
Indexing Text with Approximate q-grams

Gonzalo Navarro a,1, Erkki Sutinen b and Jorma Tarhio c

aDepartment of Computer Science, University of Chile.
gnavarro@dcc.uchile.cl

bDepartment of Computer Science, University of Joensuu.
sutinen@cs.joensuu.fi

cDepartment of Computer Science and Engineering, Helsinki University of
Technology. tarhio@cs.hut.fi

Abstract

We present a new index for approximate string matching. The index collects text
q-samples, that is, disjoint text substrings of length q, at fixed intervals and stores
their positions. At search time, part of the text is filtered out by noticing that any
occurrence of the pattern must be reflected in the presence of some text q-samples
that match approximately inside the pattern. Hence the index points out the text
areas that could contain occurrences and must be verified. The index parameters
permit load balancing between filtering and verification work, and provide a com-
promise between the space requirement of the index and the error level for which
the filtration is still efficient. We show experimentally that the index is competitive
against others that take more space, being in fact the fastest choice for intermediate
error levels, an area where no current index is useful.

Key words: Approximate string matching, text databases, q-gram indices.

1 Introduction and Related Work

Approximate string matching is a recurrent problem in many branches of
computer science, with applications to text searching, computational biology,
pattern recognition, signal processing, etc. The problem is: Given a long text
T1...n of length n, and a (comparatively short) pattern P1...m of length m,
both sequences over an alphabet Σ of size σ, retrieve all the text substrings
(or “occurrences”) whose edit distance to the pattern is at most k. The edit

1 Partially supported by Fondecyt Grant 1-020831.

Preprint submitted to Elsevier Preprint

distance between two strings A and B, ed(A, B), is defined as the minimum
number of character insertions, deletions and substitutions needed to convert
A into B or vice versa. We define the “error level” as α = k/m. Note that
the problem is meaningful for 0 ≤ α < 1, as otherwise the pattern matches
everywhere.

In the on-line version of the problem, the pattern can be preprocessed but the
text cannot. The classical solution uses dynamic programming and is O(mn)
time [Sel80]. It is based on filling a matrix C0...m,0...n, where Ci,j is the minimum
edit distance between P1...i and a suffix of T1...j . Therefore all the text positions
j such that Cm,j ≤ k are the endpoints of occurrences of P in T with at most
k errors. The matrix is initialized at the borders with Ci,0 = i and C0,j = 0,
while its internal cells are filled using

Ci,j = if Pi = Tj then Ci−1,j−1 else 1 + min(Ci−1,j, Ci−1,j−1, Ci,j−1)

which extends the previous alignment when the new characters match, and
otherwise selects the best choice among the three alternatives of insertion,
deletion and substitution. Fig. 1 shows an example. In an on-line searching
only the previous column C∗,j−1 is needed to compute the new one C∗,j, so the
space requirement is only O(m).

s u r g e r y

0 0 0 0 0 0 0 0

s 1 0 1 1 1 1 1 1

u 2 1 0 1 2 2 2 2

r 3 2 1 0 1 2 2 3

v 4 3 2 1 1 2 3 3

e 5 4 3 2 2 1 2 3

y 6 5 4 3 3 2 2 2

Fig. 1. The dynamic programming matrix to search the pattern "survey" inside
the text "surgery". Bold entries indicate matching text positions when k = 2.

A number of algorithms improved later this result [Nav01]. The average lower
bound of the on-line problem (proved and reached in [CM94]) is Ω(n(k +
logσ m)/m), which is of course Ω(n) for constant m.

If the text is large even the fastest on-line algorithms are not practical, and
preprocessing the text becomes necessary. However, just a decade ago, indexing
text for approximate string matching was considered one of the main open
problems in this area [WM92,BY92]. Despite some progress in recent years,
the indexing schemes for this problem are still rather immature.

2

There are two types of indexing mechanisms for approximate string matching,
which we call “word-retrieving” and “sequence-retrieving”. Word retrieving
indices [MW94,BYN00,ANZ97] are oriented to natural language text and in-
formation retrieval. They can retrieve every word whose edit distance to the
pattern word is at most k. Hence, they are not able to recover from an er-
ror involving a separator, such as recovering the word "flowers" from the
misspelled text "flo wers" or "manyflowers", if we allow one error. These
indices are more mature, but their restriction can be unacceptable in some
applications, especially where there are no words (like in biological data such
as DNA and proteins, and in multimedia data such as MIDI files), or where
the concept of word is difficult to define (as in oriental languages like Chinese
and Korean, and in agglutinating languages such as Finnish and German).

Our focus in this paper is sequence retrieving indices, which put no restrictions
on the text, patterns or occurrences. Among these, we find three types of
approaches.

Neighborhood Generation. This approach considers that the set of strings
matching a pattern with k errors (called Uk(P), the pattern “k-neighborhood”)
is finite, and therefore it can be enumerated and each string in Uk(P) can
be searched for using a data structure designed for exact searching. The
data structures used have been the suffix tree [Knu73,AG85] and DAWG
[Cro86,BBH+85] of the text. These allow a recursive backtracking procedure
for finding all the relevant text substrings (or suffix tree / DAWG nodes),
instead of a brute-force enumeration and searching of all the strings in Uk(P).
The approaches [Gon92,JU91,Ukk93,Cob95] differ basically in the traversal
procedure used on the data structure.

