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INDIFFERENCE PRICING AND THE MINIMAL ENTROPY
MARTINGALE MEASURE IN A STOCHASTIC VOLATILITY MODEL

WITH JUMPS

FRED ESPEN BENTH AND THILO MEYER-BRANDIS

Abstract. We use the dynamic programming approach to derive an equation for the
utility indifference price of Markovian claims in a stochastic volatility model proposed by
Barndorff-Nielsen and Shephard [3]. The pricing equation is a Black & Scholes equation
with a nonlinear integral term involving the risk preferences of the investor. Passing to the
zero risk aversion limit, we present a Feynman-Kac representation of the minimal entropy
price. The density of the minimal entropy martingale measure is found via the Girsanov
transform of the Brownian motion and a subordinator process controlling the jumps in the
volatility model. The density is represented by the logarithm of the value function for an
investor with exponential utility and no claim issued, and a Feynman-Kac representation
of this function is provided. We calculate the function explicitly in a special case, and
show some properties in the general case.

1. Introduction

Utility indifference pricing (see Hodges and Neuberger [9]) gives an alternative to the
arbitrage theory to derive the fair premium of derivatives in incomplete markets. It is well-
known that in such markets there exists a continuum of equivalent martingale measures,
and the arbitrage theory does not lead in general to a unique price. Hence, the investors
attitude towards the risk that can not be hedged away must be taken into account in the
problem of pricing derivatives in incomplete markets.

In this paper we will study the problem of pricing Markovian claims in a stochastic
volatility model introduced by Barndorff-Nielsen and Shephard [3]. The price dynamics
of the underlying follows a geometric Brownian motion where the squared volatility is
modelled by a non-Gaussian Ornstein-Uhlenbeck process. The volatility level will revert
towards zero, with random upward shifts modelled by a subordinator process (an increasing
Lévy process).

Following Hodges and Neuberger [9] we consider an investor trying to maximize his expo-
nential utility by either entering into the market by his own account, or issuing a derivative
and investing his incremental wealth after collecting the premium. The indifference price of
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the claim is then defined as the premium for which the investor becomes indifferent between
the two investment alternatives. In this paper we use the dynamic programming approach
to solve the two utility maximization problems. Since the volatility process follows a jump
diffusion model, we obtain Hamilton-Jacobi-Bellman (HJB) equations with integral terms.
When the investor enters the market without issuing a claim, we solve this problem via
a logarithmic transform of the value function and a Feynamn-Kac representation of the
transform. This function is of crucial importance when considering the portfolio problem
with a short position in the derivative, and we thus analyze the function in some detail
and provide explicit solution in a special case.

We continue with deriving the correpsoding HJB-equation when the investor optimizes
his portfolio with an issued derivative. Again we can represent the solution via a logarith-
mic transform, however, now this transform includes the indifference pricing functions for
which we are able to derive a Black & Scholes type of partial differential equation with a
nonlinear integral term depending on the risk preferences. Unfortunately, we are not able
to present any solution of this equation. We remark that our solution approach to these
stochastic control problems follows the same lines as in Musiela and Zariphopoulou [14],
who consider indifference pricing for claims written on non-tradeable assets. In their frame-
work of continuous diffusion processes, they are able to derive explicit solutions also for
the indifference price via a power transformation of the nonlinear pricing equation.

It is well-known (see e.g. Frittelli [11], Rouge and El-Karoui [17] and Delbaen et al. [7])
that the zero risk aversion limit of the indifference price correpsonds to the minimal entropy
martingale measure price. After formally taking the limit in our Black & Scholes integro-
equation for the indifference price, we obtain a linear Black & Scholes integral equation,
for which we present a Feynman-Kac solution. Reading off the correpsonding Girsanov
transform, we obtain a candidate density for the minimal entropy martingale measure.
We verify that this is indeed the minimal entropy martingale measure by appealing to a
verification theorem derived by Rheinländer [16]. A crucial ingredient in this analysis is
the logarithmic transform of the value function when no claim is issued. Related papers
studying the minimal entropy martingale measure for stochastic volatility markets are
Hobson [8], Becherer [4] and Benth and Karlsen [5].

