations. 

 
3. Indexing Static Spatial Dimensions 
We first consider fixed spatial dimensions (e.g., a static 
set of road segments) and the goal is to keep historical 
aggregated information, i.e., statistical results about 
each region during the time evolution. For simplicity, in 
the following discussion we assume that there exists 
only one measure (e.g., number of objects) although 
additional measures (any non-holistic function) can be 
easily incorporated. The typical query has the form: 
"find the total number of objects in the regions 
intersecting some window qs during a time interval qt", 
where the total number is interpreted as the sum of 
objects in each timestamp. Notice that the interpretation 
of the query is not important, e.g., by dividing the total 
number with the interval length we could get the 
average number of objects per timestamp in the region.  
 
3.1 Applications of existing techniques 
Following a traditional OLAP approach we could create 
a data cube, where one dimension corresponds to time, 

the other to space, and keep the measure values in the 
cells of this two-dimensional table (as in Figure 2.3). 
Since, the spatial dimension has no one-dimensional 
order we store the table in the secondary memory 
ordered by time and build a B-tree index to locate the 
blocks containing information about each timestamp. 
The processing of a typical query employs the B-tree 
index to retrieve the blocks (i.e., table columns) 
containing information about qt and then all regions are 
scanned sequentially. The aggregate data of those 
qualifying qs is accumulated in the result. In the sequel, 
we refer to this approach as column scanning. 

Even if there exists an additional spatial index on the 
regions, the simultaneous employment of both indexes 
will not provide significant benefit. Assume that first a 
window query (qs) is performed on the spatial index to 
provide a set of ids for regions that qualify the spatial 
condition. Aggregate information about these regions, 
still needs to be retrieved from the columns 
corresponding to qt (again, we find these columns 
through the B-tree index). However, since the storage 
method does not preserve spatial proximity, the data 
from the spatially qualifying regions is expected to be 
scattered in many pages, and the spatial index will only 
have some effect on queries with very high spatial 
selectivity. Furthermore, pre-materializing selected 
results is essentially meaningless for general queries, 
since the query windows qs and qt are usually ad-hoc 
and do not correspond to well-defined hierarchies.  

An alternative approach, which achieves 
simultaneous indexing on both spatial and temporal 
dimensions, can be obtained by the generalization of the 
aR-tree (discussed in Section 2.1) to 3-dimensional 
space. In particular, each entry of the aggregate 3DR-
tree (a3DR-tree) has the form <r.MBR, r.pointer,  
r.lifespan, r.aggr[]>, i.e., for each region it keeps the 
aggregate value and the interval during which this value 
is valid. Whenever the aggregate information about a 
region changes, a new entry is created. Using the 
example of Figure 2.3, four entries are required for R1: 
one for timestamps 1 and 2 where the aggregate value 
remains 150, and three more entries for the other 
timestamps where the aggregate value changes. 
Although the a3DR-tree integrates spatial and temporal 
dimensions in the same structure (and is, therefore, 
expected to be more efficient than column scanning for 
queries that involve both conditions), it has the 
following drawbacks: (i) it wastes space by storing the 
MBR each time there is an aggregate change (e.g., the 
MBR of R1 is stored four times), and (ii) the large size 
of the structure and the small fanout of the nodes 
compromises query efficiency. Next, we present a novel 
multi-tree structure which does not suffer from these 
problems. 



 

 

3.2 The aggregate RB-tree 
The aggregate R- B-tree (aRB-tree) is based on the 
following concept: the regions that constitute the spatial 
hierarchy are stored only once and indexed by an R-tree. 
For each entry of the R-tree (including intermediate 
level entries), there is a pointer to a B-tree which stores 
historical aggregated data about the entry. In particular, 
each R-tree entry r has the form <r.MBR, r.pointer, 
r.btree, r.aggr[]> where MBR and pointer have their 
usual meaning; r.aggr[] keeps summarized data about r 
accumulated over all timestamps (e.g., the total number 
of objects in r throughout history), and r.btree is a 
pointer to the B-tree which keeps historical data about r. 
Each B-tree entry b, has the form <b.time, b.pointer, 
b.aggr[]> where b.aggr[] is the aggregated data for 
b.time. If the value of b.aggr[] does not change in 
consecutive timestamps, it is not replicated.  