Those indices take O(n) space and construction time. However, the constant
is large. Even the most economical suffix tree implementations take 9 to 12
times the text size [GKS99]. The simpler search approaches [Gon92] can run
over a suffix array [MM93,GBYS92], which still takes 4 times the text size.
These high space requirements, together with the poor locality of reference of
the search process, restrict the applicability of this approach to cases where
the text and the large index fit in main memory.

With respect to search times, they are asymptotically independent on n, but
exponential in k. The reason is that |Uk(P)| = O((mσ)k) holds [Ukk93]. There-
fore, neighborhood generation is a promising alternative only for short pat-
terns.

Reduction to Exact Searching. These indices are based on adapting on-
line filters. Filters are fast algorithms that discard large parts of the text

3

by checking for a necessary condition for matching (simpler than the exact
condition). Most such filters are based on finding substrings of the pattern
without errors, and checking for potential occurrences around those matches.
The index is used to quickly find those pattern substrings without errors.

The main principle driving these indices is that, if two strings match with
k errors and k + s non-overlapping samples are extracted from one of them,
then at least s of these must appear unaltered in the other. Some indices
[Shi96,NBY98] use this principle by splitting the pattern into k+s nonoverlap-
ping pieces and searching these in the text, checking the text surrounding the
areas where s pattern pieces appear at appropriate relative positions. These
indices need to be able to find any text substring that matches a pattern piece,
and are based on suffix trees/arrays or on indexing all the text q-grams (that
is, substrings of length q). Related indices [JU91,HS94] are based on the inter-
sections of two sets of q-grams: those in the pattern and those in its potential
occurrence.

These indices can also be built in linear time and need O(n) space. Depending
on q they achieve different space-time tradeoffs. In general, filtration indices
are much smaller than suffix trees (1 to 4 times the text size), although they
only work well for low error levels α: Their search time is sublinear provided
α = O(1/ logσ n).

In another approach [ST96], the index stores the locations of only some text
q-grams. These are collected at fixed intervals h, that is, one position out of
h. These q-grams are called “q-samples”. Then s is computed so that there
are at least k + s q-samples inside any occurrence. Thus, those text areas
are checked where s pattern q-grams appear at appropriate relative positions.
Using samples the index can take even less space than the text, although the
acceptable error level is reduced even more.

Intermediate Partitioning. Somewhat between the previous approaches
are [Mye94,NBY00], because they do not reduce the problem to exact but
to approximate search of pattern pieces, and use a neighborhood generation
approach to search for the pieces. The general principle is that if two strings
match with at most k errors and j disjoint substrings are taken from one of
them, then at least one of these appears in the other with ⌊k/j⌋ errors. Hence,
these indices split the pattern into j pieces, each piece is searched for in the
index allowing ⌊k/j⌋ errors, and the approximate matches of the pieces are
extended to complete pattern occurrences. The existing indices differ in how
j is selected (be it by indexing-time constraints [Mye94] or by optimization
goals [NBY00]), and in the use of different data structures used to search for
the pieces with a neighborhood generation approach. They achieve search time
complexities of O(nλ), where λ < 1 for low enough error levels (α < 1−e/

√
σ,

4

a limit probably impossible to surpass [BYN99]).

The idea of intermediate partitioning has given excellent results [NBY00] and
it was shown to be an optimizing point between the extremes of neighborhood
generation, that worsens as longer pieces are searched for, and reduction to
exact searching, that worsens as shorter pieces are searched for. Moreover,
intermediate partitioning permits handling higher error levels than those ac-
cepted by other filtering schemes. However, it has only been exploited in one
direction: taking the pieces from the pattern. The other choice is to take text
q-samples ensuring that at least j of them lie inside any occurrence of the
pattern, and search for the pattern q-grams allowing ⌊k/j⌋ errors in the index
of text q-samples. This idea has been indeed proposed in [ST96] as an on-line
filter, but it has never evolved into an indexing approach.

This is our main purpose. We first improve the filtering condition of [ST96]
and then show how an index can be designed based upon this principle. We
finally implement the index and experiment on it, both to obtain tuning rec-
ommendations and to compare it against others. In particular, our index turns
out to be an excellent choice to search for relatively high error levels on DNA
text, which makes it appealing for computational biology applications. We re-
mark that the existing indices, even those based on intermediate partitioning,
can handle only low error levels, so our index fills an important gap. It does
so also conceptually: Table 1 shows how our contribution fills a hole in the
possible alternatives attempted so far.

Exact piece search Approximate piece search

Pattern pieces Split pattern into Split pattern into

k + s pieces [Shi96,NBY98] j pieces [Mye94,NBY00]

Text pieces Exact q-samples Approximate q-samples

from the text [ST96] from the text (this work)

Table 1
Different filtering approaches for approximate string matching.

