
Sādhan̄a Vol. 27, Part 1, February 2002, pp. 113–126. © Printed in India

Indian accent text-to-speech system for web browsing

ANIRUDDHA SEN and K SAMUDRAVIJAYA

School of Technology and Computer Science, Tata Institute of Fundamental
Research, Homi Bhabha Road, Bombay 400 005, India
e-mail:{asen,chief}@mailhost.tifr.res.in

Abstract. Incorporation of speech and Indian scripts can greatly enhance the
accessibility of web information among common people. This paper describes a
‘web reader’ which ‘reads out’ the textual contents of a selected web page in
Hindi or in English with Indian accent. The content of the page is downloaded and
parsed into suitable textual form. It is then passed on to an indigenously developed
text-to-speech system for Hindi/Indian English, to generate spoken output. The
text-to-speech conversion is performed in three stages: text analysis, to establish
pronunciation, phoneme to acoustic–phonetic parameter conversion and, lastly,
parameter-to-speech conversion through a production model. Different types of
voices are used to read special messages. The web reader detects the hypertext
links in the web pages and gives the user the option to follow the link or continue
perusing the current web page. The user can exercise the option either through a
keyboard or via spoken commands. Future plans include refining the web parser,
improvement of naturalness of synthetic speech and improving the robustness of
the speech recognition system.

Keywords. Web reader; text to speech; speech synthesis; speech recognition;
Indian accent; human computer interaction.

1. Introduction

In this information age, storage and retrieval of information in a convenient manner has gained
importance. Because of the near-universal adoption of the World Wide Web as a repository of
information for unconstrained and wide dissemination, information is now broadly available
over the internet and is accessible from remote sites.

However, the interaction between the computer and the user is largely through keyboard and
screen-oriented systems. In the current Indian context, this restricts the usage to a minuscule
fraction of the population, who are both computer-literate and conversant with written English.

In order to enable a wider proportion of the population to benefit from the internet, there
is need to provide some additional interface with the machine. Speech, being a natural mode
of communication among human beings, can also be a convenient mode of interaction with a
computer. Internationally, efforts are already on to combine hypertext navigation with spoken
language (Lauet al1997). This can be of particular significance in our country where the rate
and level of literacy are quite low. Coupled innovatively with visuals, speech and sound can

113

114 Aniruddha Sen and K Samudravijaya

add a new dimension for conveying information to the ‘common’ man. Audio information
can also be broadcast (e.g. at community centres) or made available on demand by telephone,
thereby greatly expanding the range of end-users.

It is desirable that the human-machine interface permits communication in one’s native
language. This is an important issue in a multi-lingual country such as India. If the human-
oriented information over the internet can be coded in a form suitable for display in a script
familiar to the user and also for reading out in an acceptable language and accent, the computer
can process such hypermedia document and provide the information appropriately to a large
number of users.

This paper describes a web reader which can ‘read out’ appropriately coded HTML pages
in Indian languages and accents. To start with, Hindi and ‘Indian English’ have been chosen.
Choice of Hindi in India is automatic. English, however, is the pre-dominant internet language
and will continue to be so at least in the near future. The web reader thereby caters for English
also, but reads them out in an accent which is considerably more acceptable than the standard
English accent to an average Indian.

2. Overview of the web reader

The function of the web reader is to download the user-specified hypermedia document, parse
the document to extract textual information, feed the text to a text-to-speech system (TSS),
and play the synthesized speech under user control. Figure 1 shows a functional diagram of the
web reader. Its core components are an HTML document processor and a TSS. A java script
downloads the web page specified by the user. This document is processed by the standard
generalized markup language (SGML) parser which validates the document and provides a
text representation of the elements of the document. This output is further processed by a text
parser to extract information which can be fed to the TSS. The text processor module of TSS
generates a sequence of phonemes and stress markers, which is fed to the speech synthesis
module. The resultant speech signal is played out on a speaker or a headphone. Whenever a
hypertext link is encountered in the document, the web reader reads out the title of the link.
Then the user can select one of the several options for navigating through the HTML tree
either using a keyboard or via spoken commands. The default behaviour of the browser is
to wait for a pre-determined period of time and then continue with reading out the current
document. For reading out Hindi, the text must be available in the web page, in a suitably
coded form for display in the Devanagari script. Subsequent processing is similar to Indian
English, except that the Devanagari script, coded in Roman alphabet, has to be interpreted.
Section 6. gives some information about display/printout in Indian languages.