Figure 3.1 illustrates the aRB-tree for the regions of 
Figure 2.1 using the data of the cube in Figure 2.3. For 
instance, the number 1130 stored with the R-tree entry 
R5, denotes that the total number of objects in R5 is 1130. 
The first leaf entry of the B-tree for R5 (1, 225) denotes 
that the number of objects in R5 at timestamp 1 is 225. 
Similarly the first entry of the top node (1, 685) denotes 
that the number of objects during the interval [1,3] is 
685. The topmost B-tree corresponds to the root of the 
R-tree and stores information about the whole space. Its 
role is similar to that of the extra row in Figure 2.3, i.e., 
answer queries involving only temporal conditions.  

R-tree for spatial dimension

1 150 3 145 4 135 5 130

1 445 4 265

1 75 2 80 3 85 4 90

1 155 3 265

1 132 2 127 3 125 4 127

1 259 3 379
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B-tree for R2 B-tree for R3

B-tree for R4

1 225 2 230 4 225 5 220

1 685 4 445

B-tree for R5

1 144 2 139 3 137 4 139

1 283 3 405

B-tree for R61 369 3 367 4 364 5

1 3 723

B-tree for the whole space 

359

1105

R1 710 R2 420 R3 638 R4 60

R5
1130 R6 698

    
Figure 3.1: Example of aRB-tree 

The aRB-tree facilitates the processing of aggregate 
queries, by eliminating the need to visit nodes which are 
totally enclosed by the query. As an example, consider 
that a user is looking for all objects in some region 
overlapping the (shaded) query window qs of Figure 3.2 
during the time interval [1,3].  Search starts from the 
root of the R tree. Entry R5 is totally contained inside 
the query window and the corresponding B-tree is 
retrieved. The top node of this B-tree has the entries (1, 
685), (4, 445) meaning that the aggregated data 
correspond to the intervals [1,3], [4,5]. Therefore, the 
next level of the B-tree does not need to be accessed and 
the contribution of R5 to the query result is 685. The 
second root entry of the R-tree, R6, partially overlaps the 

query window so the corresponding node is visited. 
Inside this node only entry R3, intersects qs, and its B-
tree is retrieved. The first entry of the top node suggests 
that the contribution of R3, for the interval [1,2] is 259. 
In order to complete the result we will have to descend 
the second entry and retrieve the aggregate value of R3 
for timestamp 3 (i.e., 125). The final result (i.e., total 
number of objects in these regions in the interval [1,3]) 
is the sum 685+259+125. This corresponds to the sum 
of aggregate data in the gray cells of Figure 2.3.  

R 5

R 1 R 3

R 4

R 6

R 2

q s  
Figure 3.2: Query example 

aRB-trees can also answer group-by queries, as, for 
instance, “for every district of the city, find the average 
traffic during peak hours”. The grouping attribute (i.e. 
district), defines a set of query windows, for which we 
want the aggregated value. The union of all grouping 
windows does not necessarily cover all the space, and 
the windows may intersect with each other. A grouping 
aggregation query can be processed by employing the 
previous algorithm for every query window (e.g., 
indexed nested loops). In this case, the nodes of the 
aRB-tree that overlap multiple windows will be 
accessed more than once. A more efficient approach is 
to extend spatial join algorithms that join an R-tree-
indexed data set with a non-indexed one (i.e., the query 
windows). 

In summary, the aRB-tree is more than just an index, 
since it replaces the data cube. If the aggregate data is 
not very dynamic, the size of structure is expected to be 
smaller than the data cube because it does not replicate 
information that remains constant for adjacent intervals. 
Even in the worst case that the aggregate data of all 
regions change each timestamp, the size of aRB-trees is 
about double that of the cube since the leafs (needed 
also for the cube) consume at least half of the space. 
Furthermore, aRB-trees are beneficial regardless of the 
selectivity, since: (i) if the query window (qs, qt) is large, 
many nodes in the intermediate levels of the aRB-tree 
will be contained in (qs, qt) so the pre-calculated results 
are used and visits to the lower tree levels are avoided; 
(ii) If (qs, qt) is small, the aRB-tree behaves as a spatio-
temporal index. This is also the case for queries that ask 
for aggregated results at the finest granularity. Next, we 
extend these concepts for volatile regions. 
 
