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Indicators of retention in remote digital health studies: a

cross-study evaluation of 100,000 participants
Abhishek Pratap 1,2✉, Elias Chaibub Neto1, Phil Snyder1, Carl Stepnowsky3,4, Noémie Elhadad5, Daniel Grant6, Matthew H. Mohebbi7,

Sean Mooney2, Christine Suver1, John Wilbanks1, Lara Mangravite1, Patrick J. Heagerty8, Pat Areán9 and Larsson Omberg 1

Digital technologies such as smartphones are transforming the way scientists conduct biomedical research. Several remotely
conducted studies have recruited thousands of participants over a span of a few months allowing researchers to collect real-world
data at scale and at a fraction of the cost of traditional research. Unfortunately, remote studies have been hampered by substantial
participant attrition, calling into question the representativeness of the collected data including generalizability of outcomes. We
report the findings regarding recruitment and retention from eight remote digital health studies conducted between 2014–2019
that provided individual-level study-app usage data from more than 100,000 participants completing nearly 3.5 million remote
health evaluations over cumulative participation of 850,000 days. Median participant retention across eight studies varied widely
from 2–26 days (median across all studies= 5.5 days). Survival analysis revealed several factors significantly associated with
increase in participant retention time, including (i) referral by a clinician to the study (increase of 40 days in median retention time);
(ii) compensation for participation (increase of 22 days, 1 study); (iii) having the clinical condition of interest in the study (increase of
7 days compared with controls); and (iv) older age (increase of 4 days). Additionally, four distinct patterns of daily app usage
behavior were identified by unsupervised clustering, which were also associated with participant demographics. Most studies were
not able to recruit a sample that was representative of the race/ethnicity or geographical diversity of the US. Together these
findings can help inform recruitment and retention strategies to enable equitable participation of populations in future digital
health research.
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INTRODUCTION

Traditional in-person clinical trials serve as the cornerstone of
modern healthcare advancement. While a pivotal source of
evidence generation for advancing clinical knowledge, in-person
trials are also costly and time-consuming, typically running for at
least 3–5 years from conception to completion, at a cost of
millions of dollars per study. These timelines have often meant
that promising treatments take years to get to dissemination and
uptake, which can create unnecessary delays in advancing clinical
practice. Additionally, clinical research suffers from several other
challenges1,2 including (1) recruiting sufficiently large and diverse
cohorts quickly, and (2) tracking day-to-day fluctuations in disease
severity that often go undetected in study-related intermittent
protocolized in-clinic evaluations.3,4 Scientists have recently
turned to digital technology5,6 to address these challenges,
hoping to collect real-world evidence7 from large and diverse
populations to track long-term health outcomes and variations in
disease trajectories at a fraction of the cost of traditional research.8

The global penetration9 and high-frequency usage of smart-
phones (up to 4 h daily10,11) offer researchers a potentially cost-
effective means to recruit a large number of participants into
health research across the US (and the world).12,13 In the last 5
years, investigators have conducted several large-scale studies14–
22 that deployed interventions23,24 and operationally conduct
clinical trials25–27 using mobile technologies. These studies are
able to recruit at-scale because participants can be identified and
consented28 to participate in the study without ever having

stepped foot in a research lab, with significantly lower costs than
conventional clinical trials.23,24 Mobile technologies also allow
investigators an opportunity to collect data in real-time based on
people’s daily lived experiences of the disease, that is, real-world
data.7 Rather than retrospectively asking people to recall their
health over the past week or month, researchers using mobile
technologies can assess participants frequently including outside
clinic and at important points in time without having to rely on
recall that is known to have bias.29 While these recent studies
show the utility of mobile technology, challenges in participant
diversity and long-term participant retention still remain a
significant problem.30

