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Abstract 

In this thesis, we discuss some properties of indicator polynomial functions. We 

extend some existing results from regular designs to non-regular designs. More 

general results which were not obtained even for regular designs are also provided. 

First, we study indicator polynomial functions with one, two, or three 

words. Classification of indicator polynomial functions with three words are 

provided. Second, we consider the connections between resolutions of general two

level factorial designs. As special cases of our results, we generalize the results 

of Draper and Lin [14]. Next, we discuss the indicator polynomial functions 

of partial foldover design, especially, semifoldover designs. Using the indicator 

polynomial functions, we examine various possible semifoldover designs. We show 

that the semifoldover resolution II I.x design obtained by reversing the signs of 

all the factors can de-alias at least the same number of the main factors as the 

semifoldover design obtained by reversing the signs of one or more, but not all, 

the main factors. We also prove that the semifoldover resolution IV.x designs 

can de-alias the same number of two-factor interactions as the corresponding full 

foldover designs. More general results are also provided. Finally, we present our 

conclusions and outline possible future work. 
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Chapter 1 

Introduction 

1.1 General Introduction 

In practice many processes or systems are affected by two or more factors. Thus 

scientists are often interested in the study of effects of several factors simultane

ously. An experiment which involves several factors is called a factorial experi

ment. 

Suppose a factorial design has m factors with each factor at two levels. 

A complete replicate of such a design would require 2m observations and such a 

design is called a 2m factorial design (see, for example, Figure 1). To distinguish 

it from fractional factorial designs (which are studied in this thesis) (see, for 

example, Figure 2), it is also called a full factorial design. This experimental 

design would enable the experimenter to investigate the individual effects of each 

factor and also to determine whether the factors interact or not. The experiment 

can be replicated, which means some runs of experiment are carried out two or 

more times. 
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Figure 1. 23 Full Factorial Design 
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I 

h + u 

8 + + + 

Figure 2. 23
-

1 Fractional Factorial 

Design with Defining Relation 

ABC = 1. 

However, quite often in practice, full factorial design is infeasible both 

from time as well as resource points of view. For instance, if there are ten factors 

with each factor at two levels, then a full factorial design would need 210 = 1024 

observations; if there are five factors with each factor at five levels, then it would 

need 35 = 3125 runs. Thus, for large number of factors, full factorial designs may 

not be affordable in practice and fractional factorial designs, which consist of a 

subset or fraction of the runs, are more economic and are therefore commonly 

used in practice. 

Fractional factorial designs have been studied for many years. In this 

area, many problems have a geometric, algebraic or combinatorial flavour. For 

example, if A and B are two factors of a full 22 factorial design, then the main 

effects A and B and the interaction effect AB with the identity element I form 

a group; if Xl, X2, ... ,X6 are six factors such that X5 = XIX4 and X6 = X2X3, 

then the runs which satisfy these two conditions form a fraction of the full 26 
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factorial design; we call X5 = XIX4 and X6 = X2X3 as generators or defining 

relation, and XIX4X5 = X2X3X6 = XIX2X3X4X5X6 = 1, where XIX2X3X4X5X6 

XIX4X5 . X2X3X6, is called a complete defining relation. Moreover, the set G 

{I, XIX4X5, X2X3X6, XIX2X3X4X5Xd forms a group and each element except 1 in 

G is called a word, an interaction effect or an effect, the fraction is called 26
-

2 

fractional factorial design, since this fraction has only 26
-

2 runs, "6" represents 

6 factors and "2" represents 2 generators; we also say, for example, X5 is aliased 

with XIX4 since X5 = XIX4. In general, a 2m
-

p design is a fraction of a full 

m-factor design with p generators and, thus, contains 2m
-

p runs. A fractional 

factorial design which has defining relations is called a regular design. This design 

has a group structure. Thus, the classical method for studying this area uses 

algebras such as linear algebra and finite groups. Early works in this direction 

have been summarized in Raktoe, Hedayat and Federer [25] and Dey [11]. For 

recent reviews, we refer to Dey and Mukerjee [12] and Wu and Hamada [30]. 

A fractional factorial design which has no generator or defining relation is 

called a non-regular design. Non-regular designs have not been well studied since 

these designs have no defining relation. However, sometimes non-regular designs 

are more useful than regular designs since they need fewer runs; see, for example, 

Addelman [2], Westlake [29] and Draper [13]. 

In 1996, Pistone and Wynn [23] introduced a method based on Grobner 

bases (see; for example, Cox, Little and O'Shea [8] or Adams and Loustaunau 

[1]), an area in computational commutative algebra, to study the identifiability 

problem in experimental designs. Grobner bases form a very useful tool to deal 

with problems in polynomial ring. The basic idea in their article is to represent 

the design as the solution of a set of polynomial equations. This application of 

Grobner bases in experimental designs gives a completely new interface between 

computational commutative algebra and experimental designs, and it turns out 
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to be a powerful tool in some areas of experimental designs (see Holliday, Pistone, 

Riccomagno and Wynn [17] and Bates, Giglio, Riccomagno and Wynn [4]). 

In fact, it should not be surprising that there is such an interface be

tween computational commutative algebra and statistics, since the mathematical 

structure of real random variables is a commutative ring, and other commutative 

rings and ideals appear naturally in distribution theory and modelling (see Pis

tone, Riccomagno and Wynn [24]). This interface attracts considerable interest 

from both the algebraic community (see Robbiano [26]) as well as from the sta

tistical community since the publication of the paper by Pistone and Wynn [23]. 

As mentioned in the preface of the book Algebraic Statistics [24], 

"Just as the introduction of vectors and matrices has greatly improved 

the mathematics of statistics, these new tools provide a further step forward by 

offering a constructive methodology for a basic mathematical tool in statistics 

and probability, that is to say a ring." 

After the publication of Pistone and Wynn [23], Fontana, Pistone and 

Rogantin [15] introduced the indicator polynomial function (see Section 1.2) as 

a tool to study fractional factorial designs without replicates, which was sub

sequently extended to the case of replication by Ye [31]. Indicator polynomial 

functions unify regular designs and non-regular designs and provide an effective 

tool for studying non-regular designs. 

In Section 1.2, we introduce indicator polynomial functions and review 

some of their properties. The definition of fractional resolution and the con

nections between regular fractional factorial designs of resolution I I I and V are 

presented in Section 1.3. In Section 1.4, we introduce foldover designs and semi

foldover designs. Some related work is also reviewed in this section. Finally, we 

present in Section 1.5 an outline and notation used in this thesis. 
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1.2 Indicator Polynomial Functions 

Let D2Tn be the full two-level m-factor design, Le., 

AI = {1,2, ... ,~}, 

and 
m 

II a 11= Lai. 
i=l 

Then, II a II is the number of letters of xO:. 

Let F be any two-level ~- factor design such that for any x E F, x E D2m, 

but x might be repeated in F. The indicator polynomial function of F is a 

function f (x) defined on D2m such that 

{ 

rx 
f(x) = 0 

if x E F 

if x t/: F, 

where rx is the number of appearances of the point x in design F. In particular, 

if F = 0 (i. e., there is no runs in F) or F contains all the points in D2m (i.e., 

F is a full 2m design), the indicator polynomial function of F is f(x) = 0 or 

f(x) = rx for any x E F, respectively. In this thesis, we assume that F contains 

some but not all the points in D 2m. 

Fontana, Pistone and Rogantin [15] and Ye [31] showed that the indicator 

polynomial function f (x) of F can be uniquely represented by a polynomial 

function 

f(x) = L bo:xO:, (1.2.1) 

O:ELzm 



where the coefficients {bet, 0: E L2=} can be determined as 

bo: = ~ ~ xet. 
2m L.J 

xE:F 

In particular, 

and 

where n is the total number of runs. 
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(1.2.2) 

(1.2.3) 

(1.2.4) 

Thus, given a design, we can find the coefficients of its indicator polynomial 

function. For a regular design, its indicator polynomial function is easy to find. 

For example, if X5 = XIX4 and X6 = X2X3X4 are generators of a two-level 6-factor 

design, then we can easily check that the corresponding indicator polynomial 

function is 

1 1 
f(x) = 22 (1 + XIX4 X5)(1 + X2 X 3X 4X 6) = 4(1 + XIX4 X 5 + X2 X 3X 4X 6 + XIX2 X 3X 5X 6). 

Conversely, given an indicator polynomial function of a two-level factorial 

design F, we can check whether it represents a regular design or not. Proposition 

1.2.1 below was proved by Fontana, Pistone and Rogantin [15] and Ye [32]. 

Proposition 1.2.1. F is a regular design (with or without replicates) if and only 

if 

for all nonzero bet in the indicator polynomial function of F. 

Example 1.2.2. (15] An indicator polynomial function of a two-levelS-factor de-

Since Ibet/bol i- 1 for all nonzero bo:, F is not a regular design. By (1.2.4), this 

design contains 16 runs. It is a half fraction of the full 25 factorial design. 
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Any word in the indicator polynomial function indicates alias relations. 

For example, if xa = XIX2X4X6 is a word in an indicator polynomial function, 

then XIX2, XIX4, XIX6, X2X4, X2X6 and X4X6 are aliased with X4X6, X2X6, X2X4, 

XIX6, XIX4 and XIX2, respectively. If Iba/bol = 1, then they are fully aliased; if 

Iba/bol < 1, then they are partially aliased. 

Let F be a fraction which does not allow replicates. Then, its complemen

tary jraction contains the runs which are in D2m but not in :F. Proposition 1.2.3 

is a part of Corollary 3.5 in Fontana, Pistone and Rogantin [15] which provides 

the relations of indicator polynomial functions of the two fractions. 

Proposition 1.2.3. Jj F and P are complementary un-replicated jractions and 

ba and b~ are the coefficients oj the respective indicator polynomial junctions 

defined as in (1.2.1), then 

bo = 1 - b~ and ba = -b~, '110: =1= O. 

When one or more factors are not important in a factorial design, one 

might be interested in the projection of the design. Some projection properties of 

fractional factorial designs have been studied (see, Wang and Wu [28] and Cheng 

[6]). Theorem 1.2.4 provide the indicator polynomial function of the projection 

given the indicator polynomial function of the original design and was provided 

by Fontana, Pistone and Rogantin [15] and Ye [31]. 

Theorem 1.2.4. Let (1.2.1) be the indicator polynomialjunction of F, P be its 

S = {Ct E L 2m I Ctj = 0, V j = I + 1, ... , m}, 

Then the indicator polynomial function of P is 

h = 2m- 1 2:: baxa . 

aES 
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1.3 Resolutions and Their Connections 

The traditional definition of resolution is defined through the complete defining 

relation, that is, the resolution of a regular design is the number of letters in the 

shortest word of the complete defining relation. Deng and Tang [10] and Tang 

and Deng [27] defined the generalized resolution, that is , fractional resolution, 

and generalized aberration criteria for non-regular designs. These criteria were 

redefined through indicator functions by Ye [31] and Li, Lin and Ye [19]. In this 

thesis, the definition of fractional resolutions by Li, Lin and Ye [19] is used. 

First, Li, Lin and Ye [19] extended the traditional definition of the word 

to non-regular designs by calling each term (except the constant) in the indicator 

function of a design a word. If X
O is a word, its length is defined as 

II X
O 11=11 a II +(1 - Ibo/bol)· 

Thus for regular designs, since Ibo/bol = 1, for each word x O
, its length is the 

number of letters of the word; for non-regular designs, the length of words may 

be fractional since Ibo/bol may be less than 1. In Example 1.2.2, the length of 

the word XIX2X3 is 3.5. 

Next, Li, Lin and Ye [19] defined the extended word length pattern of :F as 

(II, ... ,f1+(n-l)/n, 12, ... , f2+(n-l)/n, . .. ,fm, ... ,fm+(n-l)/n), 

where fi+j/n is the number of length (i + j/n) words. 

Finally, the generalized resolution is defined as the length of the shortest 

word. Thus the generalized resolution may be fractional. In this thesis, we will 

denote fractional resolutions by N.x, where N is an integer and x is a fraction. 

Thus, the resolution of the design in Example 1.2.2 is I II.5. 

Given the extended word length patterns of two designs, the aberration 
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criterion is defined by sequentially comparing the two extended word length pat

terns from the shortest-length word to the longest-length word. 

Resolution I I 1* regular designs are regular resolution I I I designs in which 

no two-factor interactions are confounded with one another. These designs are 

valuable in composite designs and were first examined by Hartley [16]. Draper 

and Lin [14] found the connection between resolutions II 1* and V designs so that 

one can study resolution I I 1* designs through well-known resolution V designs. 

The following Theorems and Corollaries are taken from Draper and Lin 

[14]. 

Theorem 1.3.1. Any m-factor two-level fractional factorial design of resolution 

I I 1* forms a base that can be converted into a (m - 1) -factor design of resolution 

V in the same number of runs. 

Coronary 1.3.2. If m is the maximum number of factors that can be accommo

dated in a resolution I I 1* design, then the maximum number of factors that can 

be accommodated in a resolution V design with the same number of runs is at 

least m - 1. 

Theorem 1.3.3. Any (m - I)-factor two-level fractional factorial design of res

olution V can be converted into a m-factor design of resolution I I 1* in the same 

number of runs. 

Coronary 1.3.4. If m - 1 is the maximum number of factors that can be accom

modated in a resolution V design, then the maximum number of factors that can 

be accommodated in a resolution I I 1* design with the same number of runs is at 

least m. 

Theorem 1.3.5 is the extension of Theorem 1.3.1 by Draper and Lin [14]. 
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Theorem 1.3.5. Any m-factor two-level fractional factorial design of resolution 

(2l - 1)* forms a base that can be converted into a (m - I)-factor design of 

resolution (2l + 1) in the same number of runs. 

1.4 Foldover Designs and Semifoldover Designs 

When two effects are aliased, it is difficult to estimate one of them. Foldover is a 

classic technique to de-alias effects. Define a foldover of a factorial design as the 

procedure of adding a new fraction in which signs are reversed on one or more 

factors of the original design. The combined design has the double size of the 

original runs. A foldover design is also called a full foldover design. 

For regular resolution I I I designs, some main effects are aliased with two

factor interactions. It is well-known ( see, for example, [22] ) that if we add to a 

resolution I I I fractional a second fraction in which the signs for all the factors 

are reversed, then the combined design has resolution IV. 

For regular resolution IV designs, all the main effects are de-aliased with 

two-factor interactions. However, some two-factor interactions are aliased with 

each other. Box, Hunter, and Hunter [5] studied the foldover design obtained 

by reversing the sign of one factor. Montgomery and Runger [21] considered 

reversing the signs of one or two factors to de-alias as many two-factor interactions 

as possible. They stated that the complete defining relation of the combined 

design from a foldover consists of those effects in the complete defining relation 

of the original fraction that are not sign-reversed in the new fraction. 

Li, Lin and Ye [19] studied foldover non-regular designs using indicator 

polynomial functions and extended above well-known results to non-regular de

signs. They provide the following three properties of indicator polynomial func

tions which are useful for studying foldover designs: 
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1. Let f(xl, X2, ... ,xm ) be the indicator polynomial function of a design. If 

the sign of factor Xl is reversed, then the indicator polynomial function of 

the new design is f( -Xl, X2,· .. , xm). 

2. Let h'l and f:h be the indicator polynomial functions of the designs :Fi and 

F2 , respectively. Then the indicator polynomial function of the combined 

design :Fi U F2 is given by f:F1 U:F2 = f:F1 + f:F2· 

3. Let f(XI, X2, . .. ,xm ) be the indicator polynomial function of a design. 

Without loss of generality, assume that the signs of ractors Xl, X2, ... , Xr 

are reversed; then, the indicator polynomial runction of the foldover design 

is f(xl, X2,· .. ,xm ) + f( -Xl, -X2, .. . , -XTj Xr+l' ... , Xm). 

Although foldover designs can de-alias all the main effects for resolution 

I I I.x designs and as many two-factor interactions as possible for resolution IV.x 

designs, they involve twice the original runs. Therefore, it will be much more 

efficient to do a partial foldover. One of the partial foldover designs is the semi

foldover design. 

Semifoldover designs are obtained by reversing signs of one or more fac

tors in the original design and adds half of the new runs to the original designs. 

Thus, semifoldover designs save half of the original runs compared to the full 

foldover designs and are more valuable sometimes. A semifoldover design ob

tained by reversing signs of one factor in a resolution IV regular design with 

generators XIX2X3XS = 1 and X2X3X4X6 = 1 was first studied by Daniel [9] and 

then investigated by Barnett et at. [3] through a case study. 

Mee and Peralta [20] studied various possible semifoldover regular resolu

tion I I I and IV designs. 

Let 

F( e) = {x E F I z = e}, (1.4.1) 
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where e = 1, -1, and z is a main effect or an interaction. Denote by Fo the 

new fraction obtained by reversing the signs of Xl, X2, . .. ,Xr . Then, we can add 

either the fraction F~l) or the fraction F~-l) to the original design to get the 

semifoldover design. In this case, according to Mee and Peralta's notation, we 

say that the semifoldover design is obtained by foldover on Xl, X2,' ., ,Xr and 

subset on z. 