4. Indexing Dynamic Spatial Dimensions 
In this section we consider that the finest granularity 
regions in the spatial dimension, can change their 
extents over time and/or new regions may appear/ 



 

 

disappear. Obviously, when the leaf-level regions 
change, the spatial tree structure is altered as well. We 
propose two solutions to this problem by employing 
alternative multi-tree indexes. 
 
4.1 The aggregate Historical RB-tree  
A simple approach to deal with volatile regions is to 
create a new R-tree every time there is a change. 
Assume that at timestamp 5, region R1 is modified to R'1 
and this update alters the father entry R5 to R'5. Then, a 
new R-tree is created at timestamp 5, while the first one 
dies. In order to avoid replicating the objects that were 
not affected by the update, we propose the aggregate 
Historical R-B-tree (aHRB-tree), which combines the 
concepts of aRB-trees and HR-trees (discussed in 
section 2.1). For example in Figure 4.1, the two R-trees 
share node C, because the extents of regions R3 and R4 
did not change. Each node1  in the HR-tree, stores a 
lifespan, which indicates its valid period in history. The 
lifespans of nodes A and B are [1,4], while that of C is 
[1,*), where * means that the node is valid until the 
current time. The form of the entries is the same as in 
aRB-trees except that r.aggr[], keeps aggregated 
information about the entry during the lifespan of the 
node that contains it, instead of the whole history.    

R-tree for spatial dimension

B-tree for R3

R1 R2 R3 R4

R5 R6

timestamps 1-4

R'1 R2

R'5 R6

R-tree for spatial dimension

timestamp 5

B-tree for R4

B-tree for R5

B-tree for R'1R2

A

B C

D

E

B-tree for R1 B-tree for R6

B-tree for R'5
B-tree for  

Figure 4.1: Example of aHRB-tree 
Assume that the current time is after timestamp 5, and a 
query asks for objects in some region overlapping the 
query window qs of Figure 4.2 during the time interval 
[1,5]. The figure illustrates the old and the new versions 
after the update at timestamp 5. Both R-trees of Figure 
4.1 are visited. In the first tree, since R5 is inside qs its 
child node B is not accessed. Furthermore, as the 
lifespan of R5 (i.e., [1,4]) is entirely within the query 
interval, we retrieve the aggregate data in R5 without 
visiting its associated B-tree. On the other hand, node C 
is accessed (R6 partially overlaps qs) and we retrieve the 
aggregate value of R3 (for interval [1,5]) from its R-tree 
entry. Searching the subsequent R-trees is similar, 
except that shared nodes are not accessed. Continuing 
the above example, node E is reached and the B-trees of 
R'1 and R2 are searched, while we do not follow the 

                                                 
1 Notice that this is different for a3DR-trees where lifespans are kept 
for each entry. Although traditional HR-trees do not store lifespans, 
we need this information in order to record the validity period of 
aggregate data in the R-tree nodes and avoid visiting the B-trees.  

pointer of R6 (to node C) as C is already visited2. 

R'5

R'1
R 3

R 4

R 6

R 2

 extent of R1

extent of R5

qs

 
Figure 4.2: Query example for aHRB-trees 

In order to avoid multiple visits to the same R-tree node 
via different roots, we use positive and negative pointers 
to distinguish exclusive and shared nodes. In Figure 4.1, 
for instance, when the root D of the new tree is created, 
its pointers to nodes B and C are negative. Then, as new 
nodes are created in the current tree (e.g., E), the 
negative pointers (e.g., to B) are replaced with positive 
ones (to E), while pointers to shared nodes (e.g., to C) 
remain negative. A query can now be answered as 
follows: the R-tree associated with the earliest 
timestamp is searched first and all (positive and negative) 
qualifying pointers are followed. Next the trees 
associated with the other timestamps are searched in 
chronological order by following only positive pointers.  