The key of the success in handling higher error levels is that they are handled
in a novel way: By adjusting parameters, we can do part of the dynamic
programming already in the filtration phase, thus restricting the text area to
be verified. In certain cases, this gives a better overall performance compared
to the case where a weaker filtration mechanism results in a larger text area
to be checked by dynamic programming. This is also the essential idea in
the intermediate partitioning schemes [Mye94,NBY00], where the extremes of
neighborhood generation and partitioning into exact searching do all the work
in one part of the process.

Our index, however, has the advantage of taking little space. By selecting the

5

interval h between the q-samples, the user can decide which of the two goals
is more relevant: saving space with a larger h or better performance for higher
error levels, using a smaller h.

An conference version of this paper appeared in [NSTT00].

2 The Filtration Condition

A filtration condition can be based on locating approximate matches of pattern
q-grams in the text. In principle, this leads to a filtration tolerating higher
error level as compared to the methods applying exact q-grams: An error
breaking pattern q-gram u yields one error on it. Thus, the modified q-gram
u′ in an approximate match is no more an exact q-gram of the pattern, but
an approximate q-gram of it. Hence, while u′ cannot be used in a filtration
scheme based on exact q-grams, it gives essential information for a filtration
scheme based on approximate q-grams.

This is the idea we pursue in this section. We start with a lemma that is used
to obtain a necessary condition for an approximate match.

Lemma 1 Let A and B be two strings such that ed(A, B) ≤ k. Let A =
A1x1A2x2 . . . xj−1Aj, for strings Ai and xi and for any j ≥ 1. Then, at least

one string Ai appears in B with at most ⌊k/j⌋ errors.

Proof: Since at most k edit operations (errors) are performed on A to convert
it into B, and each such operation can affect only one piece, then at least one
of the Ai’s gets no more than ⌊k/j⌋ of them. Otherwise, if each Ai appears
inside B with at least ⌊k/j⌋+ 1 > k/j errors, then the whole A needs strictly
more than j · k/j = k errors to be converted into B. �

This shows that an approximate match for a pattern implies also the approxi-
mate match of some pattern pieces. It is worthwhile to note that it is possible
that j · ⌊k/j⌋ < k, so we are not only “distributing” the errors across pieces
but also “removing” some of them. Fig. 2 illustrates.

A

B

A2 A3x2x1A1

A3’A2’A1’

Fig. 2. Illustration of Lemma 1, where k = 5 and j = 3. At least one of the Ai’s has
at most ⌊5/3⌋ = 1 error (in this case A1).

Lemma 1 is used by considering that the string B is the pattern and the string
A is its occurrence in the text. Hence, we need to extract j pieces from each

6

potential pattern occurrence in the text.

Given some q and h ≥ q, we extract one text q-gram (called a “q-sample”)
each h text characters. Let us call dr the q-samples, d1, d2, . . . , d⌊n

h
⌋, where

dr = Th(r−1)+1...h(r−1)+q.

We need to guarantee that there are at least j text samples inside any occur-
rence of P . An occurrence of P has minimum length m− k, and in the worst
case it may start at the second position of a q-sample (thus not containing
it), and hence it must extend by h − 1 + (j − 1)h + q characters in order to
contain the j q-samples that follow to the right. The resulting condition is
jh + q − 1 ≤ m − k. Note that h and q have to be known at indexing time,
when m and k are unknown, so at search time we have to adjust j according
to the rest. The condition on j is

1 ≤ j ≤
⌊

m− k − q + 1

h

⌋

(1)

which shows that an index built using some q and h values is only useful for
searches where m− k ≥ h + q − 1 (as otherwise there is no way to guarantee
that occurrences contain at least one q-sample).

Fig. 3 illustrates the idea, pointing out another fact not discussed until now. If
the pattern P matches a text area containing a test sequence of q-samples Dr =
dr−j+1 . . . dr, then dr−j+i must match inside a specific substring Qi of P . These
pattern blocks are overlapping substrings of P , namely Qi = P(i−1)h+1...ih+q−1+k.
To see this, let us focus first in the case k = 0. Consider an alignment of P
against Ti+1...i+m. The first q-sample can be from Ti+1...i+q to Ti+h...i+h+q−1, so
it can be aligned with P1...q to Ph...h+q−1. Hence it must appear in P1...h+q−1. In
general, the i-th q-sample must appear in P(i−1)h+1...ih+q−1. If we now consider
the possibility of performing up to k insertions in T before the end of the
i-th q-gram, we must extend the right end of Qi by k positions, obtaining the
result.

A cumulative best match distance is computed for each Dr, as the sum of the
best distances of the involved consecutive text samples dr−j+i inside the Qi’s.
More formally, we compute for Dr

∑

1≤i≤j

bed(dr−j+i, Qi),

where
bed(u, Q) = min

1≤i≤i′≤|Q|
ed(u, Qi...i′).

That is, bed(u, Q) gives the best edit distance between u and a substring of
Q. It is easy to see that the cumulative best match distance is a lower bound
to the edit distance between P and any text occurrence containing the test

7

sequence Dr. Thus, the text area corresponding to Dr is examined only if its
cumulative best match distance does not exceed k.

q q q q

P

T

Q1
Q2

Q3
Q4

h h h h

Fig. 3. Searching using q-samples, showing how the four relevant text samples at
each position are aligned with the corresponding pattern blocks.

