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INDICATOR FUNCTION AND ITS APPLICATION
IN TWO-LEVEL FACTORIAL DESIGNS

BY KENNY Q. YE

SUNY Stony Brook

A two-level factorial design can be uniquely represented by a polynomial
indicator function. Therefore, properties of factorial designs can be studied
through their indicator functions. This paper shows that the indicator function
is an effective tool in studying two-level factorial designs. The indicator
function is used to generalize the aberration criterion of a regular two-level
fractional factorial design to all two-level factorial designs. An important
identity of generalized aberration is proved. The connection between a
uniformity measure and aberration is also extended to all two-level factorial
designs.

1. Introduction. Two-level factorial designs are the most popular designs
among experimenters. A 2s−k fractional factorial design is said to be “regular”
if it is generated by k generators. The structures of regular fractional factorial
designs are described by group theory and well understood, as discussed in detail
by Dey and Mukerjee (1999). Unfortunately, the same theory and mathematical
tools cannot be applied to nonregular designs and there is no unified mathematical
representation for those designs in general. A recent paper by Fontana, Pistone and
Rogantin (2000) introduces indicator functions for studying fractional factorial
designs (with no replicates). In this paper, indicator functions are extended to
study general two-level factorial designs, with or without replicates, regular or
nonregular. As will be demonstrated in this paper, they constitute a very effective
tool for studying these designs.

This paper is organized as follows. In Section 2, the indicator function is defined
for all two-level factorial designs. In Section 3, indicator functions are related
to aberration of regular two-level factorial designs. Based on this relation, the
definition of aberration is naturally generalized to all two-level factorial designs.
In addition, an important property of the generalized criterion is also obtained.
In Section 4, the indicator function is applied to extend the connection between
aberration and a uniformity measure to all two-level factorial designs.

2. Indicator functions. Following the path-breaking paper of Pistone and
Wynn (1996), which applies computational algebraic geometry methods to study
statistics, Fontana, Pistone and Rogantin (2000) (henceforth FPR) introduce in-
dicator functions as a tool to study fractional factorial designs. Let D be a 2s
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full factorial design with levels being −1 and 1. The design points of D are the
solutions of the polynomial system {x2

1 − 1 = 0, x2
2 − 1 = 0, . . . , x2

s − 1 = 0}.
A fractional factorial design F is a subset of D . Notice that F could be any sub-
set of D without any restriction on its run size. FPR define the indicator function
of F as follows.

DEFINITION 1 (FPR). Let D be a 2s design. The indicator function F of its
fraction F is a function defined on D such that

F(x) =
{

1, if x ∈ F ,

0, if x ∈ D − F .

Using the theory of Gröbner basis and algebraic geometry, FPR show that each
indicator function has a unique polynomial representation. A more elementary and
constructive but less elegant approach is given below.

The existence of an indicator function in a polynomial form follows immedi-
ately from the following two lemmas. The proofs of the lemmas are straightfor-
ward and are omitted here.

LEMMA 1. The indicator function of a single point a = (a1, a2, . . . , as) ∈ D
is

Fa =
∏s

i=1(xi + ai)∏s
i=1 2ai

.(1)

LEMMA 2. Let FA and FB be indicator functions of two disjoint designs
A and B , respectively. The indicator function of design A ∪ B is then

FA∪B = FA + FB .(2)

The uniqueness of the polynomial form can be established as follows. Define
contrasts XI (x) = ∏

i∈I xi on D for I ∈ P , where P is the collection of all subsets
of {1,2, . . . , s}. It is well known in experimental design that {XI , I ∈ P } forms
an orthogonal basis of R

2s
. Therefore, any function f on D is a unique linear

combination of 2s contrasts. Since each contrast is a monomial on D , f has the
polynomial form

f (x) = ∑
I∈P

bIXI (x).(3)

Note that since x2
i = 1 on D for i = 1, . . . , s, the monomials in the polynomial

form are “square free.” Therefore, an indicator function has the unique square-free
polynomial representation on D .

The above definition, however, only deals with unreplicated designs. Designs
with replicates are often seen in practice and are of theoretical interest as
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well. For example, Lin and Draper (1992) identify two nonisomorphic five-
column projections of the twelve-run Plackett–Burman design. In one of the two
projections, a design point repeats twice. In order to study these designs, the
definition of indicator functions is generalized as follows.