Notice that independently of the query length (qt), in 
the worst case the algorithm will visit the B-trees of two 
R-trees. These are the R-trees at the two ends of qt. The 
lifespans of nodes in the trees for intermediate 
timestamps of qt are entirely contained in qt, so the 
relevant aggregate data stored with the R-tree entries are 
used directly. Furthermore, although in Figure 4.1 we 
show a separate B-tree for each HR-tree entry, the B-
trees of various entries may be stored together in a space 
efficient storage scheme, described in section 4.3.    
 
4.2 The aggregate 3DRB-tree 
In HR-trees, a node (e.g., B) will be duplicated even if 
only one of its entries (e.g., R1) changes. This introduces 
data redundancy and increases the size of aHRB-trees. 
The a3DRB-tree (aggregate 3-dimensional R-B-tree) 
avoids this problem, by combining B-trees with 3DR-
trees. Every version of a region is modeled as a 3D box, 
so that the projection on the temporal axis corresponds 
to a time interval when the spatial extents of the region 
are fixed; different versions/regions are stored as 
distinct entries in the 3DR-tree. In particular, a 3DR-tree 
entry has the form <r.MBR, r.lifespan, r.pointer, r.btree, 
r.aggr[]>, where r.MBR, r.pointer, r.btree are defined as 
in aRB-trees; r.aggr[] stores data over r.lifespan3.  

                                                 
2 To be specific, the B-trees should be visited only if node E remains 
alive after timestamp 5. Otherwise, the aggregate values of R'1 and R2 
for timestamp 5 are stored in E.  
3 The 3DR-tree structure of a3DRB-trees is similar to the a3DR-tree, 
but now each version is generated by an extent (rather than aggregate) 
change. Thus, there is no redundancy since the storage of MBRs is 
required to capture the new extent.    



 

 

A typical query involving both spatial and temporal 
aspects ("find the total number of objects in the regions 
intersecting some window qs during a time interval qt") 
is also modeled as a 3D box. Searching starts from the 
root of the 3DR-tree; for each entry r one of the 
following conditions may hold:  
1. The entry is covered by both (qs and qt) query 

extents. In this case all required aggregate data are 
stored in r.aggr[]. 

2. The entry's spatial extent is covered by qs, and its 
temporal extent partially overlaps qt. The B-tree 
pointed by r.btree is accessed to retrieve aggregate 
information for qt. 

3. The entry's spatial extent partially overlaps qs, and 
its temporal extent overlaps (or is inside) qt. In this 
case r.pointer is followed to the next R-tree level 
and the same process is applied recursively. 

4. Otherwise, the node pointed by the entry and its B-
tree are not visited. 

Although both aHRB- and a3DRB- trees are aimed at 
volatile regions they have two important differences: (i) 
a3DRB-trees maintain a large 3DR-tree for the whole 
history, while aHRB-trees maintain several small trees, 
each responsible for a relatively short interval. This fact 
has implications on their query performance. (ii) The 
aHRB-tree is an on-line structure, while the a3DRB-tree 
is off-line, meaning that the lifespans of its entries 
should be known before the structure is created; 
otherwise, we have to store unbounded boxes inside the 
3DR-tree, which affects query performance severely.  

aHRB- and a3DRB- trees permit temporally disjoint 
entries to share B-trees in order to save space. Next we 
discuss the B-file, a B-tree-based organization that 
permits this sharing without compromising query 
performance.  
 
4.3 Management of B-trees 
In real life situations, the rate of changes may differ 
significantly for different objects. For instance, some 
objects may update their extents so often, that there 
exist very few aggregate values for each version. 
Keeping a separate B-tree for every version of such 
objects would seriously compromise space utilization. 
This problem led to the development of the B-File (BF), 
which is a space-efficient storage scheme for multiple 
B-trees. A BF possesses the following properties: (i) the 
B-trees stored in a BF index disjoint sets of keys (i.e., 
there can be at most one alive B-tree at any timestamp) 
(ii) since deletions never happen, all the nodes  (except, 
possibly, for the last node of each level) are full, and (iv) 
the search algorithms and their cost are the same as 
those for conventional B-trees. 