For resolution IV designs, Mee and Peralta [20] proved Theorem 1.4.1. 

Theorem 1.4.1. For any regular 27;P design and any two factors X and y) the 

full foldover design obtained by folding over on X and the semifoldover design 

obtained by folding over on X and subsetting on y permit estimation of the same 

two-factor interactions, assuming that three-factor and higher-order interactions 

are negligible. 

Mee and Peralta [20] studied semifoldover resolution I I I design through an 

example. Although semifoldover resolution I I I designs usually can not de-alias 

as many two-factor interactions as the corresponding full foldover designs, Mee 

and Peralta [20] pointed out that the half new runs can be used as comfirmation 

runs which verify the validity of one's assessment of active versus inactive factors. 

1.5 Outline and Notations 

Define a resolution N.*x design is a resolution N.x design such that its indicator 

polynomial function contains no (N + I)-letter word. The thesis is organized as 

follows: 

In Chapter 2, we study some properties of indicator polynomial functions 

and N.*x design. We discuss indicator polynomial functions with one, two or 

three words. In particular, we show that the indicator polynomial functions with 
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only one word must be a regular design or replicates of a regular design; there 

is no indicator polynomial function with only two words; we also classify the 

indicator polynomial functions which contain only three words. 

In Chapter 3, we discuss the connections between designs of general two

level factorial designs. First, we prove that a resolution (21 - 1). * x m-factor 

design can be converted into resolution (2l + l).x (m - I)-factor design. The 

relations between designs of resolution 2l.x and (21 - l).x are also provided. 

Next, we show that a resolution II 1* m-factor design can be obtained from any 

design with resolution equal or bigger than V. Some illustrative examples are 

also provided. 

In Chapter 4, we study indicator polynomial functions of partial foldover 

designs. We study indicator polynomial functions of semifoldover designs first. 

Then we extend them to partial foldover designs. 

In Chapter 5, we discuss semifoldover resolution I I I.x designs. We show 

that the semifoldover design obtained by folding over on all the factors can de

alias at least the same number of the main effects as the semifoldover design 

obtained by folding over on one or more, but not all, the main effects when 

subsetting on a same factor. We also study the semifoldover design obtained by 

subsetting on a two-factor interaction. Some illustrative examples are provided 

at the end of this chapter. 

In Chapter 6, we consider semifoldover resolution IVx designs. After 

proving that the semifoldover non-regular design obtained by folding over on 

a factor and su bsetting on a factor can de-alias the same number of the two

factor interactions as the corresponding full foldover design, we present a sufficient 

condition for a semifoldover design to de-alias the same number of the two-factor 

interactions as the corresponding full foldover design. Finally, we provide some 

illustrative examples. 
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In Chapter 7, We present some conclusions based on the results in this 

thesis. Then, several interesting problems for future work are outlined. 

and 

and 

The notation used in this thesis are as fonows: 

In Chapter 2, we denote 

0= {a E L2m I ba -I- 0 and Iiall -I- O}, 

0 1 = {a E 0 Illall is even} U {a E L 2m Illall = O}, 

O2 = {a E 0 I II a II is odd }. 

In Chapter 3, we denote 

0.1' = {a E L2m I ba -I- 0 and II a 11-1- O}, 

O~ = {a E 0.1' I II a II is odd}, 

0: = {a E 0.1' I II a II is even}. 

In Chapters 4 - 6, we denote 

F( e) = {x E F I z = e}, 

where e = 1, -1, and z is a main effect or an interaction. 

(1.5.1) 

Without loss of generality, we assume that the partial foldover design is 

obtained by reversing the signs of xl, X2, ... ,Xr . Denote by Oe the set of all a E 0 

such that there are 0 or even number of the first r entries which are 1 and 0 0 the 

set of all a E 0 such that there are odd number of the first r entries which are 

1. Let 

We = {xa I a E Oe}, 

Wo = {xa I 0: E no}. 
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Then, the indicator polynomial function (1.2.1) of F can be written as 

f(x) = L bo:xO: + L bo:xa. (1.5.2) 

o:Efle aEflo 

Note that the constant term is in 2:O:Efle baxO:. 



Chapter 2 

Properties of Indicator 

Polynomial Functions 

2.1 Introduction 

Indicator polynomial functions have been in the literature for several years, and 

yet only a few of their properties have been studied. In this chapter, we study 

some properties of indicator polynomial functions. 

It is known that there is no regular design with only two words in their 

indicator polynomial functions, but there are regular designs with one or three 

words. Theoretically, one might be interested in knowing whether there exist non

regular designs with only one, two or three words in their indicator polynomial 

functions, and if they exist, what forms do those indicator polynomial functions 

have. In this chapter, we study some properties of indicator polynomial functions 

and, especially, indicator polynomial functions with only one, two or three words. 

In Section 2.2, we study when a indicator polynomial function represents 

a half fraction and show that there is no (2l + I)-factor design of resolution 

17 
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(2l - 1). *x when the run size of the design is not equal to 221. Section 2.3 shows 

that the indicator polynomial functions with only one word must be a regular 

design or replicates of a regular design. Indicator polynomial functions with more 

than two words but only one odd or even word are also studied in this section. In 

Section 2.4, we establish that there is no indicator polynomial function with only 

two words. Indicator polynomial functions with more than two words but only 

two even words are also considered in this section. We prove that the indicator 

polynomial functions with only three words must have one or three even words 

and provide the forms of indicator polynomial functions for each case in Section 

2.5. 

In this chapter, we call a set of factors whose signs are reversed in the 

foldover design a foldover plan [19]. 

2.2 Indicator polynomial functions which rep

resent half fractions and N*.x designs 

Lemma 2.2.1. Assume that F is a two-level m-factor design and (1.2.1) is its 

indicator polynomial function. Then the run size of F does not equal2mr, where 

r = 1(1,1, .. . ,1), if and only if LaEn ba =1= o. 

Proof. Since 1(1,1, ... ,1) = bo + LaEn On, LnEn bn = 0 if and only if bo 

f(l, 1, ... , 1) = r and if and only if the run size of F equals 2mr. o 

Proposition 2.2.2. Assume that F is a two-level m-factor design. For any 

x E F, if all the words in its indicator polynomial function are odd wards, then 

the sum af the number af replicates of the points x = (Xl, X2, ... ,xm ) and -x = 
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(-Xl, -X2,' .. , -Xm ) is 2bo. If all the words in its indicator polynomial function 

are even words, then the points X and -x have the same number of replicates. 

If there is no replicate and all the words in its indicator polynomial function 

are odd words, then either the point x or the point -x is in F and bo = 1/2. In 

other words, if bo =1= 1/2, then there exists at least one a E n such that II a II is 

even. 

Proof. Assume that (1.2.1) is the indicator polynomial function of F. Then 

for any x E F, f (x) = bo + 2:aEfl bo:xO:. If all the words are odd words, then 

f(-x) = bo - 2:aEflbo:xO:. Thus f(x) + f(-x) = 2bo. If all the words are even 

words, the proof f(x) = f( -x) follows similarly. 

If there is no replicate and all the words in its indicator polynomial function 

are odd words, since #F =1= 0, 2m
, by Lemma 2.2.1, 2:O:Efl bo: =1= O. It then follows 

that f(x) =1= f( -x), that is, either the point x or the point -x is in F. Thus 

f(x) + f( -x) can only be 1. Therefore, bo = 1/2. 

o 

Proposition 2.2.2 shows that a design with only odd words implies a half 

fraction. The result "If all the words in its indicator polynomial function are 

even words, then the points x and -x have the same number of replicates" is 

also informally given by Cheng [7]. He showed that a design with only even words 

is a foldover of another design. 

Example 1.2.2 shows that in the case of non-regular designs without repli

cate, if bo = 1/2 and #n ~ 2, then it is possible that all the words in the indicator 

polynomial function are odd words. 

Proposition 2.2.3. Assume that (1.2.1) is an indicator polynomial function of 
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a two-level factorial design without replicates. If there exists a foldover plan such 

that the indicator polynomial function g(x) of the foldover design contains no 

words, then this design is a half fraction. 

Proof. If the indicator polynomial function of the foldover design does not contain 

any word, then g(x) must be 1. So 2bo = 1, i.e., bo = ~. o 

Coronary 202.4. Assume that (1.2.1) is an indicator polynomial function of a 

two-level factorial design without replicates. If there exists a main effect which is 

contained in all the words, then this design is a half fraction. 

Proof. Choosing the foldover plan as reversing the sign of the factor which is 

contained in all the words in f(x), then the result. o 

By Proposition 2.2.3, we also can get the result "if all the words in the 

indicator polynomial function are odd words, then the design is a half fraction" 

in Proposition 2.2.2 by reversing the signs of all the factors. 

Note that a resolution N.*x design is a resolution N.x design such that its 

indicator polynomial function contains no (N + 1)-letter word. 

Hartley [16] pointed out that there is no regular 2~Il* design. Proposition 

2.2.5 shows that this is also true in general. 

Proposition 202.5. Assume thatF is a {2l+1)-factorresolution (21-1).x design 

without replicate. Then, it is not a resolution (2l - 1). * x design if #F =I- 221. 

Proof. Since the design F has only 2l + 1 factors, it has no (2l + 2)-letter word. 

If #F =I- 221
, then bo =I- 1/2. By Proposition 2.2.2, it must have a (2l)-letter 

word. o 

Example 1.2.2 shows that when F is a 5-factor design and #F = 24
, there 

exists a design of resolution II I. *5. 
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2.3 Indicator polynomial functions with one even 

or odd word 

Proposition 203.1. Assume that F is a two-level m-factor design and f(x) = 

bo + bOtxOt is its indicator polynomial function. Then all the points in F have the 

same number of replicates 2bo and F is a regular design. If there is no replicate, 

Proof. For any x E D2m, xOt can only be 1 or -1. Thus, f(x) equals either bo + ba 

or bo - ba. Since for any x ~ F, f(x) = 0, we have either bo + bOt = 0 or 

bo - ba = O. Consider bo + ba = O. Let bo - ba = a i- O. Then, any point x such 

that f(x) = bo - bOt = a is in F and has the same number of replicates a. In 

this case, we have a = 2bo and ba = -boo When bo - ba = 0, the proof follows 

similarly. In this case, a = 2bo and ba = boo Thus, Iba/bol = 1. By Proposition 

1.2.1, F is a regular design. 

If there is no replicate, 2bo = 1. Thus, I ba I = bo = ~. D 

Note that in this thesis, we assume that F does not contain all the points 

in D2ffi. If F contains all the points in D2m, then Ibal may not equal boo For 

example, f(x) = ~ + ~xa, for any x E F, f(x) = 1 or 2, this means F contains 

all the points in D 2m and each point has one or two replications. 

Lemma 20302. Assume that (1.2.1) is the indicator polynomial function of F. 

Then the points x = {Xl, X2, . .. , xm } and -x = {-Xl, -X2, . .. ,-xm } have dif-

ferent numbers of replicates if and only if L.:aE~h bOtxa /: O. Moreover, 

L bOt = ~(f(1, 1, ... ,1) + f( -1, -1, ... , -1)) 
OtE!11 

(2.3.1) 
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and 

L ba = ~(f(l, 1, ... ,1) - f(-1, -1, ... , -1)). 

aE0 2 

(2.3.2) 

Proof. (1.2.1) can be written as 

f(x) = L bax
a + L baxa. 

aEOl aE0 2 

So 

Thus "EaE 0 2 baxa =I- 0 if and only if f(x) =I- f( -x) and if and only if x and -x 

have different numbers of replicates. Note that 

f(l, 1, ... , 1) = L ba + L ba (2.3.3) 

aEOl aE02 

and 

f(-l, -1, ... , -1) = L ba - L bOil (2.3.4) 

we get (2.3.1) and (2.3.2). o 

Proposition 2.3.3. Assume that (1.2.1) is the indicator polynomial function of 

a design which does not allow replicates; then, "EaEOl ba = ~ and 

if(l,l, ... ,l) EF, (-1,-1, ... ,-1) tj.F 

if(l,l, ... ,l) ~F, (-1,-1, ... ,-1) EF 

if (1, 1, ... , 1), (-1, -1, ... , -1) E F 

if (1, 1, ... , 1), (-1, -1, ... , - 1) tj. F 

if and only if L:aE0 2 ba = o. 
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Proof. By (2.3.3) and (2.3.4), LaES/2 ba =1= 0 if and only if f(l, 1, ... ,1) =1= 

f( -1, -1, ... , -1). Note that f(x) can only be 0 or 1, thus, f(l, 1, ... ,1) =1= 

f( -1, -1, ... , -1) if and only if f(l, 1, ... ,1) + f( -1, -1, ... , -1) = 1 and 

f(I, ... ,I)-f(-I,.oo,-I)= { ~l if (1, .. . , 1) E F, (-1,..., -1) tj. F 

if(l, ... ,l)tj.F, (-l, ... ,-l)EF. 

By Lemma 2.3.2, we get the first result. 

On the other hand, by (2.3.3) and (2.3.4), LaES/2 ba = 0 if and only if 

f(l, 1, ... ,1) = f(-l, -1, ... , -1) if and only if 

{ 

2 if(I, ... ,I), (-1, ... ,-1) EF 
f(l, ... ,1) + f( -1, ... , -1) = 

o if(l, ... ,I), (-1, ... ,-1) tj.F. 

By Lemma 2.3.2, we get the second result. o 

Corollary 2.3.4. If there is only one odd word x a in the indicator polynomial 

function of a design which does not allow replicates, then either (1, 1, ... , 1) or 

(-1, -1, ... , -1) is in F and 

if(l,l, ... ,I) EF, (-1,-1, ... ,-1) tj.F 
(2.3.5) 

if(I,I, ... ,I) tj.F, (-1,-1, ... ,-1) EF. 

Proposition 2.3,5. If there is only one even word xa in the indicator polynomial 

function of a design which does not allow replicates, then, 

bo = ba = ~ orbo = -3ba = ~ ~ either (1, 1, ... ,1) or (-1, -1, ... , -1) is in F, 

1 1 1 3 
bo = ba = 2' bo = '3 ba = 4 or bo = 3ba = 4 ~ (1,1, ... ,1), (-1, -1, ... , -1) E F, 

and 

'_ b _11 3 ( 1) ( )d 
Do - - a - 4' 2 or 4 ~ \1,1, ... , i, -1, -1, ... , -1 'F F. 



24 

Proof. The indicator polynomial function of the foldover design obtained by fold

ing over on all the factors is g(x) = 2bo + 2be;xO'. There exist y and z such that 

g(y) = 2bo + 2bO' and g(z) = 2bo - 2bO'. Thus bo = ~(g(y) + g(z)). Since g(x) can 

1 1 3 
be 0,1 or 2, bo = 4' 2 or 4· 

Note that be; =1= 0, we get 

1 3 1 
bo = bO' = "4 or bo = -3bO' = 4 ~ bo + bO' = 2' 

. b 1. 1 1 3 
bo = 0' = 2' bo = '3bO' = "4 or bo = 3bO' = 4 ~ bo + bOt = 1, 

and 

113 
bo = -bO' = 4' 2 or 4" ~ bo + bO' = 0, 

by Proposition 2.3.3, we get the results. o 

2.4 Indicator polynomial functions which con-

tain two special words 

In this section, we prove that when all the runs in a design have the same number 

of replicates, the indicator polynomial function of this design can not contain only 

two words. To prove this, we need the Remark 2.4.1 below. 

Remark 2.4.1. Let x Ot and x i3 be two different words. Then, we can choose a 

point y E D 2m such that yO' = yi3 = ±l or yO' = _yi3 = ±1. This point can be 

chosen as follows: 

1. When all the factors in XO' are also in xf3. Assume that Xi is in XO' and Xj 

is in xf3 but not in xO'. We can choose a point y such that its ith entry is 
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±1 and other entries are 1 so that yCi = y(3 = ±1 or its ith entry is ±1, jth 

entry is -1 and other entries are 1 so that yCi = _y(3 = ±1. 

2. When there exists a factor Xi which is in XCi but not in x(3 and a factor Xj 

which is in x(3 but not in XCi. We can choose a point y such that its ith and 

jth entries are ±1 and other entries are 1 so that yCi = y(3 = ±1 or its ith 

entry is ±l, jth entry is =fl and other entries are 1 so that yCi = _y(3 = ±1. 

Now, we are ready to prove Theorem 2.4.1. 

Theorem 2.4.1. There is no two-level factorial design such that all the points in 

it have the same number of replicates and its indicator polynomial function has 

only two words. 

Proof. Assume that f (x) is the indicator polynomial function of a design ;:1 

which does not allow replicates. Let;:2 be the design which contains the same 

points as ;:1 and each point has n replicates. Then, using the formula (1.2.2), 

it is easy to check that the indicator polynomial function of ;:2 is nf(x). Thus, 

if f (x) can not contain only two words, the indicator polynomial function of ;:2 

also can not contain only two words. 

Now we establish that f(x) can not be only two words. 