DEFINITION 2. Let D be a 2s design and A be a design such that ∀a ∈ A,
a ∈ D but a might be repeated in A. The generalized indicator function of A can
be obtained as

F(x1, . . . , xs) = ∑
a∈A

Fa(x1, . . . , xs),

where Fa is the indicator function of point a.

By this definition, the value of the indicator function of a design A at point
a ∈ A is the number of appearances of a in A. By the same argument as
for the regular indicator function, a generalized indicator function has a unique
polynomial representation as in (3). In the remainder of the paper, I will refer
to a generalized indicator function as “indicator function.” The new definition of
indicator function allows one to study general two-level factorial designs, with or
without replicates. Note that under the new definition, Lemma 2 holds for any two
designs A and B and the disjoint condition is no longer needed.

One of the recent advances in experimental design is on the hidden projection
properties of fractional factorial designs; see Wang and Wu (1995) and Cheng
(1998). One might be interested in the projections of a design when one or more
factors in the original design are no longer considered. The remainder of this
section will show that indicator functions of projections can be easily obtained
given the indicator function of the original design. Let B be a projection of a
design A onto a subset of factors. It contains the same design points of A but
each point only has coordinates of the factors that are projected onto. Therefore,
projections often have replicated points. The following lemma is obtained directly
from the definitions.

LEMMA 3. Consider design A. Without loss of generality, let B be its
projection to {xl+1, . . . , xs} and D l be the 2l design on {x1, . . . , xl}. The
(generalized ) indicator function of B is then

FB(xl+1, . . . , xs) = ∑
(x1,...,xl)∈D l

FA(x1, . . . , xl, xl+1, . . . , xs).(4)

PROOF. For a2 /∈ B , by definition, FA(a1,a2) = 0 for all a1 ∈ D l . Hence
FB(a2) = 0. For a2 ∈ B , FA(a1,a2) is the number of appearances of (a1,a2)

in A. Hence,
∑

a1∈D l FA(a1,a2) is the number of appearances of a2 in B . �

The following theorem is the same as Proposition 8.2 in FPR, who present it
without introducing the generalized indicator functions.
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THEOREM 1. Let A, B , D l be as defined in Lemma 3. Let FA = ∑
I∈P bIXI

be the indicator function of A. Let P1 be the collection of all subsets of
{l + 1, . . . , s}. Then

FB(xl+1, . . . , xs) = 2l
∑

I∈P1

bIXI .(5)

PROOF. Let P2 be the collection of all subsets of {1, . . . , l}. We have

FA = ∑
I∈P1

( ∑
J∈P2

bI∪J XJ

)
XI .(6)

Applying (6) to (4), we have

FB(x1, . . . , xl) = ∑
I∈P1

( ∑
J∈P2

bI∪J

( ∑
(x1,...,xl)∈D l

XJ

))
XI .(7)

From the definition of XJ , it is easy to see that
∑

(x1,...,xl)∈D l XJ = 0 for all
J ∈ P2 − {∅} and

∑
(x1,...,xl)∈D l X∅ = 2l . Equation (5) follows immediately. �

This section defines the indicator function which is unique for each factorial
design. Therefore, it can be used to study the properties of a design. In the next
section, a connection between the indicator function and aberration of a design is
explored.

3. Orthogonality and aberration criterion. One important design property
is orthogonality. A related criterion is the minimum aberration that was first
proposed by Fries and Hunter (1980) for regular fractional factorial designs. It
is discussed in detail in Wu and Hamada (2000) which also provides a catalogue
of minimum aberration designs.

3.1. Indicator function and orthogonality. FPR study the orthogonality of
designs using indicator functions. Although their concern is only about fractions
with no replicates, most of their arguments are still valid for generalized indicator
functions and designs with replicates. A key result in their paper links the
coefficient of indicator functions to the orthogonality between contrasts.

Consider two contrasts XI and XJ on the 2s design D . XI and XJ are
orthogonal on design D since

∑
x∈D XI (x)XJ (x) = 0 for I �= J . Similarly, the

two contrasts are orthogonal on design A if and only if∑
x∈A

XIXJ = 0.(8)
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Let FA = ∑
I∈P bIXI be the indicator function of A. Denote the difference

between two sets I ∪ J − I ∩ J by I�J . Since x2
i = 1 on D , we have XIXJ =

XI�J . The left-hand side of (8) can be simplified as follows:

∑
x∈A

XIXJ = ∑
x∈D

FAXIXJ = ∑
x∈D

( ∑
K∈P

bKXK

)
XI�J

= ∑
K∈P

bK

∑
x∈D

XKXI�J = bI�J

∑
x∈D

1 = 2sbI�J .

