
Indexing the Positions of Continuously Moving
Objects

Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez

TR-44

A TIMECENTER Technical Report

Title Indexing the Positions of Continuously Moving Objects

Copyright c� 1999 Simonas Šaltenis, Christian S. Jensen, Scott T.
Leutenegger, and Mario A. Lopez. All rights reserved.

Author�s� Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.
Lopez

Publication History November 1999. A TIMECENTER Technical Report.

TIMECENTER Participants

Aalborg University, Denmark
Christian S. Jensen (codirector), Michael H. Böhlen, Curtis E. Dyreson, Heidi Gregersen,
Dieter Pfoser, Simonas Šaltenis, Janne Skyt, Giedrius Slivinskas, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Bongki Moon

Individual participants
Fabio Grandi, University of Bologna, Italy
Nick Kline, Microsoft, USA
Gerhard Knolmayer, Universty of Bern, Switzerland
Thomas Myrach, Universty of Bern, Switzerland
Kwang W. Nam, Chungbuk National University, Korea
Mario A. Nascimento, University of Alberta, Canada
Keun H. Ryu, Chungbuk National University, Korea
Michael D. Soo, amazon.com, USA
Andreas Steiner, TimeConsult, Switzerland
Vassilis Tsotras, University of California, Riverside, USA
Jef Wijsen, Vrije Universiteit Brussel, Belgium
Carlo Zaniolo, University of California, Los Angeles, USA

For additional information, see The TIMECENTER Homepage:
URL: <http://www.cs.auc.dk/TimeCenter>

Any software made available viaTIMECENTER is provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied warranty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” are letters in the so-called
Runealphabet used one millennium ago by the Vikings, as well as by their precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of which have angular shapes and lack horizontal lines
because the primary storage medium was wood. Runes may also be found on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respectively.

Abstract

The coming years will witness dramatic advances in wireless communications as well as positioning
technologies. As a result, tracking the changing positions of objects capable of continuous movement
is becoming increasingly feasible and necessary. The present paper proposes a novel, R�-tree based
indexing technique that supports the efficient querying of the current and projected future positions of
such moving objects. The technique is capable of indexing objects moving in one-, two-, and three-
dimensional space. Update algorithms enable the index to accommodate a dynamic data set, where
objects may appear and disappear, and where changes occur in the anticipated positions of existing
objects. In addition, a bulkloading algorithm is provided for building and rebuilding the index. A
comprehensive performance study is reported.

1 Introduction

The rapid and continued advances in positioning systems, e.g., GPS, wireless communication technolo-
gies, and electronics in general promise to render it increasingly feasible to track and record the changing
positions of objects capable of continuous movement.

In a recent interview with Danish newspaper Børsen, Michael Hawley from MIT’s Media Lab described
how he was online when he ran the Boston Marathon this year [Pede99]. Prior to the race, he swallowed
several capsules, which in conjunction with other hardware, enabled the monitoring of his position, body
temperature, and pulse during the race. This scenario demonstrates the potential for putting bodies, and,
more generally, objects that move, online. Achieving this may enable a multitude of applications. It be-
comes possible to detect the signs of an impending medical emergency in a person early and warn the person
or alert a medical service. It becomes possible to have equipment recognize its user; and the equipment may
alert its owner in the case of unauthorized use or theft.

Industry leaders in the mobile phone market expect more than 500 million mobile phone users by year
2002 (compared to 300 million internet users) and 1 billion by year 2004, and they expect mobile phones
to evolve into wireless internet terminals [Kon99, Sch99]. Rendering such terminals location aware may
substantially improve the quality of the services offered to them [Kar99, Sch99]. In addition, the cost of
providing location awareness is expected to be relatively low. These factors combine to promise the presence
of substantial numbers of location aware, on-line objects capable of continous movement.

Applications such as process monitoring do not depend on positioning technologies. In these, the po-
sition of a moving point object could for example be pairs of temperature and pressure values. Yet other
applications include vehicle navigation, tracking, and monitoring, where the positions of air, sea, or land-
based equipment such as airplanes, fishing boats and freighters, and cars and trucks are of interest. It is
diverse applications such as these that warrant the study of indexing of objects that move.

Continuous movement poses new challenges to database technology. In conventional databases, data
is assumed to remain constant unless it is explicitly modified. Capturing continuous movement with this
assumption would entail either performing very frequent updates or recording outdated, inaccurate data,
neither of which are attractive alternatives.

A different tack must be adopted. The continuous movement should be captured directly, so that the
mere advance of time does not necessitate explicit updates [Wolf98a]. Put differently, rather than storing
simple positions, functions of time that express the objects’ positions should be stored. Then updates are
necessary only when the parameters of functions change. We use a linear function for each object, with the
parameters being the position and velocity vector of the object at the time the function is reported to the
database.

Two different, although related, indexing problems must be solved in order to support applications
involving continuous movement. One problem is the indexing of the current and anticipated future positions
of moving objects. The other problem is the indexing of the histories, or trajectories, of the positions of

1

moving objects. We focus on the former problem. One approach to solving the latter problem (while
simultaneously solving the first) is to render the solution to the first problem partially persistent [Beck96,
KTF98].

We propose an indexing technique, the time-parameterized R-tree (the TPR-tree, for short), which effi-
ciently indexes the current and anticipated future positions of moving point objects. The technique naturally
extends the R�-tree [BKSS90]—a robust and versatile index for spatial data.

Several distinctions may be made among the possible approaches to the indexing of the future linear
trajectories of moving point objects. First, approaches may differ according to the space that they index.
Assuming the objects move in d-dimensional space (d � �� �� �), their future trajectories may be indexed as
lines in (d� �)-dimensional space [TUW98]. As an alternative, one may map the trajectories to points in a
higher-dimensional space which are then indexed [KGT99]. Queries must subsequently also be transformed
to counter the data transformation. Yet another alternative is to index data in its native, d-dimensional
space, which is possible by parameterizing the index structure using velocity vectors and thus enabling the
index to be “viewed” as of any future time. The TPR-tree adopts this latter alternative. This absence of
transformations yields a quite intuitive indexing technique.

A second distinction is whether the index partitions the data (e.g., as do R-trees) or the embedding space
(e.g., as do Quadtrees). When using the latter alternative from above, an index based on data partitioning
seems to be more suitable. On the other hand, if trajectories are indexed as lines in (d � �)-dimensional
space, a data partitioning access method that does not employ clipping may introduce substantial overlap.

Third, indices may differ in the degrees of data replication they entail. Although undue space use is to
be avoided, replicating the information about moving points may improve query performance, but may also
adversely affect update performance. Replication appears particularly relevant here because of the inherent
difficulty of the indexing problem. The TPR-tree does not employ replication.

Fourth, we may distinguish approaches according to whether or not they require periodic index rebuild-
ing. Some approaches (e.g., [TUW98]) employ individual indices that are only functional for a certain time
period. In these approaches, a new index must be provided before its predecessor is no longer functional.
Other approaches may employ an index that in principle remains functional indefinitely [KGT99], but which
may be optimized for some specific time horizon and perhaps deteriorates as time progresses. The TPR-tree
belongs to this latter category.

In the TPR-tree, the bounding rectangles in the tree are functions of time, as are the moving points being
indexed. Intuitively, the bounding rectangles are capable of continuously following the enclosed data points
or other rectangles as these move. Like the R-trees, the new index is capable of indexing points in one-,
two-, and three-dimensional space. In addition, the principles at play in the new index are extendible to
non-point objects with extents.

The next section presents the problem being addressed, by describing the data to be indexed, the queries
to be supported, and problem parameters. In addition, related research is covered. Section 3 describes
the tree structure and algorithms. It is assumed that the reader has some familiarity with the R�-tree. To
ease the exposition, one-dimensional data is generally assumed, and the general n-dimensional case is
only considered when the inclusion of additional dimensions introduces new issues. Section 4 reports on
performance experiments, and Section 5 summarizes and offers research directions.

2 Problem Statement and Related Work

We describe the data being indexed, the queries being supported, the problem parameters, and related work
in turn.

2

2.1 Problem Setting

An object’s position at some time t is given by �x�t� � �x��t�� x��t�� � � � � xd�t��, where it is assumed
that the times t are not before the current time. This position is modeled as a linear function of time,
which is specified by two parameters. The first is a position for the object at some specified time tref ,
�x�tref �, which we term the reference position. The second parameter is a velocity vector for the object,
�v � �v�� v�� � � � � vd�. Thus, �x�t� � �x�tref � � �v�t � tref �. An object’s movement is observed at some time,
tobs. The first parameter, �x�tref �, may be the object’s position at this time, or it may be the position that the
object would have at some other, chosen reference time, given the velocity vector �v observed at tobs and the
position �x�tobs� observed at tobs.