Assume that there exists a design such that its indicator polynomial func

tion is f(x) = bo + bCiXCi + b(3xf3. By Remark 2.4.1, we can choose a point y such 

that yCi = y(3 = 1 and a point z such that ZCi = z/3 = -1. Then, f(y) = bo+bCi +b(3 

and f(z) = bo - bCi - bf3 , and thus, bo = ~(f(y) + f(z)), which can only be O,~, 

and 1. But bo can not be 0 and 1, therefore bo = ~. We can also choose another 

point h such that hOi = -h(3 = 1, then, we get bf3 = ~(f(y) - f(h)), which can be 
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± ~. Similarly, boo = ± ~. Since xOO and xf3 can only be 1 and -1, f (x) can never 

be an integer. 

We can also prove the result through the following three cases using Propo-

sition 2.3.3 and Proposition 2.3.5: 

1. If xOO is an odd word and xf3 is an even word, then, by Proposition 2.3.3 

and Proposition 2.3.5, f(x) = i ± ~xOO + ~xf3 or 1 ± ~xa - ixf3, which are 

impossible since when xf3 = -1, f(x) can not be an integer. 

2. If both xa and xf3 are odd words, then, I:aES/l ba = bo = ~. By Proposition 

2.3.3, ba+bf3 can only be ±~. Thus f(x) = ~+baxa+(±~-ba)xf3. Choosing 

a point y such that ya = -1 and yf3 = 1, then f(y) = (~± ~) - 2ba. Since 

f(y) can only be 1 or 0, ba = 0 or ~ if f(y) = 1 - 2ba and -~ or 0 if 

f(y) = -2ba. Since ba and bf3 can not be 0, all the solutions are impossible. 

3. If both xa and xf3 are even words, then, since I:aES/2 ba = 0, by Proposition 

2.3.3, bo + ba + bf3 = 1 or O. 

(a) If bo + ba + bf3 = 1, then f(x) = bo + baxa + (1 - be - ba)xf3. When 

xOO = xf3 = -1, we get bo = ~. Then f(x) = ~ + baxa + (~ - ba)xf3, 

which is impossible by the proof of (2). 

(b) If bo + ba + bf3 = 0, then f(x) = be + baxa + (-bo - ba)xf3. When 

xa = xf3 = -1, we get be = ~. which is again impossible by the proof 

of (2). 

D 
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Remark 2.4.2. Proposition 2.3.1 implies that when all the runs in a design have 

the same number of replicates and bo i- ~, then there are at least two words in 

the indicator polynomial function. By Theorem 2.4.1, if Do i- ~, then there are 

at least three words in the indicator polynomial function. 

Lemma 2.4.2, If there exists a foldover plan of an un-replicated two-level jacto

rial design such that the indicator polynomial junction of the joldover design has 

only two words, then this design is a halj jraction. Moreover, ij the two words 

are xO: and xf3, then bo: = ±~ and bf3 = ±~. 

Proof. Assume that (1.2.1) is the indicator polynomial function of the original 

design and the indicator polynomial function of the foldover design is g(x) = 2bo+ 

2ba x a + 2bf3 x
f3
. Then, we can choose y, z E D2m such that g(y) = 2bo + 2ba + 2b{3 

and g(z) = 2bo - 2ba - 2b{3. So, bo = ~(g(y) + g(z)). Since g(x) can only be 

0, 1, or 2, bo can only be ~,~, or~. We can also choose h E D2m such that 

g(h) = 2bo - 2ba + 2b{3. So ba = i(g(y) - g(h)), which can be ±i and ±~. 

Similarly, b{3 = ±~, ±~. 

1. When bo = i. If Ibal = Ibf31 = ~, then g(x) = ~ ± x a ± xf3, which can not 

be an integer. If Ibal = Ibf31 = 1, then g(x) = ~ ± ~xO: ± ~x{3, which can 

also not be an integer. If one of Da and bf3 , say ba, such that Ibal = ~ and 

another one Ib,al = i, then g(x) = ~ ± xO: ± ~X,a, which may be negative for 

some points in D2ffl. Thus bo i- i. 

2. When bo = ~. If Ibal = Ib{31 = ~, then g(x) = 1 ± x a ± xf3, which may 

be negative. If one of ba and bf3, say ba , such that Ibal = ~ and another 

one Ibf31 = ~, then g(x) = 1 ± xa ± ~Xf3, which can never be an integer. 
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If Ibal = Ibel = ~, then g(x) = 1 ± ~xa ± ~x,6, which is always an integer 

between 0 and 2. Thus, when bo = ~, Ibal = Ib,61 = i· 

3. When bo = ~. If Ibal = Ib,61 = ~ or i, then we can similarly get g(x) can not 

be an integer. If one of Da and b,6, say ba, such that Ibal = ~ and another 

one Ib,61 = ~, then g(x) = ~ ± xo: ± ~x,6, which may equal to 3 for some 

points in D2m. Thus, bo i- ~. 

D 

Theorem 2.4.3 provides the coefficients of the two even words in more 

detail if there are two even words in the indicator polynomial function. 

Theorem 2.4.3. If the indicator polynomial function of a two-level un-replicated 

factorial design F has more than two words but only two of them are even words, 

say xa and x,6, then this design must be a half fraction and 

ba = -b,6 = ±~ if (1,1, ... ,1) or (-1, -1, ... , -1) E F 

ba=b,6=~ if(1,1, ... ,1),(-1,-1, ... ,-1)EF (2.4.1) 

ba = b(3 = -~ if (1,1, ... ,I), (-1, -1, ... , -1) tJ. F 

Proof. Assume that the indicator polynomial function of a design is f (x) = bo + 

baxa + b,6x,6 + L')'ES"h b,),x')', where xa and x,6 are even words. Then, the indicator 

polynomial function of the foldover design obtained by reversing the signs of all 

the factors is g(x) = 2bo + 2baxa + 2b(3x,6. By Lemma 2.4.2, bo = ~. 

1. If LaEIl2 Do: i- 0, by Proposition 2.3.3, bo + Da + b,6 = ~. Since bo 

ba + b{3 = O. By Lemma 2.4.2, bo: = -b(3 = ±~. 
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2. If LOOE!l2 boo = 0, by Proposition 2.3.3, bo + boo + b(3 = 1 or 0. 

If bo + boo + b(3 = 1, then boo + b(3 = ~. By Lemma 2.4.2, boo = b{3 = ~. 

If bo + boo + b(3 = 0, then boo + b{3 = -~. By Lemma 2.4.2, hOI. = b{3 = -~. 

o 

When there are two odd words, say xOO and x{3, in the indicator poly

nomial function, it is hard to say their coefficients when either (1, 1, ... , 1) or 

(-1, -1, ... , -1) is in F, but when both (1,1, ... ,1) and (-1, -1, ... , -1) are 

either in F or not in F in the case of replicates, the sum of the two coefficients 

is equal to 0 by Proposition 2.3.3. Thus, boo = -b{3. 

2.5 Indicator polynomial functions with only three 

words 

In this section, we discuss indicator polynomial functions with only three words 

and give the classification of the indicator polynomial functions. 

Assume that f(x) = bo + booxOO + b{3x(3 + b,x' is the indicator polynomial 

function of an un-replicated design F. By Remark 2.4.1, given a, f3 E 0, there 

exists a point x E D2m such that xOO and x{3 have either the same sign or different 

signs. Given a, f3 and x, Le., given xOO and x(3, x' is either 1 or -1. The following 

claims will be used later in this section. 

Claim 1 Given the indicator polynomial function f(x), ifthere exist y, Z E D2m 

such that yOO = ZOO and yf3 = z{3, but Y' #- z', then b, = ±~. 
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By assumptions, f(y) - f(z) = b"!(y"( - z"!). Since f(y) - f(z) can only be 

0,1 and -1 and y"! - z"! can only be ±2, b,,! = ±~. 

Claim 2 There is no indicator polynomial function of three words satisfies 

In this case, lba/bol = Ibi3 /bol = lb,,!/bol = 1, and thus by Proposition 1.2.1, 

the design is a regular design. But, then lbal = lbal = lb"(l = bo has to equal ~. 

Claim 3 There is no indicator polynomial function which has the form 

(2.5.1) 

When xa and x i3 have the same sign, f (x) = 0 or 1. When xa and x i3 have 

different signs, f(x) = 1 ± 2b or ±2b. For f(x) to be 0 or 1, lbl has to equal ~. 

This is impossible by Claim 2. 

Now, we are ready to prove Theorem 2.5.1. 

Theorem 2,5,1. Assume that f(x) = bo + baxa + bi3xi3 + b"(x"! is the indicator 

polynomial function of an un-replicated design F. Then, either one or all of the 

three words are even words and F is either a ~ fraction or a £ fraction. More 

specifically, 

1. When there is only one even word, say x"!, 

(aj if F is a ~ fraction, then, f(x) has the forms: 

1. + Ixa + .Lr i3 + Ix"! of (1 1) E F (1 1) d 'L 4 4 4~ 4 0 \ , ••• , , - , ••• , - y::...1 

f(x) = ~ - ~xa - ~xi3 + ~x"! if (1, ... , 1) ~ F, (-1, ... , -1) E ft·5.2) 

I + Ixa ::r: Ix i3 - Ix~1 ,if (1 1) (1 1) d 'L 4-4 '4 4 OJ , ... , ,- , ... ,- y::...I. 
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(b) if F is a ~ fraction, then, f (x) has the forms: 

~ + .lxa + .1"",6 _ .lx'Y of (1 1) E 'L' (1 11 d 'L' 4 4 4 ~ 4 .J' ... , .r, - , ... , - ! 'F .r 

f(x) = ~ - %xa - %x,6 - %x'Y if (1, ... , 1) ~ F, (-1, ... , -1) E j2.5.3) 

£ -;- .lxa ± .lx,6 I .lx'Y of (1 1) (1 1) E 'L' 4 T 4 4 I 4 "J \ ~, ••• , , - , .•• , - / .r . 

2. When all the words are even words, 

(a) if F is a % fraction, then, f (x) has the forms: 

if (1, ... , 1), (-1, ... , -1) E F 
(2.5.4) 

if(1, ... ,1),(-1, ... ,-1) ~ F. 

(b) if F is a ~ fraction, then, f(x) has the forms: 

if (1, ... , 1), ( -1, ... , -1) E F 
(2.5.5) 

if (1, ... ,1), (-1, ... , -1) ~ F. 

Proof. 1. If all the three words are odd words, then, by Proposition 2.2.2, 

bo = ~. By Proposition 2.3.3, either (1,1, ... ,1) or (-1, -1, ... , -1) is in 

F and 

f(x) = { 
~ + baxO/ + b{3x,6 + a - bO/ - b(6)x'Y 

~ + bO/xO/ + b{3x,6 + (-~ - bO/ - b(6)x'Y 

if (1, 1, ... , 1) E F 

if (-1, -1, ... , -1) E F. 

(a) When f(x) = ~ + bO/xO/ + b,6x,6 + (~ - bO/ - b(3)x'Y. Since there exists a 

point x such that xO/ = -x,6 = 1, if x'Y = 1, then, f(x) = 1-2b,6, which 

yields b{3 = ~. So f(x) = ~ + bO/xa + ~x,6 - bax'Y, which is the form 

(2.5.1), by Claim 3, this is impossible. If x'Y = -1, then, f(x) = 2bO/, 

which yields bO/ = ~. So f(x) = ~ + ~xa + b,6x,6 - b,6x'Y. This is again 

the form (2.5.1). 
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(b) When f(x) = ~ + baxa + o,ax,a + (-~ - oa - oe)x", There exists a point 

x such that xa = -x,a = 1. If x' = 1, then, f(x) = -20,13, which yields 

, - 1 S f ( ) - 1 I' a 1,6 , , h:" th C (2 ... 1) 0,6 - -"2' a x -"2 ,Vax -"2x -Oax , w J.ch IS e J.orm .C).~, 

by Claim 3, this is impossible. If x' = -1, then, f(x) = 1 + 20a, 

which yields ba = -~. So f(x) = ~ - ~xa + b,ax,6 - o,ax'. This is also 

impossible by Claim 3. 

2. If there are two even words, say x a and xf3, in the three words, then, by 

Corollary 2.3.4 and Theorem 2.4.3, we get 

if(I, ... ,l) EF,(-l, ... ,-l) tJ-F 

if(l, ... ,l) tJ-F,(-l, ... ,-I) EF, 

which has the form (2.5.1). By Claim 3, this is impossible. 

3. If there is one even word, say x', in the three words, then, by Proposi-

tion 2.3.3 and Proposition 2.3.5, the indicator polynomial function has the 

following possible forms. 

(1,1, ... ,1) EF, (-1,-1, ... , -1) tJ-F. 

1. When f(x) = % + oaxa + (~ - ba)x,e + ~x" considering various 

cases, we have the table below. 



33 

x{3 
, 

f(x) Case # xa x'Y ba,b{3,b'Y 

1 1 1 1 1 

I -1 1 impossible 2 

[ 2 -1 I -1 1 0 I 
-1 1 impossible -2 

3 1 -1 1 2ba 
. 1 
ba = 2 

-1 2b - 1 a 2 ba = ~,~ 

4 -1 1 1 1 - 2ba b - 1 a - '2 

1 1 - 2b b 1 1 -L 
2 a: a = 4'-4 

Since b'Y i- ± ~, by Claim 1, for each case, x'Y == 1 or -1. From 

Case 4, ba = ~,~ and -~. If ba = ~, then, b{3 = ~ - ba = 0, a 

contradiction. If ba = -~, then, in Case 3, f(x) can not be an 

integer. If ba: = ~, then, f(x) in other 3 cases can be 0 or 1. Thus 

ba: = %. This gives the first form of (2.5.2). 

11. When f(x) = ~+baxa+(~-ba:)x{3-~x'Y, we have the table below. 

Case # xa x{3 x'Y f(x) ba, b{3, b'Y 

1 1 1 1 1 

-1 3 impossible 2 

2 -1 -1 1 0 

-1 1 impossible 2 

3 1 -1 1 2ba: ba = ~ 

-1 2ba + ~ _ 1 1 
ba - 4'-4 

4 -1 1 1 1 - 2ba: b - 1 a-'2 

-1 2 - 2b 1 3 
2 a: ba = 4'4 I 
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Similarly, we get ba = i. This gives the first form of (2.5.3). 

if (1, 1, ... ,1) tf: F, (-1, -1, ... , -1) E F. 

i. When f(x) = i + baxa + (-~ - ba)xB + fxl'. Considering various 

cases, we have the table below. 

Case # x a x!3 xl' f(x) ba,b!3,bl' 

1 1 1 1 0 

-1 1 impossible -2" 

2 -1 -1 1 1 

-1 1 impossible 2" 

3 1 -1 1 1 + 2ba ba =-~ 

-1 ~ + 2ba ba = -i, i 
4 -1 1 1 -2ba b - 1 a - 2 

-1 _1 - 2b 
2 a 

b = _1 _2 
a 4' 4 

Similar as the discussion in (3a), we get ba = -i. This gives the 

second form of (2.5.2). 

ii. When f(x) = ~ + baxa + (-~ - ba)x!3 - ixl', we have the table 

below. 
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Case # Xa Xf3 X'Y f(x) ba , b13 , b'Y 

1 1 1 1 0 

-1 1 impossible I 2 

I 
2 -1 -1 1 1 

! 

-1 3 impossible 
2 

3 1 -1 1 1 + 2bOl bOi = -~ 

-1 ~ + 2bOl b - _1 -~ 
01- 4' 4 

4 -1 1 1 -2bOl b - 1 
01-2 

-1 ~ - 2bOl bOi = -i, i 
Similarly, we get bOi = -~. This gives the second form of (2.5.3). 

(c) f(x) = 1 + b xOi - b xf3 + ~x'Y 1 + b x Oi - b xf3 + 1x'Y or ~ + b x Oi -
4 01 01 4 '2 01 01 2 4 01 

bOl x{3 + ~x'Y, if (1,1, ... ,1), (-1, -1, ... , -1) E F. 

i. When f(x) = ~ + bOlXOl - bOl x{3 + ~x'Y, we have the table below. 

Case # xOi x{3 x'Y f(x) bOl , b{3, b'Y 

1 1 1 1 1 

-1 1 impossible -2 

2 -1 -1 1 1 

-1 1 impossible -2 

3 1 -1 1 1 + 2bOl b -_1 
01 - 2 

-1 _1 +2b 
2 01 bOi = ~,~ 

4 -1 1 1 1 - 2bOl b 1 
01=2 

-1 _1_ 2b 
2 01 

b - _1 -~ 
01- 4' 4 

From Case 3 and 4, f(x) can not always be an integer for any bOi' 

Thus, f (x) can not be this form. 
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ii. When f(x) = ~ +baxa - bax i3 + ~xi'. This is the form (2.5.1) and, 

so, is impossible by Claim 3. 

iii. When f(x) = ~ + baxa - bax{3 + ~xi', we have the table below. 