Figure 4.5a illustrates an example BF, which stores 
the B-trees of two regions R and R' (for simplicity, in 

each entry we show only the timestamps and not the 
aggregate values). The lifespan of R is [1,19], while that 
of R' is [20,*) (R' is currently alive). The B-tree of R 
consists of two levels while, up to timestamp 30, the B-
tree of R' has only one level. Note that the root pointers 
of R and R' point to nodes at different levels. The 
insertion of 35 (in the B-tree of R') causes node B to 
overflow, and a new node C is created (Figure 4.5b). An 
entry 35, pointing to node C, is inserted into A, which 
becomes the root of the B-tree of R'.      
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(a) Before insertion (b) After insertion 

Figure 4.5: A B-file example 
If the live B-tree dies (e.g., R' ceases to exist), the 
corresponding BF becomes vacant and may be used for 
any B-tree created at later timestamps. Whenever a new 
B-tree needs to be created, we first search for vacant 
BFs. If such a BF does not exist, a new one is initiated. 
In practice, the creation of new BFs is infrequent 
because, when an object changes its position or extent, 
the new entry (in the HR- or 3DR-trees) can use the 
vacant BF of the previous version. Due to space 
constraints we will not describe in detail the insertion 
algorithms, but it is easy to verify that query processing 
with the BF is as efficient as independent B-trees. On 
the other hand, the BF can achieve significant space 
savings, especially for highly dynamic datasets. 
 
5. Experimental Evaluation 
In this section, we evaluate the performance of the 
proposed methods through experimental evaluation. 
Each dataset contains aggregate data of 10,000 
uniformly distributed regions (density 0.2) collected 
over (unless specifically stated) 1,000 timestamps. At 
each timestamp, the aggregate data of Aagi of the regions 
is modified, where Aagi is a dataset parameter called the 
aggregate agility. Selected values for Aagi are 4%, 8%, 
16%, 32%, and 64%. For example, Aagi = 4% denotes 
that 400 regions update their aggregate data per 
timestamp. The region agility Ragi corresponds to the 
percentage of  regions that issue position changes per 
timestamp. For datasets of static regions Ragi = 0%, 
while for volatile regions, Ragi is fixed to 0.01% (to 
capture the fact that the spatial dimension changes much 
slower than the aggregate data). With these parameters, 
the number of records in a dataset ranges from 500,000 
to 6,500,000.  



 

 

Performance of various methods is measured by the 
number of nodes accessed during the processing of 
workloads, each consisting of 500 queries. Every query 
involves two parameters that affect performance: (i) the 
side of the query window (qs), represented as the 
percentage of its length over the spatial universe, and (ii) 
interval length (qt). These parameters have identical 
values for all queries in the same workload. The 
selected values for qs and qt are 1%, 3%, 5%, 7%, 9% of 
the universe and 1, 25, 50, 75, 100 timestamps (up to 
10% of the history length) respectively. In the sequel, 
we refer to a workload as WRKLDqs,qt to indicate its 
parameters. Queries are generated so that (i) the position 
of each query window is distributed uniformly in the 
spatial universe; (ii) each interval distributes uniformly 
in [1,1000]. The node size is fixed to 1024 bytes in all 
cases. With this size, the fanouts of aggregate R-trees, 
B-trees, HR-trees are 36, 82, 36, and 36 respectively. 
The fanouts of the 3DR-trees used in a3DR-trees and 
a3DRB-trees are 31 and 28 respectively. R-tree 
implementations are based on R*-trees [BKSS90], and 
B-tree implementations on B+-trees.  
 
5.1 Static regions 
For static regions, we compare the performance of aRB-
trees to the two applications of existing techniques 
described in section 3.1, namely, the a3DR-tree and data 
cube (column scanning). In addition to the 2D array 
with aggregate data, the data cube approach maintains a 
1D array for region extents. Each column of the 2D 
array consists of 40 blocks, while the 1D array contains 
160 blocks. Columns are linked through a doubly linked 
list to support sequential scans and are indexed by a B-
tree so that the first entry of each column (i.e., 
timestamp) can be easily located. Notice that the 
aggregate information of each region should be stored 
for each timestamp even if it does not change. There is 
no obvious way to avoid replicating aggregate 
information, since storage is according to columns in 
order to preserve temporal proximity. 