Digital studies continue to suffer from participant retention
problems that also plagued internet-based studies31,32 in the early
2000s.33–35 However, our understanding of factors impacting
retention in remote research remains to be limited. High levels of
user attrition combined with variations in long-term app usage
may result in the creation of a study cohort that does not
represent the characteristics of the initially recruited study
population with regards to demographics and disease status. This
has called into question the reliability and utility of the collected
data from these studies.36 Of note, the representativeness of
remote study cohort (e.g., demographics, geographical diversity,
etc) may vary based on the study design and inclusion criteria.
Many large-scale digital health studies enroll participants from a
general population, where anyone eligible with or without target
disease of interest can self-select to join the study. Such strategies
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may be prone to selection and ascertainment biases.36 Similarly,
cohorts in studies targeting a population with a specific clinical
condition of interest may need to be evaluated in the context of
the clinical and demographic characteristics of the underlying
population with that disease. Evaluation of participant recruitment
and retention from large-scale remotely collected data could help
detect confounding characteristics that may be present and which
have been shown to severely impact the generalizability of the
resulting statistical inference.36,37 Participant retention may also
be partially dependent on the engagement strategies used in
remote research. While most studies assume participants will
remain in a study for altruistic reasons,38 other studies provide
compensation for participant time,39 or leverage partnerships with
local community organizations, clinical registries, and clinicians to
encourage participation.23,24 Although monetary incentives are
known to increase participation in research,40 we know little about
the relative impact of demographics and different recruitment and
engagement strategies on participant retention, especially in
remote health research.
The purpose of this study is to document the drivers of

retention and long-term study mobile application usage in remote
research. To investigate these questions, we have compiled user-
engagement data from eight digital health studies that enrolled
more than 100,000 participants from throughout the US between
2014–2019. These studies assessed different disease areas
including asthma, endometriosis, heart disease, depression, sleep
health, and neurological diseases. While some studies enrolled
participants from the general population (i.e., with and without
disease of interest) others targeted a specific subpopulation with
the clinical condition of interest. For analysis, we have combined
individual participant data across these studies. Analysis of the
pooled data considers overall summaries of demographic or
operational characteristics while accounting for study heteroge-
neity in retentions (see Methods for further details on individual
studies and analytical approach). The remote assessments in these
studies consisted of a combination of longitudinal subjective
surveys and objective sensor-based tasks including passive data41

collection. The diversity of the collected data allows for a broad
investigation of different participant characteristics and engage-
ment strategies that may be associated with higher retention in
the collected real-world data.

RESULTS

Participant characteristics

The combined user-activity data from eight digital health studies
resulted in a pool of 109,914 participants who together completed
~3.5 million tasks on more than 850,000 days (Table 1). The
demographics of participants across studies (Table 2) varied
widely in part due to study-specific eligibility criteria, which may

impact the underlying characteristics of the recruited population.
Except for three studies (Brighten, Phendo, and Start) that aimed
to recruit people with a specific clinical condition of interest, the
rest of the five studies enrolled people from the general
population with and without the target disease of interest. The
majority of participants were between 17–39 years (Median
percent of subject age across studies 17–39= 65.2%, Range=
37.4–91.5%) with those 60 years and older being the least
represented (Median age percent greater than 60= 6%, Range=
0–23.3%). The study samples also had a larger proportion of
Females (Median= 56.9%, Range= 18–100%). A majority of
recruited participants were Non-Hispanic Whites (Median=
75.3%, Range= 60.1–81.3%) followed by Hispanic/Latinos (Med-
ian= 8.21%, Range= 4.79–14.29%) and African-American/Blacks
(Median= 3.45%, Range= 2–10.9%). The race/ethnic and geogra-
phical diversity of the present sample showed a marked difference
from the general population of the US. Minority groups were
under-represented in the present sample with Hispanic/Latinos
and African-America/Black showing a substantial difference of
−8.1% and −9.2% respectively compared to the 2010 US census
data s (Table 2, Fig. 1b). Similarly, the median proportion of
recruited participants per state also showed notable differences
from the state’s population proportion of the US (Fig. 1a).

Participant retention

As is the nature of these studies, participants were required to
complete all health assessments and other study-related tasks
(e.g., treatments) through a mobile application (app) throughout
the length of the study. The median time participants engaged in
the study in the first 12 weeks was 5.5 days of which in-app tasks
were performed on 2 days (Table 2). Higher proportions of active
tasks were completed by participants during the evening (4–8 PM)
and night (8–12 Midnight) hours (Fig. 2a). Across the studies, the
median retention time varied significantly (P < 1e-16) between 2
and 12 days with the Brighten study being an outlier with higher
median retention of 26 days (Fig. 2b). A notable increase in
median retention time was seen for sub-cohorts that continue to
engage with the study apps after day one and beyond (Fig. 2c).
For example, the median retention increased by 25 days for the
sub-cohort that was engaged for the first 8 days. The participant
retention also showed a significant association with participant
characteristics. While older participants (60 years and above) were
the smallest proportion of the sample, they remained in the study
for a significantly longer duration (Median= 7 days, P < 1e-16)
compared to the majority younger sample (17–49 years) (Fig. 2d).
Participants declared gender showed no significant difference in
retention (P= 0.3). People with clinical conditions of interest to
the study (e.g., heart disease, depression, multiple sclerosis)
remained in the studies for a significantly longer time (Median=
13 days, P < 1e-16) compared to participants that were recruited