Therefore, XI and XJ are orthogonal on A if and only if bI�J = 0 in FA. In
particular, bI = 0 if and only if XI is orthogonal to the constant term X∅.

What should be mentioned here are the J -characteristics used by Deng and Tang
(1999) as building blocks in defining their generalized aberration criterion. The
J -characteristics of a design closely relate to coefficients of its indicator function
and can be viewed as its orthogonality measure.

DEFINITION 3 [Deng and Tang (1999)]. Regard an n × s design as a set of
s columns A = {c1, c2, . . . , cs}. For any k-subset d = {d1, d2, . . . , dk} of A, define

Jk(d) =
∣∣∣∣∣

n∑
i=1

di1 · · · dik

∣∣∣∣∣,
where dij is the ith element of column dj . The Jk(d) values are called the
J -characteristics of A.

Let I = {i1, i2, . . . , ik}, and d be the k-subset {ci1, ci2, . . . , cik }. From the
properties of indicator functions,

Jk(d) =
∣∣∣∣∣
∑
x∈A

XI

∣∣∣∣∣ =
∣∣∣∣∣
∑
x∈D

FAXI

∣∣∣∣∣ =
∣∣∣∣∣
∑
x∈D

∑
J∈P

bJXJ XI

∣∣∣∣∣
=

∣∣∣∣∣
∑
J∈P

bJ

∑
x∈D

XIXJ

∣∣∣∣∣ =
∣∣∣∣∣bI

∑
x∈D

X∅

∣∣∣∣∣ = 2s |bI |.

Therefore, the coefficients of indicator functions are the same as the signed
J -characteristics up to a constant. Given the signed J -characteristics of a design,
the design is uniquely determined. It should be noted here that, independently,
Tang (2001) also observes the one-to-one relation between a factorial design and
its signed J -characteristics.

3.2. Aberration of regular fractional factorial designs. Aberration describes
the orthogonality of a regular fractional factorial design. Consider a two-level
factorial design with s factors. For I ∈ P , its corresponding contrast XI is
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∏s
i=1 x

wi

i , where wi = 1 if i ∈ I and 0 otherwise. Since P has a one-to-one map
to the lattice {w = (w1,w2, . . . ,ws) | wi = 0,1}, the contrasts can be also denoted
as Xw. Indicator functions of regular fractions are discussed in detail by FPR.
Without loss of generality, consider a regular 2s−k fractional factorial design A
generated by k generating relations, {Xw(1) = 1, . . . ,Xw(k) = 1} such that Xw(i) = 1
for all x ∈ A. The k generating relations generate a group of defining relations
{Xw = 1 | w ∈ WA}, where

WA =
{

w
∣∣∣w =

k∑
i=1

uiw(i);ui = 0,1; i = 1, . . . , k

}
.(9)

The summation in (9) is as in Galois field GF(2). It can be easily verified that the
polynomial form of the indicator function of A is

FA = 1

2k
(Xw(1) + 1)(Xw(2) + 1) · · · (Xw(k) + 1)

= 1

2k

∑
w∈WA

Xw = ∑
w∈WA

2s−k

2s
Xw.

(10)

Note in (10), the coefficient bw of contrast Xw is 2s−k

2s if w ∈ WA and 0 otherwise.
A contrast Xw is also called a word with length ‖w‖ = ∑s

i wi . The word-length
pattern of a regular fractional factorial design A is defined as {α1(A), . . . , αs(A)},
where

αj (A) = #
{
w ∈ WA

∣∣‖w‖ = j
}
.(11)

A connection between the word-length pattern of a design and its indicator
function can be observed from (10) and (11),

αj (A) = ∑
‖w‖=j

(
2s

n
bw

)2

,(12)

where n is the number of design points in A and bw gives the coefficients of Xw

in the indicator function. The aberration criterion of regular fractional factorial
designs is defined as follows.

DEFINITION 4. Given two regular fractional factorial designs A1 and A2,
design A1 is said to have less aberration than A2 if there exists r such that

α1(A1) = α1(A2), . . . , αr−1(A1) = αr−1(A2), αr(A1) < αr(A2).