Case # xa xf3 xi' f(x) bOLl bf3, bi' I 

1 " 1 1 1 1 

-1 1 impossible 2" 

2 -1 -1 1 1 

-1 1 impossible 2" 

3 1 -1 1 1 + 2ba b -_1 a - 2 

-1 ~ + 2ba ba = -~, ~ 

4 -1 1 1 1 - 2ba b - 1 a - 2 

-1 1 - 2b 
2 a ba = ~,-~ 

Since bi' = ~, similar as the discussion in (3a), we get ba = ±~. 

This gives the third form of (2.5.3). 

(d) f(x) = ~ + bo:xO: - bo:xf3 - ~xi', ~ + bo:xO: - bo:xf3 - ~xi' or ~ + bo:xO:

baxf3 - ~xi', if (1, 1, ... ,1), (-1, -1, ... , -1) ~ F. 

i. When f(x) = ~ + baxa - baxf3 - ~xi', we have the table below. 
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Case # xa x{3 x, f(x) ba,b{3,b~1 

1 1 1 1 0 

-1 1 impossible 2" 

2 -1 -1 1 0 

-1 1 impossible 2" 

3 1 -1 1 2ba b - 1 
a - 2" 

-1 ~ + 2ba ba = -i, % 

4 -1 1 1 -2ba b -_1 
a - 2 

-1 1 - 2b 
2 a ba=%,-~ 

Since b, = -~, similar as the discussion in (3a), we get ba = ±%. 

This gives the third form of (2.5.2). 

11. When ~ + baxa - bax{3 - ~XI. This is the form (2.5.1). By Claim 

3, this is impossible. 

iii. When f (x) = ~ + baxa - bax{3 - ~ x', we have the table below. 

Case # xa x{3 x, f(x) ba,b{3,b, 

1 1 1 1 0 .l 

-1 3 impossible 2" 

2 -1 -1 1 0 

-1 3 impossible 2" 

3 1 -1 1 2ba b - 1 
a - 2" 

-1 ~ + 2ba b - -~ _1 
a - 4' 4 

4 -1 1 1 -2ba b -_1 
a - 2 

-1 §. - 2b 1 3 
2 a ba = 4' 4 

From the Case 3 and 4, we can see that f (x) can not be an integer 
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for any bo;. Therefore, f(x) can not have this form. 

4. If all the three words are even words, then :Eo;E~h bo; = O. By Proposition 

2.3.3, f(x) has two possible forms. 

(a) f(x) = bo+bo;xo;+b!3x!3+(l-bo-ba -b!3)xl', if (1,1, ... ,1), (-1, -1, ... , -1) E 

Y. 

Considering various cases, we have the table below. 

Case # xa x!3 xl' f(x) bm b!3,bl' 

1 1 1 1 1 

-1 2(bo + ba + b!3) - 1 bo +ba +b!3 = ~,1 

2 -1 -1 1 1 - 2(bo; + b!3) bo: + b!3 = 0, ~ 

-1 -1 + 2bo bo = ~ 

3 1 -1 1 1 - 2b!3 b!3 - 1. -2 

-1 2(bo + ba ) - 1 bo + ba = ~, 1 

4 -1 1 1 1 -2ba 
b - 1 0:-"2 

-1 2(bo + bj3) - 1 bo + bj3 = ~,1 

1. Show that bo =/: ~. Assume that bo = ~. Then, for Case 4, if 

bo: = ~, then f(x) has the form (2.5.1), which is impossible; if 

bo + bj3 = ~, then, bj3 = 0, a contradiction; if bo + bj3 = I, then, 

bj3 = ~ and f(x) also has the form (2.5.1), which is impossible. 

Thus, in Case 2, that is, when x a = x!3 = -1, xl' must be 1, which 

needs 

(2.5.6) 
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or 

b h 1 
°: + U{3 = 2' (2.5.7) 

ii. Show that b{3 1= ~. Assume that b{3 =~. Then, since bo 1= 0, 

bo: + b{3 1= ~. So ba + b{3 = 0 by (2.5.6) and (2.5.7) and, thus, 

bo: = -~. Therefore, for Case 4, we have bo + b{3 = ~ or 1, which 

yields bo = 0 or ~, respectively, a contradiction. Thus, in Case 3, 

that is, when xO: = -x{3 = 1, x'Y must be -1, which needs 

or 

1 
bo + bo: = 2 

bo + bo: = 1. 

(2.5.8) 

(2.5.9) 

iii. Show that bo: 1= ~. Assume that bo: = ~. Then, by (2.5.8) and 

(2.5.9), bo = 0 or ~, which is impossible. Thus, in Case 4, that is, 

when xO: = -x{3 = -1, x'Y must be -1, which needs 

or 

1 
bo + b{3 = 2 

bo + b(3 = 1. 

(2.5.10) 

(2.5.11) 

IV. By (i), (2.5.6) and (2.5.7), we know that bo + bo: + b(3 can not be 

~ or 1. Thus, in Case 1, that is, when x a = x(3 = 1, x'Y must be 1 

and f(x) = 1. 

Now, by (2.5.6), (2.5.8) and (2.5.11), we get bo = ~, ba = -b(3 = 

-b'Y = -i, which gives the first form of (2.5.5). By (2.5.6), (2.5.9) 



40 

and (2.5.10), we get bo = ~, bn = -b(3 = br = ~, which also gives the 

first form of (2.5.5). By (2.5.7), (2.5.8) and (2.5.10), we get bo = bn = 

b(3 = br = ~, which gives the first form of (2.5.4). By (2.5.7), (2.5.9) 

d (2 5 11) t b - 3 b - h - b - I h' h . . an .. L , we ge 0 - 4' n - U(3 - - r - 4' w IC ~ agam gIves 

the first form of (2.5.5). All the other combinations of the equations 

(2.5.6) or (2.5.7), (2.5.8) or (2.5.9), and (2.5.10) or (2.5.11) lead to the 

solutions with bo equals ~, contradictions. 

(b) f(x) = bo+bnxn+b(3x(3+(-bo-bn-ba)xr, if(l, 1, ... ,1), (-1, -1, ... , -1) 

rt Y. 

Considering various cases, we have the table below. 

Case # xn x(3 xr f(x) bn, b(3, br 

1 1 1 1 0 

-1 2(bo + bn + b(3) bo + bn + b(3 = 0, ~ 

2 -1 -1 1 -2(bn + b(3) bn + b(3 = 0, -~ 

-1 2bo bo = ~ 

3 1 -1 1 -2b(3 b(3 = -~ 

-1 2(bo + bn) bo + bn = 0, ~ 

4 -1 1 1 -2bn b -_1 
n - 2 

-1 2(bo + 0(3) 00 + b(3 = 0, ~ 

1. Show that bo #- ~. Assume that bo = ~. Then, for Case 4, if 

ba = -~, then f(x) has the form (2.5.1), which is impossible; if 

00 + 0(3 = 0, then, 0(3 = -~ and f(x) also has the form (2.5.1), 

which is again impossible; bo+b(3 can not be ~, since, then, b(3 = O. 



Thus, when x a = x(3 = -1, X~I must be 1, which needs 

or 

! 

ba + b(3 = -~. 
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(2.5.12) 

(2.5.13) 

ii. Show that b(3 i:- -~. Assume that b(3 = -~. Then ba +b(3 i:- -~. So 

be. + b(3 = 0 by (2.5.12) and (2.5.13) and, thus, be. = ~. Therefore, 

for Case 4, we have bo + b(3 = 0 or ~, which yields bo = ~ or 1, 

respectively, a contradiction. Thus, when xe. = -x(3 = 1, x'Y must 

be -1, which needs 

bo + be. = 0 (2.5.14) 

or 

(2.5.15) 

iii. Show that be. i:- -~. Assume that be. = -~. Then, by (2.5.14) 

and (2.5.15), bo = ~ or 1, which is impossible. Thus, when xa = 

-x(3 = -1, x'Y must be -1, which needs 

bo + b(3 = 0 (2.5.16) 

or 

b . 1 
0+ b(3 = 2' (2.5.17) 

iv. By (i), (2.5.12) and (2.5.13), we know that bo + ba + b(3 can not be 

o or ~. Thus, when XCi = x(3 = 1, x'Y must be 1 and f(x) = o. 

Now, by (2.5.12), (2.5.14) and (2.5.17), we get bo = -ba = b(3 = -b'Y = 

~, which gives the second form of (2.5.4). By (2.5.12), (2.5.15) and 
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(2.5.16), we get bo = ba = -bf3 = -b"y = 1, which also gives the 

second form of (2.5.4). By (2.5.13), (2.5.14) and (2.5.16), we get bo = 

-ba = -bf3 = b"y = i, which again gives the second form of (2.5.4). 

By (2.5.13), (2.5.15) and (2.5.17), we get bo = ~, ba = b{3 = b"y = -i, 

which gives the second form of (2.5.5). All the other combinations of 

the equations (2.5.12) or (2.5.13), (2.5.14) or (2.5.15), and (2.5.16) or 

(2.5.17) lead to the solutions with bo equals ~ or 0, contradictions. 

o 

By Proposition 1.2.3, the ~ fractions with the forms of indicator poly

nomial functions in (2.5.3) and (2.5.5) are corresponding complementary frac

tions of the i fractions with the forms of indicator polynomial functions in 

(2.5.2) and (2.5.4). For example, when there is one even word, the fraction 

f(x) 2 + lxQ + lx!3 - lx"Y is the complementary fraction of the fraction 
4 4 4 4 

f(x) i - ~xQ - ~x!3 + ix"Y; when all the three words are even words, the 

fraction f(x) = ~ - ~xQ + ~x!3 + ~x"Y is the complementary fraction of the fraction 

f( x) - 1 + lxQ - lx!3 - lx"Y 
-4 4 4 4· 



Chapter 3 

Connections Between the 

Resolutions of General 

Two-Level Factorial Designs 

3.1 Introduction 

Regular resolution J J J* designs are regular resolution J J J designs in which no 

two-factor interactions are confounded with one another. Draper and Lin [14] 

showed that resolution J J J* m-factor regular designs can be converted into res

olution V (m - I)-factor regular designs and, conversely, resolution V m-factor 

regular designs can be converted into resolution II 1* (m + 1 )-factor regular de

signs. In this chapter, using indicator polynomial functions, we not only extend 

these results to general two-level factorial designs, but also obtain even more 

general results. 

Remember that a resolution N. *x design is a resolution N.x design such 

43 
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that its indicator polynomial function contains no (N + I)-letter word. 

In Section 3.2, we provide a way to convert resolution (2l - I).*x designs 

to resolution (2l + I).x designs. A link between resolution (2l-I).x designs and 

resolution 21.x designs is also presented in this section. In Section 3.3, we show 

that resolution I I I. *x designs can be obtained from designs whose resolutions 

are equal or bigger than V. 

3.2 Changing Resolutions by Converting a m= 

Factor Design into a (m - 1)-Factor Design 

In this section, we extend Theorems 1 and 2 of Draper and Lin [14] to general 

two-level factorial designs. A more general theorem is also proved in this section. 

As another special case of this theorem, a relation between designs of resolution 

(2l-1).x and resolution 2l.x is also presented. For this purpose, we use the same 

transformations as Draper and Lin [14] used in their work. 

Assume that Xl, X2, ... ,Xm are the m factors that form a two-level factorial 

design :F with the indicator polynomial function (1.2.1). Let Xk be any of the m 

factors and let 

Yj = XkXj, j = 1,2, ... ,m (j =J k). (3.2.1) 

Then Yl, Y2,· .. ,Yk-l, Yk+lJ· .. ,Ym form a (m -I)-factor two-level factorial design 

F. Define 

Then 

a~ = ai, i = 1,2, ... ,m (i =J k). 

XCI = X~k [II (XkYi)Cli] = x~ClllyClI, 

i# 

(3.2.2) 
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and 

II ex' 11= { II 0: II 
110:' II -1 

Lemma 3.2.1 gives the indicator polynomial function of:t. Lemma 3.2.2 

provides the resolution of:t and follows from Lemma 3.2.1 and the above discus

sion directly. 

Lemma 3.2.1. Let F be a two-level m-factor design and:t be the corresponding 

(m - I)-factor design. If (1.2.1) is the indicator polynomial function of F, then 

g(y) = 2bo + 2 L bOtYc/ 

OtEO{ 

is the indicator polynomial function of :t. 

Proof. By (3.2.2), the indicator polynomial function of :F can be written as 

f(x) = bo + Xk L bOtyOt
I 

+ L bOtyOt
I

• 

OtEO~ OtEO{ 

This can also be seen as the indicator polynomial function of the design with the 

factors Yl, Y2,· .. ,Yk-l, Xk, Yk+l,· .. , Ym' When it is projected onto Yl, Y2,' .. ,Yk-l, Yk+l, 

... ,Ym, the resulting projected design is:t. By Theorem 1.2.4, the indicator 

polynomial function of the projected design is 

g(y) = 2bo + 2 L bOtyOt
I

• 

OtEO{ 

o 

Although g(y) is only related to the even words in f(x), the words in g(y) 

can be odd words. When there is only one even word in f(x), g(y) has only one 

word. By Proposition 2.3.1, the design is a regular design. When an the words in 

f(x) are odd words, :t is a full two-level (m -I)-factor design with 2bo replicates 

for each point in :t. 
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Lemma 3.2,2, Let:F be a two-level m-factor design and :F be the corresponding 

(m - 1) -factor design. Assume thai 2r is the number of leiters in the shortest 

even word of n:;. Let 

A = {a E n:; I II a 11= 2r}. 

Then, the resolution of:F is 

Rj: = { (2r - 1).x 

2r.x 

if there exists an a E A s.t. ak = 1 

otherwise. 

Theorem 3.2.3 shows the relation between the resolutions of the original 

design :F and the resolutions of the transformed design :to 

Theorem 3.2.3. Let:F be a m-factor two-level fractional factorial design with 

the indicator polynomial function (1.2.1). Assume that 2r is the number of letters 

in the shortest even word of n:;. Then regardless of what resolution :F is, :F can 

always be converted into a (m - I)-factor design :t of resolution (2r - 1).x in 

the same number of runs. If there exists a k E {I, 2, ... , m} such that for any 

a E A, ak =1= 1, then :F can be converted into a (m - I)-factor design :t of 

resolution 2r.x. 

Proof. Let a E A. Take any k such that ak = 1. By Lemma 3.2.2, we get the 

first result. The second result follows from Lemma 3.2.2 directly. o 

The following corollaries are obtained readily from Theorem 3.2.3. Corol

lary 3.2.4 is a generalization of Theorem 1.3.1 and Theorem 1.3.5 which were 

obtained by Draper and Lin [14], while Corollary 3.2.5 is an extension of Corol

lary 1.3.2 obtained by Draper and Lin [14]. 
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Corollary 3.2.4. Let F be a m-factor two-level fractional factorial design of 

resolution (2l - 1). * x. If there is a (2l + 2) -letter word in the indicator polynomial 

function of F, then F can be converted into a (m-1) -factor design j: of resolution 

(2l + 1).x in the same number of runs, 

Coronary 3.2.5. Assume that a design of resolution III.*x can be converted 

into a design of resolution V.x. Then, if m is the maximum number of factors 

that can be accommodated in the design of resolution I II. *x, then the maximum 

number of factors that can be accommodated in the design of resolution V.x with 

the same number of runs is at least m - 1. 

Example 3.2.6. An indicator polynomial function of a 6-factor design is 

1 1 1 1 1 1 
4' + S'X 1X 4 X 5 + S'X 2 X 3 X 6 - S'X 1 X 5X 6 - S'X 2X 3X 4 - S'X 2X 5 X 6 f(x) = 

1 1 1 1 
-S'X1X3X6 - S'X2X4X5 - S'X1X3X4 + 4'XIX2X3X4X5X6' 

This is a resolution II I. * 5 design. Take, for example, k = 6 ( one can take any 

i, i = 1,2, ... ,6 j, that is, Yi = X6Xi, i = 1,2, ... ,5. Since f(x) only contains 

one even-letter word XIX2X3X4X5X6, by Corollary 3.2.4, :F can be converted into 

a resolution V design and 

For the regular resolution J J J* design, when there are at least two 3-letter 

words in the indicator polynomial function, there is always a 6-1etter word in 

the indicator polynomial function. But when there is only one 3-1etter word, it 

is possible that there is no 6-1etter word in the indicator polynomial function. 

Draper and Lin pointed out in their Example 3 that when there is only one 3-

letter word in the defining relation, one may get a resolution V design by deleting 

one variable in the 3-1etter word. 
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Example 3.2.7 shows that when a resolution I I 1* design has only one 3-

letter word in its indicator polynomial function, it may be converted into two 

designs with different resolutions. Example 3.2.8 shows that one can not possibly 

convert it to a resolution V design by deleting a variable in the 3-1etter word, but 

possibly convert it to a design with resolution higher that V. 