Details of the TSS and the HTML document processor are given in the following sections.

 Text
parser

Audio
player

 User
control

Follow a link
Continue
New URL

 HTML doc
URL TTSRetrieve/parse

Figure 1. A block diagram of the web reader.

Indian accent text-to-speech system for web browsing 115

3. Text-to-speech system

3.1 Background

Text-to-speech (TSS) conversion has to be performed in two steps: (a) text to phoneme con-
version and (b) phoneme to speech conversion. In the second step, we face the ‘core’ problem
of speech synthesis, viz. that acoustic manifestations of phonemes are context dependent and
transitions between phonemes carry vital perceptual cues. Synthesis of continuous speech
therefore cannot be done just by ‘cut-and-paste’ of individual words/phonemes.

Two parallel approaches to overcome this problem are as below.

(a) Concatenationmethod uses cut-and-paste, but larger splices of natural speech, e.g. syl-
lables, diphones are selected as units, so that immediate contextual effects are captured.
Also, the splices are to be concatenated at ‘steady-state’ of speech.

(b) In theGenerativemethod, speech is generated from some kind of speech production model
and the control parameters of the model are varied usually by context-dependent rules.
‘Formant’ synthesizer is a very widely used generative synthesizer which uses a speech
production model based on ‘formant’ (i.e. resonance) frequencies.

In Indian language synthesis, both methods were used with success. A Hindi/Urdu TSS
was developed at Deccan College, Pune, using demi-syllable concatenation (Bhaskararaoet
al 1994). Indian Statistical Institute, Calcutta has developed a concatenation based Bengali
synthesizer and has put it into applications (Danet al 1995). On the other hand, at the
Tata Institute of Fundamental Research (TIFR) we have developed a synthesizer for Indian
languages, using formant synthesis (Furtado & Sen 1996). The Central Electronic Engineering
Research Institute, New Delhi has also developed Hindi synthesizers using the same technique
(Agrawal & Stevens 1992).

Each method has its pros and cons. In general, concatenation synthesis is better ‘within
a segment’ whereas formant synthesis is better ‘across the segments’. Without going into a
detailed comparative study, we can say from practice that for quality concatenation synthesis,
we need big segment inventory – currently an unlikely proposition for Indian languages. Also,
a generative method is more flexible for adaption to different languages and that is an added
incentive in India, a multi-lingual country.

3.2 Overview of TIFR TSS

TIFR TSS is based entirely on software. It is capable of working virtually on any platform.
There are versions on Unix/Linux and also on DOS/Win98. It can be adapted to any standard
multi-media kit (e.g. ‘Soundblaster’). The synthesizer works in ‘real-time’, meaning that it
is possible to ‘continuously read out’ from a passage by multiple-buffered I/O. It currently
supports four voice types and variable speaking rate.

As mentioned earlier, the text-to-speech conversion is done in two steps: (i) the front end
text analyzerconverts text into a phoneme string, (ii) speech waveform is then generated from
this phoneme string. The TSS currently can optionally work for Hindi or Indian English, just
by changing the front-end text analyzer which generates the phonemes and stress markers
corresponding to the given Hindi/English text. The Hindi and Indian English text analyzer
were built in line with Bhaskararaoet al (1994) and Sen (2000) respectively.

The phoneme-to-speech conversion is realized in two stages: (a) Conversion of the specified
phonemes into corresponding time-varying acoustic–phonetic parameters, by means of a set of

116 Aniruddha Sen and K Samudravijaya

Phoneme-to-Speech
Formant Synthesizer

Text Processor
 Hindi Text
 Processor

Indian English

Text Output
from Web Parser

Hindi English

Indian speech sound

Phoneme-to-acoustic phonetic
Parameter conversion by rule for

Speech Production Model
Source-Filter

Acoustic-Phonetic Parameters

Digital Speech Samples

Phoneme String with
Stress Markers

Text Pre-processor

D/A and Dealiasing Filters

Analog Speech

Figure 2. Text-to-speech system for the web reader.

context-dependent rules, suitable for Indian pronunciation and (b) conversion of the generated
acoustic–phonetic parameters into corresponding speech (digital samples) by a source-filter
speech production model. A preliminary version of this phoneme-to-speech conversion system
was described by Furtado & Sen (1996). Subsequently, rules and data were continuously
improved. A few strategies were also changed, which are described in § 3.4. This stage is
virtually identical for Hindi and Indian English. If any additional (structurally similar) Indian
language is to be incorporated into the TSS in the future, minimal changes will be needed in
the phoneme-to-speech subsystem. Only the text analyzer appropriate for the new language
needs to be added.