A design has minimum aberration if no other design has less aberration.

The aberration criterion extends the resolution criterion. The latter only
compares the length of the shortest defining words while the former compares
the numbers of defining words of each length. Therefore, designs with the same
resolution might be different in aberration. For a detailed discussion, see Wu and
Hamada (2000).
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3.3. Generalized aberration. A nonregular two-level factorial design A does
not have generating relations and defining relation groups. Therefore, (11) cannot
be used to define the word-length pattern of a nonregular design. However, one can
use (12) to define the word-length pattern of any two-level factorial design, regular
or nonregular.

DEFINITION 5. Let A be a two-level factorial design and FA = ∑
I∈P bIXI

be its indicator function. Its word-length pattern is {α1(A), . . . , αs(A)}, where

αj (A) = ∑
‖w‖=j

(
2s

n
bw

)2

= ∑
#I=j

(
2s

n
bI

)2

.

Based on the generalized definition of word-length pattern, the definition of
the aberration criterion for a regular fractional factorial can be applied to all two-
level factorial designs, regular or nonregular, with or without replicates. The next
theorem gives an important property of generalized word-length pattern which
justifies this generalization. The following lemma was given by FPR for designs
without replicates. Nonetheless, their proof applies directly to the general two-
level factorial designs.

LEMMA 4 (FPR). Let A be an n × s two-level factorial design. Let FA =∑
I∈P bIXI . Then b∅ = n/2s .

THEOREM 2. Let A be a fraction of a 2s design D with n runs. Its word-
length pattern {α1(A), . . . , αs(A)} is as defined in Definition 5. We have

s∑
j=1

αj(A) = 2s(n2/n2) − 1,(13)

where n2 = ∑
x∈D F 2

A(x). For designs with no replicates,

s∑
j=1

αj (A) = 2s

n
− 1.(14)

PROOF. Let the indicator function of A be FA(x) = ∑
I∈P bIXI . Hence,

∑
x∈D

F 2
A(x) = ∑

x∈D

(∑
I∈P

bIXI

)2

= ∑
x∈D

∑
I,J∈P

bIbJ XI (x)XJ (x)

= ∑
I,J∈P

bIbJ

∑
x∈D

XI (x)XJ (x) = 2s
∑
I∈P

b2
I .
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From the definition,
∑s

j=1 αj (A) = ∑
I∈P−{∅} b2

I /b
2
∅

. From the lemma, b∅ =
n/2s . Hence (13) is obtained. For designs with no replicates, F 2

A(x) = FA(x) and
n2 = n; hence (14) is obtained. �

For a regular fractional factorial 2s−k design A, it is well known that fractions∑s
j=1 αj (A) = 2k − 1. This identity can be easily obtained through the theory of

defining contrast groups. It is, nonetheless, a special case of the above theorem.
The sum of word-length patterns is constant for all designs with the same
replication pattern. For designs with a high degree of replication, n2 is large
in (13). Therefore, they tend to have high aberration compared to designs with
less replication.

Recently, Deng and Tang (1999) and Tang and Deng (1999) generalized
resolution and aberration criterion to nonregular two-level designs based on the
J -characteristics. Coincidentally, the definition of generalized aberration criterion
in this paper is equivalent to the G2-aberration criterion in Tang and Deng
(1999). Without giving a particular reason, Tang and Deng (1999) seem to favor
G2-aberration criterion over other choice of Gp-aberration, which is equivalent to
αj (A) = ∑

#I=j (
2s

n
bI )

p . Their intuition is well justified by Theorem 2. For other
choice of p, the sum of word-length pattern is no longer constant for designs with
the same size and same replication pattern.

One application of the above theorem is to search for minimum aberration
designs using a uniformity criterion which will be discussed later in the paper.

4. Generalized aberration and uniformity. Uniformity (space filling prop-
erty) is another popular design criterion. Fang and Mukerjee (2000) find a connec-
tion between aberration and a uniformity measure for regular two-level factorial
designs. The uniformity measure that they used is defined in Hickernell (1998).

DEFINITION 6 (Hickernell). For design A as a collection of n design points
in [0,1]s , the centered L2-discrepancy measure of uniformity is

{CL2(A)}2 =
(

13

12

)s

− 2

n

∑
x∈A

s∏
j=1

(
1 + 1

2
|xj − 1/2| + 1

2
|xj − 1/2|2

)

+ 1

n2

∑
x,x′∈A

s∏
j=1

(
1 + 1

2
|xj − 1/2| + 1

2
|x′

j − 1/2| − 1

2
|xj − x′

j |
)
.

