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ABSTRACT
Querying uncertain data sets (represented as probability
distributions) presents many challenges due to the large
amount of data involved and the difficulties comparing un-
certainty between distributions. The Earth Mover’s Dis-
tance (EMD) has increasingly been employed to compare
uncertain data due to its ability to effectively capture the
differences between two distributions. Computing the EMD
entails finding a solution to the transportation problem,
which is computationally intensive. In this paper, we pro-
pose a new lower bound to the EMD and an index structure
to significantly improve the performance of EMD based K–
nearest neighbor (K–NN) queries on uncertain databases.

We propose a new lower bound to the EMD that approxi-
mates the EMD on a projection vector. Each distribution is
projected onto a vector and approximated by a normal dis-
tribution, as well as an accompanying error term. We then
represent each normal as a point in a Hough transformed
space. We then use the concept of stochastic dominance to
implement an efficient index structure in the transformed
space. We show that our method significantly decreases K–
NN query time on uncertain databases. The index structure
also scales well with database cardinality. It is well suited
for heterogeneous data sets, helping to keep EMD based
queries tractable as uncertain data sets become larger and
more complex.

1. INTRODUCTION
Uncertain data is becoming more prevalent as the data

generation capabilities of many scientific tools increases. The
accuracy of many computational methods can be improved
when the data uncertainty is retained, as little information
is lost from the data acquisition phase to the analysis phase.

Uncertain data is frequently represented as probability
distributions. Many traditional querying techniques suffer
significant performance degradation when operating on dis-
tributions, due to the complexity of determining distance
between uncertain objects. To address the issue of distance,

the Earth Mover’s Distance (EMD) has increasingly been
utilized to query uncertain databases due to its ability to
accurately retrieve similar distributions.

The EMD is a metric for computing the distance between
two discrete probability distributions. The intuition be-
hind the EMD is that it computes the minimum amount
of “work” or “flow” required to transform one distribution
into another. This property has made the EMD popular
in recent years, finding use in image retrieval [15], cluster
comparison [23] and shape matching [6].

The EMD is computationally expensive to derive, as the
theoretical time complexity of the EMD is exponential in
the number of distribution bins. Although empirically the
complexity of the EMD is usually cubic in the number of
bins [15], this high computation cost is still a significant
bottleneck.

Nearest neighbor queries using the EMD require that the
exact EMD between distributions must be computed, yet
doing so on an entire database is prohibitive. Pruning ob-
jects based on EMD lower bounds has proven successful in
reducing the time needed to answer nearest neighbor queries.
Wichterich et al. [20] have shown that reducing the number
of bins in the distributions can successfully prune candidate
objects from the answer set. Recently, Xu et al. [21] have
exploited the dual solution of the transportation problem to
construct a B+ tree over a database of uncertain objects,
which is then used to speed up query processing.

The above pruning methods suffer from some significant
disadvantages. The reduction method proposed in [20] is im-
plemented in the scan–and–refine architecture (SAR), and
hence suffers from scalability shortcomings as an index struc-
ture is not implemented. The index proposed in [21] is con-
structed using pre–computed feasible solutions. The query-
ing performance is contingent upon finding feasible solutions
that are an accurate reflection of the underlying data set,
and each feasible solution requires the use of two B+ trees.
As the size of the database and the heterogeneity of the data
increases, the number of B+ trees must also be increased in
order to keep query times tractable. Hence these two meth-
ods suffer from scalability problems as the database cardi-
nality and diversity is increased.

There is a clear need to develop a tight lower bound to
the EMD that can be efficiently indexed and scaled to large
datasets. Cohen et al. proposed a lower bound that projects
distributions onto a vector, and computes the EMD in 1–
dimension on the projection [4]. This bound is extremely
tight and can be computed linearly in the number of bins.
Figure 1 shows the average lower bound as a percentage
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Figure 1: Lower bounds on the RETINA data set.
Each bar plots the average percent of the total EMD
that the lower bound captures. The projection lower
bound is a very tight lower bound.

of the actual EMD on a data set used in [20, 21]. The
projection bound is highly accurate and a tighter bound
than many other proposed lower bounds.

The projection bound [4] has not been utilized in K–
NN queries due to the difficulty in indexing the bound.
The projection bound is equivalent to the L1 distance be-
tween the cumulative distribution functions (CDF) of the
1–dimensional discrete distributions. Indexing the projec-
tion bound is difficult due to the high dimensionality of the
L1 computation (the number of discrete distribution bins),
coupled with the use of the L1 distance that renders many
dimensionality reduction methods ineffective. For example,
the number of bins in the projection bound computation
cannot be reduced using Fourier decomposition as there is
no known equivalent of Parseval’s theorem for the L1 dis-
tance metric [13]. Hence, the development of a lower bound
that is nearly as accurate as the projection bound but re-
quires low L1 dimensionality to compute would be extremely
advantageous, as such a bound could be easily indexed using
many common index structures.

In this paper, we propose a new lower bound to the EMD
that approximates the projection lower bound. Our pro-
posed bound combines an approximating normal distribu-
tion and an error term to compute a lower bound to the
EMD in constant time. We show that this lower bound can
be embedded into a novel low dimension index space and
computed in O(s) time, where s is a small user defined pa-
rameter. We use the concept of stochastic dominance to suc-
cessfully prune many potential nearest neighbor candidate
objects. We test our method on several data sets, including
a data set of over 600,000 distributions where our method is
over twice as fast as the previous method. Our contributions
can be summarized as follows:

• We develop a new lower bound to the EMD, called the
normal lower bound.

• We show that the normal lower bound can be employed
in a novel low dimension index that is constructed us-
ing the concept of stochastic dominance.

• We demonstrate that the normal lower bound signif-
icantly decreases K–NN query time, and scales well
with large data sets.

2. RELATED WORK
The EMD is closely related to the family of mass trans-

portation problems [14]. These problems are broadly con-
cerned with the optimal movement of mass, flow or probabil-
ity between two sets of data. The EMD was first introduced

into the computer vision communities by Rubner et al. [15],
though it has subsequently been shown to be an effective
distance metric for many tasks, including comparing images
[19] and shapes [18].

Numerous lower bounds to the EMD have been explored
since it has been shown to be an effective metric for image
retrieval and comparison [1, 2, 4, 11, 20]. Several papers
have explored the use of the EMD in the scan–and–refine
(SAR) querying architecture [1, 2, 20]. These methods focus
on deriving accurate and efficient lower bounds to the EMD
so some false candidates can be pruned away, though they
suffer from scalability problems without the use of an index.