Example 3.2.7. An indicator polynomial function of a 8-factor design with gen-

This is a resolution II 1* design and 2r = 8. If we take k = 1, then after the 

transformation (3.2.1), :F is converted into the design of resolution VII and its 

indicator polynomial function is 

If we delete, for example, the variable Xl as in Example 3 of Draper and 

Lin {14j, then this design can also be converted into the design of resolution V 

and its indicator polynomial function is 

Example 3.2.8, An indicator polynomial function of a 10-factor design with 

This design can not be converted into a design of resolution V by removing 

one variable in the 3-letter word as Example 3 of Draper and Lin {14J. If we 
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delete, for example, the variable Xl, then the indicator polynomial function of the 

resulting design is 

which is a resolution V I I design. 

Example 3.2.9 shows that the condition, that a (2l + 2)-letter word is 

needed in the indicator polynomial function of :F in Corollary 3.2.4, is necessary 

even in the regular case. 

Example 3.2.9. An indicator polynomial function of a 10-factor design with 

This is a resolution V* design and 2r = 10. If we take k = 2, then after the 

transformation (3.2.1), :F is converted into a resolution IX (not VII) design 

and its indicator polynomial function is 

Corollaries 3.2.10 and 3.2.11 provide connections between two-level designs 

of resolution (2l - l).x and resolution 2l.x. In particular, when l = 2, they show 

connections between two-level designs of resolution II I.x and resolution IV.x. 

Corollary 3.2.10. Let:F be a two-level m-factor design of resolution (2l- l).x. 

If there is a 2l-letter word in the indicator polynomial function of :F and there 

exists a k E {I, 2, ... ,m} such that for any 0:: E A,O::k i= 1, then :F can be 

converted into a (m - I)-factor design j of resolution 2l.x in the same number 

of runs. 
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Corollary 3,2,11, Let:F be a two-level m-factor design of resolution 2l.x. Then, 

F can be converted into a (m - I)-factor design :t of resolution 2l - l.x in the 

same number of runs. 

Example 3,2,12. An indicator polynomial function of a 7-factor regular design 

f(x) = 
1 1 111 
'8 + '8XIX3X6 + '8X2X3X7 + '8XIX2X4X5 + '8X4X5X6X7 

1 1 1 
+'8XIX2X6X7 + '8X2X3X4X5X6 + '8XIX3X4X5X7' 

This is a resolution I I I design. Since there exists a k (= 3) such that X3 is not 

in all the 4-letter words, F can be converted into a 6-factor design of resolution 

IV and its indicator polynomial function is 

Example 3,2.13. An indicator polynomial function of a 7-factor design is 

This is a resolution 4~ design. If we take k = 1, then F is converted into a 

6-factor design of resolution I I I and its indicator polynomial function is 



3.3 Obtaining a Resolution J J J* Design by 

Converting a m-Factor Design into a 

(m + 1)-Factor Design 

Assume that 

Then, Yl, Y2,' .. , Ym+l form a (m + I)-factor two-level factorial design and 

Since 

we define 

Xl = Yk, Xk = Yl, and Xi = YkYIYi, Vi i- k, l. 

m m 

xa = [II (YkYIYi)aily~IYrk = [II (Yi)aily~all-aky!lall-al , 

i=l 

i#,l 
i=l 

#k,l 

if 1 ::; i ::; m and i i- k, l, 

II a: II - ook(mod2), if i = k, 

II a: II - a:1(mod2), if i = l, 

0, if i = m + 1. 
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(3.3.1) 

Lemma 3.3.1 gives the indicator polynomial function of the transformed 

design. 

Lemma 3,3,1. Lei F be a two-level m-factor design and :t be the transformed 

(m + l}-factor design. If (1.2.1) is the indicator polynomial function of F, then 

the indicator polynomial function of j: is 

g(y) = ~( I: baya
l 

+ I: bayOII+'P) , 

aEL2m OIEL2m 
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where !.p is a 1 x (m + 1) vector such that k, land (m + 1)-th entries are 1 and 

all others are O. 

Proof. The indicator polynomial function of the 2(m+l)-1 design with defining 

relation Ym+l = YkYI is 

From above discussion, the right hand side of (1.2.1) can be written as I:aEL
2
m baya'. 

Thus, the indicator polynomial function of the design formed by the factors 

YI, Y2, ... ,Ym is 

h(Y) = L baya'. 

aEL2m 

Therefore, the indicator polynomial function of j: is 

g(y) fo(y)fl(Y) 

1 ( ) ~ b~ya' "2 1 + YkYIYm+1 ~ ~ 
aEL2m 

~( ~ b a' ~ b a'+'P) 
2 ~ aY + ~ aY . 

aEL2 m aEL2 m 

o 

The following theorem is a generalization of Theorem 1.3.3 which was 

obtained by Draper and Lin [14]. 

Theorem 3.3.2. Any m-factor two-level fractional factorial design :F of resolu

tion V or bigger can be converted into a (m + I)-factor design j: of resolution 

111*. 



Proof. By (3.3.1), 

II a 11- 2, if II a II is odd, and ak = 1, al = 1, 

II a' 11= II a II + 2, if II a II is odd, and ak = 0, al = 0, 

and therefore 

Ii a II, otherwise, 

if 1 :::; i :::; m and i =f- k, I, 

II a II - ak + l(mod 2), if i = k, 

II a II - at + l(mod 2), if i = l, 

1, if i = m + 1, 

II a II -1, if II a II is even, and ak = 1, at = 1, 

II a' + 'P 11= II a II + 3, if II a II is even, and ak = 0, at = 0 

II a II + 1, otherwise. 

53 

(3.3.2) 

(3.3.3) 

By (3.3.2) and (3.3.3), for any a E o-r such that II a 112:: 5, II a II and II a' + 'P II 

are an at least 3 but not equal to 4. From Lemma 3.3.1, the indicator polynomial 

function of j: has a word yep = YkYIYm+l and its length is 3. Thus, the resolution 

of j: is II 1* . 0 

The following corollary is an extension of Corollary 1.3.4 obtained by 

Draper and Lin [14]. 

Coronary 3,3.3. If (m - 1) is the maximum number of factors that can be ac

commodated in a design F of resolution V.x, then the maximum number of factors 

that can be accommodated in a resolution I I 1* design with the same number of 

runs is at least m. 
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Example 3.3.4. An indicator polynomial junction of a two-level 9-factor design 

is 

Thus, by Lemma 3.3.1 J the indicator polynomial function of the transformed de-

sign is 

g(y) = 
3 3 1 1 1 1 
S + SYIY6YlO + SY3Y4Y7 + SYIY2Y3Y5Y9 + SYIY2Y4Y5Y7Y9 + 4YIY2Y5Y6Y8Y9 

1 1 1 1 
+SYIY3Y4Y6Y7YlO + SY2Y3Y5Y6Y9YlO + 4Y2Y5Y8Y9YlO + SY2Y4Y5Y6Y7Y9YlO. 

The word lengths of the 3-letter words YIY6YlO and Y3Y4Y7 are 3 and 3~, 

respectively. Thus, the resolution of the transformed design is I I I. Since there 

is no 4 -letter word in its indicator polynomial function, the transformed design is 

therefore of resolution I I 1* . 

If we take k = 4 and l = 8 (note that Xs is not in any 5-letter word), 

function of the transformed design is 

g(y) = 
3 3 1 1 1 
S+S~~~o+S~~~~~+4~~~~~~+S~~~~~~ 

111 
+SYIY3Y4Y6Y7YlO + SY2Y3Y5Y6Y9YlO + 4YIY2Y4Y5Y6Y9YlO 

1 1 
+SY2Y3Y4Y5Y6YSY9 + SYIY2Y5Y7YsY9YlO' 

There is only one 3-letter word Y4YSYlO and its word length is 3. Note that there 

is no 4-letter word in the indicator polynomial function and hence this is also a 
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resolution I I I* design. However, if we compare the two transformed designs by 

the minimum aberration criteria, the second design is better since it has only one 

3-letter word. 

Hence, when we choose k or l, it is better to choose the one whose factor 

is not contained in any 5-1etter word. 



Chapter 4 

Indicator Polynomial Functions 

of Partial Foldover Designs 

4.1 Introduction 

Partial foldover designs save half or more of the original runs comparing to cor

responding full foldover designs. The new runs which are added to the original 

design is used to de-alias some effects. Mee and Peralta [20] studied various pos

sible semifoldover regular designs. John [18] considered to add a fraction of ~ 

original runs to the original regular design. We study partial foldover general 

two-level factorial designs, regular or non-regular. 

The powerful tool we use for this purpose is indicator polynomial func

tions. As we mentioned earlier in Section 1.2, indicator polynomial functions 

provide alias structure of the designs, that is, any word in the indicator poly

nomial functions implies an alias relation. Conversely, if a word is not in the 

indicator polynomial function, then the alias relations caused by this word are 

de-aliased. Note that for a regular design, if two effects are aliased with the same 
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effect, then this two effects are also aliased; but for a non-regular design, this is 

not true in general. 

For example ([15]), an indicator polynomial function of as-factor non

regular design is: 

Although X3 and X4 are partially aliased with XIX2, X3 and X4 are not (partially) 

aliased. Also, X3XS and X4XS are partially aliased with XIX2, but X3X5 and X4X5 

are not (partially) aliased since X3X4 is not in the indicator polynomial function. 

In Section 4.2, we study the indicator polynomial functions of semifoldover 

designs. In Section 4.3, we extend some results in Section 4.2 to a more general 

case and, especially, the indicator polynomial functions of partial foldover designs 

obtained by adding a fraction of ~ original runs are obtained. 

4.2 Indicator Polynomial Functions of Semifoldover 

Designs 

In this section, we study indicator polynomial functions of semifoldover designs. 

Lemma 4.2.1 below is obtained directly from the properties in Section 1.4, 

and this result will be utilized later. One can see that the words that are left are 

those in the original design which are not sign-reversed in the new fraction. This 

shows that the "Foldover Rule 1" in Montgomery [21] is also true for non-regular 

designs. Thus, foldover of a non-regular design can also de-alias all (or as many as 

possible) the two-factor interactions which contain factors of interest as foldover 

of a regular design. 
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Lemma 4.2.1. Assume that {l.5.2} is the indicator polynomial function of :F. 

If we fold over on Xl, X2, . .. ,XrJ then the indicator polynomial function of the full 

foldover design is 

fc(x) = 2 L::: bOlXOI. (4.2.1) 

OlEO. 

Lemma 4.2.2 below is useful for getting indicator polynomial functions of 

semifoldover designs, and is easy to verify. 

Lemma 4.2.2. Let :Fa and :Fb be fractions of a two-level factorial design and 

fa (x) and fb( x) be the corresponding indicator polynomial functions, respectively. 

Then, the indicator polynomial function of :Fa n:Fb is fa (x) fb( x). 

Lemma 4.2.3 provides the indicator polynomial function of :F(e). 

Lemma 4.2.3. Let {l.5.2} is the indicator polynomial function of:F, then 

(4.2.2) 

is the indicator polynomial function of :F(e). 

Proof. The indicator polynomial function of the half fraction which satisfies ez = 

1 (or z = e) is fh(x) = 1/2 + ez/2. By Lemma 4.2.2, the indicator polynomial 

function of :F(e) is 

f(e)(x) = f(x)fh(x) = ~(1 + ez)f(x). 

We can also prove this in the following way by using the definition of 

indicator polynomial functions: 

Since :F = :F(e) U :F( -e), D2m = :F(e) U :F( -e) U (D2m \:F). To prove (4.2.2) 

is the indicator polynomial function of :F(e) , we consider the value of fee) (x) in 

the three subsets separately. 
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1. If x E F(e), then x E F and z = e. It follows that f(x) = 1 and ez = 1. 

Thus f(e)(x) = f(x) = 1. 

2. If x E Fe -e), then z = -e. It yields ez = -1 and, therefore, fee) (x) = o. 

3. If x E D2m \ F, then f(x) = O. It follows that f(e)(x) = O. 

By (1),(2) and (3), we obtain 

j(') (x) ~ {~ if x E F(e) 

if x E D2m \ Fee). 

By the uniqueness of the indicator polynomial function, we know that f(e)(x) is 

the indicator polynomial function of F(e). 

o 

Remember that Fa is the new fraction obtained by reversing the signs of 

Xl, X2,' .. , xr · Note that for regular designs, number of runs in the fraction Fie) 

is exactly half runs of the original design. But for non-regular designs, number 

of runs in the fraction Fie) may be less or more than half runs of the original 

design. 

Proposition 4.2.4 below provides the indicator polynomial function of the 

semifoldover design. It shows that the words in the two semifoldover designs 

obtained by adding the fraction Fill or the fraction Fi -1) to the original design 

are the same. Thus, the two semifoldover designs have the same alias sets. 

Proposition 4.2.4. Assume that (1.5.2) is the indicator polynomial function of 

F. If we subset on a main effect or an interaction effect ez, e = 1, -1, then the 

indicator polynomial function of F(e) U FJe) is 
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The indicator polynomial function of F( -e) u :F~e) is 

Proof. By Property (1) in Section 1.4, the indicator polynomial function of Fa is 

fa(x) = L bax
a 

- L baxa. 

aEOe aEOo 

If we subset on ez, then, by Lemma 4.2.3, the indicator polynomial function of 

F~e) is given by 

f~e)(x) = ~{L bax
a 

- L bax
a + ez L bax

a 
- ez L baxa}. 

aEOe aEOo aEOe aEOo 

By (4.2.2) and the Property (2) in Section 1.4, the results follow easily. D 

Note that any word in fc(x) is also in h(x) and h(x) and, consequently, 

all the alias relations in the full foldover design are still in the semifoldover de

sign. Thus, the semifoldover design can not de-alias any additional two-factor 

interactions than the full foldover design. 

It is well known that for a regular design F, its run size must have the 

form 2m
-

p if there are m factors and p generators, thus, the combined fraction 

F u F~e) is a non-regular design since its run size is 2m- p + ~ . 2m- p = ~ ·2m- p
. 

But for a non-regular design F, it is hard to see if the run size of the combined 

fraction FUF~e) has the form 2m- p
, so we can not tell whether it can be a regular 

design. Proposition 4.2.5 provides the indicator polynomial function of F U F~e) 

which allow us to answer this question easily. 

Proposition 4.2.5. Assume that (1.5.2) is the indicator polynomial function 

of F. If we subset on ez, e = 1, -1, then the indicator polynomial function 

fs(x) = I:aEL
2

m caxa of the combined semifoldover design F U F~e) is 

(4.2.3) 



Proof. By the proof of Proposition 4.2.4, the indicator polynomial function of 

-de) . 
.ro IS 

f~e)(x) = ~{L bax
a - L bax

Q 
+ ez L bax

a - ez L bQxQ}. 

aEOe aEOo QE!1e aEOo 

Thus, the indicator polynomial function of the combined semifoldover design 

:F u :F~e) is fs(x) = f(x) + f~e) (x), which is (4.2.3). D 

One can see that the constant of the indicator polynomial function (4.2.3) 

is Co = ~bo, but other coefficients are CQ = ~bQ or -~bQ' Thus, by Proposition 

1.2.1, (4.2.3) represents a regular design if and only if 

and if and only if 

which is impossible by (1.2.3). Therefore, this combined fraction can never be a 

regular design no matter the original design is a regular design or a non-regular 

design. 

4.3 Extensions 

In Section 4.2, we obtained the indicator polynomial functions of semifoldover 

design. In this section, we consider the addition of a smaller fraction to the 

original fraction and extend some results in Section 4.2 to a more general case. 

It is easy to check that Lemma 4.2.2 can be extended to a more general 

case as follows. 
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Lemma 4.3.1. Let F 1 , F 2 ,'" , Fp be fractions of a two-level factorial design 

and h(x), h(x),··· ,fp(x) be the corresponding indicator polynomial functions. 

Then, the indicator polynomial function of F 1nF2n· . ·nFp is h (x)h(x) ... fp(x). 

Let 

(4.3.1) 

where ei = lor-I, i = 1,2, ... ,p, and Zi be a main effect or an interaction. 

We can add a smaller fraction F(Q,e2 , ... ,ep ) to the original design to get a partial 

foldover design. 

Lemma 4.3.2 provides the indicator polynomial function of F(Q,e2 , ... ,ep ). 

Lemma 4.3.2. Assume that {1.5.2} is the indicator polynomial function of F, 

then 

(4.3.2) 

is the indicator polynomial function of F(e 1 ,e2 , ... ,ep). 

Proof. The indicator polynomial function of the half fraction which satisfies eiZi = 

1 (or Zi = ei) is fi(X) = ~(1 + eizi). By Lemma 4.3.1, we get the results. 0 

From the proof of Proposition 4.2.4, we know that the indicator polynomial 

function of Fa is 

fo(x) = L bax
a 

- L baxQ. 

GEne GEno 

Thus, by Lemma 4.3.2, the indicator polynomial function of F~q,e2, ... ,ep) is given 

by 

( 4.3.3) 
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By (4.3.2) and (4.3.3), we can get indicator polynomial functions of partial 

foldover designs. 

Proposition 4.3.3 below provides the indicator polynomial functions of the 

double semifoldover designs which is obtained by adding ~ fraction to the original 

design. 