Table 1. Summary of user-engagement data compiled from eight digital health studies.

Study Disease focus/study type Study period Number of
participants

Total participant days Active tasks
completed

Start Antidepressant Efficacy–Observational Aug, 2015–Feb, 2018 42,704 280,489 1,219,656

MyHeartCounts Cardiovascular Health–Observational Mar, 2015–Oct, 2015 26,902 165,455 305,821

SleepHealth Sleep Apnea–Observational Jul, 2015–Jun, 2019 12,914 99,696 401,628

mPower Parkinson’s–Observational Mar, 2015–Jun, 2019 12,236 104,797 568,685

Phendo Endometriosis–Observational Dec, 2016–Jul, 2019 7,802 81,938 735,778

Asthma Asthma–Observational Mar, 2015–Dec, 2016 5,875 77,815 175,699

Brighten Depression–Randomized Control Trial Jul, 2014–Aug, 2015 876 34,987 45,951

ElevateMS Multiple Sclerosis–Observational Aug, 2017–Jul, 2019 605 11,211 31,568

109,914 856,388 3,484,786
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as non-disease controls(Median= 6 days) (Fig. 2e). Median
retention time also showed a marked and significant increase of
40 days (P < 1e-16) for participants that were referred by a
clinician to join one of the two studies (mPower and ElevateMS)
(Median= 44 days) compared to participants who self-selected to
join the same study (Median= 4 days) (Fig. 2f). See Supplemen-
tary Tables 1–6 for a further breakdown of survival analysis results.
Sensitivity analysis by including participants with missing age
showed no impact on the association of age with participant
retention. However, participants with missing demographics
showed variation in retention compared to participants who
shared their demographics (Supplementary Fig. 1). This could be

related to different time points at which demographic related
questions were administered in individual studies.

Participant daily engagement patterns

The subgroup of participants who remain engaged with study
apps for a minimum of 7 days, showed four distinct longitudinal
engagement patterns (Fig. 3b) with the dedicated users in cluster
C1, high utilizers(C2), moderate users(C3) and sporadic users(C4).
The participants who did not participate for at least 7 days were
placed in a separate group (abandoners, C5*) (See Supplementary
Fig. 2 and Methods for cluster size determination and exclusion
criteria details). The engagement and demographic characteristics

Table 2. Summary of select participant demographics and study-app usage across the eight digital health studies.

Asthma Brighten ElevateMS mPower MyHeartCounts Phendo SleepHealth Start Overall
(median)