The algorithm works as follows. Each counter Mr, corresponding to the se-
quence Dr = dr−j+1 . . . dr, indicates the cumulative best match distance for
Dr. Actually, for reasons that will be fully clear later, Mr is an underestimation
of the actual best match distace. The counters are initialized to Mr = j(e+1),
were q > e ≥ ⌊k/j⌋ will be specified in Section 3. That is, we start by assum-
ing that each text q-sample yields e + 1 errors, enough to disallow a match.
Later, we concentrate only on those q-samples that can be found in the pat-
tern blocks with at most e errors, and the others will be assumed to yield
only e + 1 errors. This permits us focusing on few q-samples, at the cost of
assuming that all the others have less errors than what they really have, thus
unnecessarily verifying some text areas. (If we use e + 1 = q then we will not
make unnecessary verifications, as any q-sample matches with q errors.) Note
that our bounds for e imply a further restriction on j: q > k/j.

Now, for each pattern block Qi, we obtain its “q-gram e-environment”, defined
as

U q
e (Qi) = {u ∈ Σq, bed(u, Qi) ≤ e}

which is the set of q-grams that appear inside Qi with at most e errors. Now,
each dr ∈ U q

e (Qi) represents a text q-sample that matches inside pattern block
Qi. Therefore, we update all the counters

Mr+j−i ← Mr+j−i − (e + 1) + bed(dr, Qi)

Finally, all the text areas whose counter Mr ≤ k are checked with dynamic
programming. The text area corresponding to Dr is Th(r−j)+1...h(r−1)+q. By
considering that the occurrence can start up to h − 1 characters behind the
first q-sample and be of length up to m + k, we have that the text area to
verify when Mr ≤ k is Th(r−j−1)+2...h(r−j−1)+m+k+1.

Of course, it is not necessary to maintain all the counters Mr, since they
can implicitly be assumed to be initialized at j(e + 1) until a text q-sample
participating in Dr is found in some U q

e (Qi).

8

Fig. 4 gives a simplified pseudocode for the indexing and search processes.

Indexing (T1...n)
1. Choose q and h, q ≤ h
2. Initialize empty trie of q-samples
3. For r ∈ 1 . . . ⌊n/h⌋
4. Insert dr = Th(r−1)+1...h(r−1)+q into the trie

Searching (P1...m, k)

1. Choose j, 1 ≤ j ≤ ⌊m−k−q+1
h
⌋

2. Choose e, ⌊k/j⌋ ≤ e < q
3. For r ∈ 1 . . . ⌊n/h⌋
4. Mr ← j(e + 1)
5. For i ∈ 1 . . . j
6. Qi ← P(i−1)h+1...ih+q−1+k

7. For each trie q-gram dr such that bed(dr, Qi) ≤ e
8. Mr+j−i ←Mr+j−i − (e + 1) + bed(dr, Qi)
9. For r ∈ 1 . . . ⌊n/h⌋
10. If Mr ≤ k
11. Run dynamic programming over Th(r−j−1)+2...h(r−j−1)+m+k+1

Fig. 4. Indexing and searching pseudocode, at a conceptual level. In lines 1 and 2
of the search process it may happen that no suitable j or e value exists, in which
case the index is not suitable for that (q, h,m, k) combination.

3 Finding Approximate q-Grams

In this section we focus on the problem of finding all the text q-samples that
appear inside a given pattern block Qi, that is, find all the indexes r such that
dr ∈ U q

e (Qi). The first observation is that it is not necessary to generate the
whole U q

e (Qi), since we are interested only in the q-samples that appear in the
text (more specifically, in their positions). So we actually generate

Iq
e (Qi) = {r ∈ 1 . . . ⌊n/h⌋, bed(dr, Qi) ≤ e}

The idea is to store all the different text q-samples in a trie data structure,
where the leaves store the corresponding r values. A backtracking approach
is used to find all the leaves of the trie that are relevant for a given pattern
block Qi, that is, those that match inside Qi with at most e errors.

From now on we use Q = Qi and free variable i for other purposes. If con-
sidering a specific text q-sample S = s1 . . . sq (corresponding to some dr), the
problem is solved by the use of the dynamic programming algorithm explained
in the Introduction, where the text is the pattern block Q and the pattern is

9

the text q-sample S. That is, we fill a matrix C0...q,0...|Q| such that Ci,ℓ is the
smallest edit distance between S1...i and a suffix of Q1...ℓ. When this matrix is
filled, we have that the text q-sample S is relevant if and only if Cq,ℓ ≤ e for
some ℓ (in other words, S matches somewhere inside Q with at most e errors).
In a trie traversal of the q-samples, the characters of S are obtained one by
one as we descend by each branch, so this matrix will be filled row-wise rather
than column-wise, which is the typical choice in on-line searching.