Xu et al. [21] has introduced a method that exploits the
dual solution to the transportation problem to build a lower
bound B+ tree index structure. This method, called TBI,
creates several B+ trees based on a feasible solution to the
EMD from a fixed data set. The B+ trees are then used at
query time to eliminate candidates from a nearest neighbor
query. The performance of the method is contingent upon
finding feasible solutions that have high pruning power. Like
the reduced EMD method, this may be unsatisfactory for a
database that is changing frequently or composed of het-
erogeneous data. In addition, each feasible solution imple-
mented requires two B+ trees, resulting in poor scalability
as the diversity and size of the data set increases.

Indexing the normal lower bound is similar to the more
general problem of indexing monotonic functions. There has
been significant research on methods to index general func-
tions, such as time series or probability distributions. For
example, Keogh et. al. [9] and Yi and Faloutsos [22] propose
approximating 1–dimensional time series data by adaptively
dividing the time series into constant segments. They then
build an index structure based on such constant segments.
Ljosa and Singh [12] proposed a similar method to index ex-
pected distance functions or CDFs using non–constant line
segments. These methods have serious shortcomings if ap-
plied to the EMD indexing problem. The methods proposed
in [9] and [22] approximate arbitrary functions by a constant
line segment, and hence require large amounts overhead to
approximate a monotonic CDF. These indexing methods
also focus on the L2 distance. Many dimensionality reduc-
tion techniques that are successful for the L2 distance do
not provide any benefit for the L1 distance [3].

The method in [12] is more suitable for approximating a
CDF. However, this method was initially proposed to index
the distance from a point to a CDF or expected distance
function. Adapting the index to compute the L1 distance
between two CDFs would prove difficult, as each line seg-
ment in the approximation would have to be visited to com-
pute the distance, due to the absolute value. Our method
approximates CDFs by normal distribution CDFs, which
are guaranteed to intersect at most once when the variances
are unequal. In addition, there exists a closed form solu-
tion to the L1 distance between two normal CDFs, enabling
computation of the distance in constant time.

3. EARTH MOVER’S DISTANCE
The Earth Mover’s Distance, as defined in [15], measures

the minimum cost required to transform one histogram into
another. While the formulation in [15] is generalized for
histograms, we present a simple definition for distributions.

Given distribution weights P = (p1, · · · pn), distribution
weights Q = (q1, · · · qn), and a set of distribution bin loca-
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(a) 1–dimensional EMD (b) Method Overview

Figure 2: Figure 2(a): 1–dimensional EMD between projected distributions P and Q. The EMD is the
sum of the shaded areas of the figure, which is the absolute difference between the two distributions’ CDFs.
Figure 2(b): An overview of the normal lower bound index. Distributions are projected onto a vector.
The distributions are fit to normal distributions and the errors are pre–computed. The normals are Hough
transformed, and along with the errors, are used to create bounding regions in a quad–tree.

tions B = (b1, · · · bn) that are common to both P and Q,
the total cost between P and Q is

F (P,Q) =

n∑
i=1

n∑
j=1

fijcij

where fij is the flow between bins bi and bj , and cij is the
cost to move flow from bi to bj . The choice of the cost
is determined for each specific problem. For simplicity, we
subsequently restrict our discussion to the L2 norm, though
the method can be applied to other cost structures. The
EMD is then defined as

EMD(P,Q) = min
F

F (P,Q), subject to:

fij ≥ 0 and

n∑
j=1

fij ≤ pi and

n∑
i=1

fij ≤ qj

The EMD is the minimum cost needed to transform one
distribution into another. The constraints ensure that the
flow out of a bin is nonnegative and not more than the total
weight in each bin.

The solution to the EMD attempts to minimize the dis-
tance that the weights pi must move to equal the weights qi.
When the distance between bins bi and bj is small, the solu-
tion will maximize the amount of flow between the bins; if
large, it will minimize the amount of flow between the bins.

In general, solutions to the EMD use algorithms from lin-
ear programming, such as the transportation simplex [7].
The EMD has an empirically observed time complexity of
approximately O(n3) [15], where n is the number of bins in
distribution. Hence, even small problem sizes can require
significant time to compute.

3.1 EMD Projections
We briefly detail the EMD projection lower bound, as

shown in [4]. If Sj is a unit vector in Rd, then

EMD(P,Q) ≥ EMD(projSj (P ), projSj (Q))

where projSj (P ) is a projection of P onto the vector Sj (and
similarly for Q). That is

projSj (P ) = (p1 . . . pn, t1, . . . tn), ti = STj · bi

where the weights are denoted as pi, and the projected bins
as ti.

Furthermore, if S = (S1, . . . Sd′) is a set of orthogonal
axes in Rd, d′ ≤ d, then

EMD(P,Q) ≥ 1√
d′

d′∑
j=1

EMD(projSj (P ), projSj (Q))

The EMD between P and Q is lower bounded by the sum
of the EMDs on a set of orthogonal vectors, divided by the
square root of the number of vectors. The EMD on a single
projection can be computed in O(n) time, a much more effi-
cient computation than the full EMD. The following method
of computing the EMD along a 1–dimensional projection is
from [4].

Theorem 1. Let CP,Sj (t) denote the CDF of a discrete
distribution P projected onto Sj. Then given CP,Sj (t) and
CQ,Sj (t), the EMD on the projection is

EMD(projSj (P ), projSj (Q)) =

∫ tmax

tmin

∣∣∣∣CP,Sj (t)−CQ,Sj (t)

∣∣∣∣dt
where tmin and tmax are the minimum and maximum pro-
jected bin values.

Proof. See [4], Theorem 4.

Figure 2(a) shows the CDFs of two distributions on a
projection. The EMD is the sum of the shaded areas in the
figure, since that is exactly equivalent to the difference in
the CDFs of the two distributions.

The computation of the EMD in this manner essentially
amounts to the L1 distance between two n–dimensional vec-
tors. Note that this L1 distance between the CDFs is not
related to the cost to move flow between the original bins.
Computing the projection EMD may be efficient compared
to the cubic time requirement of the full EMD, but the L1

distance between such large vectors is not easily indexed,
due to the curse of dimensionality and the difficulty of di-
mensionality reduction for such a distance [3]. Thus, we
introduce a new lower bound based on normal distributions
that is easily indexed.