Age group

N 2512 875 569 6810 1555 7484 12392 42690

18–29 (%) 43.31 50.06 10.9 31.5 25.08 55.38 32.79 55.72 38

30–39 (%) 27.83 25.14 26.54 18.37 32.67 36.09 28.72 24.14 27.2

40–49 (%) 14.41 14.74 28.47 13.19 16.27 8.23 20.77 12.38 14.6

50–59 (%) 9.08 6.97 22.14 13.61 12.09 0.25 11 5.26 10

60+ (%) 5.37 3.09 11.95 23.33 13.89 0.04 6.72 2.51 6

Sex

N 2509 875 329 6916 6976 7532 12558 42704

Female (%) 39.58 77.83 74.16 28.93 18.94 100 29.14 75.86 56.9

Race

N 3274 875 334 6884 4703 7530 5311 —

Non-Hispanic White (%) 68.69 60.11 80.84 75.32 77.95 81.29 74.13 — 75.3

Hispanic/Latinos (%) 13.29 14.29 4.79 8.21 6.97 5.67 12.82 — 8.21

African-American/Black (%) 4.95 10.86 6.89 2.05 3.1 2.71 3.45 — 3.45

Asian (%) 4.98 8.23 2.99 8.4 7.72 2.79 5.87 — 5.9

Hawaiian or other Pacific Islander (%) 0.89 0.57 0 0.28 0.32 0 0.23 — 0.3

AIAN (%) 0.43 0.46 0 0.65 0.53 0.74 0.28 — 0.5

Other (%) 6.78 5.49 4.49 5.1 3.4 6.8 3.22 — 5.1

Duration in Study (Median ± IQR) 12 ± 38 26 ± 82 7 ± 45 4 ± 21 9 ± 19 4 ± 25 2 ± 8 2 ± 16 5.5

Days active tasks performed (Median ±
IQR)

4 ± 12 14 ± 58 2 ± 8 2 ± 4 4 ± 7 2 ± 6 2 ± 4 2 ± 4 2

Fig. 1 Geographical and race/ethnic diversity of the recruited participants. a Map of US showing the proportion (median across the
studies) of recruited participants relative to state’s population proportion of the US and b Race/Ethnicity proportion of recruited participants
compared to 2010 census data. The median value across the studies is shown by the black point with error bars indicating the
interquartile range.
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across these five groups (C1-5*) varied significantly. Cluster 1 and
2 showed the highest daily app usage (Median app usage in the
first 84 days= 96.4% and 63.1%, respectively) but also had the
smallest overall proportion of participants (Median= 9.5%) with
the exception of Brighten where 23.7% of study participants were
in the dedicated users cluster C1. While daily app usage declined
significantly for both moderate and sporadic clusters (C3–21.4%
and C4–22.6%), the median number of days between app usage
was significantly higher for participants in the sporadic C4 cluster
(Median= 5 days) compared to cluster C3 (Median= 2 days). The
majority of participants (median 54.6%) across the apps were
linked to the abandoner group (C5*) with the median app usage
of just 1 day (Fig. 4a, b). Furthermore, distinct demographic
characteristics emerged across these five groups. Higher engage-
ment clusters (C1–2) showed significant differences (P= 1.38e-12)
in proportion of adults 60 years and above (Median range=
15.1–17.2% across studies) compared to lower engagement
clusters C3–5*(Median range= 5.1–11.7% across studies) (Fig.
4c). Minority groups such as Hispanic/Latinos, Asians, and African-
American/Black, on the other hand, were represented in higher
proportions in the clusters (C3–5*)(P= 4.12e-10) with the least

engagement (Fig. 4d) (See Supplementary Table 8 for further
details).

DISCUSSION

Our findings are based on one of the largest and most diverse
engagement dataset compiled to date. We identified two major
challenges with remote data collection: (1) more than half of the
participants discontinued participation within the first week of a
study and the rates at which people discontinued was drastically
different based on age, disease status, clinical referral, and use of
monetary incentives, and (2) most studies were not able to recruit
a sample that was representative of the Race/ethnicity or
geographical diversity of the US. Although these findings raise
questions about the reliability and validity of data collected in this
manner, they also shed light on potential solutions to overcome
biases in populations using a combination of different recruitment
and engagement strategies.
One solution could be the use of a flexible randomized

withdrawal design.42 Temporal retention analysis (Fig. 2c) shows
that a run-in period could be introduced in the research design,
wherein participants who are not active in the study app in the