For the first experiment we employ static datasets 
with aggregate agilities ranging from 4% to 64%. Figure 
5.1(a) shows the space requirements of the three 
methods, as a function of Aagi. For low agilities, both 
a3DR-tree and aRB-tree consume less space than the 
cube because they avoid the replication of aggregate 
data that do not change. On the other hand, since the 
size of the cube is constant, above Aagi =16% it becomes 
the most economical method. The a3DR-tree increases 
linearly with Aagi and for high values it involves huge 
space requirements. The behavior of aRB-tree is much 
better, since the increase of  Aagi affects only the sizes of 
the B-trees where entries are much smaller. As predicted, 

even for Aagi =64%, the aRB-tree requires less than 
twice the size of the data cube.  

Figure 5.1b shows the average number of node 
accesses (NA) in answering workloads WRKLD5%,50 as a 
function of Aagi. The aRB-tree outperforms the a3DR-
tree significantly. Notice that, the cost of aRB-trees 
remains stable up to Aagi = 8%, at which point there is a 
step in the query cost. This is caused by the increment 
of the height of B-trees, as each of them indexes more 
entries when the agility increases. The performance of 
column scanning is omitted because its cost is 
prohibitively high  (more than 2,000 node accesses for 
scanning 50 columns). This is expected because the 
spatial condition is not taken into account during query 
processing. Therefore, in the sequel we omit the naïve 
cube implementation from our experiments since it is 
always outperformed by the other methods. 
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Figure 5.1: Size and performance comparisons 
The next set of experiments compares aRB-trees and 
a3DR-trees as a function of the query (spatial) extent 
and length. In Figure 5.2a, we fix qs to 5% of the spatial 
axis and vary qt from 1 to 100 timestamps; in Figure 
5.2b, we fix qt to 50 timestamps (i.e., 5% of the total 
history), and vary qs from 1% to 9% of the axis. In both 
cases the aggregate agility is fixed to 16%. According to 
the first diagram, the performance of aRB-trees does not 
depend on the query length. This is not surprising 
because the number of B-trees accessed remains 
constant; furthermore, long intervals have a high chance 
to be answered by the top B-tree nodes. On the other 
hand, the cost of a3DR-trees grows linearly with the 
query length because the probability that the aggregate 
information of a node changes also increases. Thus, 
several versions of the same node (each with different 
aggregate values) may be retrieved. For short query 
intervals, the probability of retrieving different versions 
of the same node is small and a3DR- outperform aRB-
trees because they avoid accessing the B-trees. In Figure 
5.2b, a3DRB-trees are better in all cases of window 
extents. The difference is reduced for large query 
windows, because as the window increases, so does the 
number of B-trees that need to be accessed. 
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Figure 5.2: Effect of query parameters  
In summary, although the cube implementation is the 
most space-efficient alternative for very high agilities, it 
is unsuitable in practice due to extreme query cost. aRB-
trees consume a fraction of the space required by a3DR-
trees, while they outperform them in all cases except for 
very short query intervals. Furthermore, unlike a3DR-
trees where all the data must be known a priori, aRB-
trees are on-line structures.  
 
5.2 Volatile regions 
The methods applicable to volatile regions are column 
scanning, a3DR-, aHRB-, and a3DRB-trees. Figure 5.3a 
shows the sizes of the methods as a function of Aagi 
assuming region agility 0.01%. The cube approach 
requires more space than the static case, because the 
extents of the regions are now stored in a 2D array since 
they are no longer fixed. The a3DR-tree is still very 
space-consuming. The sizes of the a3DRB- and aHRB-
tree are almost identical because the sizes of the B-Files 
in the two structures (the dominant factor in the overall 
size), are similar. The a3DRB-tree is slightly smaller 
due to the redundancy in HR-trees. 
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Figure 5.3: Size and performance comparisons 
Figure 5.3b compares the structures on query 
performance using WRKLD5%,50. The column scanning 
approach is again omitted due to its prohibitive cost. 
The relative performance of a3DRB- and a3DR-trees is 
similar to the case of static regions. The cost of aHRB-
trees is comparable to that of a3DR-trees. Their high 
cost (compared to a3DRB-trees) is explained as follows. 
Since the region agility is 0.01% and there exist 10,000 

objects in the dataset, on the average one object issues 
an extent change per timestamp. Thus, a new logical 
tree is created each timestamp. Although consecutive 
trees share a large number of nodes, a query in 
WRKLD5%,50 has to access at least the 50 roots that 
correspond to its qt (duplicate visits to lower level nodes 
are avoided). Notice that the difference between aHRB- 
and a3DRB-trees is about 50 NA. 