4. NORMAL LOWER BOUND
Figure 2(b) presents a simple overview of the normal lower

bound and the subsequent indexing method. The bound
utilizes the 1–dimensional projection EMD. There are two
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components to the normal lower bound; a distance between
normal approximations to the projected distributions, and
accompanying errors of the approximations. The normal ap-
proximations are subsequently transformed into points using
Hough transformations, and combined with the error terms
to create bounding regions in this transformed space. We
detail construction of the index in Section 5. Throughout
this section and next, we assume that each distribution is
projected onto a single vector, hence we omit the projection
subscript Sj . We will detail integration of multiple projec-
tion vectors in Section 5.3.

4.1 Normal Approximation
Given a 1–dimensional projected distribution P , we ap-

proximate P by a normal distribution N (µp, σp), where µp
and σp are the mean and variance of the projected distribu-
tion P .

Definition 1. Normal CDF Integration Let N(µp, σp)
be a normal distribution, and let ΦP be the CDF of the
normal. Then the area under the CDF of the normal in the
range of [tmin, tmax] is defined as∫ tmax

tmin

ΦP (t) dt = t · ΦP (t) + φP (t)

∣∣∣∣tmax

tmin

where φP is the probability density function of a normal
distribution.

Definition 1 is well known from the integration of the er-
ror (erf) function, which is equivalent to the CDF of the
standard normal distribution. Despite the absolute value
in Theorem 1, computing the EMD between 1–dimensional
normal distributions does not require any numerical integra-
tion. As shown by Sinha and Zhou [17], two normal CDFs
with unequal variances intersect at most once, and there is
a closed form equation to determine the intersection point.
Let tis be the intersection point between ΦP and ΦQ. Then

tis =
µpσq − µqσp
σq − σp

(1)

Given the intersection point and the range of integration
[tmin, tmax], we denote the normal EMD as EMDN (ΦP ,ΦQ),
which is defined by rewriting Theorem 1 for normal distri-
butions as

EMDN (ΦP ,ΦQ) =

∣∣∣∣ ∫ tis

tmin

ΦP (t) dt−
∫ tis

tmin

ΦQ(t) dt

∣∣∣∣
+

∣∣∣∣ ∫ tmax

tis

ΦP (t) dt−
∫ tmax

tis

ΦQ(t) dt

∣∣∣∣
If tis lies outside the range [tmin, tmax], only one inte-

gration is performed over the entire range. Computing the
normal EMD is a constant time operation due to the closed
form of the normal CDF integration in Definition 1.

Next we briefly introduce the concept of stochastic dom-
inance. This concept is integral to computing the lower
bound, as well as for the subsequent indexing of the bound.

4.1.1 Stochastic Dominance
Stochastic dominance is the concept that in some fixed

interval, the CDF of one distribution is always less than
the CDF of another distribution [10]. Formally, we define
stochastic dominance as

Figure 3: The intersection of two normals and the
CDF of one of the normals. The EMD between the
normals has underestimated the actual projected
EMD by the area in blue, and overestimated the
EMD by the amount in red. This scenario assumes
that ErrQ is zero.

Definition 2. Stochastic Dominance. A CDF Cp stoc-
hastically dominates another CDF Cq if

Cp(t) < Cq(t) ∀ t ∈ [tmin, tmax]

If Cp dominates Cq, we write Cp ≺ Cq.

Note that varying definitions of stochastic dominance ex-
ist, but we use this definition in this work. Observe that
two distributions may not dominate each other. In such a
scenario, the two CDFs must intersect at least once, and in
the case of normal CDFs, exactly once. We define stochastic
dominance only in a fixed range [tmin, tmax], as outside this
interval the dominance property is not guaranteed.

Stochastic dominance provides several properties that as-
sist in computation of the normal lower bound. First, if
ΦP ≺ ΦQ in [tmin, tmax], then we know that the integration
of ΦP is less than ΦQ in the same range. In addition, if ΦP
intersects ΦQ in the range [tmin, tmax], then we know that

ΦP ≺ ΦQ over [tmin, tis]

ΦQ ≺ ΦP over [tis, tmax]

is true, or the converse is true, where tis is the intersection
point between ΦP and ΦQ.

4.2 Error Compensation
In order to take advantage of the constant time distance

computation between normals, we must also compensate for
the error incurred when each CDF is fit to a normal.

Definition 3. Normal Approximation Error. For a
normal CDF ΦP , we define the normal approximation error
ErrP (t) incurred at point t as

ErrP (t) = CP (t)− ΦP (t) (2)

If at point t the CDF of P is greater than the normal ap-
proximation of P , we have a positive error, and a negative
error in the reverse scenario.

Unfortunately, the errors cannot simply be accumulated
over the entire distribution range and combined with the
normal EMD to produce the lower bound. This is a result of
the intersection point between two distributions impacting
how the errors compensate for the normal approximation.
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(a) (b) (c)

Figure 4: Three different intersection points in a sub–interval. The difference between the errors before
and after an intersection point is needed to compute the normal lower bound. Hence these values are
pre–computed for a sub–interval, and the minimum and maximum differences are recorded.

Consider the example in Figure 3, which shows two nor-
mal approximations ΦP and ΦQ, and the CDF Cp. Let us
assume that Cq is exactly normal, meaning ErrQ is zero ev-
erywhere. Before the intersection point of the normal CDFs,
ΦP dominates ΦQ. Therefore, the normal EMD between ΦP
and ΦQ is an underestimate of the projected EMD by the
amount of negative error in ErrP before the intersection,
shown in blue. Conversely, after the intersection point, the
dominating relationship has changed. Therefore, the neg-
ative error is now the amount that the normal EMD has
overestimated the projected EMD, shown in red.

Observe in the figure that after the intersection, the pos-
itive and negative errors will cancel each other out, as the
positive error is an underestimate while the negative error
is an overestimate. The entire error after the intersection
point can be summed together and will be close to zero,
since the positive and negative areas after the intersection
are roughly equal. This means that for the example in the
figure, the projected EMD is at least

EMDN (ΦP ,ΦQ)−
∫ tis

tmin

ErrP (t) dt+

∫ tmax

tis

ErrP (t) dt (3)

Note that if ΦQ dominated ΦP before the intersection, we
would reverse the signs on the error terms.