Fig. 2 Factors impacting participant retention in digital health studies. a Proportion of active tasks (N= 3.3 million) completed by
participants based on their local time of day. The centerline of the boxplot shows the median value across the studies and upper and lower
whisker corresponding to outlier point (1.5 times the interquartile range). b Kaplan Meir survival curve showing significant differences (P < 1e-
16) in user retention across the apps. Brighten App where monetary incentives were given to participants showed the longest retention time
(Median= 26 days, 95% CI= 17–33) followed by Asthma(Median= 12 days, 95% CI= 11–13), MyHeartCounts(Median= 9 days, 95% CI= 9–9),
ElevateMS(Median= 7 days, 95% CI= 5–10), mPower(Median= 5 days, 95% CI= 4–5), Phendo(Median= 4 days, 95% CI= 3–4), Start(Median=
2 days, 95% CI= 2–2) and SleepHealth(Median= 2 days, 95% CI= 2–2), c Lift curve showing the change in median survival time (with 95% CI
indicated by error bars) based on the minimum number of days(1–32) a subset of participants continued to use the study apps, Kaplan-Meier
survival curve showing significant differences in user retention across d Age group, with 60 years and older using the apps for longest duration
(Median= 7days, 95% CI= 6–8, P < 1e-16) followed by 50–59 years (Median= 4 days, 95% CI= 4–5) and 17–49 years (Median= 2–3 days, 95%
CI= 2–3). e Disease status; participants reporting having a disease stayed active longer(N50= 13days, 95% CI= 13–14) compared to people
without disease(N50= 6 days, 95% CI= 5–6) and finally f Clinical referral; Two studies (mPower and ElevateMS), had a subpopulation, that were
referred to the study by clinicians and showed significantly (P < 1e-16) longer app usage period(Median= 44 days, 95% CI= 27–58) compared
to self-referred participants with disease (N50= 4 days, 95% CI= 4–4). For all survival curves the shaded region shows the 95% confidence limits
based on the survival model fit.
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first week or two of the study can be excluded after enrollment
but before the start of the actual randomized study. The resulting
smaller but more engaged cohort will help increase the statistical
power of the study but does not fix the potential for non-
representative participant bias.43

Another solution is to rely on monetary incentives to enhance
engagement. Although only one study paid participants, the
significant increase in retention and the largest proportion of
frequent app users indicate the utility of the fair-share compensa-
tion model1,44,45 in remote research. Such “pay-for-participation”
model could be utilized by studies that require long-term and
frequent remote participation. Researchers conducting case-
control studies should also plan to further enrich and engage
the population without the disease. Studies run the risk of not
collecting sufficient data from controls to perform case-control
analysis with participants without disease seen to be dropping out
significantly early. Similarly, more efforts46–48 are needed to retain
the younger population that although demonstrates large
enrollment, also features a majority that drops out on day one.
Distinct patterns in daily app usage behavior, also shown

previously,49 further strengthen the evidence of unequal technol-
ogy utilization in remote research. The majority of the participants
found in the abandoners group (C5*) who dropped out of the
study on day 1, may also reflect initial patterns in willingness to
participate in research, in a way that cannot be captured by
recruitment in traditional research. Put another way, although
there is significant dropout in remote trials, these early dropouts
may be able to yield very useful information about differences in

people who are willing to participate in research and those who
are not willing to participate. For decades clinical research has
been criticized for its potential bias because people who
participate in research may be very different from people who
do not participate in research.50–52 Although researchers will not
have longitudinal data from those who discontinue participation
early, the information collected during onboarding can be used to
assess potential biases in the final sample and may inform future
targeted retention strategies.
Only 1 in 10 participants were in the high app use clusters (C1-

2), and these clusters tended to be largely Non-Hispanic whites
and older adults. Minority and younger populations, on the other
hand, were represented more in the clusters with the lowest daily
app usage (Fig. 4d). The largest impact on participant retention
(>10 times) in the present sample was associated with clinician
referral for participating in a remote study. This referral can be
very light touch in nature, for example in the ElevateMS study, it
consisted solely of clinicians handing patients a flyer with
information about the study during a regular clinic visit. This
finding is understandable, given recent research53 showing that
the majority of Americans trust medical doctors.
For most studies, the recruited sample was also inadequately

diverse highlighting a persistent digital divide54 and continued
challenges in the recruitment of racial and ethnic underserved
communities.55 Additionally, the underrepresentation of States in
the southern, rural and midwest regions indicates that areas of the
US that often bear a disproportionate burden of disease56 are
under-represented in digital research.56–58 This recruitment bias