Text analyzers and the two stages of the phoneme-to-speech conversion system are dis-
cussed in the following sub-sections in some detail. Figure 2 shows the schematic of the entire
synthesizer with Hindi/Indian English text analyzers as alternatives.

Indian accent text-to-speech system for web browsing 117

Figure 3. The pronunciation of the number 1312345
in a Hindi document.

3.3 Text analyzer

Input to this stage is Hindi/English text and the output is a set of phoneme symbols and
stress markers, indicating pronunciation and accent in either Hindi or Indian English. The
phoneme repertoire used is the same at the moment for Hindi and Indian English. It is in a
sense a superset of the phonemes of both languages, with considerable overlap. This helps to
pronounce English words used in Hindi text and Indian names embedded in English text. The
stress markers currently include fullstop, semi-colon, comma, interrogation, exclamation and
end-of-word symbols.

Hindi and Indian English text analyzers are two completely different units. But the under-
lying methodology of text processing is by and large the same for both and is being described
hereafter. The special aspects of each are discussed, when appropriate.

The textual message is first passed on to the main parser, which segments the text and
classifies each segment into one of the following:

(a) Date, (b) time, (c) currency, (d) alphanumerics (alphabets and numbers in the same
word), (e) acronym (single characters punctuated by periods), (f) abbreviations (text termi-
nated by a period), (g) special characters (e.g. +, -), (h) numbers (digits and optional decimal
point), and (i) text words i.e., the words of the language and names. Processing the last men-
tioned category is the main task of the text analyzer.

After classification, a detected date, time or currency is appropriately interpreted and the
pronunciation generated. An alphanumeric or acronym is pronounced character by character.
Pronunciation of an abbreviation (e.g. Dr.) is found from ‘Abbreviation table’. (If no match is
found, it is treated as an alphanumeric.) Pronunciation of each special character is obtained
from ‘Character table’. Special characters for punctuation (e.g. comma, fullstop, question
mark) are utilised to generate proper punctuation or accent. Some special characters have
different pronunciations in text and mathematical environments (e.g. – as hyphen or minus).
In future, we intend to detect the environment and generate such pronunciation accordingly.

A number string is divided into fields, and keywords corresponding to billion, million,
thousand etc. are inserted. For example, 1312345 is pronounced asOne million, three hundred
and twelve thousand, three hundred and forty fivein English and as shown in figure 3 in
Hindi. Digits after the decimal point are pronounced character by character.

The conversions described so far are merely of aroutinenature. Thecore problemis to obtain
pronunciation oflanguage words, a task which is non-trivial. We are currently accomplishing
the task in the following steps.

(a) The word is looked up in a phonetic dictionary. We have prepared a Hindi phonetic dictio-
nary of about 8000 words and an Indian English one of about 3000 words. The vocabulary
of both, particularly of the latter, will be gradually enhanced. The dictionary access is
done by indexing and binary search, which makes the look-up quite fast even on plat-
forms with memory constraints, such as DOS. If the look-up succeeds, the pronunciation
is obtained from the dictionary.

(b) If no match is found, a ‘morphological analysis’ is done to separate various components
of the word i.e. prefixes, suffixes and roots. The prefixes and suffixes, however, have
quite different connotations for Hindi and English. It is possible to have ambiguities in
morphological analysis (e.g. cared= care+ed or= car+ed). In such cases, a few ‘strong’

118 Aniruddha Sen and K Samudravijaya

root alternatives are generated as per the letter context and each of them is searched for
in the dictionary, in an order determined by some heuristic rules. If a match is found,
the pronunciation of the root is obtained from the dictionary. The pronunciation of the
prefixes and suffixes are then merged with it, following suitable contextual modifications.