Proposition 4.3.3. Assume that (1.5.2) is the indicator polynomial function 

of F. If we subset on ejzj, j = 1,2, then the indicator polynomial function of 

F(e1 ,e2) U F~q,e2) is 

h(x) = ~(1 + elzl)(l + e2z2) L boxo. 
oEne 

The indicator polynomial function of F(e 1 ,-e2) U F~el,e2) is 

h(x) = ~(1 + elzd( L box
o 

- e2Z2 L boxO). 
oEn e oEna 

The indicator polynomial function of F(-Q,e2) U F~el,e2) is 

h(x) = ~(1 + e2z2)( L box
o 

- elZl L boxO). 
oEne oEna 

The indicator polynomial function of F( -el,-e2) U FJe1 ,e2
) is 

!4(x) = ~[(1 + ele2z1z2) L box
o 

- (elzl + e2z2) L boxO]. 
oEne aEn a 

Proof. By (4.3.2) and (4.3.3), we get 

1 
f(Q,e 2 )(x) = 22 (1 + elzl)(1 + e2z2)f(x), 

1 

f(e 1 ,-e2)(x) = ;2 (1 + elzI)(l - e2 z2)f(x), 



1 
!(-eJ,e2 )(x) = 2

2
(1- EIZ1)(1 + E2Z2)!(X), 

1 
!(-e1 ,-e2 )(x) = 2

2
(1- EIZ1)(1- E2Z2)!(X). 

Thus the indicator polynomial function of F(q,e2l U F~q,e2) is 

JI(x) !(Q,e2l (x) + !~el,e2)(X) 

212 (1 + EIZl)(l + E2Z2)!(X) + 212 (1 + EIZl)(l + E2 Z2)!o(X) 

~(1 + EIZl)(l + E2 Z2) L boxo. 

oEne 

Similarly, we can get other indicator polynomial functions. o 



Chapter 5 

Semifolding Resolution I I I.x 

Designs 

5.1 Introduction 

It is well known that folding over a resolution I I I design can de-aEas all the 

main effects. Li, Lin and Ye [19] studied foldover non-regular designs using 

indicator polynomial functions. They showed that the foldover non-regular de

signs obtained by folding over on all the main effects can also de-alias all the 

main effects. Mee and Peralta [20] considered semifoldover resolution I I I de

signs through a example. Although semifoldover resolution I I I designs can not 

de-alias all the main effects as the corresponding foldover designs, but Mee and 

Peralta [20] pointed out that the half new runs can be used as confirmation runs 

which verify the validity of one's assessment of active versus inactive factors. 

In this chapter, we assume that :F is a resolution I I I.x design. From a 

practical point of view, we assume that :F is a design without replicates. When 

we say a main effect can be de-aliased, we mean it can be de-aliased with its 

65 



66 

aliased two-factor interactions and ignore its aliased three-factor and higher-order 

interactions. 

We study a semifoldover design obtained from a two-level resolution II I.x 

factorial design, regular and non-regular. We examine when a semifoldover design 

can de-alias one or more main effects. In Section 5.2, we consider semifoldover 

designs obtained by sub setting on a main effect and provide necessary and suffi

cient conditions for the semifoldover designs de-alias a main effect. We show that 

the semifoldover design, obtained by foldover on all the factors, can de-alias at 

least the same number of factors as the semifoldover designs obtained by folding 

over on one or more, but not all, main effects. In Section 5.3, we consider a semi

foldover design obtained by subsetting on a two-factor interaction and provide 

necessary and sufficient conditions for the semifoldover designs de-alias a main 

effect. Finally, we present a number of illustrative examples in Section 5.4 which 

compare various semifoldover designs in more detail. 

5.2 Subsetting on a main effect 

When sub setting on a main effect, by Proposition 4.2.4, the indicator polynomial 

function of F(e) U F~e) is 

h(x) = L baxa + e L baxa+¢j. 

aEOe aEO e 

The indicator polynomial function of F( -e) U FJe) is 

Since fl(X) contains a one-letter word Xj, any main effect Xh(-!- Xj) is 

(partially) aliased with at least the two-factor interaction XjXh in the combined 

fraction F(e) U F~e), and therefore can not be de-aliased in this fraction. 
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Proposition 5.2.1 provides a sufficient and necessary condition for a partial 

foldover design to de-alias a main effect from its aliased two-factor interactions. 

Proposition 502.L Assume that the semifoldover design is obtained by folding 

over on all the main effects and subsetting on a main effect ex j, e = 1, -1, 

j = 1,2, ... , m. Then, Xj can be de-aliased in :F(-e) U :F~e) and a main effect 

Xh (=1= Xj) can be de-aliased in :F( -e) u :F~e) if and only if it is not in any three

letter word which contains Xj. 

Proof. Let Xh be any main effect. Since I::QElle bQx
Q contains four and higher

letter words, any word in Xh(I::QEll
e 

bQxQ) is at least three-letter word. 

H Xh = Xj, then Xh(I::QEll
o 

bQxQ+<!>j) = I::QEllo bQx
Q

, which contains only 

three and higher-letter words. It follows that Xh = Xj can be de-aliased in the 

combined fraction Fe-e) u F~e). 

H Xh =1= Xj, then, for any five or higher-letter word x
Q

, XhXQ+¢J is at least a 

three-letter word. If a three-letter word xQ does not contain Xj, then XhXQ+<!>j is 

either a three-letter word, if Xh is in x
Q

, or a five-letter word, if Xh is not in xQ. If 

a three-letter word xQ contains Xj, then XhXQ+<!>j is a three-letter word if and only 

if Xh is not in xQ. Thus, all the words in Xh(I::QEll
o 

bQxQ+<!>j) are three or higher

letter words if and only if Xh is not in any three-letter word which contains Xj' 

It follows that Xh can be de-aliased from its aliased main effects and two-factor 

interactions in the combined fraction :Fe -e) u F~e) if and only if Xh is not in any 

three-letter word which contains Xj' o 

From Proposition 5.2.1, we should choose the Xj which is in as few three

letter words as possible. When there exists a factor which is not in any three-letter 

word of the indicator polynomial function of the original design (in this case, the 
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factor is not aliased with any two factor interaction), then subset on this factor 

permits the semifoldover design de-alias all the main effects from their aliased 

two-factor interactions. 

Remark 5.2.1. Mee and Peralta [20] found in their example that the semifoldover 

design obtained by folding over on all the main effects (say 51) can de-alias most 

main effects. This is true in general when subsetting on the same main effect Xj. 

Similar to Proposition 5.2.1, it is not difficult to prove that a main effect xh can 

be de-aliased in :F( -e) u :F~e) obtained by folding over on one or more, but not all, 

main effects (say 52) if and only if Xh is not in any three-letter word in We and, 

if Xh =1= Xj, any three and four-letter word which contains Xj in WOo It means 

that if Xh can be de-aliased in 52, then it is not in any three-letter word which 

contains Xj' Thus, the semifoldover design obtained by folding over on one or 

more main effects can not de-alias more main effects than the semifoldover design 

obtained by folding over on all the main effects if sub setting on the same main 

effect. Thus, we only need to consider the semifoldover design obtain by folding 

over on all the main effects and subsetting on a main effect. 

5.3 SUbsetting on a two-factor interaction 

When subsetting on a two-factor interaction XiXj, then, by Proposition 4.2.4, the 

indicator polynomial function of :F(e) U :F~e) is 

h(x) = L bQx
Q + e L bo.Xo.HiHj 

aEne QEne 

and the indicator polynomial function of :F( -e) u :F~e) is 

h(x) = L baxQ - e L baxaHiHj. 

QEne aEno 
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Note that fl(x) contains a two-letter word XiXj, Xi and Xj are aliased in 

the fraction :F(e) U :F~e). 

Proposition 5,3,1, Assume that the semifoldover design is obtained by folding 

over on one or more main effects and subsetting on eXiXj, e = 1, -1, i,j = 

1,2, ... , m. Then, Xi(Xj) can be de-aliased in :F(-e) U :F~e) if and only if Xi(Xj) 

is not in any three-letter word in We and Xj(Xi) is not in any three-letter word 

in WOo Xh(=I= Xi, Xj) can be de-aliased in :F(e) U :F~e) if and only if XiXj and Xh is 

not in any three-letter word and Xh is not in any four and five-letter word which 

contains XiXj in We; and can be de-aliased in :F( -e) U:F~e) if and only if XiXj is not 

in any three-letter word in W o, Xh is not in any three-letter word in We, not in 

any three-letter word which contains Xi or Xj and not in any four and five-letter 

word which contains XiXj in WOo 

Proof. Let Xh be any main effect. The results can be obtained from the following 

facts: 

a. All the words in XhO=O:Elle bo:xO:) are at least three-letter words if and 

only if Xh is not in any three-letter word in We. 

any word in it is a three or higher-letter word if and only if X j (Xi) is not in 

any three-letter word in WOo It follows that Xh = Xj(Xi) can be de-aliased in 

:F(-e) U :F~e) if and only if Xi(Xj) is not in any three-letter word in We and Xj(Xi) 

is not in any three-letter word in WOo 

c. If Xh =1= Xi(Xj), then, for any six or higher-letter word x Ct , XhxCt+¢i+¢j 

is at least a three-letter word. For a three-letter word xO:, XhXC>+¢i+¢j is at least 

a three-letter word if and only if xC> does not contain XiXj and Xh is not in xC> 



70 

if it contains Xi or Xj' For a four or five-letter word xC>, XhXC<+<Pi+<P; is at least a 

three-letter word if and only if Xh is not in xC> if it contains XiXj' o 

Corollary 5.3.2. If the semifoldover design is obtained by folding over on all the 

main effects and subsetting on eXiXj, e = 1,-1, i,j = 1,2, ... ,m, then, Xi(Xj) 

can be de-aliased in F(-e) U F~e) if and only if Xj(Xi) is not in any three-letter 

word. Any main effect Xh("I Xi, Xj) can be de-aliased in F(e) U F~e) if and only if 

it is not in any four-letter word which contains XiXj, and in F(-e) U F~e) if and 

only if it is not in any three-letter word which contains Xi or Xj, in any five-letter 

word which contains XiXj and any three-letter word does not contain XiXj . 

From Proposition 5.2.1, Proposition 5.3.1 and Corollary 5.3.2, one can see 

that it is hard to say which semifoldover design can de-alias more main effects. 

Examples presented in the next section will explain this in detail. 

5.4 Illustrative examples 

In this section, we give some examples which explain how Proposition 5.2.1, 

Proposition 5.3.1 and Corollary 5.3.2 can be applied to get the semifoldover de

signs and also compare which semifoldover design can de-alias more main effects. 

Example 5.4.1 shows that for this example, if subsetting on a proper main 

effect, the semifoldover design obtained by folding over on all the main effects 

can de-alias more main effects than the semifoldover designs obtained by folding 

over on all the main effects and subsetting on any two-factor interaction. 

Example 5.4.1. An indicator polynomial function of a 7-factor regular design 
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f(x) = 
1 1 1 1 1 
~ + iXIX2X5 + ~XIX3X6 + ~X2X3X5X6 + S-X2 X 3 X 4 X 7 

111 
+S-X4X 5X 6 X 7 + S-XIX3 X 4 X 5 X 7 + S-XIX2 X 4 X 6 X 7' 

Since there are two three-letter words, the alias sets are: {Xl, X2X5, X3X6}, {X2, XIX5}, 

{X3,XIXd, {X5,XIX2} and {X6,XIX3}' 

When folding over on all the main effects, let Xj = X2, then the indicator 

polynomial function of :FC -e) u :F~e) is 

1 1 1 1 1 
S- + S-X2 X 3 X 5 X 6 + S-X2 X 3 X 4 X 7 + S-X4 X 5X 6 X 7 + S-XIX5 f(x) = 

1 1 1 
+S-XIX2 X 3X 6 + S-XIX2 X 3 X 4 X 5 X 7 + S-XIX4 X 6 X 7' 

Since X3(J(X) -~) and X6(J(X) -~) contains only three or higher-letter words, X3 

and X6 are de-aliased with their aliased two-factor interactions in the combined 

fraction :FC-
e
) u :F~e). This can also be done by subsetting on Xj = X5. Similarly, 

subsetting on X3 or X6 permits the semifoldover design de-alias X2 and X5 from 

their aliased two-factor interactions. 

Note that X4 and X7 are not in any three-letter word, let Xj 

example, then, the indicator polynomial function of :FC -e) u :F~e) is 

1 1 1 1 1 
S- + S-X2 X 3 X 5 X 6 + S-X2 X 3X 4 X 7 + S-X4 X 5 X 6 X 7 + S-XIX2 X 4 X 5 f(x) = 

111 
+S-XIX3X 4X 6 + S-XIX3 X 5 X 7 + S-XIX2 X 6 X 7, 

which contains only four-letter words. Thus, any main effect in this combined 

fraction is not aliased with two-factor interactions. 

Since Xl is in both three-letter words, subsetting on this factor does not 

permit the semifoldover design de-alias any other main effect from their aliased 

two-factor interactions. 
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Since Xl is not in any four-letter word, subsetting on XIXi, i = 2, ... ,7 can 

de-alias all the main effects except Xl and Xi in the combined fraction F(e) U F~e) . 

Since X4 and X7 are not in the three-letter words, subsetting on XkXh, k = 1, ... ,7, 

h = 4, 7, k i= h, can de-alias Xk in F(-e) U F~e). However, subsetting on X4X7 

can de-alias both X4 and X7 in F(-e) U F~e). Subsetting on any other two-factor 

interaction can not de-alias any main effect in both fractions. 

Examples 5.4.2 and 5.4.3 show that when there are several three-letter 

words but no four-letter word in the indicator polynomial function, subsetting on 

a two-factor interaction usually can de-alias more main effects than subsetting 

on a main effect. 

Example 5.4.2. (15) An indicator polynomial function of a two-levelS-factor 

non-regular design F is 

There are three three-letter words in the indicator polynomial function. 

The partial alias sets are: {Xl, X2X3}, {X2, XIX3}, {X2' X3X4}, {X2, X3X5}, {X3, XIX2}, 

{X3,X2X4}, {X3,X2 X 5}, {X4,X2X3}, {X5,X2 X 3}. 

When folding over on all the main effects, note that Xl, X4 and X5 are in 

different three-letter words, subsetting on any of them permits the semifoldover 

design separate the first and the last two alias sets. But subsetting on X2 or X3 can 

not separate any set since all the three-letter words contain X2 and X3. Since there 

is no four-letter word in the indicator polynomial junction, subsetting on any two-

factor interaction XiXj, i, j = 1, ... ,5, i i= j, separates all the partial alias sets, 

but Xi is aliased with Xj) in the combined fraction F(e) U F~e). However, since 
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any main effect is in some three-letter word and the five-letter word contains all 

the main effects and possible two-factor interactions, subsetting on any two-factor 

interaction can not de-alias any main effect in F( -e) u F~e) . 

Example 5.4.3. An indicator polynomial function of a 6-factor non-regular de-

sign F is 

f(x) 

The partial alias sets are: {Xl, X3X4}, {Xl, X3X6}, {Xl, X4X5}, {Xl, X5X6}, {X2, X3X4}, 

{X2, X3 X6}, {X2' X4 Xs} , {X2, x5xd, {X3, XIX4}, {X3, XIX6}, {X3, X2X4}, {X3, X2 X6}, 

{X4, XIX3}, {X4,XIXs}, {X4,X2 X3}, {X4,X2 X5}, {X5,XIX4}, {X5,XIXd, {X5,X2X4}, 

{X5,X2X6}, {X6,XIX3}, {X6,XIX5}, {X6,X2X3}, {X6,X2X5}. 

When folding over on all the main effects, subsetting on any main effect 

Xi, i = 1,2, ... ,6, only permits the semifoldover design part the alias set which 

contains Xi, since the three-letter words which contain Xi include all the main 

effects. Since there is no four-letter word in the indicator polynomial function, 

subsetting on any two-factor interaction XiXj, i, j = 1,2, ... ,6, can de-alias the 

other four main effects in F(e) U F~e), but can not de-alias any main effect in 

F( -e) u F~e), since all the main effects are contained in some three-letter words 

Examples 5.4.4 and 5.4.5 show that when we properly choose the main ef

fect and the two-factor interaction, the semifoldover designs obtained by folding 

over on all the factors and subsetting on a main effect and a two-factor interac

tion, respectively, can de-alias the same number of main effects. Example 5.4.5 
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also shows that the semi fold over design obtained by folding over on a proper 

main effect and sub setting on a proper two-factor interaction can also de-alias 

all the main effects. Moreover, Example 5.4.5 shows that the semifoldover de

sign obtained by folding over on one factor can de-alias more main effects than 

the semifoldover design obtained by folding over on all the main effects when 

subsetting on the same two-factor interaction. 

Example 504.4. (Montgomery [22), p.690) A 9-factor regular design F with gen-

erators X5 = XIX2X3, X6 = X2X3X4, X7 = XIX3X4, X8 = XIX2X4 and Xg = XIX2X3X4· 

There are four three-letter words, XIX6X9, X2X7X9, X3X8X9 and X4X5X9, in its in

dicator polynomial function. The aliases are: {Xl, X6X9}, {X2' X7X9}, {X3, X8X9}, 

{X4' X5X9}, {X5, X4 X 9}, {X6, XIX9}, {X7' X2 X g} , {X8, X3X9} and {Xg, XIX6, X2X7, X3X8, X4X5}. 