Fig. 3 Daily participant engagement patterns in digital health studies. a Schematic representation of an individual’s in-app activity for the
first 84 days. The participant app usage time is determined based on the number of days between the first and last day they perform an active
task(indicated by the green box) in the app. Days active in the study is the total number of days a participant performs at least one active task
(indicated by the number of green boxes). b Heatmaps showing participants in-app activity across the apps for the first 12 weeks (84 days),
grouped into four broad clusters using unsupervised k-means clustering. The optimum number of clusters was determined by minimizing the
within-cluster variation across different cluster sizes between 1–10. Seven out of eight studies indicated four clusters to be an optimum
number using the elbow method. The heatmaps are arranged by the highest (C1) to the lowest user-engagement cluster (C4).
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could impact future studies that aim to collect data for health
conditions that are more prevalent among certain demographic59

and associated with geographic groups.60 Recent research61 has
also shown that participants’ willingness to join remote research
studies and share data are tied to their trust in the scientific team
conducting the study including the institutional affiliations of
researchers. Using different recruitment strategies46–48 including
targeted online ads in regions known to have a larger proportion
of the minority groups, partnerships with local community
organizations, clinics and universities may help improve the
penetration of remote research and improve diversity in the
recruited sample. The ongoing “All of Us” research program that
includes remote digital data collection has shown the feasibility of
using a multifaceted approach to recruit a diverse sample with a

majority of the cohort coming from communities under-
represented in biomedical research.62 Additionally, simple techni-
ques, such as stratified recruitment that is customized based on
the continual monitoring of the enrolling cohort demographics,
can help enrich for a target population.
Finally, communication in digital health research may benefit

from adopting the diffusion of innovations approach63,64 that has
been applied successfully in healthcare settings to change
behavior including the adoption of new technologies.65–67

Research study enrollments, advertisements including in-app
communication and return of information to participants,68 could
be tailored to fit three distinct personality types (trendsetters,
majority, and laggards). While trendsetters will adopt innovations
early, they are a minority (15%) compared to the majority (greater

Fig. 4 Comparison of characteristics across participant engagement clusters. a Proportion of participants in each cluster across the study
apps, b Participants total app usage duration(between 1–84 days) and the number of days participants completed tasks in the study apps,
c Significant differences [F(4,163)= 18.5, P= 1.4e-12] in the age groups of participants across five clusters and d Significant differences
[F(2,81)= 28.5, P= 4.1e-10] in proportion of minority population present in the five clusters. C5* cluster contains the participants that used the
apps for less than a week and were removed from the clustering; however, they were added back for accurate proportional comparison of
participants in each cluster. The centerline of the boxplots shows the median value across the studies for each cluster and upper and lower
whisker corresponds to the outlier point that is at least 1.5 times the interquartile range.
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than two-thirds of the population) who will adopt a new behavior
after hearing about its real-benefits, utility and believe it is the
status quo. On the other hand, laggards (15%) are highly resistant
to change and hard to reach online and as a result, will require
more targeted and local outreach efforts.
These results should also be viewed within the context of

limitations related to integrating diverse user-engagement data
across digital health studies that targeted different disease areas
with varying underlying disease characteristics and severity. While
we did adjust for potential study level heterogeneity, we were not
able to account for within-study differences such as variations in
participants’ disease severity and any other study-specific
temporal changes. For example, the user experience and burden
could have changed or improved over time based on changes in
the study protocol or other technical fixes in the app. The
variations in participant recruitment were not fully documented
across studies so not be analyzed and accounted for fully except
for clinical referrals in two of the studies. Furthermore, the
comparison of participant race/ethnicity and geographical diver-
sity to a general US population was meant to assess the
representativeness of the study that is aimed at recruiting from
a general population and not necessarily targeted towards a
specific clinical condition of interest. Researchers should also
prioritize to collect demographic data such as age, gender, race/
ethnicity, participant state during onboarding which help
characterize user attrition in future studies. While sensitivity
analysis showed the main findings from user retention analysis do
not change by including participants with missing data, however,
missing demographic characteristics remains a significant chal-
lenge for digital health (See Supplementary Table 7). Finally,
obtaining raw user-level engagement data from digital health
studies that is well annotated and computable remains a
significant challenge. The present findings are based on eight
select US-based digital health studies and thus may not be
generalizable broadly. We do, however, hope that this work will
help motivate digital health researchers to share user-level
engagement data to help guide a larger systematic analysis of
participant behavior in digital health studies.
Despite these limitations, the present investigation to the best

of our knowledge is the largest cross-study analysis of participant
retention in remote digital health studies using individual-level
data. While the technology has enabled researchers to reach and
recruit participants for conducting large-scale health research in
short periods of time, more needs to be done to ensure equitable
access and long-term utilization by participants across different
populations. The low retention in “fully remote, app-based” health
research may also need to be seen in the broad context of the
mobile app industry where similar user attrition is reported.69