As will be illustrated in the following and explained in Section 3, these concepts are used not only for
moving points, but also for representing the coordinates of the bounding rectangles in the index as functions
of time.

As an example, consider Figure 1. The top left diagram shows the positions and velocity vectors of 7
point objects at time 0. Objects 1 and 2 move east at 1 distance unit per time unit, object 3 moves east with
speed 2, objects 4 and 6 move west with speed 1, and objects 5 and 7 move north with speed 1.

6
4

5
7

2
1

3
1

2

3

4
6

7
5

2
1

3
11

4

5

6

7

1
2

3

64

5 7

Figure 1: Moving Points and Resulting Leaf-Level MBRs

3

Assume we create an R-tree at time 0. The top right diagram shows one possible assignment of the
objects to minimum bounding rectangles (MBRs) assuming a maximum of three objects per node. Previous
work has shown that attempting to minimize the quantities known as overlap, dead space, and perimeter
leads to an index with good query performance [KF93, PSTW93], and so the chosen assignment appears to
be well chosen. However, although it is good for queries at the present time, the movement of the objects
may adversely affect this assignment.

The bottom left diagram shows the locations of the objects and the MBRs at time 3. All MBRs have
grown, which adversely affects query performance; and as time increases, the MBRs will continue to grow,
leading to further deterioration. The bottom MBR grew because object 3 is moving faster than objects 1 and
2, thus elongating the box. The left hand side of the box is moving as fast as the slowest object, whereas the
right hand side is moving as fast as the fastest object. The node containing objects 4 and 5 as well as that
containing objects 6 and 7 have expanded even more dramatically; even though the objects were originally
close, the different directions of their movement cause their positions to diverge rapidly and hence the MBRs
to grow.

From the perspective of queries at time 3, it would have been better to assign objects 4 and 6 to the same
MBR and objects 5 and 7 to the same MBR, as illustrated by the bottom right diagram. Note that at time 0,
this assignment will yield worse query performance than the original assignment. Thus, the assignment of
objects to MBRs must take into consideration when most queries will arrive.

The MBRs in this example illustrate the kind of time-parameterized bounding rectangles supported by
the TPR-tree. The algorithms presented in Section 3, which are responsible for the assignment of objects
to bounding rectangles and thus control the structure and quality of the index, attempt to take observations
such as those illustrated by this example into consideration.

Modeling the positions of moving objects as functions of time not only enables us to make tentative
future predictions, but also solves the problem of the frequent updates that would otherwise be required to
approximate continuous movement in a traditional setting. For example, objects may report their positions
and velocity vectors when their actual positions deviate from what they have previously reported by some
threshold. The choice of the update frequency then depends on the type of movement, the desired accuracy,
and the technical limitations [Wolf99, PJ99, MRS99].

Intuitively, approximating a point’s future movement by a linear function is feasible when the point’s
velocity vector does not change too much too frequently, which may be the case in a variety of applications.
Because the potential applications are very diverse and in order to be specific, we most prominently assume
that we are indexing either aircraft or land-based vehicles. The more general applicability should be clear.

2.2 Query Types

Next, we define the queries supported by the index. The queries retrieve all points with positions within
specified regions. We distinguish between three kinds of queries, based on the regions they specify. In the
sequel, a d-dimensional rectangle R is specified by its d projections �a�� � a

a

� 	� � � � �a
�

d � a
a

d 	, a
�

j � aaj , into the
d coordinate axes. Let R, R�, and R� be three d-dimensional rectangles and t, t��ta, three time values that
are not less than the current time.

Type 1 timeslice query: Q � �R� t� specifies a hyper-rectangle R located at time point t.

Type 2 window query: Q � �R� t�� ta� specifies a hyper-rectangle R that covers the interval �t�� ta	. Stated
differently, this query retrieves points with trajectories in (�x, t)-space crossing the (d��)-dimensional
hyper-rectangle (�a�� � a

a
� 	, �a

�
� � a

a
� 	, � � � , �a�d � a

a

d 	, �t
�� ta).

Type 3 moving query: Q � �R�� R�� t
�� ta� specifies the (d � �)-dimensional trapezoid obtained by con-

necting R� at time t� to R� at time ta.

4

The second type of query generalizes the first, and is itself a special case of the third type. To il-
lustrate the query types, consider the one-dimensional data set in Figure 2, which represents tempera-
tures measured at different locations. In this example Q
 � ������ �	��
���, Q� � ������ ��	�� ����,

1 3 4 52

value

o1

o1

o1

Q0

Q1

Q2

Q3

time

0

o2

o2

o4

o3
o3

o4

o3

-10

-20

-30

-40

10

20

30

40

Figure 2: Query Examples for One-Dimensional Data

Q� � ����
� �
	�� ����� ����, and Q� � �����
���
	�� ����
����	�� ����� ����. Queries Q
 and Q� are
timeslice queries, Q� is a window query, and Q� is a moving query.

Let iss�Q� denote the time when a query Q is issued. The two parameters, position and velocity vector,
of an object as seen by a query Q depend on iss�Q�. Consider object o� in Figure 2. If iss�Q� � �, then
x�tref � � ��
 for tref �
. For � � iss�Q� � �, x�tref � �
 for tref � �. For � � iss�Q�, x�tref � � �

for tref � �.

The answer to Q
 is object o�. Next consider Q�: If iss�Q�� � �, the answer is o�, and if iss�Q�� � �,
no object qualifies. If iss�Q�� � �, the answer to Q� is empty; and if � � iss�Q�� � �, the answer
contains object o�, but not object o�, since its existence is not known until time 2. If � � iss�Q��, the
answer contains both object o� and object o�. Finally, the answer to Q� is o
, regardless of the value of
iss�Q��.

Queries may retrieve objects based on their positions at any future time points. But because the positions
as predicted at query time become less and less accurate as queries move into the future, and because updates
not known at query time may occur, queries far in the future are likely to be of little value. Therefore, real-
world applications may be expected to issue queries that are concentrated in some limited time window
extending from the current time.

2.3 Problem Parameters

The values of three problem parameters affect the indexing problem and the qualities of a TPR-tree. The
first specifies exactly how far into the future queries may reach. The second specifies for how long the index
is to remain functional. The third is simply the sum of the first two. Figure 3 illustrates these parameters,
which will be used throughout the paper.

5

� Querying window(W): how far queries can “look” into the future. Thus, iss�Q� � t � iss�Q� � W,
for Type 1 queries, and iss�Q� � t� � ta � iss�Q� � W for queries of Types 2 and 3.

� Index usage time(U): the time interval during which an index will be used. Thus, tl � iss�Q� �
tl � U, where tl is the index creation or bulkloading time. After tl � U, the index is considered
obsolete.

� Time horizon(H): the time interval from which all times (t, t�, ta) specified in queries are drawn.
The time horizon for an index is the index usage time plus the querying window.

tl t t

H = U + W

U

W

iss(Q) t

Figure 3: Time Horizon H, Index Usage Time U, and Querying Window W

Thus, we assume that an upper limit exists on how far into the future queries on an index may reach. A
newly created index must support queries that reach H time units into the future.

2.4 Previous Work

Related work on the indexing of the current and future positions of moving objects has concentrated mostly
on points moving in one-dimensional space. Related work has been conducted in three contexts.

Tayeb et al. [TUW98] use PMR-Quadtrees [Sam90] for indexing the future linear trajectories of one-
dimensional moving point objects as line segments in �x� t�-space. The trajectories span the time interval
starting at the current time and extending H time units into the future. A tree expires after U time units, and
a new tree must be made available for querying. This approach introduces substantial data replication in the
index—a line segment is usually stored in several nodes.

Kollios et al. [KGT99] employ the dual data transformation where a line x � x�tref � � v�t � tref � is
transformed to the point (x�tref �� v), enabling the use of regular spatial indices. It is argued that indices
based on Kd-trees are well suited for this problem because these best accommodate the shapes of the (trans-
formed) queries on the data. Kollios et al. suggest, but do not investigate in any detail, how this approach
may be extended to two and higher dimensions. Section 3.6 relates this suggested generalization to our
approach.

Kollios et al. also propose two methods that achieve better query performance at the cost of data replica-
tion. The first, which employs several B-trees, external Interval trees, and query approximation, uses space
that is proportional to the number of moving point objects. In the second, a time horizon H is imposed, and
the space used varies from linear to quadratic, but the query time is logarithmic in the number of objects.
These two methods do not seem to apply to more than one dimension.