(c) If there is no match even now, we select the ‘best’ root alternative and fall back to a set of
‘Letter-to-Phoneme’ rules. These rules are quite different for Hindi and English and are
quite elaborate for the latter, as its script is not phonetic. Basic (default) pronunciation
of letter(s) are obtained from a ‘symbol table’. In Hindi, each character is assigned a
pronunciation whereas the symbol table for English contains relevant letter clusters in
addition. Prior to table look-up, context-dependent rules are applied on the text character
string. These are fewer and simpler for Hindi. But decision on deletion of ‘Schwa’ (first
letter of the Devanagari script), following a consonant, is complicated. In English, some
important rules implemented so far are the ones regarding special pronunciation of word-
final ‘e’, word initial X/Z and double consonants. Rules regarding pronunciation of ‘c’
(ch/sh/k) and ‘g’ (j/g) under various contexts are also incorporated. Clearly, such rules
cannot be ‘foolproof’, but merely selects ‘most probable’ option.

(d) The pronunciation of various morphs of the word (obtained in whichever way) are then
merged together to form the pronunciation of the whole word. The influences of pre-
fix/suffix/root on each other’s pronunciation are taken into consideration.

(e) Ultimately, ‘Phonological Rules’ are applied to the entire phoneme string thus obtained.
These take care of contextual modification of pronunciation, e.g. ofSandhis(compound
words) in Hindi. The sets of phonological rules are completely different for Hindi and
(Indian) English.

An additional problem for an Indian English text processor is to properly ‘pronounce’ Indian
names embedded in an English text. In fact, this itself is a strong motivation for using ‘Indian
English’, rather than using standard English synthesizers commercially available. As spelling
conventions for standard English words and Indian names are not identical, different letter-
to-phoneme rules are needed to generate their pronunciation. Unfortunately, Indian names
cannot be detected unambiguously. Also, no clear-cut convention to represent ‘typical’ Indian
phonemes (e.g. retroflexed/dental, aspirated/non-aspirated stop consonants, nasal vowels) in
Roman script is followed. To do the best in the given situation, we have adopted a method
which generates a ‘score’, depending on the position of the word in the sentence (first or not),
whether the word starts with a capital, whether it is there in the (domain specific) ‘Name
dictionary’ and which prefixes/suffixes (if any) were detected. The method, although not
foolproof, works reasonably well. Currently, we are making a statistical analysis of letter
clusters present in Indian names and English words. For example, ‘bh’ or ‘sr’ clusters are
rare in English, whereas ‘ous’, ‘tion’ etc. are uncommon in Indian names. This, coupled with
grammatical validity check for noun, will improve this decision in future.

Figure 4 outlines the scheme for the text processor.

3.4 Phoneme to acoustic–phonetic parameter conversion

This module generates a set of acoustic–phonetic parameters, corresponding to the input
phoneme string, for every small time interval (currently, 5 ms) of speech. The parameters are
of two types: (a) fixed, which decides the voice type, and (b) variable, which corresponds to
the changes of phonetic contexts during speech.

The variable parameters used are: (a) amplitude of voicing for vocal sounds, (b) three ‘for-
mant’ (resonance) frequencies, (c) the corresponding bandwidths, (d) amplitude of ‘frication’,

Indian accent text-to-speech system for web browsing 119

Classification

Word in
Dictionary?

A Text Word

Number
(Date,time etc.)

Misc. Types

Language word
(or name)

Yes

Separate Root,
Prefix, Suffix
Tentatively

Alternatives
Generate Root

Misc. words
Processors of

Get Pronun.
from Dict.

Try Next

Number
Processor

Any more?

Select ‘Best’
Root Alternative

NoYes

No Root Alternative
in Dict.?

Yes

Phoneme Rules
by Letter to

Get Root
Pronunciation

Modify Prefix/
Suffix Pronun.

 & merge

Apply
Phonological Rules

Get Root Pronun.

To Formant Synthesizer

No

Figure 4. Text analyzer of the web reader.

120 Aniruddha Sen and K Samudravijaya

for noise-like sounds, (e) five amplitudes for various bands of energy in the noise spectrum,
(f) amplitude of ‘aspiration’, for h-type of sounds, (g) spectral tilt and ‘open quotient’ of
voicing, to shape the spectrum, and (h) pitch.