When folding over on all the main effects, subsetting on Xi, i = 1,2, ... , 8, 

permits the semifoldover design de-alias I-factors. For instance, if Xj = Xl, 

then Xl, X2, X3, X4, X5, X7 and X8 can be de-aliased from their aliased two-factor 

interactions in F(-e) U F~e). However, if Xj = Xg, then the semifoldover design 

can only de-alias Xg from its aliased two-factor interactions. There are fourteen 

four-letter words in the indicator polynomial function, but none of them contains 

Xg. Thus, subsetting on XiX9, i = 1,2, ... ,8, de-alias all the main effects in 

F(e) U :F~e) except Xi and Xg. Since XIX6, X2X7, X3X8 or X4XS is in only one of the 

three-letter words and not in any five-letter words, subsetting on any of them can 

de-alias all the main effects which are not in the two-factor interaction except 

Xg in F(-e) U F~e). But, subsetting on any other two-factor interaction can only 

de-alias Xg in :F(e) U F~e) . 

Example 504.5. {i5} An indicator polynomial function of a two-level 5-factor 
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non-regular design F is 

There is one three-letter word in the indicator polynomial function. The 

When folding over on all the main effects, since X4 and X5 are not in the 

three-letter word, subsetting on X4 or X5 permits the semifoldover design separate 

all the partial alias sets. But subsetting on Xk, k = 1,2,3, only part the partial 

alias set which contains Xk. Since X4X5 is not in any four-letter word, subsetting 

on X4X5 permit the combined fraction F(e) U F~e) de-alias Xl, X2 and X3 from their 

aliased two-factor interactions. But subsetting on XiXj, k = 1,2,3, l = 4,5, can 

only de-alias Xk in F( -e) u F~e). Subsetting on any other two-factor interactions 

can not de-alias any main effect in both fractions. 

When folding over on any Xk, k = 1,2,3, all the words belong to WOo 

Thus, subsetting on X4X5 can separate all the partial alias sets in F(e) U F~e) ; 

subsetting on XkXI can separate the partial alias sets which do not contain Xk in 

F(e) U F~e) and separate the partial alias set which contains Xk in F( -e) u F~e), 

that is, subsetting on XkXI can separate all the partial alias sets; subsetting on 

any other two-factor interaction can only de-alias one main effect in the partial 

alias sets which do not contain Xk in F(e) U F~e). 

When folding over on Xl, the three-letter word belongs to We and, therefore, 

can not de-alias any main effect. 

Note that all the words in the indicator polynomial functions of Examples 

5.4.2 and 5.4.5 contain one or two same factors (This is only possible for non

regular designs). For the designs which have this property, when folding over on 
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the factor which is contained in all the words, We = {1}. By Corollary 2.2.4, the 

constant in the indicator polynomial function of the original design is ~. So, the 

indicator polynomial function of :F(e) U :F~e) is h(x) = ~ + ~XkXI' Therefore, all 

the main effects except Xk and Xl can be de-aliased in :F(e) U :F~e). 

Example 5.4.6 shows that for some designs, the semifoldover design almost 

can not de-alias any main effect. 

Example 5.4.6. (Montgomery [22j, p.685} A 7-factor regular design :F with 

When folding over on all the main effects, subsetting on any main effect 

Xi, i = 1,2, ... , 7, only permits the semifoldover design part the alias set which 

contains Xi, since the three-letter words which contain Xi include all the main 

effects. There are seven four-letter words in its indicator polynomial function 

and any two-factor interaction is in two four-letter words. Thus, subsetting on 

any two-factor interaction can only de-alias one main effect in :F(e) U :F~e). For 

a two-factor interaction XiXj, any main effect which is not Xi and Xj is in some 

three-letter word which contains either Xi or X j, therefore, subsetting on any two

factor interaction can not de-alias any main effect in :F( -e) U :FJe). 

When folding over on one or more factors, subsetting on any two factor 

interaction can not de-alias any main effect. 



Chapter 6 

Semifolding Resolution IV.x 

Designs 

6 .1 Introduction 

Montgomery and Runger [21] showed that a foldover on one or more factors 

for regular resolution IV designs can de-alias all (or as many as possible) the 

two-factor interactions that we are interested in. Mee and Peralta [20] studied 

various cases when semifolding a regular resolution IV design. They showed that 

the semifoldover resolution IV design obtained by folding over on one factor and 

subsetting on a main effect can estimate all the the two-factor interactions as the 

corresponding full foldover design. The full foldover design obtained from a non

regular design has been studied by Li, Lin and Ye [19] using indicator polynomial 

functions. 

In this chapter, we assume that :F is a resolution IV.x design which does 

not allow replicates. When we say a main effect can be de-aliased, we mean it 

can be de-aliased with its aliased two-factor interactions and ignore its aliased 

77 
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three-factor and higher-order interactions. 

In this chapter, we study a semifoldover design obtained from a general 

two-level resolution IVx factorial design, regular and non-regular. We examine 

when a semifoldover design can de-alias all (or as many as possible) the two-factor 

interactions that we are interested in as the full foldover design. In Section 6.2, we 

show that a semifoldover design, obtained by foldover on a factor of interest for 

a non-regular resolution IV x design, can de-alias all the two-factor interactions 

which contain that particular factor. We also discuss the same problem for the 

semifoldover design, obtained by foldover on a factor of interest and subset on 

a two or three-factor interaction for a general factorial design. In Section 6.3, 

we consider a semifoldover design obtained by reversing the signs of two or more 

factors for a general factorial design and provide a sufficient condition for de

aliasing as many two-factor interactions as the full foldover design. Finally, we 

present in Section 6.4 number of illustrative examples. 

6.2 Folding Over on a Main Factor 

Mee and Peralta [20] showed that a semifoldover design, obtained by folding 

over on a main effect and subsetting on a main effect for a regular resolution 

IV design, can estimate as many two-factor interactions as the full foldover de

sign. In particular, they showed that the semifoldover design can de-alias all 

the two-factor interactions which contain the factor of interest. In this section, 

we study this problem for a non-regular design. We also investigate the cases 

when the semifoldover design is obtained by subsetting on a two and three-factor 

interactions. 

Let q;i be the 1 x m vector with the ith entry being 1 and all other entries 

being O. 
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Theorem 6.2.1. Let F be a two-level m-factor design of resolution IV.x with 

the indicator polynomial function (1.2.1). Assume that we fold over on the main 

effect Xh and subset on a main effect eXj, e = 1, -1, j = 1,2, ... , m. Then, the 

semifoldover design can de-alias all the two-factor interactions which contain Xh 

from other two-factor interactions as the corresponding full foldover design. 

Proof By Proposition 4.2.4, the indicator polynomial function of F(e) U F~e) is 

JI(X) = L baxa + e L bOlxOI+<Pj
• 

OIEOo OIEOo 

The indicator polynomial function of F(-e) u F~e) is 

f2(X) = L bOlXOI - e L bOlxOI+<Pj
• 

OIEOo OIEOI 

If Xh = Xj, then any word in 2.:OIEOI bOlxOI+<pj is at least a three-letter word and 

does not contain Xh. Since Xh does not appear in any word in 2.:OIEoo bOlxOI , all 

the words in XhXkl (f2(x) - bo) are at least three-letter words for any two-factor 

interaction Xhxkl' kl =I- h. Thus, XhXkl can be de-aliased with other two-factor 

interactions in the combined fraction F( -e) u F~e). 

If Xh =I- Xj, then any four-letter word in 2.:OIEOI bOlxOI+<Pj is either a three

letter word which does not contain Xj or a five-letter word which contains Xj' It 

then follows that all the words in XhXj(f2(X) - bo) are at least three-letter words. 

Thus, XhXj can be de-aliased with other two-factor interactions in the combined 

fraction F( -e) u F~e). Since any word in fl (x) - eXj is at least a three-letter word 

and Xh does not appear in any word in fl(x), all the words in XhXk2(!I(X) - bo) 

are at least three-letter words for any two-factor interaction XhXk2' k2 =I- 1, j. 

Thus, XhXk2 can be de-aliased with other two-factor interactions in the combined 

fraction F(e) U F~e). 
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From the above discussion, we observe that the semifoldover design sepa-

rates the two-factor interactions which contain Xh from their aliased chains. Thus, 

they can be estimated in the semifoldover design, and the left alias chains can be 

estimated in the original design. 

D 

Propositions 6.2.2 and 6.2.4 below provide necessary and sufficient condi

tions for a semifoldover design, when subset on a two or three-factor interaction, 

to de-alias all the two-factor interactions which contain Xh with other two-factor 

interactions. 

Proposition 6.2.2. Let F be a two-level m-factor design of resolution IV.x. As-

sume that we fold over on a main effect Xh and subset on a two-factor interaction 

eXhXj, e = 1, -1, j = 1, ... ,h - 1, h + 1, ... ,m. Then, the semifoldover design 

can de-alias all the two-factor interactions which contain Xh with other two-factor 

interactions if and only if Xj is not in any four-letter word of F which contains 

Proof. By Proposition 4.2.4, the indicator polynomial function of F(e) U F~e) is 

h(x) = L baxa + e L baxa+(Ph+¢j 

aEOe aEOe 

and the indicator polynomial function of F(-e) U F~e) is 

If Xj is not in any four-letter word which contains Xh, then, for any a E 

n a' th C ITl ITt 3 l 2 - -l.-' . 
H a , X nas e lorm Xh i=l Xk i or XhXj i=l Xk i , :::; :::; m - ,ki I n,J. 

Thus, xa+(Ph+¢j has the form Xj IT~=l Xki or IT~=l Xk
i

• Note that any two-factor 
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interaction which can be de-aliased in the full foldover design is not in the four

letter words which do not contain Xh; one can then check that all the two-factor 

interactions which contain Xh can be de-aliased in the fraction F(-e)UF~e). Thus, 

the semifoldover design can de-alias all the two-factor interactions which contain 

Xh with other two-factor interactions. 

If Xj is in some four-letter word which contains Xh, let that the four-letter 

word be of the form xC< = XhXjXklXk2' Then, 0: E 0 0 , Thus, !2(x) contains a 

two-letter word XklXk2' It follows that XhXk1(!2(X) - bo ) contains a two-factor 

interaction XhXk2 and XhXk2(!2(X) - bo) contains a two-factor interaction XhXkl' 

Therefore, XhXkl and XhXk2 are aliased in the fraction F(-e)UFJe). Similarly, since 

fl(X) has a two-letter word XhXj, XhXkl and XhXk2 are aliased with XjXkl and XjXk2 

(these two-factor interactions may be different from those which XhXkl and XhXk2 

are aliased with in the original design) in the fraction F(e) U F~e), respectively. 

Therefore, the semifoldover design can not de-alias all the two-factor interactions 

which contain Xh with other two-factor interactions. o 

If the original design is a regular design and all the two-factor interactions 

which contain Xh can be de-aliased in the semifoldover design, then the semi

foldover design can estimate as many two-factor interactions as the full foldover 

design. Mee and Peralta [20] explained, in terms of degree of freedom, that sub

set on a two-factor interaction usually does not permit a semifoldover design to 

estimate as many two-factor interactions as the full foldover design. Since such 

an Xj in Proposition 6.2.2 does not exist for many resolution IV designs, Propo

sition 6.2.2 also explains, from a different point of view, the reason why subset 

on a two-factor interaction does not allow a semifoldover design to estimate as 
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many two-factor interactions as the full foldover design (Note that for a two

factor interaction which does not contain Xh to be de-aliased with the two-factor 

interaction which contains Xh, it also needs a strong condition). 

Coronary 6.2.3. Let F be a two-level m-factor regular resolution IV design. 

Assume that we fold over on a main effect Xh and subset on a two-factor inter-

action eXhXj, e = 1, -1, j = 1, ... , h - 1, h + 1, ... ,m. Then, the semifoldove, 

design can estimate as many two-factor intemctions as the full foldove, design if 

Xj is not in any fou,-lette, WOld of F which contains Xh· 

Proposition 6.2.4. Let F be a two-level m-factol design of ,esolution IV.x. 

Assume that we foldove, on the main effect Xh and subset on a th,ee-facto, inte,

action eXhXjXk, e = 1,-1, j,k # h. Then, the semifoldove, design can de-alias 

all the two-factol intemctions which contain Xh with othe, two-factol intemctions 

if and only if XjXk is not in any foul and five-lette, WOlds in eithe, We 0, WOo 

PlOOf. By Proposition 4.2.4, the indicator polynomial function of F(e) U F~e) is 

II (x) = L baxa + e L baxa+¢h +¢j+¢k . 

GEne GEne 

The indicator polynomial function of F( -e) U FJe) is 

!2 (X) = L baxa - e L baxa+¢h +¢j +(Pk . 

aEne aE!1o 

A two-factor interaction which contains Xh has one of the two forms: XhXkt 

and XhXp, kt # h, j, k, p = j, k. One can similarly check that all the words in 

XhXp(!2(X) - bo ), p = j, k, are at least three-letter words. And if XjXk is not in 

any four and five-letter words in We, then all the words in xhXkt(fl(X) - bo ) are 



83 

at least three-letter words; if XjXk is not in any four and five-letter words in Wo , 

then all the words in XhXkt(!2(X) - bo) are at least three-letter words. 

Therefore, any two-factor interaction which contains Xh can be de-aliased 

in either the combined fraction F(e) U F~e) or the combined fraction F( -e) u F~e). 

If XjXk is in some four-letter word, say XjXkXkl Xk2' in We, then, XhXkl (h (x)

bo) contains a one-letter word Xk2 and XhXk2(h(x) -bo) contains a one-letter word 

Xkl' Thus, XhXkl and xhXk2 are aliased with Xkl and Xk2 in the fraction F(e) UF~e), 

respectively. If XjXk is in some five-letter word, say XjXkXkl Xk2Xk3' in We, then 

XhXkl (h (x) - bo), XhXk2 (fl (x) - bo) and XhXk3 (h (x) - bo) contain two-factor inter-

actions Xk2Xk3' Xkr Xk3 and Xk 1 Xk2' respectively. It then follows that XhXkll XhXk2 

and XhXk3 are aliased with Xk2Xk3' Xk
1 

Xk3 and Xkl Xk2 in the fraction F(e) U F~e), 

respectively. Similarly, if XjXk is in some four or five-letter word in Wo, then some 

two-factor interactions which contain Xh are aliased with some main or two-factor 

interactions, respectively. Thus, the semifoldover design can not de-alias all the 

two-factor interactions which contain Xh. o 

Coronary 6.2.5. Let F be a two-level m-factor regular resolution IV design. 

Assume that we foldover on the main effect Xh and subset on a three-factor inter

action eXhXjXk, e = 1, -1, j, k i- h. Then, the semifoldover design can estimate 

as many two-factor interactions as the corresponding full foldover design if XjXk 

is not in any four and five-letter words in either We or WOo 

6.3 Folding Over on R Factors 

Mee and Peralta [20] pointed out that it is not always true that folding over 

on two factors permits the semifoldover design to estimate as many two-factor 
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interactions as the fun foldover design. In this section, we consider the case 

when foldover on two or more factors for general two-level factorial designs. In 

particular, when the original design is a regular design, we provide a sufficient 

condition for the semifoldover design, obtained by reversing the signs of r factors 

and subset on a main effect, to estimate as many two-factor interactions as the 

full foldover design. 

Note that if the full foldover design separates a alias set in the original 

design, then the alias set is divided to two alias sets, say set A and set B, in the 

full fold over design. All the two-factor interactions which have the forms XpXq, 

p = 1,2, ... ,r and q = r+ 1, '1'+2, . .. , m, belong to one alias set, say set A. Since 

the alias relations in set A are also in the semifoldover design, if one two-factor 

interaction in set A can be de-aliased with the same two-factor interactions as the 

full foldover design in one combined fraction, then, the set A can be separated 

from other two-factor interactions as the full foldover design, although in the case 

of non-regular designs, some two-factor interactions in set A may be (partially) 

aliased with some other two-factor interactions. 

Theorem 6.3.1. Let:F be a two-level m-factor design of resolution IV.x. Assume 

that we fold over on the main effects Xl, X2, .•. , Xn 'I' 2:: 2, and subset on the factor 

eXj, e = 1, -1. Then, for any alias set which can be separated to set A and set B 

in the full foldover design, the semifoldover design can also separate set A from 

other two-factor interactions if there exists one two-factor interaction in set A 

which either contains Xj or not in any four and five-letter word in either We or 

WOo 

Proof By Proposition 4.2.1, any word in the full foldover design is also in the 

semifoldover design. Thus if two two-factor interactions are aliased in the full 
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foldover design, they will also be aliased in the semifoldover design. 