The algorithm works as follows. We perform an exhaustive search on the trie,
starting at the root and entering into every children of each node. At each
moment, if we are in a trie node representing a prefix S ′ of some text q-samples,
we keep C|S′|,ℓ for all ℓ, that is, the current row of the dynamic programming
matrix. Upon entering into the children of the current node following an edge
labeled with character c, a new row of C is computed from the current one
using c as the next pattern character. When we reach the leaf nodes of the trie
(at depth q) we check in the last row of C whether there is a cell with value
at most e, in which case the corresponding text q-sample is processed. This
means that we have all the text positions r of the q-sample, and we update
all the corresponding counters as explained in Section 2. Note that since we
only store the rows of the ancestors of the current node at each time, the total
space requirement for the backtrack is just O(|Q|q) = O(mq).

As we presented it, it seems that we traverse all the nodes of the trie. This
is already better than on-line searching because all the common prefixes of
different q-samples are processed only once. However, some further pruning
can be done. As all the values from a row to the next are nondecreasing, we
know that if all the values of a row are larger than e then this will also hold
in descendant nodes. Therefore, at that point we can abandon that branch of
the trie without actually considering its subtree.

Fig. 5 shows an example, using Q = "surgery" and S = "survey". If e = 1
then the alternative path shown can be abandoned immediately since all its
entries are larger than 2.

4 The Parameters of the Algorithm

The value of e has been left unspecified in the previous development. This is
because there is a tradeoff involved. If we use a small e value, then the search
for the e-environments will be faster, but as we have to assume that the text
q-samples not found have only e+1 errors (which may underestimate the real
number of errors they have), some unnecessary verifications will be carried
out. On the other hand, using larger e values gives more exact estimates of the
actual number of errors of each text q-sample and hence reduces unnecessary

10

5 4 3 2 2 2 3 4

s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2
s

u

r

v

e

y

a

Fig. 5. The dynamic programming algorithm run over the trie of text q-samples.
We show just one path and one additional child.

verifications, in exchange for a higher cost to find the e-environments.

As the cost of this search grows exponentially with e, the minimal e = ⌊k/j⌋
can be a good choice. With the minimal e the sequences Dr−j+i are assumed
to have j(⌊k/j⌋+ 1) errors, which can get as low as k + 1. In that particular
case we can avoid the use of counters, since every text q-gram dr−j+i found
inside Qi will trigger a verification in Dr.

It is interesting to consider the interplay between the different remaining pa-
rameters h, q and j. Eq. (1) relates these parameters, introducing also m and
k in the condition. For a given query, j has a maximum acceptable value. As
j grows, longer test sequences with less errors per sample are used, so the cost
to find the relevant q-samples decreases but the amount of text verification
increases.

So j and e permit finding the best compromise between both parts of the
search. On the other hand, q and h determine the space usage of the index,
which is in the worst case O(σq + n/h) integers (one header per different q-
sample and one integer per sampled text position). Having a smaller index
restricts more the allowed j values and, indirectly, the e values.

Table 2 shows all the parameters of the index, together with their limits and
usage.

5 Implementation-Independent Empirical Evaluation

In this section we empirically study the behavior of our index, focusing on
the aspects that are independent on the actual implementation. Texts and
patterns have been generated uniformly over Σ and independently of each
other. We have used n = 100, 000 and m = 40, and considered alphabet sizes

11

Name Meaning Limits When it grows...

q

Length of text sam-
ples (chosen at in-
dexing time).

q ≤ h

Improves filtration but in-
creases index space, O(σq).
It also puts limits on m−k,
h, j, and e.

h

Distance between
samples (chosen at
indexing time)

h ≤ m− k − q + 1

Worsens filtration but
decreases index space,
O(n/h). It also puts limits
on q, m− k, and j.

j

Number of samples
in occurrences (cho-
sen at query time).

k
q

< j ≤ m−k−q+1
h

Permits reducing back-
tracking but increases
verification. It also puts
limits on e.

e

Errors presumed for
samples (chosen at
query time).

k/j ≤ e < q
Increases backtracking but
reduces verification.

Table 2
The parameters of our index.

σ = 4 and σ = 20 to simulate the cases of DNA and proteins, respectively. In
this section we speak about “processed columns”, referring to text positions
that have to be processed by dynamic programming due to verifications.

Table 3 shows how the error level increases the number of processed columns,
for alphabets of size 4 and 20. In each case we have used the maximum possible
j according to Eq. (1) and the minimum e = ⌊k/j⌋. The behavior in other
alphabets is similar, but a bigger alphabet implies a higher tolerated error
level. Note that some fluctuations in the number of processed columns are due
to changes in the value of e.

For a given k value, it is possible to reduce the number of processed columns
by changing h, q or j. Compare the results in Table 4 to those in Table 3.

Table 5 shows how our scheme allows to do part of the dynamic programming
already in the filtration phase, by traversing the trie structure and evaluating
minimum edit distances between q-samples and substrings of pattern blocks.
This is based on increasing the value of e. Although the results seem promising
at a first sight, one has to remember that a small portion of processed columns
does not necessarily imply a shorter processing time. In fact, the optimal
setting for e depends on several factors, such as the length of the text and the
implementation of the trie.

The distance h between the q-samples is crucial to the space requirement of
the index. Table 6 shows that a lower interval h, and thus, a larger index,
yields a more efficient filtration, as indicated, for example, in the number of
processed columns.