Next, Kollios et al. provide theoretical lower bounds for this indexing problem, assuming a static data
set and H � �. Allowing the index to use linear space, the types of queries discussed in Section 2 can be
answered in O�n��d�����d � k� time. Here d is the number of dimensions of the space where the objects
move, n is the number of data blocks, and k is the size in blocks of a query answer. To achieve this bound,
an external memory version of partition trees may be used [Agar98]. It is argued that, although having good
asymptotic performance bounds, partition trees are not practical due to the large constant factors involved.

6

The problem of indexing moving point objects is related to the problem of indexing now-relative tem-
poral data. The GR-tree [BJSS98a], an R-tree based index for now-relative bitemporal data, is capable of
accommodating efficiently two-dimensional regions that grow, albeit in a restricted way. The idea is to
accommodate growing data regions by introducing bounding regions that also grow. Specifically, bounding
regions are time-parameterized, and their extents are computed based on the time when a query is asked.

Some less related work has also been reported. Moreira [MRS99] and Pfoser and Jensen [PJ99] study
the uncertainty inherent in the capture of past trajectories of moving point objects. Pfoser et al. [PTJ99]
consider the separate, but related problem of indexing the past trajectories of moving point objects, which
are represented as polylines (connected line segments). Finally, Basch et al. [BGH97] propose various other
main-memory data structures for mobile objects.

3 Structure and Algorithms

This section presents the structure and algorithms of the TPR-tree. The notion of a time-parameterized
bounding rectangle is defined. It is shown how the tree is queried, and dynamic update and bulkloading
algorithms are presented that tailor the tree to a specific time horizon H. Finally, the relationship between
the TPR-tree and the dual transformation approach is described [KGT99].

For simplicity, we generally describe the one-dimensional problem and only consider the general, multi-
dimensional problem when the extension from one to multiple dimensions is not straightforward. We use
the term bounding interval for a one-dimensional bounding rectangle, and the term bounding rectangle for
any d-dimensional hyper-rectangle.

3.1 Index Structure

The TPR-tree is a balanced, multi-way tree with the structure of an R-tree. Entries in leaf nodes are pairs of
a position of a moving point object and a pointer to the moving point object, and entries in internal nodes
are pairs of a pointer to a subtree and a rectangle that bounds the positions of all moving point objects or
other bounding rectangles in that subtree.

As suggested in Section 2, the position of a moving point object (or “moving point,” for short) is
represented by a reference position and a corresponding velocity vector—�x� v� in the one-dimensional
case, where x � x�tref �. We choose tref to be equal to the index load time, tl. Other possibilities include
setting tref to some constant value, e.g.,
, or using different tref values in different nodes.

To bound a group of d-dimensional moving points, d-dimensional bounding rectangles are used that
are also time-parameterized, i.e., their coordinates are functions of time. A time-parameterized bounding
rectangle bounds all enclosed points or rectangles at all times not earlier than the current time.

A tradeoff exists between how tightly a bounding rectangle bounds the enclosed moving points or rect-
angles across time and the storage needed to capture the bounding rectangles. It would be ideal to employ
time-parameterized bounding rectangles that are always minimum, but the storage cost appears to be exces-
sive. In the general case, doing so deteriorates to enumerating all the enclosed moving points or rectangles.
This is exemplified by Figure 4, where a node consists of two one-dimensional points A and B moving to-
wards each other. Each of these points plays the role of lower (resp. upper) bound of the minimum bounding
interval at some time. Similar examples may be constructed for any number of points.

Instead of using true, always minimum bounding rectangles, the TPR-tree employs “conservative”
bounding rectangles, which are minimum at some time point, but possibly (and most likely!) not at later
times. In the one-dimensional case, the lower bound of a conservative interval is set to move with the min-
imum speed of the enclosed points, while the upper bound is set to move with the maximum speed of the

7

B A
t = 3 (= H/2)

t = 0
A B

Figure 4: Conservative (Dashed) Versus Always Minimum (Solid) Bounding Intervals

enclosed points (speeds are negative or positive, depending on the direction). This ensures that conservative
bounding intervals are indeed bounding for all times considered.

Figure 4 illustrates conservative bounding intervals. The left hand side of the conservative interval in
the figure starts at the position of object A at time 0 and moves left at the speed of object B, and the right
hand side of the interval starts at object B at time 0 and moves right at the speed of object A. The figure also
shows that, in the worst case, such an interval may grow to become longer than its corresponding minimum
bounding interval by up to twice its initial length. In the figure, the conservative bounding interval at time
3 has length 11, which is exactly twice its length at time
 plus the length of its corresponding minimum
bounding interval at time 3. It is worth noting that conservative bounding intervals never shrink. In the best
case, when all of the enclosed points have the same velocity vector, a conservative bounding intervals has
constant size, although it may move.

Following the representation of moving points, we let tref � tl and capture a one-dimensional time-
parameterized bounding interval �x��t�� xa�t�	 � �x��tl��v

��t�tl�� xa�tl��va�t�tl�	 as �x�� xa� v�� va�,
where

x� � x��tl� � minifoi�x��tl�g xa � xa�tl� � maxif�oi�xa�tl�g
v� � minifoi�v�g va � maxifoi�vag

Here, the oi range over the bounding intervals to be enclosed. If instead the bounding interval being defined
is to bound moving points, the oi range over these points, oi�x��tl� and oi�x

a�tl� are replaced by oi�x�tl�,
and oi�v� and oi�va are replaced by oi�v.

The rectangles defined above are termed load-time bounding rectangles and are bounding for all times
not before tl. Because the rectangles never shrink, but may actually grow too much, it is desirable to be
able to adjust them occasionally. As the index is only queried for times greater or equal to the current
time, it follows that it is attractive to adjust the bounding rectangles every time any of the moving points
or rectangles that they bound are updated. The following formulas specify the adjustments to the bounding
rectangles that may be made during updates.

x� � minifoi�x��tupd �g � v��tupd � tl� xa � maxifoi�xa�tupd �g � va�tupd � tl�

Here, tupd is the time of the update, and the formulas may be restricted to apply to the bounding of points
rather than intervals, as above. Each formula involves five terms, which may differ by orders of magnitude.
Special care must be taken to manage the rounding errors that may occur in the finite-precision floating-point
arithmetic (e.g., IEEE standard 754) used for implementing the formulas [GRSY97].

We call these rectangles update-time bounding rectangles. The two types of bounding rectangles are
shown in Figure 5, The bold top and bottom lines capture the load-time, time-parameterized bounding
interval for the four moving objects represented by the four lines. At time tupd , a more narrow and thus
better update-time bounding interval is introduced that is bounding from tupd and onwards.

8

o4
o3

o1
o2

x

ttupdlt

Figure 5: Load-Time (Bold) and Update-
Time (Dashed) Bounding Intervals for Four
Moving Points

Query

Bounding interval

j

j

j

j

j

xj

j

tt tttl t

a

a

x
x

Figure 6: Intersection of a Bounding Interval
and a Query

3.2 Querying

With the definition of bounding rectangles in place, we show how queries of the three types presented in
Section 2 are answered using the TPR-tree.

Answering a timeslice query proceeds as for the regular R-tree, the only difference being that all
bounding rectangles are computed for the time tq specified in the query before intersection is checked.
Thus, a bounding interval specified by �x�� xa� v�� va� satisfies a query ((�a�� aa), tq), if and only if
a� � xa � va�tq � tl� � aa � x� � v��tq � tl�.

To answer window queries and moving queries, we need to be able to check if, in (�x, t)-space, the
trapezoid of a query (cf. Figure 6) intersects with the trapezoid formed by the part of the trajectory of a
bounding rectangle that is between the start and end times of the query. With one spatial dimension, this
is relatively simple. For more dimensions, generic polyhedron-polyhedron intersection tests may be used
[GW91], but due to the restricted nature of this problem, a simpler and more efficient algorithm may be
devised.

Specifically, we provide an algorithm for checking if a d-dimensional time-parameterized bounding
rectangle R given by parameters �x�� � x

a
� � x

�
� � x

a
� � � � � � x

�

d � x
a

d � v
�
� � v

a
� � v

�
� � v

a
� � � � � � v

�

d � v
a

d � intersects a mov-
ing query Q � ���a�� � a

a

� 	� �a
�

� � a
a

� 	� � � � � �a
�

d � a
a

d 	� �w
�

� � w
a

� 	� �w
�

� � w
a

� 	� � � � � �w
�

d � w
a

d 	�� t
�� ta�. This formula-

tion of a moving query as a time-parameterized rectangle with starting and ending times is more convenient
than the definition given in Section 2.2. The velocities w are obtained by subtracting R� from R� in the
earlier definition and then normalizing them with the length of interval �t�� ta	.