Acoustic manifestations of various phonemes (in terms of the above parameters) are not
fixed and are greatly influenced by the context. Separate sets of rules, usually corresponding
to the immediate diphone contexts, were thereby formulated to generate each parameter track.
To avoid ‘combinatorial explosion’, phonemes are grouped into different classes, according
to the places of articulation (e.g. vowel, stop consonant, nasal). Rules are selected as per the
two adjacent phoneme classes (e.g. silence-to-vowel, nasal-to-stop), but they operate on the
phoneme data of individual elements.

The rules are encapsulated in a very compact and flexible organisation of a three-
dimensional ‘interpolation table’. Each entry corresponds to the current phoneme class, the
next phoneme class and the parameter type. Each entry specifies an ‘interpolation type’ (i.e.
the manner in which the parameter should be varied) in the given situation and the parameter
track is computed according to the interpolation type selected. For example, the interpolation
may be ‘linear’ (where the change is gradual) or abrupt, like a sudden jump and then a slow
glide. New interpolation types are introduced and the old ones modified as per the results of
our acoustic–phonetic studies.

Formant frequency is singularly the most important parameter type for speech perception
and synthesis. Special care is therefore needed to generate ‘formant’ tracks. Till recently, we
employed the following ‘Modified locus equation’ of Klatt (1987) to generate formant tracks:

Fo = Fl + k(Fv − Fl),

whereFo is the formant frequency at onset/offset of the vowel andFv is the steady vowel
formant frequency.Fl (called ‘locus frequency’) andk are constants which are determined
experimentally and are tabulated for each formant of each consonant.

However, as storage is not a problem in modern computers, currently we are shifting
towards storing all the relevant sets of formant tracks and then finding the desired value by
table interpolation.

The main steps taken for phoneme-to-parameter conversion are:

(1) The phoneme string is parsed and each phoneme identified. Silence is appended at both
ends. Each ‘geminate’ is replaced by a single phoneme with increased duration.

(2) Entire duration is divided into a set of ‘steady-state’ segments and ‘transition’ segments.
Intrinsic duration of each segment is obtained by table look-up and is then modified as
per the adjacent phoneme contexts.
However, in order to capture the dynamics of speech better, we are currently moving away
from the concept of ‘steady-state’. In the new scheme, a phoneme is composed of one or
more segments and transitions are ‘superimposed’ on each segment.

(3) For a given parameter and a given phoneme, the transition segment is first interpolated
and then the steady state is interpolated. Corresponding interpolation types are obtained
from the appropriate tables.

(4) Step 3 is repeated for all variable parameters for a given phoneme.
(5) Steps 3 and 4 are repeated for each phoneme.
(6) Ultimately, the pitch contour is superimposed on the utterance.

The synthesis rules employed are completely ‘Indian’ and all typical Indian speech sounds
(e.g. retroflexed and dental stop consonants or nasalized vowels) are covered. With slight

Indian accent text-to-speech system for web browsing 121

modification of this module (and in conjunction with a suitable front-end text analyzer),
synthetic speech can be generated in most Indian languages and also in Indian English. This
assumes special significance in the context of accessing web information in the multi-lingual
environment we envisage.

3.5 Parameter to (digitized) speech synthesis

This is implemented by a slightly modified version of a standard source-filter speech produc-
tion model (Allenet al1987; Klatt 1980). The vocal tract is modelled as a number of bandpass
filters, with the ‘formant’ frequencies as their mean frequencies. The source of excitation to
such filters is either a train of quasi-periodic pulses (for voiced sounds like vowels) or ran-
dom noise (for noisy sounds like ‘s’ or the burst of a stop consonant). For sounds like ‘voiced
consonants’ (e.g. ‘b’), both these sources are simultaneously activated.

The filters are configured in cascade to generate periodic voiced sounds and in parallel to
generate noise spectrum. As aspiration noise is generated inside the glottis, it is modelled by
passing random noise throughcascadefilters.

The equations of digital resonators are given by,

y(nT) = Ax(nT) + By(nT − T) + Cy(nT − 2T)

wherey(nT), y(nT − T) andy(nT − 2T) are the current and two previous output samples
andx(nT) is the current input sample. The resonator co-efficientsA, B, C are given by:

C = − exp(−2πBw)T ,

B = 2 exp(−πBwT) cos(2πFT), and

A = 1 − B − C,

whereF is the particular resonance (formant) frequency,Bw is the corresponding bandwidth
andT is 1/(sampling rate). Currently, a sampling rate of 16,000 Hz is used.