Since the index of the presented approach only stores non-overlapping q-

12

σ = 4 σ = 20

k j e Columns Columns

0 . . . 3 5 0 0.0 0.0

4 5 0 7.5 0.0

5 5 1 0.0 0.0

6 4 1 33.9 0.0

7 4 1 93.7 0.1

8 4 2 97.0 0.0

9 4 2 100.0 0.0

10 4 2 100.0 0.2

11 4 2 100.0 9.0

12 3 4 100.0 99.9

13 3 4 100.0 100.0

Table 3
Percentage of processed columns for q = h = 6.

k h q j e Columns

6 7 7 4 1 6.0

7 8 8 3 2 44.2

8 8 8 3 2 95.6

Table 4
Percentage of processed columns for σ = 4, for different values of h, q and j.

e Columns Nodes

1 33.3 8,061

2 11.6 19,304

3 9.6 21,500

4 7.1 21,544

5 4.9 21,544

6 2.1 21,544

Table 5
Percentage of processed columns and number of traversed nodes of the q-sample
trie for σ = 4, k = 6, q = h = 6, and j = 4, for different values of e.

samples, its space requirement is small, and can be kept below the size of
the text [ST96]. This should be kept in mind when the performance is com-
pared to other related approaches. Table 7 shows that the new approach works

13

h j Columns Space

7 11 100.0 57%

6 8 99.8 66%

5 6 90.7 80%

4 5 14.2 100%

3 4 0.1 133%

Table 6
Percentage of processed columns for decreasing h, for σ = 4, k = 5, q = 3, and
e = 3. Note that the parameter j has to be adjusted according to h. The space is
indicated in terms of percentage of text size needed by the index, for large n.

for a small error level almost as efficiently as its competitor [NBY00] which,
however, consumes more space (4 times the text space).

k Ours Interm.

4 0.0 1.0

5 0.3 1.0

6 5.3 1.1

7 30.2 1.2

8 81.1 22.9

9 99.5 23.6

Table 7
Percentage of processed columns for relatively low error levels. Our approach collects
non-overlapping q-samples, and the intermediate partitioning approach [NBY00],
denoted by “Interm”, stores all the text pieces which need to be searched for. The
parameters are as follows: σ = 4, q = h = 6, j = 4, e = 6.

Let us conclude by briefly discussing how the space consumption of our index
depends on the sampling interval h. The standard implementation of a q-gram
index (as well as a suffix array) stores all the locations of all the q-grams of
the text. Since the number of q-grams in a text of length n is n − q + 1 and
storing a position takes log n bits (without compression), the overall space
consumption is n log n (q is small compared to n). Let us define a space saving

factor vr as the space requirement ratio between our method and the standard
approach, that is,

vr =
n
h

log n
h

n log n
≈ 1

h
(for large n).

Table 8 shows how the space saving factor improves with increasing h.

14

h vr

1 1.000

2 0.470

3 0.302

4 0.220

5 0.172

6 0.141

7 0.119

8 0.102

9 0.090

10 0.080

Table 8
Space saving factor vr for n = 100, 000.

6 Implementation and Experimental Evaluation

In this section we describe our actual index implementation and evaluate its
performance. Our implementation is rather simple and in-memory, omitting
several possible improvements. Our trie of q-grams is implemented as a tree
with pointers. The children of a node are allocated in a single block of memory,
that grows using a doubling scheme. The text positions of all the q-samples
are stored as plain integers without compression, in a single chunk of memory
(the construction makes two passes over the text to precompute the sizes
to be allocated to each q-sample inside the large chunk). At search time, a
hash table is used to store the counters Mr that are pointed out during the
backtracking in the trie. The plain dynamic programming algorithm is used
both to backtrack in the trie and for verifying text areas.

We have used 30 MB of DNA text from the human genome obtained from
GenBank, and 30 MB of English text from Wall Street Journal articles of
TREC-3 collection. As our index turned out to be competitive on DNA rather
than on English, we will focus more on the former. The search patterns were
extracted at random text positions. Our machine is an Intel Pentium IV of
2 GHz and 512 MB of RAM running Linux. The code is written in C and
compiled using full optimization. The experiments were repeated enough times
to ensure a percentual error below 2%, with 95% confidence 2 . We measure
CPU times.

2 That is, N times, such that 2σ̂/
√

N ≤ 0.02µ̂, where σ̂ and µ̂ are, respectively, the
standard deviation and mean estimators.

15

Fig. 6 shows the space required by our index and the time necessary to build
it, for q = 7 and h = 7, 9 and 11 on DNA. As we can see, the index takes
about half the space of the text and is built in at most 1 sec/MB. The space
looks a bit sublinear because the overhead of the trie of different q-samples is
more significant for smaller texts.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

In
de

x
si

ze
 in

 M
B

Text size in MB

Index size, q=7 on DNA

h=7
h=9

h=11

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

C
on

st
ru

ct
io

n
tim

e
in

 s
ec

on
ds

Text size in MB

Index construction time, q=7 on DNA

h=7
h=9

h=11

Fig. 6. On top, space used by our index. On the bottom, construction time.