The algorithm is based on the observation that for two moving rectangles to intersect, there has to be a
time point when their extents intersect in each dimension. Thus, for each dimension j (j � �� �� � � � � d), the
algorithm computes the time interval Ij � �t�j � t

a

j 	 � �t�� ta	 when the extents of the rectangles intersect in

that dimension. If I �
Td

j�� Ij � �, the moving rectangles do not intersect and an empty result is returned;
otherwise, the algorithm provides the time interval I when the rectangles intersect. The intervals for each

9

dimension are computed according to the following formulas.

Ij �

��
�

� if a�j � xaj �t
�� � a�j �t

a� � xaj �t
a� 	 (Q is aboveR)

aaj � x�j �t
�� � aaj �t

a� � x�j �t
a� (Q is belowR)

�t�j � t
a

j 	 otherwise

where

t�j �

�������
������

t� �
xaj �t

���a�j
w�j �v

a

j

if a�j � xaj �t
�� (Q is aboveR at t�)

t� �
x�j �t

���aaj
waj �v

�

j

if aaj � x�j �t
�� (Q is belowR at t�)

t� otherwise

taj �

�������
������

t� �
xaj �t

���a�j
w�j �v

a

j

if a�j �t
a� � xaj �t

a� (Q is aboveR at ta)

t� �
x�j �t

���aaj
waj �v

�

j

if aaj �t
a� � x�j �t

a� (Q is belowR at ta)

ta otherwise

To see how t�j and taj are computed, consider the case where Q is below R at ta. Then Q must not be below
R at t�, as otherwise Q is always below R and there is no intersection (the case of no intersection is already
accounted for). This means that the line aaj �waj �t � t�� intersects the line x�j �t

�� � v�j �t � t�� within the
time interval �t�� ta	. Solving for t gives the desired intersection time.

Figure 6 exemplifies a moving query, a bounding rectangle, and their intersection time interval in one
dimension.

3.3 Heuristics for Tree Organization

As a precursor to designing the (dynamic) insertion and bulkloading algorithms for the TPR-tree, we discuss
how to group moving objects into nodes so that the tree most efficiently supports timeslice queries when
assuming a time horizon H. The objective is to identify principles, or heuristics, that apply to both dynamic
insertions and bulkloading, and to any number of dimensions. The goal is to obtain a versatile index.

Assuming the timeslice queries to be uniformly distributed between time tl (the bulkloading time) and
tl�H and keeping in mind that the moving points are represented by linear trajectories, it seems intuitive to
bulkload the index based on the projected positions of the moving points at time tl�H��. Indeed, this would
be a promising approach if always-minimum bounding rectangles were employed, but it does not work for
conservative bounding rectangles. This insight is illustrated for one-dimensional space in Figure 4, where
points A and B are placed in the same bounding interval, due to their proximity at time H��.

Although the idea presented above is not useful for bulkloading, one may wonder if it is useful in the
tree’s insertion algorithm. The idea would be to compute the area, margin, and other characteristics of
bounding rectangles relevant to the insertion algorithm as of H�� time units after the time of the insertion.
However, this approach has the problem that for more than one dimension, the area of a bounding rectangle
does not grow linearly with time. A different approach is necessary.

It is clear that when H is close to zero, the tree may simply use the usual R-tree insertion and bulk-
loading algorithms. The movement of the point objects and the growth of the bounding rectangles become
irrelevant—only their initial positions and extents matter. In contrast, when H is large, grouping the moving
points according to their velocity vectors becomes important because it is desirable that the bounding rect-
angles are as small as possible at all times in �tl� tl � H	, and how fast a bounding rectangle grows depends

10

on its “velocity extents.” (In one-dimensional space, the velocity extent of a bounding interval is equal to
va � v�.)

This leads to the following general approach. The insertion and bulkloading algorithms of the R�-tree,
which we consider extending to moving points, aim to minimize objective functions such as the areas of
the bounding rectangles, their margins (perimeters), and the overlap among the bounding rectangles. In
our context, these functions are time dependent, and we should consider their evolution in �tl� tl � H	.
Specifically, given an objective function A�t�, the following integral should be minimized.

Z tl�H

tl

A�t�dt (1)

If A�t� is area, the integral computes the area of the trapezoid that represents part of the trajectory of a
bounding rectangle in (�x� t)-space (see Figures 6 and 7).

We have so far assumed that the times tq of the timeslice queries �R� tq� are distributed uniformly
across �tl� tl �H	. Perhaps most prominently, this occurs if the times when queries are issued are uniformly
distributed and the tq’s of the queries are always equal to the times when they are issued, i.e., W �
. If
queries are issued uniformly, but W �
, or window queries and moving queries are issued, the probability
that a time point in the middle of interval �tl� tl�H	 will be in a query is higher than that of a time point near
tl or tl � H. If p�t� is the probability that time point t is in some query, then the integral

R tl�H

tl
p�t�A�t�dt

should be minimized. In the current study we consider only a non-weighted integral.
We proceed to use the integral in Formula 1 in the dynamic update and bulkloading algorithms.

3.4 Insertion and Deletion

The insertion algorithm of the R�-tree employs functions that compute the area of a bounding rectangle, the
intersection of two bounding rectangles, the margin of a bounding rectangle (when splitting a node), and the
distance between the centers of two bounding rectangles (used when doing forced reinsertions) [BKSS90].
The TPR-tree’s insertion algorithm is the same as that of the R�-tree, with one exception: instead of the
functions mentioned here, integrals as in Formula 1 of those functions are used.

Computing the integrals of the area, margin, and distance are relatively straightforward (see Appen-
dices A and B). The algorithm that computes the integral of the intersection of two time-parameterized
rectangles is an extension of the algorithm for checking if such rectangles overlap (see Section 3.2). At each
time point when the rectangles intersect, the intersection area is a rectangle and, in each dimensions, the
upper (lower) bound of this rectangle is defined by the upper (lower) bound of one of the two intersecting
rectangles.

The algorithm thus divides the time interval returned by the overlap-checking algorithm into consecutive
time intervals so that, during each of these, the intersection is defined by a time-parameterized rectangle.
The intersection area integral is thus computed as a sum of area integrals. Figure 6 illustrates the subdivision
of the intersection time interval into three smaller intervals for the one-dimensional case. The algorithm is
given in Apendix C.

In Section 2.3, parameter H � U � W was defined based on a static setting, and for static data. In a
dynamic setting, W remains a component of H, which is the length of the time period where integrals are
computed in the insertion algorithm. How large the other component of H should be depends on the update
frequency. If this is high, the effect of an insertion on the tree will not persist long and, thus, H should not
exceed Wby much. The experimental studies in Section 4 aim at determining what is a good range of values
for H in terms of the update frequency.

The introduction of the integrals is the most important step in rendering the R�-tree insertion algorithm
suitable for the TPR-tree, but one more aspect of the R�-tree algorithm must be revisited. The R�-tree split

11

algorithm selects one distribution of entries between two nodes from a set of candidate distributions, which
are generated based on sortings of point positions along each of the coordinate axes. In the TPR-tree split
algorithm, moving point (or rectangle) positions at different time points are used when sorting. With load-
time bounding rectangles, positions at tl are used, and with update-time bounding rectangles, positions at
the current time are used.

Finally, in addition to sortings along spatial dimensions, the split algorithm is extended to consider also
sortings along the velocity dimensions, i.e., sortings obtained by sorting on the coordinates of the velocity
vectors. The rationale is that distributing the moving points based on the velocity dimensions may result in
bounding rectangles with smaller “velocity extents” and which consequently grow more slowly.

Deletions in the TPR-tree are performed as in the R�-tree. If a node gets underfull, it is eliminated and
its entries are reinserted.

While the adaptation of the R�-tree insertion algorithm to using integrals of the objective functions is
relatively straightforward, it is less obvious how to obtain an appropriate bulkloading algorithm.

3.5 Bulkloading the Tree

The bulkloading algorithm presented here attempts to minimize the area integrals of the tree’s time-para-
meterized bounding rectangles across �tl� tl � H	. Without loss of generality, we let tl �
.

We also assume one-dimensional, uniform moving point data. More precisely, if the one-dimensional
moving points are represented as two-dimensional points in (x�tref �� v)-space, we assume that they are
uniformly distributed in a rectangular region with extents S and V . Packing these points into tree nodes
corresponds to partitioning this region into bounding rectangles. Due to the uniformity, we choose all
bounding rectangles to be equal. The important parameter, which we need to determine, is then the ratio
between the velocity extents and the reference-position (or spatial) extents of the bounding rectangles.