We cannot pre–compute the error integrals in Eqn. (3) to
compute a lower bound to the projected EMD at query time.
The integrals in the equation depend upon the intersection,
and obviously we do not know in advance the intersection
point between a query and database object. However, in
lieu of knowing the actual intersection point from a query,
we break the interval [tmin, tmax] into s sub–intervals, and
compute a pessimistic estimate of the error summations in
each sub–interval.

We visit each potential intersection point in a sub–interval
and pre–compute the worst case error terms. For example,
Figure 4 shows one sub–interval with three different poten-
tial intersection points. At each intersection point the dif-
ference between the total error before the intersection and
after the intersection is computed, as in Eqn. (3). In each
figure, the error in the blue region is accumulated and sub-
tracted from the accumulation of the error in the red region.
We then store the minimum and maximum of these values,
as we do not yet know the sign on the error terms until
query time (if the error is subtracted we will need the max-
imum, and the minimum if the error is eventually added).
The only intersection points we need to consider are where

the discrete CDF changes or intersects its normal approxi-
mation, so there are a finite amount of intersection points
that need to be checked.

The minimum and maximum error differences are pre–
computed for all s sub–intervals, which we denote as Errmin,P
and Errmax,P . These error differences can then be easily
retrieved via a constant lookup at query time and either
added or subtracted to the normal EMD, depending on how
the two normals intersect. We perform the same calculation
of the minimum and maximum error for each query as well
(at query time, of course).

Formally, we define Errmin,P as follows

Errmin,P (tj) =
min

tis∈[si,si+1]
{
∫ tis
tmin

ErrP (t) dt−
∫ tmax

tis
ErrP (t) dt}

if si < tj ≤ si+1∫ tmax

tmin
ErrP (t) dt if tj ≤ tmin

∨
tj > tmax

(4)

with Errmax,P (tj) defined in the same manner but with a
maximization instead of a minimization.

4.3 Computing the Normal Lower Bound
Using stochastic dominance, we can now compute the nor-

mal lower bound between two distributions on a projection.
We denote the normal lower bound EMDLB(ΦP ,ΦQ) in the
range [tmin, tmax] as

EMDLB(ΦP ,ΦQ) =
EMDN (ΦP ,ΦQ) + Errmin,P (tis)− Errmax,Q(tis)

if ΦQ ≺ ΦP
∨
σp > σq

EMDN (ΦP ,ΦQ)− Errmax,P (tis) + Errmin,Q(tis)

if ΦP ≺ ΦQ
∨
σp < σq

where tis is the intersection point between ΦP and ΦQ.

Theorem 2.

EMDLB(ΦP ,ΦQ) ≤ EMD(projSj (P ), projSj (Q))

Proof. See Appendix A.

Computing the normal lower bound is a constant time op-
eration. With a given query, the EMD between the normals
is computed using the closed form definite integral. The in-
tersection point is then computed using Eqn. (1), and the
pre–computed error terms are retrieved and the bound is
then computed.
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5. INDEXING THE LOWER BOUND
The normal lower bound is a tight lower bound to the

EMD. However, despite the O(1) complexity of the bound,
computing the lower bound on a large database of objects
can still be very time consuming. An index structure based
on the normal lower bound would be desirable to handle
scalability of the data.

There are several challenges with the bound that must be
resolved in order to build an effective index on this distance
metric. First, we must define the space and structure of
the index. Meaning, we must determine how each projected
distribution will be represented in the index space. Second,
we must ensure that computing the normal lower bound
in the index space is still efficient. We now detail how we
resolve both of these challenges.

5.1 Dominance Space
Normal distributions have the desirable property that st-

ochastic dominance is preserved in lines that are computed
using the mean and variance of the distributions.

Theorem 3. For t ∈ [tmin, tmax],

ΦP (t) ≺ ΦQ(t) ⇔ t− µp
σp

≺ t− µq
σq

Proof. As shown in [17], Φ(
t−µp

σp
) is less than Φ(

t−µq

σq
)

(where Φ is the standard normal CDF) if and only if
t−µp

σp
<

t−µq

σq
. The definition of dominance states that function A

must be strictly less than function B in the given interval.
Thus

t−µp

σp
<

t−µq

σq
satisfies the definition of dominance and

the theorem is true.

In order to take advantage of this property we perform
a Hough transformation [8] on the normal CDFs. Hough
transformations convert line segments into points in the pa-
rameter space of the line segments. Using the standard y–
intercept form of a line, y = m · t + b, each normal is rep-
resented by a slope (m) and a y–intercept (b). We rewrite
t−µp

σp
into the standard y–intercept equation for line. We set

m = 1
σ

and b = −µ
σ

. Each normal CDF ΦP is represented
as a tuple (mp, bp) in this transformed space. We term this
transformed space dominance space, because it is easy to
define dominance relationships in geometric terms.

Consider Figure 5(a), where we plot y = m·t+b for several
normals. We denote the blue line as the line for ΦP , which
dominates all the black lines. Additionally, the red dotted
line has no dominating relationship with any of the other
normals. We observe that at tmin (the smallest t value) the
dominance relationship is preserved. That is,

t− µp
σp

≺ t− µq
σq

→ mp · tmin + bp < mq · tmin + bq (5)

for some ΦQ that is dominated by ΦP . There exists a region
in dominance space such that at tmin, the normals defined
by points in the region are always greater than ΦP at tmin.
This region can easily be derived from Eqn. (5) as

mp ·tmin + bp < mq ·tmin + bq, ∀mq, bq

(mp ·tmin + bp)−mq ·tmin < bq, ∀mq

−tmin ·mq + (mp ·tmin + bp) < bq, ∀mq

(6)

That is, we have defined a line in dominance space, with a
slope of −tmin and a y–intercept of (mp · tmin + bp), such

that all normals with a bq value above the line are greater
than ΦP at tmin. This can be seen in Figure 5(b) as the
dotted line. The points in dominance space for the black
lines in Figure 5(a) are all above the dotted line in Figure
5(b) because at tmin, they are all greater than P .

Similarly, we can find another region using tmax, as shown
in Figure 5(c). Note how the red line from Figure 5(a) that
intersected all the other lines is not above this new dotted
line, as at tmax, it is less than ΦP . We denote these lines in
dominance space as dominance lines.