We consider now the optimal choice of parameters e and j. Since there are
two parameters to tune at the same time, it is interesting to obtain a simple
recommendation that works well in most cases, so as to simplify the usage of
the index. We performed extensive experiments on English and DNA texts,
for 5 ≤ m ≤ 60 and 0 ≤ k ≤ 0.4m, and several combinations of q and h values.
Fortunately, it turns out that the rule of thumb that almost always gives the
best choice (and always a reasonable one) is rather simple and independent of
many factors: Use e = 1 and j as large as possible according to Eq. (1). This
works as long as j satisfies ⌊k/j⌋ ≤ e = 1, otherwise we have no choice but
using a larger e.

Using the above rule for j and e, we compare our implementation (Approx-

16

imate q-samples) against its competing approaches. Exact q-samples is our
implementation of [ST96], reusing most of our code. Exact partitioning is our
implementation of [Shi96,NBY98], over a trie of all the text q-grams. Interme-

diate partitioning is our implementation of [NBY00], based on backtracking
over a suffix array. We have not used the optimized code of the authors, but
reimplemented the indices under our standards (for example, using dynamic
programming for backtracking and verification). The reason is that those opti-
mizations can be made over all the indices and we want to compare them under
similar conditions. Finally, we show, as a reference point, the time needed by
a sequential scan of the text using plain dynamic programming (Sequential).
All the indices used were tuned to their optimal choice of parameters.

Fig. 7 shows how our index compares against the only other index able of
using that little space: exact q-samples [ST96]. Although that index works
better than ours on English text, on DNA it rarely performs well, and our
index is always better. This shows that our index is more resistant than its
predecessor to higher error levels, as expected (the same α value is harder to
handle when the alphabet is smaller).

Only for this comparison we have considered patterns of length up to 100.
The large peaks in the figures are due to the integer nature of the problem.
For example, with exact q-samples, m = 40, q = 6, h = 6, we allow k = 4 and
hence it is enough that an area contains s = ⌊(m−k−q+1)/h⌋−k = 1 pattern
sample to verify it [ST96]. With m = 45, however, still k = 4 and we need
at least s = 2 pattern samples in the area to verify it, so the performance
improves greatly. With m = 50, k raises to 5 and then s = 1 again. Note
also that some (m, k, q, h) combinations are not possible because they require
verification when s = 0 q-samples match, for example m = 50, k = 5, q = 7,
h = 7. The important point is to see how the lowest lines are due to exact
q-samples on English text and to our index on DNA.

Finally, Figs. 8 and 9 compare our index against other indices that take 4
times the text size, on DNA. We consider k/m = 0.10 . . . 0.35, which covers
basically all the cases of interest in DNA searching. As it can be seen, our
index is not competitive for low error levels or for very short patterns, but it
becomes the only existing choice for m ≥ 30 and k/m ≥ 0.3.

It can be argued that we are comparing our index against plain dynamic pro-
gramming, while faster sequential algorithms could beat it in the area where
our algorithm is the only choice. However, this area corresponds to a high error
level, where there are very few choices for sequential algorithms [Nav01] (for
example, filtering algorithms do not work). In fact, the only possible speedup
is to replace the dynamic programming by a bit-parallel simulation [Mye99].
However, as we explain in the next section, the same speedup could be ob-
tained in our index by using that technique, both for traversing the trie and

17

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100
S

ea
rc

h
tim

e
in

 s
ec

on
ds

Pattern length (m)

Comparison among q−sampling indices, on DNA for k/m = 0.1

Exact q−samples q=6,h=6
Exact q−samples q=7,h=7

Approx. q−samples q=7,h=7
Approx. q−samples q=8,h=8

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90 100

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison among q−sampling indices, on English for k/m = 0.1

Exact q−samples q=4,h=4
Exact q−samples q=5,h=5

Approx. q−samples q=5,h=5
Approx. q−samples q=6,h=6
Approx. q−samples q=6,h=7
Approx. q−samples q=6,h=8

Fig. 7. Comparison against exact q-samples index, for k/m = 0.1. We show DNA on
top and English on the bottom. Times for sequential scanning are above 3 seconds,
out of the plot range.

for text verification. Hence all the results would downscale similarly and their
relative speeds would not change.

7 Conclusions

We have introduced a static pattern matching scheme which is based on locat-
ing approximate matches of the pattern substrings among the q-samples of the
text. The mechanism breaks the fixed division of pattern matching into two
phases, filtration and checking, where dynamic programming belongs only to
the last phase. In our approach, it is possible to share dynamic programming
between these phases by setting appropriate parameters. This is an impor-
tant feature, since it makes it possible to tune the algorithm according to the
particular problem instance. In some cases, saving space is a critical issue,

18

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.10

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

0

1

2

3

4

5

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.15

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.20

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

Fig. 8. Comparison against other indices, for small k/m values. Some search times
fall out of the plot range.

19

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.25

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.30

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55

S
ea

rc
h

tim
e

in
 s

ec
on

ds

Pattern length (m)

Comparison against larger indices, on DNA for k/m = 0.35

Intermediate partitioning
Exact partitioning

Approximate q−samples
Sequential

Fig. 9. Comparison against other indices, for medium k/m values. Some search times
fall out of the plot range.