For example, Figure 7 illustrates two different partitionings of a region. Partitioning a) equally priori-
tizes position and velocity, while Partitioning b) completely ignores velocity and packs data points according
to position only. To compare the two partitionings with respect to different values for H, we consider the

refref

0 10.5 v

1

2

4

5

3

a)

V

S

1

2

4

5

3

1 2 3 4 5 t

x

6

b)

1

2

4

5

3

1 2 3 4 5

x

6

t

1

2

4

5

3

0 10.5 v

s

x(t) x(t)

Figure 7: Two Subdivisions of a Data Region in (x�tref �� v)-Space and the Evolution of the Corresponding
Intervals in (x� t)-Space

trapezoids in (x� t)-space that correspond to the bottom-left and bottom partitions in the two partitionings.
For H � �, the areas of the trapezoids are ���� versus ��� for the two partitionings. But for H � �, the areas
are ����� versus ����. It is not difficult to see that although the trapezoids that correspond to other partitions
are different, their areas are equal to those of the two partitions considered. Thus, for small values of H,
Partitioning b) is best, and for large values of H, Partitioning a) is best.

The example gives the intuition that the partitioning parameter—the velocity-space aspect ratio, �—is a
function of H. To determine ��H�, let the extents of a bounding rectangle of a partition in (x�tref �� v)-space

12

be (s� �s). Then, if the number of rectangles in a partitioning (which is also the number of nodes in the leaf
level of a tree) is k, the equation k � �S�s��V��s� holds, meaning that s �

p
�SV ����k�. Knowing s,

the length of a bounding interval at time t is A�t� � s� �s
 t � s�� � �t�. Then, the area integral of the
interval is expressed as follows.

I � s

Z H

�
�� � �t�dt � s�H �

�

�
�H�� �

r
SV

k
H�

�p
�
�

�

�

p
�H�

To find the � that minimizes I , we solve the equation �I��� �
.
r
SV

k
H���

�
��

�

� �
�

H��

�

� � �
 � � �
�

H

This result confirms our intuition that the larger the time horizon H, the smaller � should be, i.e., the
narrower the bounding rectangles should be in the velocity dimension. Note also that � is independent of
parameters such as the extents of the data set and the number of nodes.

To obtain the similar results for two-dimensional uniform datasets, we want the bulkloading algorithm
to produce bounding rectangles in (�x�tref �� �v) space having extents of the form (s� s� �s� �s), meaning that
a bounding rectangle should be square in the spatial dimensions and square in the velocity dimensions.
The former requirement aims at minimizing the margin of time-parameterized bounding rectangles and tar-
gets square queries. The latter requirement guarantees that time-parameterized bounding rectangles remain
square as they grow.

Performing the similar procedure as for the one-dimensional case, we obtain ��H� �
p
��H �

�����
��H for two dimensions. For three dimensions, ��H� � ��A� �
A � �
����AH�, where A �
�

q
�
��
�
 ��

p
���, i.e., ��H� � ��������H. The derivations of the �’s for two and three dimensions

may be found in Appendix D.
To actually achieve bounding rectangles that have a velocity-space aspect ratio close to �, we use an

adapted version of the STR R-tree packing algorithm [LEL97]. In a preprocessing step, our bulkloading
algorithm scans the data once to find the extents of the data space �S�� S�� � � � � Sd� V�� V�� � � � � Vd�, if they
are not know in advance. Then s is computed as described above.

The general framework of STR is the same as that of most of bulkloading algorithms. Let b be the
number of entries in a tree node, and let n be the number of moving points. The algorithm orders the data
set into dn�be consecutive groups, each with b points. It proceeds to create a tree node for each of these
groups, then computes bounding rectangles for the nodes, and, using these rectangles as the new data set,
proceeds recursively to build the tree in a bottom-up fashion.

The most important step is the ordering of the data. The adapted version of STR’s ordering algorithm is
described next as a recursive procedure.

OrderData(Dim, NumberOfNodes):
1 Sort the data set according to the Dim coordinate. For rectangles, use their center points.
2 If Dim � �, stop.
3 Let S be the extent of the data space in dimension Dim. Let NumberOfSlabs�� S�s if

Dim is a spatial dimension and NumberOfSlabs�� S���s� if Dim is a velocity dimen-
sion. If NumberOfSlabs� �, NumberOfSlabs�� �. If NumberOfSlabs� NumberOfNodes,
NumberOfSlabs�� NumberOfNodes

4 Let NodesPerSlab�� round�NumberOfNodes�NumberOfSlabs�. Divide the sorted data set
into slabs, where a slab consists of a run of b
NodesPerSlabconsecutive entries (the last slab
may contain less entries). Call OrderData(Dim� �, NodesPerSlab) on each of the slabs.

To order a data set OrderData(�d, dn�be) should be called.

13

3.6 Relation to the Dual Approach

The general approach of indexing moving points in their native space using a time-parameterized index
structure such as the TPR-tree is related in a specific sense to the transformation-based approach of Kollios
et al. [KGT99]. Next, we describe this relation for one-dimensional data and timeslice queries.

As mentioned, Kollios et al. propose to transform the linear trajectory of a moving point x � x�tref � �
v�t � tref � in (x� t)-space into a point (x�tref �� v). Queries, then, are also transformed.

Bounding points (x�tref �� v) in the dual space with a minimum bounding rectangle is equivalent to
bounding them (as moving points) with a conservative load-time time-parameterized bounding interval,
assuming tref � tl. Figure 8 shows the same bounding rectangle and query in (x�tref �� v)-space and in
(x� t)-space.

ref

ref

ref

ref

ref

av

v
a

av +

v + t

t

q

q

a

1

2

4

5

3

v10.5 t

1

2

4

5

3

x

1 2 3 4 5
tq

x(t)

a

a

,x (t)

, x (t)

x(t)=-

x(t)=-

Figure 8: Timeslice Query and Bounding Interval in Dual (x�tref �� v)-Space and (x� t)-Space

Specifically, transformed queries on a spatial index storing the moving points in the dual space will visit
exactly the same nodes as the untransformed queries on the same index, but where the bounding rectangles
are interpreted as time-parameterized intervals. More precisely, a minimum bounding rectangle in the dual
space qualifies for a transformed query if and only if the corresponding time-parameterized interval qualifies
for the untransformed query in (x� t)-space.

Without loss of generality, assume tref �
. Starting in the dual space, a moving point (x�tref �� v)

qualifies for a timeslice query ��a�� aa	� tq�, if it is inside the interval �a�� aa	 at a time tq, i.e., a� �
x�tref � � tqv � aa. These two inequalities represent a region in the dual space between two parallel lines:

x�tref � � �tqv�a� and x�tref � � �tqv�aa (see Figure 8). For a minimum bounding rectangle (x�(tref),

xa(tref), v�, va) to intersect this region, its upper-right corner should be above the lower line and its lower-

left corner below the upper line: xa�tref � � �tqva � a� � x��tref � � �tqv� � aa. This can be rewritten

as xa�tref � � tqva � a� � x��tref � � tqv� � aa, and this is a definition of a time-parameterized interval

�x��tref � � t
 v�� xa�tref � � t
 va	 intersecting interval �a�� aa	 at time tq.
Viewing what is minimum bounding rectangles in the dual space as time-parameterized bounding rect-

angles in the native (�x� t)-space is quite natural and intuitive, especially when multiple dimensions are
involved. This view enabled the idea of minimizing the area integral, which in turn leads to the idea of
the velocity-space aspect ratio. It is also worth noticing that the use of conservative update-time bounding
rectangles goes beyond the approach of using the dual transformation. The impact on performance of using
these rectangles is described in the next section.

14

4 Performance Experiments

In this section we report on performance experiments with the TPR-tree. The generation of two- and three-
dimensional moving point data and the settings for the experiments are described first, followed by the
presentation of the results of the experiments.

4.1 Experimental Setup and Workload Generation

The implementation of the TPR-tree used in the experiments is based on the Generalized Search Tree
Package, GiST [HNP95]. The page size (and tree node size) is set to 4k bytes, which results in 204 and 146
entries per leaf-node for two- and three-dimensional data, respectively. A page buffer of 200k bytes, i.e.,
50 pages, is used [LL98], where the root of a tree is pinned and the least-recently-used page replacement
policy is employed. The nodes changed during an index operation are marked as “dirty” in the buffer and
are written to disk at the end of the operation or when they otherwise have to be removed from the buffer.

The performance studies are based on workloads that intermix queries and update operations on the
index, thus simulating index usage across a period of time. In addition, each workload initially bulkloads
the index. The remainder of this section describes how the updates, queries, and initial bulkloading data are
generated.