By Proposition 4.2.4, the indicator polynomial function of F(e) U F£e) is 

h (x) = L bOLXOL + e L bOLxOL+¢j 

OLEn. OLEn. 

and the indicator polynomial function of F( -e) U F~e) is 

h(x) = L bOLXOL - e L bOLxOL+¢j. (6.3.1) 

OLEn. OLEno 

From the above discussion, we only need to show that the two-factor in-

teractions which satisfy the condition in this theorem can be de-aliased with the 

same two-factor interactions as the full foldover design. To prove this, we need 

least a three-letter word. 

For any word x
OL 

E W, x
OL has the form x

OL = I17~1 Xki' 4 ::; hI ::; m or 

XOL = Xj I17~1 Xki , 3::; h2 ::; m -1, where k i = 1, ... ,j - 1,j + 1, ... , m. Thus, 

hl h2 

xOL+<pj = Xj II Xki or xOL+<pj = II Xk;· (6.3.2) 

i=l i=l 

(1) If Xj appears in the two-factor interaction XpXq, then, by (6.3.2), one 

can check that for any word XOL E Wo , XpXqXOL+¢j is at least a three-letter word. 

Thus, all the words in XpXq L:OLEn
o 

bOLxOL+¢j are at least three-letter words. 

(2) If Xj does not appear in the two-factor interaction XpXq and XpXq is not 

in any four and five-letter words which contain Xj in We, then, by (6.3.2), one can 

check that any word in XpXq L:OLEn. bOLxO+<Pj is at least a three-letter word (Note 

that the only one-letter word Xj in L:OLEn. bOLxa+¢j also becomes the three-letter 

word XpXqXj). Similarly, if XpXq is not in any four and five-letter words which 
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contain Xj in W o , then any word in XpXq LaE!1
o 

baxa+<Pj is at least a three-letter 

word. 

D 

Coronary 0.3.2. Let :F be a two-level m-factor regular resolution IV design. 

Then, foldover on the main effects Xl, X2, ... ,Xr , r 2: 2, and subset on the factor 

eXj, e = 1, -1, permits the semifoldover design to estimate as many two-factor 

interactions as the full foldover design if for any alias set which can be separated 

in the full foldover design, there exists one two-factor interaction which has the 

form XpXq, P = 1,2, ... ,1', and q = 1,2, ... ,m, and either contains Xj or not in 

any four and five-letter word in either We or WOo 

6.4 Illustrative Examples 

In this section, we study semifoldover designs obtained by folding over on two or 

more factors through examples. 

Example 6.4.1 below was first considered by Daniel [9] and then by Mee 

and Peralta [20] with foldover on one factor. It was also discussed through a case 

study by Barnett et at. [3]. Here, we discuss the case of foldover on two factors 

with the use of indicator polynomial functions. 

1. Its indicator polynomial function is 

If we foldover on Xl and X2, then by Proposition 4.2.1, the indicator polynomial 
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function of the full foldover design is 

Thus, the full foldover design can de-alias the following two-factor interactions: 

subset on any main effect permits the semifoldover design to estimate as many 

two-factor interactions as the full foldover design. 

For instance, if we subset on Xl, then by Proposition 4.2.4, the indicator 

polynomial function of :F(l) u :F~1) is 

(6.4.1) 

and the indicator polynomial function of :F( -1) u :F~l) is 

(6.4.2) 

Since XlX4 and XIX6 both contain Xl, by the proof of Theorem 6.3.1, any word 

in XlX4(!z(X) - 1/4) and XIX6(!z(X) - 1/4) is at least a three-letter word. So, 

XIX4 and XIX6 can be de-aliased with other two-factor interactions in the fraction 

:F( -1) U :F~1). Since X2X4 and X2X6 are not in any word which contains Xl, they 

can be de-aliased with other two-factor interactions in both fractions :F(l) U :F~1) 

and :F( -1) U :F~1) . 

If we subset on X3, then the indicator polynomial function of :F(l) u :F~1) is 

(6.4.3) 

and the indicator polynomial function of :F( -1) u :F~1) is 

(6.4.4) 
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Since XlX4 and XIX6 are not in any word which contains X3, they can be de-

aliased with other two-factor interactions in both the fractions. Since X2X4 and 

X2X6 are not in any word in We, they can be de-aliased with other interactions 

in the fraction F(l) U F~1). One can check these using the indicator polynomial 

functions. 

Example 604.2. Mee and Peralta [20] considered the 2]v3 design with generators 

of this design is 

f(x) = 
1 1 1 1 1 
S" + S"XIX2 X 3 X 5 + S"X2 X 3 X 4 X 6 + S"XIX4 X 5 X 6 + S"XIX3 X 4 X 7 

111 
+S"X2 X 4 X 5 X 7 + S"XIX2 X 6 X 7 + S"X3 X 5 X 6 X 7' 

If we foldover on Xl and X2, then the indicator polynomial function of the full 

foldover design is 

The full foldover design separates the two-factor alias sets as follows: 
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If we subset on Xl, then the indicator polynomial function of F(l) u F~1) is 

JI(X) = 
1 1 1 1 1 
S" + S"XIX2 X 3X S + S"XIX2 X 6 X 7 + S"X3 X 5 X 6 X 7 + S"XI 

1 1 1 
1. -'-

+S"X2 X 3 X 5 + S"X2 X 6 X 7 + S"XIX3 X 5 X 6 X 7 

and the indicator polynomial function of F(-l) u F~l) is 

h(x) = 
1 1 1 1 1 
S" + S"XlX2 X 3 X S + SXlX2 X 6 X 7 + SX3 X S X 6 X 7 - SXIX2 X 3 X 4 X 6 

111 
--X4X5X6 - -X3'r4 X 7 - -XlX2 X 4 X S X 7· 

8 8 ~ 8 

The four-letter words which contain Xl in We are XlX2X3XS and XlX2X6X7, and in 

foldover design can estimate as many two-factor interactions as the full foldover 

design, since the condition of Theorem 6.3.1 is satisfied in this case. 

For instance, for the first alias set, since Xl X3 contains X j = Xl, by the 

proof of Theorem 6.3.1, it can be de-aliased with X4X7 in the fraction F(-l) UF~1). 

So, X2XS can also be de-aliased with X4X7 in the fraction F( -1) U F~I), this can also 

be explained by the reason that X2XS is not in any four-letter word which contains 

Xl in WOo For the third alias set, since XlX4 contains Xl, it can be de-aliased with 

XSX6 and X3X7 in the fraction F(-I) UF~l). And for the sixth alias set, since X2X4 

is not in any four-letter word which contains Xl in W, it can be de-aliased with 

X3X6 and X5X7 in both fractions F(l) U FP) and F(-l) U FP). We can check these 

in detail using the indicator polynomial functions of F(l) U F~l) and F( -1) U F~l) . 

Since 

1 1 1 1 
SX2 X 5 + S"X2 X 3 X 6 X 7 + SXlXSX6 X 7 - S"X2 X 4 X 6 

1 1 1 
-'8XIX3X4X5X6 - S"X1 X 4 X 7 - '8X2X3X4XSX7 
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and 

III 1 
SX1X3 + SXIX5 X 6 X 7 + SX2 X 3 X 6 X 7 - SXIX3 X 4 X 5 X 6 

1 1 1 
-SX2X 4 X 6 - SX2 X 3 X 4 X 5 X 7 - SXIX4 X 7, 

XIX3 and X2X5 are still aliased with each other, but de-aliased with X4X7. Since 

III 1 
SX2 X 3 X 4 X 5 + SX2 X 4 X 6 X 7 + SXIX3 X 4 X 5X 6 X 7 - SX2 X 3 X 6 

III 
-SXIX5 X 6 - SXIX3 X 7 - SX2 X 5 X 7, 

XIX4 is de-aliased with other two-factor interactions. Note that 

III 1 
S"XIX3 X 4 X 5 + SXIX4 X 6 X 7 + S"X2X3X4X5X6X7 + S"XIX2 X 4 

III 
+S"X3X 4 X 5 + SX4 X 6 X 7 + S"XIX2X3X4X5X6X7 

and 

111 1 
S"XIX3 X 4 X 5 + SXIX4 X 6 X 7 + S"X2X4X3X5X6X7 - SXIX3 X 6 

111 
-S"X2 X 5 X 6 - SX2 X 3 X 7 - S"XIX5 X 7, 

and consequently X2X4 is de-aliased with all other two-factor interactions in both 

fractions. 

Similarly, one can check that subset on any main effect permits the semi-

foldover design to de-alias as many two-factor interactions as the full foldover 

design. 

Example 6.403. Montgomery ([22), p.691). The 2;v4 design is with generators 
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polynomial function of this design is 

1 1 1 1 1 
f(x) = 16 + 16 X2 X 3X 4 X 5X 6 + 16 XIX3 X 4X 5X 7 + 16 XIX2 X 6X 7 + 16 XIX2 X 4X 5X 8 

111 1 
+ 16xIX3X6X8 + 16x2x3x7x8 + 16x4x5x6x7x8 + 16xIX2X3X5X9 

111 1 
+ 16xIX4X6X9 + 16x2X4X7Xg + 16x3x5X6x7Xg + 16x3X4x8Xg 

1 1 1 
+ 16x2x5X6X8xg + 16xIX5x7X8X9 + 16XIX2X3X4X6x7X8Xgo 

If we foldover on Xl and X2, then the indicator polynomial function of the full 

foldover design is 

1 1 1 1 1 
S" + S"XIX2 X 6 X 7 + S"XIX2 X4 X 5 X 8 + S"X4 X 5 X 6 X7 X S + S"XIX2 X 3 X 5 X9 

111 
+S"X3 X 5X 6X 7X 9 + S"X3 X 4X SX 9 + S"XIX2X3X4X6X7XSXgo 

Thus, the full foldover design separates the two-factor interaction alias sets as 



follows: 

(1) {XIX3, X5XS} ---+ {XIX3} and {X5Xs} 

(2) {XIX4, X6X9} ---+ {XIX4} and {X5X9} 

(3) {XIXS, X3X6} ---+ {XIXS} and {X3X5} 

(4) {XIX9, X4X6} ---+ {XIX9} and {X4X5} 

(5) {X2X3, X7XS} ---+ {X2X3} and {X7XS} 

(6) {X2X4' X7X9} ---+ {X2X4} and {X7X9} 

(7) {X2 XS, X3X7} ---+ {X2XS} and {X3X7} 

(8) { X2X9, X4X7} ---+ {X2X9} and {X4X7} 

(10) {XIX2, X5X7} ---+ (no change) 

(11) {XIX7, X2X6} ---+ (no change) 

(12) {X3X4, xsxg} ---+ (no change) 
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One can check that subset on any main effect except X5 permits the semifoldover 

design to estimate as many two-factor interactions as the full foldover design, 

since they satisfy the conditions of Theorem 6.3.1. For instance, if we subset on 

X6, then the indicator polynomial function of ;:(1) U ;:~1) is 

11111 
16 + 16xIX2XaX7 + 16xIX2X4X5XS + 16x4x5x6x7xs + 16XIX2X3X5X9 

1 1 1 1 
+ 16 X3 X5X6X7X9 + 16 X3 X4XSX9 + 16 XIX2X3X4XaX7XSX9 + 16 X6 

1 1 1 1 
+ 16xIX2X7 + 16xIX2X4X5X5XS + 16x4x5x7xs + 16xIX2X3X5XaXg 

111 
+ 16x3X5X7Xg + 16x3x4X6xsxg + 16XIX2X3X4X7XSX9 
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and the indicator polynomial function of F(-I) U FP) is 

h(x) = 
1 1 1 1 1 

16 + 16xIX2X6X7 + 16xIX2X4X5Xg + 16x4x5x6X7Xg + 16xIX2X3X5X9 

1 1 1 1 
+ 16 X3 X 5X 6 X 7X 9 + 16 X3 X 4X gX 9 + 16 XIX2X3X4X6X7XSX9 + 16 X2 X 3X 4 X S 

1 1 1 1 
+ 16xIX3X4X5X6X7 + 16xIX3XS + 16x2x3x6x7xs + 16xIX4X9 

1 1 1 
+ 16x2x4X6X7Xg + 16x2X5xsxg + 16xIX5X6X7XSX9. 

five-letter words in We, they can be de-aliased with other two-factor interactions 

in the fraction F(1) U F~l). Since XIX6 contains Xl and X2X7 is not in any four 

and five-letter words in W o, they can be de-aliased with X3XS and X4X9 in the 

fraction F(-I) U F~I). One can check this from the indicator polynomial functions 

of F(1) U FP) and F( -1) U FP) . 

Note that X6 appears in the first four sets, and so from the proof of Theorem 

6.3.1, the two-factor interactions which contain X6 in the first four sets can also 

be de-aliased with other two-factor interactions in the fraction F( -1) U Fil). 



Chapter 7 

Conclusions and Future Work 

7.1 Conel us ions 

In this thesis, we have studied some properties of indicator polynomial functions. 

Using indicator polynomial functions, we have extended some existing results of 

regular designs to non-regular designs and also established some general results 

which did not exist even for regular designs. 

In Chapter 2, we have considered some properties of an indicator polyno

mial function with all its words are odd words or even words. We have established 

that in the case without replicates, an indicator polynomial function with cer

tain property must represent a half fraction and a factorial design which is not 

a half fraction must has at least three words in its indicator polynomial func

tion. We have also proved that there is no (2l + l)-factor design of resolution 

(2l - l).*x when the run size of the design is not equal to 22/. After proving 

that an indicator polynomial function with one word is a regular design or repli

cates of a regular design, we have shown that there is no indicator polynomial 
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function which contains only two words. Moreover, we have investigated indica

tor polynomial functions with three words and gotten that indicator polynomial 

functions with three words must contain one or three even words. The forms of 

the indicator polynomial functions with three words have also been obtained. 

In Chapter 3, we have proved that a m-factor resolution (21-I).*x design 

can be converted into a (m - I)-factor resolution (2l + I).x design in the same 

number of runs and any m-factor design with resolution equal or bigger than 

V can be converted into a (m + I)-factor resolution III*.x design in the same 

number of runs. We have also shown that a m-factor resolution (2l - I)-factor 

design can be converted into (m - I)-factor resolution (2l).x design in the same 

number of runs and a m-factor design with resolution (2l).x can be converted 

into a (m + I)-factor resolution (2l - 1). x design in the same number of runs. 

After obtaining the indicator polynomial functions of semifoldover designs, 

we considered the addition of a smaller fraction to the original design and provided 

a way to find the indicator polynomial functions of partial foldover designs in 

Chapter 4. Especially, we have obtained the indicator polynomial functions of 

the partial foldover design which is obtained by adding a ~ runs of the original 

design. 

In Chapter 5, we have studied various semifoldover resolution I I I.x de

signs. When subsetting on a main effect, we have established that the semi

foldover design obtained by folding over on one or more, but not all, the factors 

can not de-alias more main effects that the semifoldover design obtained by fold

ing over on all the factors. When subsetting on a two-factor interaction, we have 

provided necessary and sufficient conditions for a semifoldover design to de-alias 

a main effect. Some illustrative examples are also provided in this chapter. 

In Chapter 6, we have studied semifoldover designs obtained from gen

eral two-level resolution IVx designs. When folding over on one factor, we have 
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proved that a semifoldover design, obtained by subset on a main effect, can es

timate as many two-factor interactions as the full foldover design; the necessary 

and sufficient conditions for a semifoldover design, obtained by subsetting on a 

two or three-factor interaction, to de-alias all the two-factor interactions which 

contain the foldover factor are also presented. We have also provided a sufficient 

condition for a semifoldover design, obtained by folding over on two or more fac

tors and subsetting on a main effect, to estimate as many two-factor interactions 

as the full foldover design. Finally, we have presented some illustrative examples. 

7.2 Future Work 

Indicator polynomial functions are new and powerful tools. Their applications 

in factorial designs need to be explored further. There are several interesting 

problems for future research: 

In Chapter 2, we have studied some properties of indictor polynomial 

functions. Specifically, we have shown that some forms of indicator polynomial 

functions must be a half fraction and we have also studied indicator polynomial 

functions with only one, two or three words. The following problems will be of 

further interest to study in the future: 

1. If a factorial design is a half fraction, what can we say about its indicator 

polynomial function ? 

2. When the indicator polynomial function contains four or more words, what 

are the possible forms of the indicator polynomial function? 

In Chapter 3, we have studied the connections between two-level facto

rial designs of resoiution J J J*.x and resolution Vx using the transformations 

proposed by Draper and Lin [14]. If we use different transformations, we may 
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get different connections between resolutions of two-level factorial designs. This 

certain is worth examining in a future work. 

In Chapter 4, we have provided the indicator polynomial functions of 

partial foldover designs. This allows us to study partial foldover designs obtained 

by adding smaller fractions, such as ~ fractions, to original designs. One possible 

future work is to consider alias structures in such partial foldover designs and 

explore when an effect can be de-aliased in the partial foldover designs. 

Chapters 5 and 6 have examined when a main effect or a two factor in

teraction can be de-aliased in a semifoldover design. But, this consideration is 

under the condition that there are no blocks. One possible future work is to study 

alias structures of blocked semifoldover designs and consider when an effect can 

be de-aliased in such a blocked semifoldover design. 
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