The paper is organized as follows: in the next section we define our financial market,and
in Section 3 the different optimization problems are presented and analysed. The next
Section identifies the candidate for the minimal entropy martingale measure and the en-
tropy price, while in Section 5 we verify under some integrability conditions that this is
the desired measure.

2. The market

Given a probability space (Ω,F , P ) and a time horizon T , consider a financial market
consisting of a bond and a risky asset with prices at time 0 ≤ t ≤ T denoted by Rt and
St , resp.. Assume without loss of generality that the bond yields a risk-free rate of return
equal to zero, i.e.,

dRt = 0,(2.1)
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together with the convention that R0 = 1. The price of the risky asset is evolving according
to the following stochastic volatility model introduced by Barndorff-Nielsen & Shepard [3];

dSt = α(Yt)Stdt+ σ(Yt)StdBt, S0 = s > 0(2.2)

dYt = −λYtdt+ dLλt, Y0 = y > 0,(2.3)

where Bt is a Brownian motion and Lt a subordinator (that is, an increasing Lévy pro-
cess) with Poisson random measure denoted by N(dt, dz). The Lévy measure ν(dz) of Lt

satisfies
∫∞

0
min(1, z) ν(dz) < ∞. Further, we denote by {Ft}t≥0 the completion of the

filtration σ(Bs, Lλs; s ≤ t) generated by the Brownian motion and the subordinator such
that (Ω,F ,Ft, P ) becomes a complete filtered probability space. In this paper we will
consider the following specification of the parameter functions α and σ:

(2.4) α(y) = µ+ βy, σ(y) =
√
y,

with µ and β being constants.
The process Yt models the squared volatility, and will be an Ornstein-Uhlenbeck process

reverting towards zero, and having positive jumps given by the subordinator. An explicit
representation of the squared volatility is

(2.5) Yt = y exp (−λt) +

∫ t

0

exp (−λ(t− u)) dLλu.

The scaling of time by λ in the subordinator is to decouple the modelling of the marginal
distribution of the (log)returns of S and their autocorrelation structure. We note that
[3] propose the use a superposition of processes Yt with different speed of mean-reversion.
However, in this paper we will stick to only one process Yt, but remark that there are no
essential difficulties in generalizing to the case of a superposition of Y ’s. The modelling
idea is to specify a stationary distribution of Y that implies (at least approximately) a
desirable distribution for the returns of S. Given this stationary distribution, one needs to
derive a subordinator L. In [3] several examples of such distributions and their associated
subordinators are given in the context of financial applications.

We denote by ψ(θ) the cumulant function of Lt, which is defined as the logarithm of the
characteristic function

(2.6) ψ(θ) = ln E [exp (iθL1)] , θ ∈ R.

From the Lévy-Kintchine Formula we have

(2.7) ψ(θ) =

∫ ∞

0

{
eiθz − 1

}
ν(dz).

We suppose that the Lévy measure satisfies an exponential integrability condition, that is,
there exists a constant c > 0 such that

(2.8)

∫ ∞

1

ecz ν(dz) <∞.

Later we will be more precise about the size of c, and relate it to parameters in the
specification of the Lévy measure. Under this condition, the moment generating function
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is defined for all |θ| ≤ c, and

(2.9) E [exp (θL1)] = exp (φ(θ))

where

(2.10) φ(θ) =

∫ ∞

0

{
eθz − 1

}
ν(dz).

Note that Lλt is also a subordinator, and the cumulant function of this is λψ(θ). The
process Lt has the decomposition

(2.11) Lt =

∫ t

0

∫ ∞

0

z ν(dz)dt +

∫ t

0

∫ ∞

0

z(N(dz, dt) − ν(dz)dt),

where the second integral on the right-hand side is a martingale. The reader is referred to
[1], [6], [15] and [19] for more information about Lévy processes and subordinators.

3. Indifference pricing of claims

In this Section we will use the dynamic programming approach to determine the den-
sity of the minimal entropy martingale measure. By considering the utility maximization
problems for the issuer of a claim, we are able to associate an integro-partial differential
equation for the indifference price. By letting the risk aversion of the investor tend to
zero, we formally obtain a limiting equation, being a Black & Scholes type equation for
which we can associate a Feynman-Kac solution. From this representation, we can read off
the density of the minimal entropy martingale measure. A basic ingredient in the density
is a function factorizing the solution of the optimization when no claim is issued. We
characterize this function, and provide an explicit form of it in a special (but interesting)
case.