As moving point data where the positions and velocities of the objects are uniformly distributed seems
to be rather unrealistic, we attempt to generate more realistic two-dimensional data by simulating a scenario
where the objects, e.g., cars, move in a network of routes, e.g., roads, connecting a number of destinations,
e.g., cities. In addition to simulating cars moving between cities, the scenario is also motivated by the fact
that usually, even if there is no underlying infrastructure, moving points tend to have destinations. For
example, fishing boats follow schools of fish or return to ports [SM99].

With the exception of one experiment, the simulated objects in our scenario move in a region of space
with dimensions �

 � �

 kilometers. The number of destinations ND is distributed uniformly in this
space, and these serve as the vertices in a fully connected graph of routes. In most of the experiments
ND � �
. This corresponds to 380 one-way routes. The number of points is N � �

�

 for all but one
experiment. No objects disappear, and no new objects appear for the duration of a simulation.

For the generation of the initial data set that will be bulkloaded, objects are placed at random positions
on routes. The objects are assigned with equal probability to one of three groups of points with maximum
speeds of
���, ���, and � km�min (
�, �
, and ��
 km�h). During the first sixth of a route, objects
accelerate from zero speed to their maximum speeds; during the middle two thirds, they travel at their
maximum speeds; and during the last one sixth of a route, they decelerate. Whenever an object reaches its
destination, a new destination is assigned to it at random.

Having a skewed distribution of the times when the objects update the database contributes to making
the workloads more realistic. In some experiments, it is also desirable to be able to control the average
update interval. Thus, the workload generation algorithm distributes the updates of an object traveling on a
route so that no updates are performed during the middle stretch. Equal numbers of updates are performed
during the acceleration and deceleration stretches. This number is chosen so that the total average interval
between two updates is approximately equal to a given parameter UI, which is fixed at �
 in most of the
experiments.

In addition to using data from the above-described simulation, some experiments also use workloads
with two- and three-dimensional uniform data. In these latter workloads, the initial positions of objects are
uniformly distributed in space. The directions of the velocity vectors are assigned randomly, both initially
and on each update. The speeds (lengths of velocity vectors) are uniformly distributed between 0 and 3
km�min. The time interval between successive updates is uniformly distributed between 0 and �UI.

15

To generate workloads, the above-described scenarios are run for 600 time units (minutes). For UI � �
,
this results in approximately one million update operations.

In addition to updates, workloads include queries. Each time unit, four queries are generated (2400
in total). Timeslice, window, and moving queries are generated with probabilities
��,
��, and
��. The
temporal parts of queries are generated randomly in an interval of length Wand starting at the current time.
For window and moving queries, time intervals with a maximum length of 10 is used. The spatial part of
each query is a square occupying a fraction QSof the space (QS �
���% in most of the experiments).
For timeslice queries and window queries, the spatial part of a query has a random location. For moving
queries, the center of a query follows the trajectory of one of the points currently in the index.

The workload generation parameters that are varied in the experiments are given in Table 1. Standard
values, which are used if a parameter is not varied in an experiment, are given in bold-face.

Table 1: Workload Parameters

Parameter Description Values Used

ND Number of destinations [cardinal number] 0, 2, 10, 20, 40, 160
N Number of points [cardinal number] 100,000, 300,000, 500,000, 700,000, 900,000
UI Update interval length [time units] 60, 120
W Querying window size [time units] 0, 20, 40, 80, 160, 320
QS Query size [% of the data space] 0.1, 0.25, 0.5, 1, 2

4.2 Investigating the Insertion Algorithm

As mentioned in Section 3.4, the TPR-tree insertion algorithm depends on the parameter H, which is equal
to W plus some duration that is dependent on the frequency of updates. How the frequency of updates
affects the choice of a value for H was explored in two sets of experiments, for data with UI � �
 and for
data with UI � ��
. Workloads with uniform data were run using the TPR-tree. Different values of H were
tried out in each set of experiments.

Figures 9 and 10 show the results. The horizontal axes correspond to the part of parameter H that should
depend on the frequency of updates. Curves are shown for experiments with different querying windows W.
The leftmost point of each curve corresponds to a setting of H �
.

The graphs demonstrate a pattern, namely that the best values of H lie between UI ���Wand UI �W.
This is not surprising. In UI �� time units, approximately half of the entries of each leaf node in the tree
are updated, and after UI time units, almost all entries are updated. The leaf-node bounding rectangles, the
characteristics of which we integrate using H, survive approximately similar time periods. In the subsequent
studies, we use H � UI .

Note also the difference in average search disk access numbers in Figures 9 and 10. A higher update
rate (a smaller UI) means tighter bounding rectangles and, thus, better query performance.

4.3 Comparing the TPR-Tree To Its Alternatives

A set of experiments with varying workloads were performed in order to compare the relative performance
of the R-tree, the TPR-tree with load-time bounding rectangles, and the TPR-tree with update-time bounding
rectangles.

For the former, the regular R�-tree is used to store fragments of trajectories of points in (�x� t)-space.
For this to work correctly, the inserted trajectory fragment for a moving point should start at the insertion
time and should span H time units, where H is at least equal to the maximum possible period between two

16

30

40

50

60

70

80

-40 -20 0 15 30 60 90 120

S
ea

rc
h

I/O

H - W

W = 0
W = 20
W = 40

Figure 9: Search Performance For UI � �
 and
Varying Settings of H

60

70

80

90

100

110

120

130

-40-20 0 30 60 120 180 240

S
ea

rc
h

I/O

H - W

W = 0
W = 20
W = 40

Figure 10: Search Performance For UI � ��
 and
Varying Settings of H

successive updates of the point. Not meeting this requirement, the R-tree may fail to return some of the
results of queries because its bounding rectangles “expire” after H time units. In our simulation-generated
workloads, the slowest moving points on routes spanning from one side of the data space to the other may
not be updated for as much as 600 time units. For the R-tree we, thus, set H � �

, which is the duration of
the simulation.

Figure 11 shows the average number of I/O operations per query for the three indices when the num-
ber of destinations in the simulation is varied. Decreasing the number of destinations adds skew to the
distribution of the object positions and their velocity vectors. Thus, uniform data is an extreme case.

As shown, increased skew leads to a decrease in the numbers of I/Os for all three approaches, especially
for the TPR-tree. This is expected because when there are more objects with similar velocities, it is easier
to pack them into bounding rectangles that have small velocity extents and also are not too big in the spatial
dimensions. The slight increase in performance for uniform data, as compared to the simulated data with
160 destinations, can be attributed to the moving queries present in the workload. A moving query follows
the position of a moving point and thus travels along some route in a simulation-generated workload. This
results in more points qualifying for the query, in comparison to the same query issued on uniform data.

The figure also demonstrates that the TPR-tree is an order of magnitude better than the R-tree. The utility
of update-time bounding rectangles can also be seen. For example, for a workload with 10 destinations, the
use of update-time bounding rectangles decreases the average number of I/Os from 90 to 30. For uniform
data, the decrease is from 237 to 65.

Figure 12 explores the effect of the length of the querying window, W, on querying performance. The
performance of the TPR-tree decreases with growing W. The relatively constant performance of the R-tree
can be explained by viewing the three-dimensional minimum bounding rectangles used in this tree as two-
dimensional bounding rectangles that do not change over time. That is why queries issued at different future
times have similar performance.

When load-time bounding rectangles are employed in the TPR-tree, the sensitivity to the querying
window W decreases. Specifically, when a time period substantially larger than W has passed since bulk
loading, most of the queries become “distant-future” queries.

17

0

100

200

300

400

500

600

700

800

900

2 10 40 160 Uniform

S
ea

rc
h

I/O

Number of destinations, ND

R-tree
TPR-tree with load-time BRs

TPR-tree

Figure 11: Search Performance For Varying Num-
bers of Destinations and Uniform Data

0

100

200

300

400

500

600

700

0 20 40 80 160 320

S
ea

rc
h

I/O

Querying window, W

R-tree
TPR-tree with load-time BRs

TPR-tree

Figure 12: Search Performance for Varying W

Next, Figure 13 shows the average performance for queries with different-size spatial extents. The ex-
periments where performed with three-dimensional data. The relatively high costs of the queries in this
figure are indicative of how the increased dimensionality of the data adversely affects performance. An ex-
periment with an R-tree using the shorter H of 120 is also included. Using this value for H is possible, since
uniform data is generated so that no update interval is longer than �UI, and UI � �
 in our experiments.
This significantly increases the performance of the R-tree, but it is still more than a factor of two worse than
the TPR-tree.