From Theorem 3 and Eqn. (6) we get a corollary regarding
the dominance lines.

Corollary 1. For t ∈ [tmin, tmax],

t− µp
σp

≺ t− µq
σq

⇔


bq > −tmin ·mq + (mp · tmin + bp)

and

bq > −tmax ·mq + (mp · tmax + bp)

Corr. 1 implies that given a point (mp, bp) in dominance
space, there exists a region where ΦP dominates all other
normals. Conversely, if we switch the inequalities in Corr.
1, we can determine the region where ΦP is dominated by
all normals, which is the area below the intersection of the
two lines in Figure 5(c). Any points in dominance space
not contained in these regions must intersect ΦP somewhere
between tmin and tmax.

Observe that the slope of the dominance lines are −tmin
and −tmax. As tmin and tmax are fixed for the database
(since they are based on the projection), all dominance lines
have the same slope, and thus are parallel. The shape of
this region is the same no matter where the point (mp, bp)
of interest is placed.

Finally, we state the following theorem about dominance
space.

Theorem 4. Denote the region that (mp, bp) dominates
as R, so that ΦP ≺ Φr ∀r ∈ R. Then for all points (mq, bq)
where ΦQ ≺ ΦP ,

EMDN (ΦP ,ΦQ) ≤ EMDN (Φr,ΦQ), ∀r ∈ R (7)

Proof. This follows from the definition of dominance. If
ΦP ≺ Φr, then ΦP must be less than Φr at every point in
the range, and hence the area under the CDF for ΦP must
be less than Φr. Since ΦQ ≺ ΦP , the area under ΦQ must
also be less than ΦP , and hence EMDN (ΦP ,ΦQ) must be
less than any EMDN (Φr,ΦQ).

The index is implemented in dominance space, and each
projected distribution is represented as a point in this space.
Next we detail how dominance lines and Theorem 4 are uti-
lized to lower bound a set of points in dominance space.

5.2 Bounding Regions
An efficient index structure needs to have the capability of

pruning large amounts of potential candidates from a K–NN
query without resorting to computation of the lower bound
between a query and each database object. This can be ac-
complished by creating bounding regions around points in
dominance space, and computing the lower bound between
a query and a bounding region. If the lower bound between
the query and the bounding region is too large to be con-
sidered as a nearest neighbor, then all the points within the
bounding region can be pruned with a single computation.
The bounding regions that are utilized in the index are based
on dominance lines.
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Figure 5: Finding dominance lines in dominance space. At the endpoints of the lines in Figure 5(a), the
dominance property must hold. All points in dominance space that have their endpoints dominated by the
blue line must be above the two dominating lines in dominance space. Note that the red point has only one
endpoint dominated by the blue line, hence it is only above one of the dominating lines in Figure 5(c).

(a) Complete Dominance (b) Partial Dominance (c) No Dominance

Figure 6: A bounding region in dominance space, and examples of the three scenarios where the distance
from a point Q to a bounding region must be considered. In Figure 6(a), Q is completely dominated by
every point in M . In Figure 6(b), Q is partially dominated by M , and in Figure 6(c), Q has no dominating
relationship with M (it must intersect every point in M). Note that every point Q must fall into one of these
scenarios, though the positions in dominance space may be different than depicted in the figures.

Definition 4. Bounding Region. Given a set of points
in dominance space, we define the bounding region (BR) M
of the points by two points Ml and Mu in dominance space,
where

Ml = (ml, bl) : ΦMl ≺ Φmi ∀mi ∈M
Mu = (mu, bu) : Φmi ≺ ΦMu ∀mi ∈M

Recall from the previous section that the slope of the dom-
inating lines are solely defined by [tmin, tmax]. As a result,
only two points are needed to define a bounding region, since
the other two points can be derived from the intersection of
the dominating lines emanating from Ml and Mu. This is
similar to Euclidean space where only two points are needed
to define a rectangle.

For the moment, we assume that tmin < 0 and tmax > 0.
In such a scenario, M forms a diamond shaped bounding re-
gion in dominance space. Figure 6(a) shows the dominating
region for a series of points shown in blue. The bounding
region is the area enclosed by the solid black lines, with Mu

being top of the diamond region, and Ml the bottom.
We can easily compute the normal lower bound between

a query Q and all mi ∈ M . However, in order to prune
all the points in M , we need to compute the normal lower
bound between Q and the BR M . Unfortunately, comput-
ing a lower bound to a bounding region is not as simple to
compute as the normal lower bound.

First, we define the minimum and maximum error differ-
ences for a BR similar to a point as

Errmin,M (tis) = min
mi∈M

Errmin,mi(tis)

Errmax,M (tis) = max
mi∈M

Errmax,mi(tis)

Meaning, the errors of some sub–interval si for a bound-
ing region are just the minimum and maximum of the sub–
interval si for any point within M .

We denote the normal lower bound specifically for bound-
ing regions as EMDBR(M,ΦQ). We must show that

EMDBR(M,ΦQ) ≤ EMDLB(Φmi ,ΦQ) ∀mi ∈M

in order to prune a bounding region from a candidate set.
There are three different ways that EMDBR(M,ΦQ) is

computed, depending on where the query point is relative
to M . An example of each scenario is shown in Figures 6(a),
6(b) and 6(c). Similar to the normal lower bound between
points, the lower bound for bounding regions is composed
of a normal EMD and error terms. The normal EMD term
for EMDBR(M,ΦQ) is the minimum normal EMD between
Q and any point in M . Determining this minimum distance
point greatly depends on where Q is relative to M , hence
the three different ways that EMDBR(M,ΦQ) is computed.
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5.2.1 Complete Dominance
The complete dominance scenario is shown in Figure 6(a).

In this scenario, Q is completely dominated by the entire
BR.

From Theorem 4, we know

ΦMu ≺ ΦQ ⇒
EMDN (ΦMu ,ΦQ) ≤ EMDN (Φmi ,ΦQ) ∀ mi ∈M

Mu is the point in M that has the minimum normal distance
to Q. EMDBR(M,ΦQ) is then computed as

EMDBR(M,ΦQ) =

EMDN (ΦMu ,ΦQ)− Errmax,M (tis) + Errmin,Q(tis)

Note that if Q ≺ Ml, we use Ml instead of Mu and the
appropriate minimum or maximum errors.