The nasal vowels and consonants are implemented by a pole-zero pair. Their frequencies are
maintained nearly the same for non-nasalized sounds and are kept suitably apart to generate
the effect of nasalisation. The anti-resonator equations are given by,

y(nT) = A′x(nT) + B ′x(nT − T) + C ′x(nT − 2T),

wherex(nT), x(nT −T) andx(nT −2T) are the current and the two previous input samples.
Anti-resonator co-efficientsA′, B ′, C ′ are given by

A′
= 1/A, B′

= −B/A and C ′
= −C/A.

The frequency of the voicing source corresponds to the given pitch frequency. The shape of
the source pulse is important for the “naturalness" of synthetic speech. To generate a ’natural’
source, we use the standard waveform equation,

Ug(t) = at2
− bt3

wherea, b are constants, determined experimentally.
Currently, we are conducting some experiments for better source modelling and the results

have been applied successfully for generating a different voice type. This, in turn, was applied
to the web reader – with different voices applied for reading different types of messages.

The other variable parameters include spectral tilt and open quotient, which are not impor-
tant for intelligibility, but contributes to the quality and “naturalness" of the synthetic speech.

122 Aniruddha Sen and K Samudravijaya

4. HTML document processor

The function of the HTML document processor is to retrieve the specified hypertext docu-
ment from the internet and generate textual output suitable for feeding the TSS. It consists
of an HTML retrieval utility, a public domain SGML parser, and a text parser developed
for web reader application. A Unix utility (‘wget’) or, optionally, a java script is used to
download the HTML document specified by the user. An SGML parser ‘NSGMLS’ (see
http://www.jclark.com/sp/nsgmls.htm for details) validates an SGML document and prints
a simple text representation of its Element Structure Information Set. A ‘perl’ based text
parser extracts relevant information from the detailed output of NSGMLS. The text parser
detects special texts such as titles, text in special font types such as bold or italic etc.
As the TSS is capable of generating multiple voice types (male/female, low/high pitch),
the system conveys such non-textual information to the user via specialized voice types
while reading these special types of textual information. The text parser can detect some
redundant information (like duplicate specification of email address) in the HTML doc-
ument and discard it. Whenever a uniform resource locator (URL) is encountered within
the document, the parser constructs a structure comprising the location of the URL link in
the document and the URL address. It also raises a control flag at that point in the doc-
ument. Such control flags are subsequently used by the web reader to provide web navi-
gation facilities to the user as described in the next section. HTML documents sometimes
contain e-mail addresses. The constituents of e-mail addresses are composed of alphanu-
meric characters, and are not, in general, regular words of the language. Hence the text
corresponding to e-mail addresses has to be processed in a special manner for broadcast
in audio mode. So, when a link to an e-mail address is encountered, the parser processes
the e-mail address into separate (character) units so that the e-mail address can be spelled
out by the TSS. The text parser ignores links to hypermedia documents other than text
and audio (such as images, video, frame information, postscript file) so that the web con-
tents can be delivered in audio-only output mode. The text between successive URL links is
passed on in chunks of a line or a paragraph by the text parser to the TSS for synthesis of
speech.

5. Web reader system implementation

The web reader is the result of integration of HTML document processor and TSS with the
audio output module of the computer, and wrapping it up with control structure for web
navigation. A flow chart of the human–computer interaction in a web reader is shown in
figure 5.

The output of the HTML document processor is the text to be read out to the user along
with control information, if any. If the output is not a URL, the text is simply passed to TSS
for generating the speech signal of appropriate voice type. The normal text is read out with a
default voice type. Alternate synthesized voice type is used to indicate title or emphasized text.
This is a first step in the direction of indicating the type of information being conveyed to the
user in audio mode. If the output of the document processor is a hyper link, the user is offered
a choice either to follow the link or continue listening to the rest of the current document.
At this stage, the user also has the option of returning to the document previously visited
(equivalent to the back button in a browser). The system waits for 3 seconds for the user’s
response. If the user does not exercise his option within 3 seconds, the system follows the