To investigate the scalability of the TPR-tree, we performed experiments with varying numbers of in-
dexed objects. When increasing the numbers of objects, we also scaled the spatial dimensions of the data
space so that the density of objects remained approximately the same and so that the number of objects
retuned by a query was largely (although not completely) unaffected. This scenario corresponds to merging
databases that are covering different areas into a single database. Uniform two-dimensional data was used
in these experiments.

Figure 14 shows that, as expected, the number of I/O operations for the TPR-tree increases only by a
small amount, which is due, in part, to slight increases in the sizes of the query results. The results for the
R-tree are not provided, because of excesively high numbers of I/O operations.

To explore how the search performance of the indices evolves with time, we compute, after each 60
time units, the average query performance for the previous 60 time units. Figure 15 shows the results. In
this experiment (and in other similar experiments), the performance of the TPR-tree after 360 time units
becomes more than two times worse than the performance at the beginning of the experiment, but from
360 to 600, no degradation occurs. This behavior is similar to the degradation of the performance of most
multidimensional tree structures. When, after bulk loading, dynamic updates are performed, node splits
occur, the average fan-out of the tree decreases, and the bounding rectangles created by the bulk loading
algorithm change. After some time, the tree stabilizes.

As expected, the TPR-tree with load-time bounding rectangles shows an increasing degradation of per-
formance. The bounding rectangles computed at bulkloading time become unavoidably larger as the more
distant future is queried. The insertion algorithms try to counter this by making the velocity extents of
bounding rectangles as small as possible. For example, in this experiment the average velocity extent of a

18

200

400

600

800

1000

1200

0.1 0.25 0.5 1 2

S
ea

rc
h

I/O

Query size, QS, % of space

R-tree
R-tree with reduced H

TPR-tree with load time BRs
TPR-tree

Figure 13: Search Performance For Varying Query
Sizes and Three-Dimensional Data

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900

S
ea

rc
h

I/O

Number of thousands of objects, N

TPR-tree with load-time BRs
TPR-tree

Figure 14: Search Performance for Varying Num-
ber of Objects

rectangle (in one of the two velocity dimensions) is 1.31 after the bulk loading and becomes 0.44 after 600
time units (recall that the extent of the data space in each velocity dimension is 6 in our simulation).

5 Summary and Future Work

Motivated mainly by the rapid advances in positioning systems, wireless communication technologies, and
electronics in general, which promise to render it increasingly feasible to track the positions of increasingly
large collections of continuously moving objects, this paper proposes a versatile adaptation of the R�-tree
that supports the efficient querying of the current and anticipated future locations of moving points in one-,
two-, and three-dimensional space.

The new TPR-tree supports timeslice, window, and so-called moving queries. Capturing moving points
as linear functions of time, the tree bounds these points using so-called conservative bounding rectangles,
which are also time-parameterized and which in turn also bound other such rectangles. The tree is equipped
with dynamic update algorithms as well as a bulkloading algorithm. Whereas the R�-tree’s algorithms
use functions that compute the areas, margins, and overlaps of bounding rectangles, the TPR-tree employs
integrals of these functions, thus taking into consideration the values of these functions across the time when
the tree is queried. The bounding rectangles of tree nodes that are read during updates are tightened, the
objective being to improve query performance without affecting update performance much. When splitting
nodes, not only the positions of the moving points are considered, but also their velocities.

Because no other proposals for indexing two- and three-dimensional moving points exist, the perfor-
mance study compares the TPR-tree with the TRP-tree without the tightening of bounding rectangles dur-
ing updates and with a relatively simple adaptation of the R�-tree. The study indicates quite clearly that the
TPR-tree indeed is capable of supporting queries on moving objects quite efficiently and that it outperforms
its competitors by far. The study also demonstrates that the tree does not degrade severely as time passes.
Finally, the study indicates how the tree can be tuned to take advantage of a specific update rate.

This work points to several interesting research directions. Among these, it would be interesting to study
the use of more advanced bounding regions as well as the adjustment of these during queries in addition

19

0

100

200

300

400

500

600

60 120 180 240 300 360 420 480 540 600

S
ea

rc
h

I/O

Time

R-tree
TPR-tree with load time BRs

TPR-tree

Figure 15: Degradation of Search Performance with Time

to updates. Next, periodic, partial reloading of the tree appears worthy of further study. It may also be
of interest to include support for transaction time, thus enabling the querying of the past positions of the
moving objects as well. This may be achieved by making the tree partially persistent, and it will likely
increase the data volume to be indexed by several orders of magnitude.

Acknowledgements

This research was supported in part by a grant from the Nykredit Corporation, by the Danish Technical
Research Council under grant 9700780, by the US National Science Foundation under grant IRI-9610240,
and by the CHOROCHRONOS project, funded by the European Commission, contract no. FMRX-CT96-
0056.

References

[Agar98] P. K. Agarwal et al. Efficient Searching with Linear Constraints. In Proc. of the PODS Conf.,
pp. 169–178 (1998).

[BGH97] J. Basch, L. Guibas, and J. Hershberger. Data Structures for Mobile Data. In Proc. of the 8th
ACM-SIAM Symposium on Discrete Algorithms, pp. 747–756 (1997).

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: An Efficient and Robust
Access Method for Points and Rectangles. In Proc. of the ACM SIGMOD Conf., pp. 322–331
(1990).

[Beck96] B. Becker et al. An Asymptotically Optimal Multiversion B-Tree. The VLDB Journal5(4):
264–275 (1996).

[BJSS98a] R. Bliujūtė, C. S. Jensen, S. Šaltenis, and G. Slivinskas. R-tree Based Indexing of Now-Relative
Bitemporal Data. In the Proc. of the 24th VLDB Conf., pp. 345–356 (1998).

20

[GRSY97] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu. Processing Queries By Linear Con-
straints. In Proc. of the PODS Conf., pp. 257–267 (1997).

[GW91] O. Günther and E. Wong. A Dual Approach to Detect Polyhedral Intersections in Arbitrary
Dimensions. BIT, 31(1): 3–14 (1991).

[HNP95] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search Trees for Database Sys-
tems. In Proc. of the VLDB Conf., pp. 562–573 (1995).

[KF93] I. Kamel and C. Faloutsos. On Packing R-trees. In Proc. of the CIKM, pp. 490–499 (1993).

[Kar99] J. Karppinen. Wireless Multimedia Communications: A Nokia View. In Proc. of the Wireless
Information Multimedia Communications Symposium, Aalborg University, (November 1999).

[KGT99] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. In Proc. of the
PODS Conf., pp. 261–272 (1999).

[Kon99] W. Konháuser. Wireless Multimedia Communications: A Siemens View. In Proc. of the
Wireless Information Multimedia Communications Symposium, Aalborg University, (Novem-
ber 1999).

[KTF98] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access Methods for Bitemporal
Databases. IEEE TKDE, 10(1): 1–20 (1998).

[LEL97] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A Simple and Efficient Algorithm
for R-Tree Packing. ICDE’97, pp. 497–506.

[LL98] S. T. Leutenegger and M. A. Lopez. The Effect of Buffering on the Performance of R-Trees.
In Proc. of the ICDE Conf., pp. 164–171 (1998).

[MRS99] J. Moreira, C. Ribeiro, and J. Saglio. Representation and Manipulation of Moving Points: An
Extended Data Model for Location Estimation. Cartography and Geographical Information
Systems, to appear.

[PSTW93] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an Analysis of Range Query
Performance in Spatial Data Structures. In Proc. of the PODS Conf., pp. 214–221 (1993).

[Pede99] H. Pedersen. Alting bliver on-line. Børsen Informatik, p. 14, September 28, 1999. (In Danish)

[PJ99] D. Pfoser and C. S. Jensen. Capturing the Uncertainty of Moving-Object Representations. In
the Proc. of the SSDBM Conf., pp. 111–132 (1999).

[PTJ99] D. Pfoser, Y. Theodoridis, and C. S. Jensen. Indexing Trajectories of Moving Point Objects.
Chorochronos Technical Report CH–99–3, June 1999.

[SM99] J.-M. Saglio and J. Moreira. Oporto: A Realistic Scenario Generator for Moving Objects. In
Proc. of DEXA Workshops, pp. 426–432 (1999).

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures.Addison-Wesley, Reading,
MA, 1990.

[Sch99] A. Schieder. Wireless Multimedia Communications: An Ericsson View. In Proc. of the Wireless
Information Multimedia Communications Symposium, Aalborg University, (November 1999).

21

[TUW98] J. Tayeb, Ö. Ulusoy, and O. Wolfson. A Quadtree Based Dynamic Attribute Indexing Method.
The Computer Journal, 41(3): 185–200 (1998).