To study the effects of query parameters, we adopt 
the same approach as in the static case using the dataset 
with Aagi=16% and Ragi=0.01%. In Figure 5.4a, qs is 
fixed to 5% and the query length varies. Like aRB-trees 
(and for the same reasons), the a3DRB-tree is not 
sensitive to the query length, while the costs of the other 
two structures grow linearly. The behavior of a3DR-
trees is similar to the static case. aHRB-trees are also  
favored by short queries, because the number of logical 
trees that need to be accessed is small.  In Figure 5.4b, 
qt is fixed to the standard value 5% of the history length 
while qs is varied. Similar to aRB-trees, the a3DRB-tree 
is more efficient than the a3DR-tree, but the difference 
decreases with the window size. The performance of 
aHRB-trees is comparable to that of a3DR-trees.  

0

50

100

150

200

1 25 50 75 100

a3DR a3DRB

aHRB

node accesses

query length  
0

50

100

150

200

1 3 5 7 9

a3DR a3DRB
aHRB

query extent (%)

node accesses

 
(a) NA vs. query length (b) NA vs. qs 

Figure 5.4: Effect of query parameters 
In general, the a3DRB-tree has the best overall 
performance in terms of size and query cost. Since 
however, it is an off-line structure, aHRB-trees are the 
best alternative for applications requiring on-line 
indexing. 
 
6.  Conclusion 
Numerous real-life applications require fast access to 
summarized spatio-temporal information. Although data 
warehouses have been successfully employed in similar 
problems for relational data, traditional techniques have 
three basic impediments when applied directly in spatio-
temporal applications: i) no support for ad-hoc 
hierarchies, unknown at the design time ii) lack of 
spatio-temporal indexing methods and iii) limited 
provision for dimension versioning and volatile regions.  

Here, we provide a unified solution to these 
problems by developing spatio-temporal structures that 



 

 

integrate indexing with the pre-aggregation technique. 
The intuition is that, by keeping summarized 
information inside the index, aggregation queries with 
arbitrary groupings can be answered by the intermediate 
nodes, thus saving accesses to detailed data. We first 
consider static dimensions and describe the basic 
structure (aRB-tree). Subsequently, we present a 
generalization of aRB-trees, which supports dynamic 
dimensions (aHRB-tree). For the same case, we also 
develop a solution based on a 3-dimensional modeling 
of the problem (a3DRB-tree). We demonstrate the 
applicability of our methods through a set of 
experiments that attempt to simulate realistic situations. 

We believe that spatio-temporal OLAP is a new and 
very promising area, both from the theoretical and 
practical point of view. Since this is an initial approach, 
we limited this work to simple numerical aggregations. 
In the future, we will focus on supporting spatio-
temporal “measures” like the direction of movement. 
This will enable analysts to ask sophisticated queries in 
order to identify interesting numerical and 
spatial/temporal trends. The processing of such queries 
against the raw data is currently impractical considering 
the huge amounts of information involved in most 
spatio-temporal applications.   

Another interesting area concerns the extension of 
the proposed techniques to different access methods. 
For instance, we could apply the R-tree insertion 
algorithms of [BJSS98] in order to obtain on-line 
structures based on 3DR-trees. Furthermore, the 
integration of multi-version data structures may provide 
on-line methods more efficient than aHRB-trees. The 
problem with such methods (and all methods 
maintaining multiple R-trees) is the avoidance of 
multiple visits to the same node via different ancestors. 
Although various techniques have been proposed in the 
context of spatio-temporal data structures (e.g., 
[vBS96]), it is not clear how they can be applied within 
our framework.  
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