Attrition in remote research may also be impacted by study
burden30 as frequent remote assessments can compete with
users’ everyday priorities and perceived value proposition for
completing a study task that may not be linked to an immediate
monetary incentive. Using co-design techniques70 for developing
study apps involving researchers and participants could help
guide the development of most parsimonious research protocols
that fit into the daily lives of people and are still sufficiently
comprehensive for researchers.
In the present diverse sample of user-activity data, several

cohort characteristics, such as age, disease status, clinical referral,
monetary benefits, etc, have emerged as key drivers for higher
retention. These characteristics may also guide the development
of new data-driven engagement strategies71,72 such as tailored
just-in-time interventions73 targeting sub-populations that are
most likely to dropout early from remote research. Left unchecked
the ongoing bias in participant recruitment combined with
inequitable long-term participation in large-scale “digital cohorts”
can severely impact the generalizability36,37 and undermine the

promise of digital health in collecting representational real-
world data.

METHODS

Data acquisition
The user-engagement data were compiled by combining data from four
studies that published annotated, accessible, and computable user-level
data16,19,74,75 under qualified researcher program76 as well as new data
from four other digital health studies(SleepHealth,77 Start,78 Phendo,79 and
ElevateMS80) that were contributed by collaborators. These eight studies
aimed at assessing different diseases ranging from Parkinson’s(mPower),
asthma(Asthma health), heart condition(MyHeartCounts), sleep health
(SleepHealth), multiple sclerosis(ElevarteMS), endometriosis(Phendo) to
depression(Brighten and Start). Except for three studies (Brighten, Phendo,
and Start) that aimed to recruit people with a specific clinical condition, the
other five studies enrolled people from the general population. Anyone
with and without the target disease that met the other study eligibility
criteria could join. The studies recruited participants from throughout the
US between 2014–2019 using a combination of different approaches
including placing ads on social media, publicizing or launching the study at
a large gathering, partnerships with patient advocacy groups, clinics, and
through word of mouth. In all studies, participants were enrolled fully
remotely either through a study website or directly through the study app
and provided electronic consent81 to participating in the study. Ethical
oversight of the eight remote health studies included in the analysis was
conducted by the respective institution’s Institutional Review Board/Ethics
Boards: Brighten (University of California, San Francisco), SleepHealth
(University of California, San Diego), Phendo(Columbia University), Start
(GoodRx), mPower (Sage Bionetworks), elevateMS(Sage Bionetworks),
Asthma(Mt. Sinai), MyHeartCounts(Stanford University). The present
retention analysis study used existing de-identified data only and qualifies
for exemption status per OHRP guidelines.82

The studies were launched at different time points during the 2014–2019
period, including three studies mPower, MyHeartCounts, and Asthma being
launched with the public release of ResearchKit framework83 released by
Apple in March 2015. The studies were also active for different time periods
including significant differences in the minimum time participants were
expected to participate in the studies remotely. While Brighten and
ElevateMS had a fixed 12-week participation period, other studies allowed
participants to remain active for as long as they desired. Given this variation
in the expected participation period across the studies, we selected the
minimum common time period of the first 12 weeks (84 days) of each
participant’s activity in each study for retention analysis. Finally, with the
exception of Brighten study which was a randomized interventional clinical
trial and enrolled depressed cohort offering them monetary incentives for
participation, the rest of the seven studies were observational and did not
offer any direct incentives for participation. The studies also collected
different real-world data ranging from frequent subjective assessments,
objective sensor-based tasks to continual passive data41 collection.