[Wolf98a] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and
Solutions. In Proc. of the SSDBM Conf., pp. 111–122 (1998).

[Wolf99] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha Updating and Querying Databases that
Track Mobile Units. Distributed and Parallel Databases7(3): 257–387 (1999).

A Integrals of Area and Margin of a Time-Parameterized Rectangle

In the following, �s�� s�� � � � � sd� v�� v�� � � � � vd� denotes the spatial and velocity extents of a bounding rect-
angle at time t�. The area integral from t� to t� � H has the following expressions.

One-dimensional case:
Z H

�
�s� vt�dt � sH � s

H�

�

Two-dimensional case:
Z H

�
�s� � v�t��s� � v�t�dt � s�s�H � �s�v� � v�s��

H�

�
� v�v�

H�

�

Three-dimensional case:
Z H

�
�s� � v�t��s� � v�t��s� � v�t�dt � s�s�s�H � �s�s�v� � s�v�s� � v�s�s��

H�

�
�

�s�v�v� � v�s�v� � v�v�s��
H�

�
� v�v�v�

H�

The margin is not applicable to one dimenstion; the margin integrals for two and three dimensions fol-
low.

Two-dimensional case:
Z H

�
�s� � v�t � s� � v�t�dt � �s� � s��H � �v� � v��

H�

�

Three-dimensional case:
Z H

�
�s� � v�t � s� � v�t � s� � v�t �

�s� � v�t��s� � v�t� � �s� � v�t��s� � v�t� � �s� � v�t��s� � v�t��dt �

�s� � s� � s� � s�s� � s�s� � s�s��H �

�v� � v� � v� � s�v� � v�s� � s�v� � v�s� � s�v� � v�s��
H�

�
� �v�v� � v�v� � v�v��

H�

�

22

B Integral of the Distance Between the Centers of Two Time-Parameterized
Rectangles

Given two d-dimensional time-parameterized bounding rectangles ��x�� � x
a

� 	� �x
�

� � x
a

� 	� � � � � �x
�

d � x
a

d 	� �v
�

� � v
a

� 	�
�v�� � v

a

� 	� � � � � �v
�

d � v
a

d 	� and ��y�� � y
a

� 	� �y
�

� � y
a

� 	� � � � � �y
�

d � y
a

d 	� �w
�

� � w
a

� 	� �w
�

� � w
a

� 	� � � � � �w
�

d � w
a

d 	�, define �xi �
�x�i � xai ���� �y�i � yai ��� and �vi � �v�i � vai ���� �w�i � wai ���. Also define a, b, and c as follows.

a �

dX
i��

��vi�
� c �

dX
i��

��xi�
� b �

dX
i��

��xi�vi

The integral of the distance between the centers of these two rectangles is then computed as follows.

Z H

�

vuut dX
i��

��xi ��v
 t�� dt �

����
���

 if a �
 � b �

H
p
c if a �

�H�pa��� if c �

I otherwise

where

I �
��aH � b�

p
aH� � bH � c

a
�

ln���aH � b����
p
a� �

p
aH� � bH � c��
ac � b��

�a
�

�

�
b
p
c

a
� ln�b���

p
a� �

p
c��
ac � b��

�a
�

�

C Algorithm for Computing the Integral of the Intersection of Two Time-
Parameterized Rectangles

Given a time period �t�� ta	 and two d-dimensional time-parameterized bounding rectangles—R� � ��x�� � x
a
� 	�

�x�� � x
a

� 	� � � � � �x
�

d � x
a

d 	� �v
�

� � v
a

� 	� �v
�

� � v
a

� 	� � � � � �v
�

d � v
a

d 	� and R� � ��y�� � y
a

� 	� �y
�

� � y
a

� 	� � � � � �y
�

d � y
a

d 	� �w
�

� � w
a

� 	�
�w�� � w

a

� 	� � � � � �w
�

d � w
a

d 	�, we must return the value of the integral of their intersection area from t� to ta.
In the following algorithm, the “change points” of a time-parameterized intersection rectangle (see

Figure 6) are stored in an array p consisting of records ht� c� b� x� vi, where t is the time of change, � � c � d
is the dimension where the change occurs, b � f��ag specifies whether the upper or lower bound changes,
and x and v are the new values for the bound.

RI is the time-parameterized intersection rectangle ��z�� � z
a
� 	� �z

�
� � z

a
� 	� � � � � �z

�

d � z
a

d 	� �u
�
� � u

a
� 	� �u

�
� � u

a
� 	� � � � �

�u�d � u
a

d 	�. Initially, the value of RI is computed, and the array p is populated in step 3.
Function IntegrateArea�R� t�� t��, which is used in the algorithm, computes the integral of the area

of R from t� to t� as described in Appendix A.

23

IntegrateIntersectionArea(R� ,R�,�t�� ta):
1 Call the algorithm for checking if R� and R� overlap in �t�� ta	 (see Section 3.2). If they

do not overlap, return 0 and stop; otherwise, let �t�o � t
a
o 	 be the time interval returned by the

overlap checking algorithm.
2 j �� �
3 for i �� � to d do

3.1 p�j	�c ��

3.2 if x�i �t

�
o � � y�i �t

�
o � then

z�i �� x�i ; u�i �� v�i
if x�i �t

a
o � � y�i �t

a
o � then

p�j	�x �� y�i ; p�j	�v �� w�i ; p�j	�c �� i
else

z�i �� y�i ; u�i �� w�i
if x�i �t

a
o � � y�i �t

a
o � then

p�j	�x �� x�i ; p�j	�v �� v�i ; p�j	�c �� i
3.3 if p�j	�c ��
 then

p�j	�b ���; p�j	�t �� �x�i �
�� y�i �
����w
�

i � v�i �; j �� j � �
3.4 p�j	�c ��

3.5 if xai �t

�
o � � yai �t

�
o � then

zai �� xai ; uai �� vai
if xai �t

a
o � � yai �t

a
o � then

p�j	�x �� yai ; p�j	�v �� wai ; p�j	�c �� i
else

zai �� yai ; uai �� wai
if xai �t

a
o � � yai �t

a
o � then

p�j	�x �� xai ; p�j	�v �� vai ; p�j	�c �� i
3.6 if p�j	�c ��
 then

p�j	�b ��a; p�j	�t �� �xai �
�� yai �
����w
a

i � vai �; j �� j � �
4 Sort p on t in ascending order.
5 p�j	�t �� tao
6 Area �� IntegrateArea�RI � t

�
o � p��	�t�

7 for i �� � to j � � do

z
p	i
�b
p	i
�c �� p�i	�x; u

p	i
�b
p	i
�c �� p�i	�v

Area �� Area � IntegrateArea�RI � p�i	�t� p�i� �	�t�
8 Return Area.

D Derivation of Formulas for ��H� for Two and Three Dimensions

We assume in the following that the extents of the region in which the moving points are embedded are
�S�� S�� � � � � Sd� V�� V�� � � � � Vd� in d-dimensional space and that the data fits in k disk pages.

The bounding rectangles to be produced should have extents (s� s� � � � � s� �s� �s� � � � � �s). Then
k � ��

Qd
i�� Si��s

d���
Qd

i�� Vi����s�
d� holds, meaning that

s � �d

vuut�

dY
i��

�SiVi�����dk� �

�d

q
�
Qd

i���SiVi���kp
�

�

Knowing s, the volume of a bounding rectangle at time t is A�t� � �s� �s
 t�d � sd�� � �t�d. The area

24

integral is then expressed as follows.

Two-dimensional case:

I � s�
Z H

�
�� � �t��dt � s��H � H���

�

�
H���� �

r
S�S�V�V�

k
H�

�

�
� H �

�

�
H���

To find the � that minimizes I , we differentiate and solve the equation �I��� �
.

�I

��
�

r
S�S�V�V�

k
H�� �

��
�

�

�
H�� �
 � � �

p
�

H
�

Three-dimensional case:

I � s�
Z H

�
�� � �t��dt � s��H �

�

�
H��� H��� �

�

H����

�

r
S�S�S�V�V�V�

k
H���

�

� �
�

�
H��

�

� � H��
�

� �
�

H��

�

� �

To find the � that minimizes I , we differentiate and solve the equation �I��� �
.

�I

��
�

r
S�S�S�V�V�V�

k
H���

�
��

�

� �
�

H��

�

� �
�

�
H���

�

� �
�

�
H��

�

� � �

� �

H��� � H��� � �

�
H�� � �

Solving this cubic equation yields the following result.

��H� �
�A� �
A� �

�AH
� where A �

�

q
�
��
�
 ��

p
��� � ��H� � ��������H

25