(15)

Rescaling a two-level factorial design to [0,1]s with levels at 1/4 and 3/4,
a connection between aberration and uniformity is found by Fang and Muker-
jee (2000).
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THEOREM 3 (Fang and Mukerjee). Let A be a regular design, involving
n = 2s−k runs of a 2s factorial. The centered L2-discrepancy measure of
uniformity in [0,1]s

{CL2(A)}2 =
(

13

12

)s

− 2
(

35

32

)s

+
(

9

8

){
1 +

s∑
r=1

αr(A)

9r

}
.(16)

With the definition of generalized word-length pattern for nonregular designs,
the above theorem extends to all two-level factorial designs, regular or nonregular,
with or without replicates.

THEOREM 4. Let A be an n × s run two-level factorial design. Then
the L2-discrepancy measure of uniformity

{CL2(A)}2 =
(

13

12

)s

− 2
(

35

32

)s

+
(

9

8

){
1 +

s∑
r=1

αr(A)

9r

}
.(17)

PROOF. The proof follows the same argument in Fang and Mukerjee (2000).
Note that “π(x)′yd” in their proof equals 2sbI . �

It can be easily seen from Theorems 2 and 4 that minimum aberration designs
should often agree with the most uniform design within the class of all two-
level designs of the same run size, regular or nonregular, with replicates or
without replicates. Following geometrical intuition, designs with a high degree of
replication tend to be less uniform than those with less replicates. This is implied
by Theorems 2 and 4. In general, designs with more replicates are less favored with
respect to aberration and uniformity criteria. This provides another justification for
the generalized aberration criterion.

Since the uniformity measure in (15) is much easier to compute than word-
length pattern, it would be a very good searching criterion for minimum aberration
design. Note that the first two terms of (15) need not be computed since they are
constant for two-level designs, and the last term can be simplified to

∑
x,x′∈A

s∏
j=1

(5
4 − 1

2 |xj − x′
j |

)
.

With the uniformity measure as searching criterion, a columnwise–pairwise
algorithm [Li and Wu (1997)] was used to search for minimum aberration designs
within balanced 12 × 5 two-level factorial designs. The search lasted only a few
seconds and found the well-known subdesign of 12-run Plackett–Burman design
with no replicates. Its word-length pattern is (0,0,10/9,5/9,0). The same method
was applied for 16-run designs and found designs that match with those found by
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Tang and Deng (1999). They construct the designs by only searching projections
of the third Hadamard matrix of order 16. While searching within subdesigns
of Hadamard matrices is very efficient, it is limited to designs with 4m runs.
Nonetheless, their search can also be speeded up by using the uniformity criterion.
Searching for minimum aberration designs within all two-level factorial designs of
a run size takes a longer time, but it can be applied to supersaturated designs and
designs with 4m + 2 runs. With a columnwise–pairwise algorithm and an easy-to-
compute searching criterion, it becomes plausible.

5. Conclusion. Traditional factorial design theory focuses on regular frac-
tions. But nonregular designs provide experimenters many more choices, espe-
cially more flexible run sizes. The group theory used to study regular fractions is
not suitable for studying general factorial designs. This paper introduces indicator
functions as a mathematical representation for general two-level factorial designs.
It provides a single mathematical framework for regular and nonregular designs,
and designs with or without replicates. In this paper, the effectiveness of indica-
tor functions is explored by extending several existing results on regular designs
to general factorial designs. First, word-length pattern and aberration criterion are
generalized to general factorial designs. A justification of such generalization is
also provided. Second, a relation between aberration and a uniformity measure is
also extended to general factorial designs. The two criteria are very much consis-
tent with each other. Designs of the same run size with a higher degree of replica-
tion tend to be less desirable with respect to both criteria.

This paper modifies the indicator function introduced by FPR to represent
designs with replicates. One of the referees pointed out another approach to
deal with replicates by Cohen, Di Bucchianico and Riccomagno (2001) which
introduces the replication number as a new pseudo factor. Such an arrangement
is useful in computing the Gröbner basis of the designs with replicates and is
complementary to the indicator function approach proposed here. For details on
other applications of computational commutative algebra in statistics, see Pistone,
Riccomagno and Wynn (2001).
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