Data harmonization
User-activity data across all the apps were harmonized to allow for inter-
app comparison of user-engagement metrics. All in-app surveys and
sensor-based tasks (e.g., Finger tapping on the screen) were classified as
“active tasks” data type. The data gathered without explicit user action
such as daily step count (Apple’s health kit API84), daily local weather
patterns were classified as “passive” data type and were not used for
assessing active user-engagement. The frequency at which the active tasks
were administered in the study apps were aligned based on the
information available in the corresponding study publication or obtained
directly from the data contributing team in case the data were not publicly
available. Furthermore, there were significant differences in the baseline
demographics that were collected by each app. A minimal subset of four
demographic characteristics (age, gender, race, state) was used for
participant recruitment and retention analysis. A subset of five studies
(mPower, ElevateMS, SleepHealth, Asthma, MyHeartCounts) had enrolled
participants with and without disease status and were used to asses
retention differences between people with (case) and without (control)
disease. Two studies (mPower and ElevateMS) had a subset of participants
that were referred to use the same study app by their care providers. For
this smaller but unique subgroup, we compared the retention differences
between clinically referred participants to self-referred participants.
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Statistical analysis
We used three key metrics to assess participant retention and long-term
engagement. (1) Duration in the study: the total duration, a study
participant remained active in the study i.e., the number of days between
the first and last active task completed by the participant, during the first
84 days of each participant’s time in the study. (2) Days active in the study:
the number of days a participant performed any active task in the app
within the first 84 days. (3) User-activity streak: a binary-encoded vector
representing the 84 days of potential app participation for each participant
(Fig. 3a) where the position of the vector indicates the participant’s day in
the study and is set to 1 (green box) if at least one active task is performed
on that day or else is 0(white). User-activity streak metric was used to
assess sub-populations that show similar longitudinal engagement
patterns over a 3 month period.
Participant retention analysis (survival analysis85) was conducted using

the total duration of time in the study as the outcome metric to compare
the retention differences across studies, sex, age group, disease status, and
clinical referral for study-app usage. The duration of each participant in the
study was assessed based on “active task” completion i.e., tasks that
require active user input (e.g., a survey or a sensor-based active task). With
the underlying user-level engagement data available across selected eight
studies, we used an individualized pooled data analysis(IPDA) approach86

to compare participant retention. IPDA has shown to yield more reliable
inference compared to pooling estimates from published studies.86 Log-
rank test87 was used to compare significant differences in participant
retention between different comparator groups of interest. In order to
adjust for potential study level heterogeneity, we used a stratified version
of the log-rank test. Kaplan-Meier88 plots were used to summarize the
effect of the main variable of interest by pooling the data across studies
where applicable. Two approaches were used to evaluate participant
retention using survival analysis. (1) No censoring (most conservative)—īf
the last active task completed by participant fell within the pre-specified
study period of the first 84 days, we considered it to be a true event i.e.,
participant leaving the study (considered “dead” for survival analysis). (2)
Right-censoring88—to assess the sensitivity of our findings using approach
1, we relaxed the determination of true event (participant leaving the
study) in the first 12 weeks to be based on the first 20 weeks of app activity
(additional 8 weeks). For example, if a participant completes last task in an
app on day 40(within the first 84 days) and then additionally completes
more active task/s between week 13–20 he/she was still considered alive
(no event) during the first 84 days (12 weeks) of the study and therefore
“right-censored” for survival analysis. Given that age and gender had a
varying degree of missingness across studies; additional analysis compar-
ing the retention differences between the two sub-groups that provided
the demographics and that opted out was done to assess the sensitivity of
missing data on main findings.
Unsupervised k-means clustering method was used to investigate the

longitudinal participant engagement behavior within each study using the
user-activity streak metric (described above). The number of optimum
clusters (between 1–10) in each study was determined using the elbow
method89 that aims to minimize the within-cluster variation. Enrichment of
demographic characteristics in each cluster was assessed using a one-way
analysis of variance. Since the goal of this unsupervised clustering of user-
activity streaks was to investigate the patterns in longitudinal participant
engagement; we filtered out individuals who remained in the study for less
than 7 days from clustering analysis. However, for post hoc comparisons of
demographics across the clusters, the initially left-out participants were put
in a separate group (C5*). The state-wise proportions of recruited
participants in each app were compared to the 2018 US state population
estimates using the data obtained from the US census bureau.90 To
eliminate potential bias related to marketing and advertising of the launch
of Apple’s Research kit platform on March 09, 2015, participants who
joined and left the mPower, MyHeartCounts, Asthma studies within the
first week of Research Kit launch (N= 14,573) were taken out from the user
retention analysis. We initially considered using Cox proportional hazards
model91 to test for the significance of variable of interest on user retention
within each study accounting for other study-specific covariates. However,
because the assumption of proportional hazards (tested using scaled
Schoenfeld residuals) was not supported for some studies, these analyses
were not further pursued. All statistical analyses were performed using R.92

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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