5.2.2 Partial Dominance
The partial dominance scenario is depicted in Figure 6(b).

In this case, the query point Q is dominated by Ml but not
Mu, and as a result, we cannot use Theorem 4 to find the
minimum distance normal.

Fortunately, since the EMD is a metric, we can use the tri-
angle inequality to lower bound the minimum normal EMD
from Q to M . We denote the intersection point of the dom-
inating line from Q with M as Mis, shown as the red point
in Figure 6(b). We know that the minimum distance point
must lie above the intersection of the dominance line from
Q with M (red in the figure), as follows from the complete
dominance scenario in the previous subsection.

We define EMDBR(M,ΦQ) in the partial dominance sce-
nario as

EMDBR(M,ΦQ) =

1

2
[EMDN (ΦMu ,ΦQ) + EMDN (ΦMis ,ΦQ)

−EMDN (ΦMis ,ΦMu)]−max
si∈s
{Errmax,M (si)}

+min
si∈s
{Errmin,Q(si)}

(8)

The triangle inequality is used to bound the minimum nor-
mal distance, and the maximum and minimum errors over
all sub–intervals from M and Q are used to ensure that the
error terms are always less than any errors from a point in-
side M . If Q ≺ Mu but not Ml, then we use Ml instead of
Mu and the appropriate minimum or maximum errors.

Theorem 5. If a query point Q is dominated by Ml but
not Mu, then

EMDBR(M,ΦQ) ≤ EMDLB(Φmi ,ΦQ) ∀mi ∈M

where EMDBR(M,ΦQ) is computed as defined in Eqn. (8).

Proof. See Appendix (B)

5.2.3 No Dominance
The last scenario is depicted in Figure 6(c). In this case,

Q has no dominance relationship with any points in M .
This case is just an extension of partial dominance. We de-
note Mis as the intersection point between the dominance
lines from Ml and Mu, as depicted in red on the figure.
We use the triangle inequality to bound the minimum dis-
tance normal using Ml and Mis, then repeat using Mu and
Mis, and take the minimum value. The rest of the terms in
EMDBR(M,ΦQ) for partial dominance are the same.
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Figure 7: Quad–tree of bounding regions for a data
set. The blue points are the database objects, and
the black lines are dominating bounding regions.

We have now defined the normal lower bound between
points in dominance space, as well as a lower bound that is
used between a point and a bounding region. We can now
group points in dominance space, and prune large amounts
of candidate objects with only a single lower bound compu-
tation. Computing the distance from Q to a BR M requires
finding the minimum/maximum over all the error terms, and
with s sub–intervals, is an O(s) operation.

5.3 Index Implementation
The index structure implemented is a quad–tree. Quad–

trees provide a simple method to define bounding regions,
since the regions are based on parallel dominating lines. We
can also always ensure that we have a diamond shape to the
BR regions by subtracting the mean of the projected bins.
This ensures that tmin < 0 and tmax > 0, and has no effect
on the EMD as it is translation invariant.

Given a data set and a projection Sj , we project each
distribution onto Sj and fit a 1–dimensional normal distri-
bution to each projection. We pre–compute the errors in
each of the s sub–intervals for each distribution. For sim-
plicity, we evenly divide the range from [tmin, tmax] into s
sub–intervals. Finally, we convert each normal distribution
to a point in dominance space, determine the bounding re-
gion of the entire database, and recursively build the tree.
Figure 7 shows an example of the quad–tree for a small sam-
ple data set.

At query time, we find potential nearest neighbors by per-
forming a best–first traversal of the quad–tree that utilizes
a threshold based on the current kth nearest neighbor. Due
to space considerations, we refer the reader to [16] for more
details on quad–trees and nearest neighbor querying using
a best–first method. The space complexity analysis of the
index is discussed in Appendix (C)

Multiple projections may yield a tighter lower bound than
a single projection. If more than one projection is used, we
implement each projection as its own independent index.
We then use a modified version of Fagin’s Threshold Algo-
rithm [5] to aggregate the lower bounds from each index.

6. EXPERIMENTS
To the best of our knowledge, the TBI method proposed

in [21] is the state of the art method for nearest neighbor
queries with the EMD. The existing scan–and–refine meth-
ods do not implement an index structure, and must perform
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a large sort of the database lower bounds for each query. Im-
plementation of a lower bound index is more efficient than
a single sort on the entire database, as the TBI method
demonstrated nearly twice as much improvement in K–NN
query time over the previous SAR methods. Therefore, we
tested our method only against the TBI method.

As much of the experimental procedure as possible from
[21] was replicated in our experiments. The TBI method-
ology uses an index structure and three additional lower
bound filters that are run after candidates are pulled from
the index. The filters are run in order: the dual solution
lower bound, the reduced EMD lower bound, and the inde-
pendent minimization lower bound. If a candidate passes
all lower bound filters, the full EMD is performed. The im-
plementation of the TBI method was the author’s original
implementation, with some slight modifications to keep all
indices in memory for fair comparison with our method.

The normal lower bound index was coded in C++ and
placed into the TBI framework, without the TBI index. The
normal lower bound index uses the described index struc-
ture(s), then the full projection lower bound, then the re-
duced EMD lower bound and independent minimization as
in the TBI method. All testing was performed on an Intel
XEON Quad core processor at 2.33Mhz, with 4GB of RAM.

6.1 Data sets
We tested our new method on three real data sets. The

first data set is the RETINA data from [11, 20, 21]. This
data set consists of 12 MPEG–7 descriptors of 3932 images
of the retina. Only the first set of descriptors was used in
the experiments. Each descriptor is an 8 × 12 grid of tiles.
The descriptors were normalized, giving 3932 2–dimensional
distributions with 96 total bins. The query objects used for
this data set were the same 100 objects used in [20].

The next data set used was the IRMA data set from [20,
21]. This data set consists of features extracted from 10,000
medical images. Each distribution is 199 bins over a 40
dimensional space. The same 100 objects from [20] were
used to query the database.