3.1. The exponential utility optimization problems. Consider a European option
with a Markovian claim defined by f(ST ), for a bounded function f . Let the investor have
an exponential utility function

U(x) = 1 − exp(−γx),
where γ > 0 is the risk aversion parameter. The investor, being an agent in the market
(2.1)-(2.2) with initial wealth x at time t, has a wealth dynamics Xu at time u ≥ t governed
by the equation

(3.1) dXu = πuα(Yu)Xu du+ πuσ(Yu)Xu dBu, Xt = x,

where πu denotes the fraction of the wealth Xu which is invested in the risky asset Su at
time u. The control π is called admissible if it is an Fu-adapted stochastic process for
which there exists a wealth process Xπ

u solving the stochastic differential equation (3.1).
We denote the set of all such controls by At, where the subscript t indicates that we start
the wealth dynamics at time t.

Note that the admissible controls depend on the level of volatility Y , and not only on the
stock price which are directly observable. However, this is not any restriction in the current
stochastic volatility model, where in fact the investor has full knowledge of the volatility
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from observing the stock price and its quadratic variation due to the positivity of the
volatility. Indeed, by taking the quadratic variation [S]t of St and solving for σ(Yt) = Yt:

Yt = S−2
t

d[S]t
dt

,

we find after appealing to the fact σ(Ys; s ≤ t) = σ(Lλs; s ≤ t), that the filtration Ft equals
FS

t , the filtration generated by the asset price S.
Restricting our attention to Markov controls, the investor will allocate a fraction π ≡

π(t, x, y) into the risky asset when the wealth is Xt = x and level of volatility is Yt = y.
The value function for the optimal control problem, given that the investor has not isssued
a claim, is

(3.2) V 0(t, x, y) = sup
π∈At

E
[
1 − exp (−γXT )

∣∣Xt = x, Yt = y
]
.

If, on the other hand, the investor issues a claim f(ST ), the utility maximization problem
is

(3.3) V (t, x, s, y) = sup
π∈At

E
[
1 − exp

(
−γ(XT − g(ST )

)∣∣Xt = x, Yt = y, St = s
]
.

Following Hodges and Neuberger [9], the utility indifference price of the claim f(ST ) for a
given risk aversion γ, is now defined as the unique solution Λ(γ)(t, y, s) of the equation

(3.4) V 0(t, x, y) = V (t, x+ Λ(γ)(t, y, s), s, y).

The purpose of the rest of this section is to solve the two utility optimization problems
and reach an integro-partial differential equation for the price Λ(γ).

We shall use the dynamic programming (or Bellman) method to solve the two stochastic
control problems. Provided that the value functions are sufficiently regular, it is well known
that the associated Hamilton-Jacobi-Bellman (HJB henceforth) equations can be derived
using the dynamic programming principle.

3.2. Utility optimization without a claim issued. The HJB equation for the value
function (3.2) without a claim issued reads

V 0
t + max

π∈
�

{
α(y)πxV 0

x +
1

2
σ2(y)π2x2V 0

xx

}

+ LY V
0 = 0, (t, x, y) ∈ [0, T ) × R × R+,

(3.5)

with terminal data

(3.6) V 0(T, x, y) = 1 − exp(−γx), (x, y) ∈ R × R,

where

(3.7) LY V
0 = −λyV 0

y + λ

∫ ∞

0

{
V 0(t, x, y + z) − V 0(t, x, y)

}
ν(dz).

The first order condition for an optimal investment strategy is

α(y)xV 0
x + σ2(y)πx2V 0

xx = 0,
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and the solution π∗ of this equation is

π∗ = − α(y)V 0
x

σ2(y)xV 0
xx

.