20

whereas a high error level requires a denser index.

Our experimental results demonstrated that we not only filled a conceptual
gap with respect to the combinations of approaches attempted so far, but
also an efficiency gap, providing an index that works well on high error levels.
The index worked particularly well on DNA, which makes it appealing for
computational biology applications.

Several optimizations can be performed over our implementation. The most
obvious is to use bit-parallel algorithms to process the dynamic program-
ming matrices used during backtracking and at verification time. The most
promising algorithm for this task is that of Myers [Mye99]. This algorithm is
conceived to run column by column, while our backtracking phase works row
by row. However, this change is rather simple because the update formula is
symmetric and the matrix can be transposed using the same formula. The only
important change is that now the current “column” is initialized with zeros,
and that the first cell “column” j has value j instead of zero. Both issues have
been already addressed [HN02].

Acknowledgements

We thank Jani Tanninen (Univ. of Joensuu) and Javier Bustos (Univ. of Chile)
for the experimental results. We also thank the comments of an anonymous
referee, that improved the readability of the paper.

References

[AG85] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words.
Springer-Verlag, New York, 1985.

[ANZ97] M. Araújo, G. Navarro, and N. Ziviani. Large text searching allowing
errors. In Proc. WSP’97, pages 2–20. Carleton University Press, 1997.

[BBH+85] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and
J. Seiferas. The samllest automaton recognizing the subwords of a text.
Theoretical Computer Science, 40:31–55, 1985.

[BY92] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP
World Computer Congress, volume I, pages 465–476. Elsevier Science,
September 1992.

[BYN99] R. Baeza-Yates and G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127–158, 1999.

21

[BYN00] R. Baeza-Yates and G. Navarro. Block-addressing indices for
approximate text retrieval. J. of the American Society for Information
Science (JASIS), 51(1):69–82, January 2000.

[CM94] W. Chang and T. Marr. Approximate string matching and local
similarity. In Proc. CPM’94, LNCS 807, pages 259–273, 1994.

[Cob95] A. Cobbs. Fast approximate matching using suffix trees. In Proc.
CPM’95, pages 41–54, 1995. LNCS 937.

[Cro86] M. Crochemore. Transducers and repetitions. Theoretical Computer
Science, 45:63–86, 1986.

[GBYS92] G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data
Structures and Algorithms, chapter 3: New indices for text: Pat trees and
Pat arrays, pages 66–82. Prentice-Hall, 1992.

[GKS99] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy
suffix trees. In Proc. WAE’99, LNCS 1668, pages 30–42, 1999.

[Gon92] G. Gonnet. A tutorial introduction to Computational Biochemistry using
Darwin. Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.

[HN02] H. Hyyrö and G. Navarro. Faster bit-parallel approximate string
matching. In Proc. 13th Combinatorial Pattern Matching (CPM’2002),
LNCS 2373, pages 203–224, 2002.

[HS94] N. Holsti and E. Sutinen. Approximate string matching using q-gram
places. In Proc. 7th Finnish Symposium on Computer Science, pages
23–32. University of Joensuu, 1994.

[JU91] P. Jokinen and E. Ukkonen. Two algorithms for approximate string
matching in static texts. In Proc. of MFCS’91, volume 16, pages 240–
248, 1991.

[Knu73] D. Knuth. The Art of Computer Programming, volume 3: Sorting and
Searching. Addison-Wesley, 1973.

[MM93] U. Manber and E. Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, pages 935–948, 1993.

[MW94] U. Manber and S. Wu. glimpse: A tool to search through entire file
systems. In Proc. USENIX Technical Conference, pages 23–32, Winter
1994.

[Mye94] E. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12(4/5):345–374, Oct/Nov 1994.

[Mye99] G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic progamming. Journal of the ACM, 46(3):395–415,
1999.

[Nav01] G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

22

[NBY98] G. Navarro and R. Baeza-Yates. A practical q-gram index for
text retrieval allowing errors. CLEI Electronic Journal, 1(2), 1998.
http://www.clei.cl.

[NBY00] G. Navarro and R. Baeza-Yates. A hybrid indexing method for
approximate string matching. Journal of Discrete Algorithms (JDA),
1(1):205–239, 2000.

[NSTT00] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text
with approximate q-grams. In Proc. 11th Annual Symposium on
Combinatorial Pattern Matching (CPM’2000), LNCS 1848, pages 350–
363, 2000.

[Sel80] P. Sellers. The theory and computation of evolutionary distances: pattern
recognition. J. of Algorithms, 1:359–373, 1980.

[Shi96] F. Shi. Fast approximate string matching with q-blocks sequences. In
Proc. WSP’96, pages 257–271. Carleton University Press, 1996.

[ST96] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string
matching. In Proc. CPM’96, LNCS 1075, pages 50–61, 1996.

[Ukk93] E. Ukkonen. Approximate string matching over suffix trees. In Proc.
CPM’93, pages 228–242, 1993.

[WM92] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of
the ACM, 35(10):83–91, October 1992.

23