Finally, we used a data set consisting of 681,278 publicly
available images from the photo sharing site Flickr. The
data set is a collection of general images, each re–sized to be
a 640×640 image. Each image was divided into a 10×10 grid
of tiles, and the 12 feature MPEG–7 color layout descriptor
(CLD) was extracted from each tile in an image. Extracting
a CLD for each tile achieves a more accurate representation
of the spatial distribution of color in an image than using
a single CLD for an entire image. The CLDs from each
image are then normalized to sum to one. This converts
the 100 spatial CLDs to a 2–dimensional probability distri-
bution over the tiles of an image. Each image distribution
measures the relative value of the CLD in one tile compared
to the CLDs in other tiles of an image. Two images that
are close in EMD have similar distribution of CLDs. The
CLD distributions model the inherent uncertainty of color
features and image comparison. Like the RETINA data,
only the first set of descriptors were used. 100 distributions
were randomly selected and removed from the data set for
querying.

Feasible solutions for the TBI method were generated for
all data sets in the random manner as described in [21], and
four feasible solutions were employed for each data set, the
same as in [21]. For the RETINA and IRMA data sets, the

reduction matrices were the same matrices as used in [20].
The reduction lower bound was not used on the Flickr data
set due to the generality of the data. That is, reduction
matrices provided no pruning power, and actually resulted
in a performance decrease due to the overhead of running a
reduced EMD. For all tests and data sets, the L2–norm is
used as the distance in the cost matrix.

The projection vectors for each data set were found via
principal component analysis. As the RETINA and Flickr
data sets are two dimensions, we used both principal com-
ponents as our projection vectors, meaning we utilize two
indices. The IRMA data contains almost all variance in one
principal component, hence we only employed one projection
vector for the IRMA data set. It is possible that there exist
better projection vectors to use on these data sets. However,
we demonstrate that even using a simple technique such as
PCA can yield impressive results.

6.2 Results
The only parameters for our tests that we need to vary

are the number of sub–intervals, and the node capacity in
the indices. We explore how these parameters effect the
performance of the method, but we set the default values of
these parameters as approximately log(n) number of sub–
intervals (5 for RETINA and Flickr, 6 for IRMA) and a node
capacity of 100 objects, where n is the number of bins in the
data set.

6.2.1 K–NN Query Time and Number of EMDs
Figure 8 presents the query time for each method while

varying K. For the RETINA and IRMA data sets, we
present results with the reduction matrix using the origi-
nal values as presented in [20, 21] (18 and 60, respectively),
and with increased values (36 and 80, respectively). As will
subsequently be shown, our method significantly decreases
the number of full bin EMDs that need to be performed. As
a result, we must increase the dimensionality of the reduced
filter, or computation time will be wasted on a lower bound
filter that has no pruning power.

As one can see, using the original reduction matrix our
method reduces the query time. When we take advantage of
the available increase in pruning power of the reduction me-
thod, the query time for the normal lower bound index de-
creases even more. As we increase K, we maintain the speed
up advantage over the TBI method, and on the RETINA
and Flickr data sets we see significant improvement as K
increases.

On the Flickr data set, the speedup is significant. This
speed up is the result of the index’s ability to prune many
potential candidates before running the other lower bound
filters. This can clearly be seen in Figure 9, where we plot
the number of full bin EMDs performed. The improvement
in the number of full EMDs performed generally follows the
pattern of the time speed up. However, on the Flickr data,
the reduced lower bound method is useless due to the hetero-
geneity of the data set. Therefore, the TBI method suffers
significant performance degradation without this extra lower
bound filter. Our method still successfully prunes many po-
tential candidates without needing the reduced filter, hence
we demonstrate its superiority over the TBI method with
extremely large data sets.

In addition, the normal index does not require nearly as
many data accesses as the TBI method. Recall that the TBI
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2 4 8 16 32 64
0

10

20

30

40

50

60

K

T
im

e
 (

s
e
c
)

 

 

Normal Index

TBI

(c) Flickr, 100 Queries

Figure 8: Average K–NN query time for all data sets. K values up to 8 are shown in the insets for the
RETINA and IRMA data sets. The normal lower bound index outperforms the TBI method on all data
sets. The index also enables increased pruning power of the reduced method since the number of full EMDs
is drastically reduced. On the Flickr data set, the normal index performance over TBI is significant. Both
methods were unable to use the reduced filter, yet the normal index still retains high pruning power.
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Figure 9: Average number of full EMDs performed. The normal index performs very few full bin EMDs,
and scales better as K and the database cardinality increases, as demonstrated in the Flickr data set results.
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Figure 10: Average K–NN query time while varying
the node capacity. The node capacity has very little
impact on query time for any of the data sets.

method must implement two B+ trees for each feasible so-
lution that is used. Hence, with four feasible solutions, TBI
implements eight B+ trees. This results in an extremely
high data access rate. The TBI method can access more
candidates than the cardinality of the data set, due to the
multiple indices accessing the same objects multiple times.
The normal lower bound index uses only as many indices as
projections, requiring less access to the data than the TBI
method. For example, on the Flickr data set, the TBI me-
thod accesses nearly four times as much data as the normal
index (not shown).

6.2.2 Index Parameters
We next vary the index parameters to determine what

effect they impart on the performance of the method. We

vary the number of sub–intervals from 1 to 9, and the node
capacity of the index from 100 to 400.

In Figure 10, we examine how changing the internal node
capacity in the quad–tree affects the overall performance.
As we can see, there is no detectable performance differ-
ence. The lower bound computation performed in the index
is an O(s) computation for internal nodes, and an O(1) com-
putation for leaf nodes. Therefore, given the large amount
of leaf nodes in the index and a low value of s, changing the
relatively small number of internal nodes does not affect the
overall query time significantly.

In Figure 11(a), we vary the number sub–intervals for all
three data sets. We see that increasing the number of sub–
intervals decreases the query time. On the RETINA and
IRMA data sets, there is a slight decrease. On the Flickr
data set, the decrease is more significant, as can be seen
in more detail in Figure 11(b). In Figure 11(b), as K in-
creases, the difference in query time with more sub–intervals
becomes significant. Notice that there are diminishing re-
turns from increasing the number of sub–intervals; as s in-
creases, we get a more accurate lower bound, but eventually
it has little impact on the final query time. Finally, we show
in Figure 11(c) the number of candidate objects that are
eventually passed from the index to the other lower bound
filters. As s increases, there is a significant decrease in the
number of candidates that are passed to the other lower
bound filters. This is expected, as increasing s tightens the
normal lower bound in the index. As the database size in-
creases, s can be increased to increase the pruning power of
the bound.
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Figure 11: Effect of the number of sub–intervals s. Figure 11(a) varies the number of sub–intervals for all
three data sets with K = 4. The number of sub–intervals has a small impact on the RETINA and IRMA
data sets, but a large impact on the Flickr data. Figure 11(b) varies K for different values of s on the Flickr
data set. When K gets large, the impact of the number of sub–intervals is significant. Figure 11(c) shows the
number of candidates that pass the index lower bound for the Flickr data. As s increases, the normal bound
in the index becomes tighter and less candidates are passed to the subsequent lower bound filters.