Indian accent text-to-speech system for web browsing 123

end of doc text http link email link

read

recursive
invocation

wait 3 secs
follow link

address
email

no no no no

no

yes yes yes yes

yes yes

response
no

output of

next info HTML doc processor

exit

speaker

speaker

TTS

TTS

Figure 5. A flow chart of interaction of web reader with user.

default path, i.e. continues to read the current document. On the other hand, if the user chooses
to follow the HTTP link, the reading of the current document is suspended, and a daughter
process is spawned. The daughter process invokes a new instance of the web reader with the
address of the HTTP link. When the browsing of this (new) document is over, the daughter
process terminates, and the control is returned to the parent process. The parent process
resumes the reading of the current document. In this manner, the user can navigate through
inter-linked hyper text documents. In addition, whenever an email address is encountered
in a document, the web reader offers the user a choice of listening to the email address (in
spelling mode).

The process of web navigation within the web reader involves input from the user. The
input is the selection of one of the 3 alternatives. The user can choose (1) to follow a hyper
link, (2) to continue browsing the current document, or (3) to return to browse the previously
visited web document. In case of a link to an e-mail address, the alternative option (1) is
to read the e-mail address. The user’s selection can be fed to the system either through a
keyboard or, optionally, in voice mode, provided the system is equipped with a microphone.
In the former mode, the user types in the appropriate digit to indicate his choice. In the latter
mode, the user speaks the appropriate keyword, and a speech recognition module recognizes
the spoken word, and passes on the choice to the control unit of the web reader. A few

124 Aniruddha Sen and K Samudravijaya

isolated word speech recognition systems in Indian languages have already been developed
and reported (Samudravijayaet al 1998; Raoet al 1996). The speech recognition module
used with the web reader uses hidden Markov model (Rabiner 1989) to recognize the user’s
spoken commands.

An isolated word speech recognition system, implemented using hidden Markov models,
was integrated with the web reader. This empowers the user to navigate through webpages by
exercising his option, in voice mode, whenever a hyper link is encountered. The vocabulary
consists of 4 words: (a) go back, (b) continue, (c) follow link, and (d) read e-mail. At any
given time, the active vocabulary consists of 3 words. The words “go back” and “continue”
are always active. The word “follow link” is active whenever a hyper link to another HTML
page is encountered. Similarly, the word “read e-mail” is active whenever an e-mail address
is encountered inside an HTML document. The user can speak the appropriate word within
the active vocabulary to select the course of action.

In the current implementation, a 10 state left-to-right hidden Markov model (HMM)
has been employed. During the training phase, a HMM was trained for every word
using multiple repetitions of the word by 20 speakers. The public domain HTK software
(http://htk.eng.cam.ac.uk/index.shtml) was used for training and testing the models. When-
ever a hyperlink is encountered during web browsing using the web reader, the user is
prompted (in voice mode) to exercise his option. The spoken word is matched with model of
each of the 3 active words. Action is taken corresponding to the word whose model matched
the spoken word best.

6. Indian language display

There are several free packages for X11 and MS-Window platforms which can be utilised for
displaying and printing text in Indian language scripts. We list a few of them here.

(a) Devanagari text can be inserted within alatexfile usingdevnagsoftware, available at,
(ftp://ftp.tex.ac.uk/tex-archive/language/devanagari/distrib/).

(b) For the same purpose,itranscan also be used. It is available at:
(http://www.aczone.com/itrans).
Both devnaganditrans use simple transliteration scheme to represent Devanagari char-
acters in Roman script.

(c) The GIST technology from CDAC facilitates interactive web application development in
Indian languages. It follows the ISCII code to represent Indian languages in native scripts.
This can be obtained from:
(http://www.cdac.org.in/html/gist/gistidx.htm).
The ISCII code also forms the basis of representing Indian language scripts inunicode–
the universal binary code to represent the scripts of all the languages of the world. Its web
address is:
(http://www.unicode.org).

(d) An ISCII plugin has been developed by IIIT, Hyderabad which enables a user to display
an HTML page, coded in ISCII format, in any of the brahmi-derived scripts in any font of
the user’s choice. The plugin also enables a web search in Indian languages. The plugin
has been tested on windows as well as Unix operating systems and with Internet Explorer
and Netscape browsers. The plugin can be downloaded from
http://www.iiit.net/amba/isciiplugin/index.html.