7. CONCLUSION
In this paper, we have presented a novel method for near-

est neighbor queries using the Earth Mover’s Distance. We
introduce a new lower bound to the EMD that approxi-
mates the projected EMD using normal distributions and
error terms. We develop a novel indexing scheme using st-
ochastic dominance to improve scalability of nearest neigh-
bor queries. We show that our method can retrieve nearest
neighbors significantly faster than previous methods.

We anticipate expanding and investigating more aspects
of the normal lower bound index. For example, the index
requires no use of the projected distribution bins, outside
of the minimum and maximum bin values. Therefore, our
method is suitable for databases that contain objects with-
out static bins, such as shape databases or moving object
databases.

The EMD is a computationally expensive distance metric,
but the accuracy and quality it produces in querying and
mining makes it highly attractive. As uncertain data sets
become larger and more prevalent, extremely high quality
and flexible pruning methods will need to be developed to
keep query times tractable. We believe our normal lower
bound index is a significant step towards achieving these
goals.
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APPENDIX
A. NORMAL LOWER BOUND PROOF

We present the proof to Theorem 2 that

EMDLB(ΦP ,ΦQ) ≤ EMD(projSj (P ), projSj (Q))

Proof. Without loss of generality, we prove the case
when ΦP ≺ ΦQ. We define EMDLB(ΦP ,ΦQ)′ as

EMDLB(ΦP ,ΦQ)′ =

∫ tmax

tmin

|ΦP (t)− ΦQ(t)| dt

−
∫ tmax

tmin

ErrP (t) dt+

∫ tmax

tmin

ErrQ(t) dt

From the definition of the minimum and maximum errors
in Eqn. (4), we know that

EMDLB(ΦP ,ΦQ) ≤ EMDLB(ΦP ,ΦQ)′

as EMDLB(ΦP ,ΦQ)′ is the computation of the lower bound
without pre–computing the intersection errors.

Demonstrating that

|ΦP (t)− ΦQ(t)| − ErrP (t) + ErrQ(t) ≤ |Cp(t)− Cq(t)| ∀ t

implies that EMDLB(ΦP ,ΦQ)′ is no more than the projec-
tion EMD, in which case, we know that EMDLB(ΦP ,ΦQ)
is then a lower bound to the projection EMD.

At some point t, if Cp(t) < Cq(t), then the contribution
to the projected EMD at this point t is

|Cp(t)− Cq(t)| = Cq(t)− Cp(t)
= (ErrQ(t) + ΦQ(t))− (ErrP (t) + ΦP (t))

= |ΦP (t)− ΦQ(t)| − ErrP (t) + ErrQ(t)

Hence the value computed at this point t is the same using
the normals and the errors as the projected EMD. If Cp(t) >
Cq(t) then the contribution to the EMD is

|Cp(t)− Cq(t)| = Cp(t)− Cq(t)
= (ErrP (t) + ΦP (t))− (ErrQ(t) + ΦQ(t))

= (ΦP (t)− ΦQ(t)) + (ErrP (t)− ErrQ(t))

≥ |ΦP (t)− ΦQ(t)| − ErrP (t) + ErrQ(t)

The last line is due to the fact that we assume ΦP ≺
ΦQ, so in order for Cp(t) to be greater than Cq(t), ErrP (t)
must be greater than ErrQ(t) and the difference between
the normals.

Thus for every t, the normal EMD plus/minus the er-
ror terms from the two distributions will always be at most
the actual value contributed to the projected EMD. Hence,
EMDLB(ΦP ,ΦQ)′ ≤ EMD(projSj (P ), projSj (Q)), which
means that the normal lower bound is also less than the
projected bound. The proof for the case where ΦQ ≺ ΦP is
the same with the signs reversed. When ΦP (t) and ΦQ(t)
intersect, we can break the proof for the theorem into two
parts; before the intersection and after.

B. PARTIAL DOMINANCE PROOF
To prove Theorem 5, we need to show that the normal

EMD terms and the error terms in the bound are both less
than any point in M . From the definition of the bound in
Eqn. (8), we know that the error terms are always less than
any error term in M . We now just need to show that the
minimum normal EMD between Q and M lies on the line
between Mis and Mu. That is,

min
mi∈M

{EMDN (Φmi ,ΦQ)} ≥

1

2
[EMDN (ΦMu ,ΦQ) + EMDN (ΦMis ,ΦQ)

−EMDN (ΦMis ,ΦMu)]

Proof. We can easily demonstrate this via contradiction.
Assume that the minimum EMD normal is a point W not

on the line betweenMu andMis, that is, inside the bounding
region. Let us denote the intersection between ΦQ and ΦW
as tis. The set of all normal distributions that intersect ΦQ
at tis lie along a line in dominance space that passes through
both Q and W . This line can be found by simple arithmetic
and we omit the details due to space considerations.

There now exists on the line from W to Q, another normal
W ′ with same normal intersection point, but with σw′ > σw.
Meaning, with a variance that is closer to σp. As W and W ′

also intersect at tis, the CDF difference between Q and W ′

must be less than Q and W because the intersection points
are all the same but σw′ is closer to σp than σw. Hence,
on this line from W to Q, we can keep finding normals that
have a smaller distance to Q than W , until we reach the line
between Mu and Mis. Thus, the minimum normal distance
must lie on the line between Mu and Mis.

C. SPACE COMPLEXITY ANALYSIS
The projection of each database object is represented by a

normal approximation and error terms. This requires stor-
age of the mean and variance of each distribution on the
projection, as well as the minimum and maximum errors for
all s sub–intervals. Therefore, any index that implements
the normal lower bound requires 2NP + 2NPs = O(NPs)
space, where N is the database cardinality and P is the num-
ber of projections. In contrast, the TBI method requires
2LN = O(LN) space, where L is the number of feasible
solutions that are implemented by the index. As shown in
Section 6.2, the number of projections and sub–intervals is
generally very small, achieving increased performance over
the TBI method with only a modest increase in the space
requirements.
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