Indian accent text-to-speech system for web browsing 125

Figure 6. An illustration of Indian language display on internet.

Figure 6 illustrates the display of a Hindi web page using one such package (devnag
software).Devnagrepresents Hindi characters using Roman script. Figure 6 shows a Hindi
sentence in Devanagari script as well as the corresponding representation (in Roman script)
by the Devnag software. This code in Roman script can be fed to the text analyzer to generate
the sequence of phonemes and thence to synthesize speech.

Irrespective of which of the above packages is used for script display, the text analyzer can
convert the text to appropriate phoneme sequence, as long as there is a one-to-one correspon-
dence between the code and the underlying native script.

7. Conclusions

In this paper, we have presented initial efforts for utilizing spoken language as a means of
communicating web information to common Indian people. The preliminary goal of integrat-
ing all the diverse elements into one system has been achieved. But this is just the beginning
and there is a long way to go.

As for the individual elements, the web parser is being improved upon for better detection
and classification of textual information. The web parser needs to be augmented to handle
frames in web pages. The intelligibility of the TSS is good, i.e., the messages spoken are under-
stood reasonably well. But the “naturalness” of the synthetic speech needs to be improved. It
is therefore suitable for delivering only one small segment of message at a time. The quality
and “naturalness” are being continuously improved up on by research in areas such as source
modelling and prosody, and the results are being applied to the system.

Another issue which calls for serious attention is structuring and formatting of audio output.
Ideal ways of presenting stored information in audio and video modes are not necessarily
identical. Hence, there is a need to design and develop special user interfaces for delivering
web information by speech.

126 Aniruddha Sen and K Samudravijaya

Integrating an Indian language speech recognition system with the web reader is another
task which has been undertaken. Currently, it is being used to offer users some simple
choices. The menus can be expanded to ultimately offer users a keyboard-free alternative.
That will help especially the blind and the semi-literate, and will open up possibilities for
telephonic access of information.

We thank Prof. R K Shyamasundar for encouragement and comments. We also thank the
Ministry of Information Technology, Government of India, for supporting the work reported
here.

References

Agrawal S S, Stevens K 1992: Towards synthesis of Hindi consonants using KLSYN88.Proc. Int.
Conf. on Spoken Language Processing 92, Alberta, Canada, pp 177–180

Allen J, Hunnicutt M S, Klatt D H 1987From text to speech: The MIT talk system(Cambridge, MA:
University Press)

Bhaskararao P, Peri V N, Udpikar V 1994 A text-to-speech system for application by visually handi-
capped and illiterate.Proc. Int. Conf. on Spoken Language Processing 94, Tokyo, Japan, pp 1239–
1241

Dan T K, Datta A K, Mukherjee B 1995 Speech synthesis using signal concatenation.J. Acoust. Soc.
India, 18: 141–145

Furtado X A, Sen A 1996 Synthesis of unlimited speech in Indian language using format-based rules.
Sādhan̄a 21: 345–362

Klatt D H 1980 Software for a cascade/parallel formant synthesizer.J. Acoust. Soc. Am.67: 971–995
Klatt D H 1987 Review of text-to-speech conversion for English.J. Acoust. Soc. Am.82: 737–793
Lau R, Flammia G, Pao C, Zue V 1997 Webgalaxy - integrating spoken language and hypertext navi-

gation.Proc. Eurospeech’97, Rhodes, Greece (European Speech Communication Assoc., France)
pp 883–886

Rabiner L R 1989 A tutorial on hidden Markov models and selected applications in speech recognition.
Proc. IEEE77: 257–286

Rao P V S, Bhiksha Raj, Sen A, Mallavadhani G R 1996 A computer tutor with voice I/O in Hindi.
Knowledge based computer systems research and applications(eds) K S R Anjaneyulu, M Sasiku-
mar, R N Ramani (New Delhi: Narosa) pp 491–502

Samudravijaya K, Ahuja R, Bondale N, Jose T, Krishnan S, Poddar P, Rao P V S, Raveendran R 1998
A feature-based hierarchical speech recognition system for Hindi.Sādhan̄a 23: 313–340

Sen A 2000 Text-to-speech conversion in Indian English 1.Knowledge-based computer systems 2000
(Mumbai: Allied Publishers) pp 564–575