Inserting π∗ into the HJB equation (3.5) yields the nonlinear integro-PDE

V 0
t − α2(y)(V 0

x )2

2σ2(y)V 0
xx

+ LY V
0 = 0, (t, x, y) ∈ [0, T ) × R × R+.(3.8)

We reduce the state space by one dimension by making the ansatz (see Musiela and Za-
riphopoulou [14] for a similar ansatz in a different model)

(3.9) V 0(t, x, y) = 1 − exp
(
−γx

)
H(t, y).

This logarithmic transform simplifies the nonlinearities in (3.8) considerably, and insertion
of the ansatz in (3.8) yields the following linear integro-PDE for H(t, y)

(3.10) Ht −
α2(y)

2σ2(y)
H + LYH = 0, (t, y) ∈ [0, T ) × R+,

with terminal data induced by (3.6)

(3.11) H(T, y) = 1, y ∈ R+.

The function H solving (3.10)-(3.11) plays a crucial role in the derivation of the density
of the minimal entropy martingale measure. We next prove that a smooth solution of the
integro-PDE (3.10)-(3.11) exists and present its Feynman-Kac representation:

Proposition 3.1. Equation (3.10)-(3.11) has a solution H ∈ C1,1 ([0, T ] × R+) which

allows for the following Feynman-Kac representation

(3.12) H(t, y) = E

[
exp

(
−1

2

∫ T

t

α2(Yu)

σ2(Yu)
du

) ∣∣Yt = y

]
, (t, y) ∈ [0, T ] × R+.

Proof. First, we note that from Markov theory a sufficiently smooth solution of (3.10)-
(3.11) will have the Feynman-Kac representation (3.12). We prove that H is continuously
differentiable in t and y:

Denote

(3.13) g(y) := −1

2

α2(y)

σ2(y)
= −1

2

(
µ2

y
+ 2µβ + β2y

)
.

Using the explicit solution of Yu in (2.5) given Yt = y together with Yu ≥ y exp(−λ(u− t)),
we easily see by appealing to dominated convergence that H is continuously differentiable
with respect to t and y, and that the differentiation in y is continuous. Further, for the
differentiation in t we have

(3.14) |Ht(t, y) −Ht(τ, y)| ≤ E

[
|g(Yt) exp

(∫ T

t

g(Yu) du

)
− g(Yτ) exp

(∫ T

τ

g(Yu) du

)
|
]

≤ E

[
exp

(∫ T

t

g(Yu) du|g(Yt) − g(Yτ)|
)]
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+ E

[
| exp

(∫ t

τ

g(Yu) du

)
− 1||g(Yτ)|| exp

(∫ τ

0

g(Yu) du

)
|
]

We observe that the second term of the sum on the right hand side in (3.14) goes to zero
as τ → t. For the first term, note that

(g(Yt) − g(Yτ))
2 ≤ 2µ4(

1

Yt
− 1

Yτ
)2 + 2β4(Yt − Yτ )

2.

Hence, we conclude that H is continuously differentiable in t by using

(
1

Yt
− 1

Yr
)2 =

(Yt − Yr)
2

Y 2
r Y

2
t

≤ 1

y2
exp(2λ(r − t))(Yt − Yr)

2

together with Hölder inequality and the fact that E [(Yt − Yτ)
2] can be dominated by t −

τ . �

We sum up our findings for the utility optimization problem without a claim issued in
the following proposition:

Proposition 3.2. The value function of the utility optimization problem stated in (3.2) is

V 0(t, x, y) = 1 − exp(−γx)H(t, y),

where H is defined in Prop. 3.12. Furthermore, the optimal investment strategy is the

feedback control

π∗(t, x, y) =
1

γx

(
µ

y
+ β

)
.

Proof. First, we notice that V 0 is a bounded and smooth function. By appealing to stan-
dard arguments, one can prove a verification theorem which will identify V 0 as the value
function of the control problem and the optimal control being π∗. We refer the reader to,
e.g. Fleming and Soner [10]. �

In general, (3.12) is rather difficult to calculate explicitly. However, if we consider the
special case α(y) = βy, i.e µ = 0 in (2.2), a direct calculation using the moment generating
function of L1 gives the following explicit solution of the integro-PDE (3.10)-(3.11):

Corollary 3.3. Suppose α(y) = βy. Then the solution of (3.10)-(3.11) is given as

(3.15) H(t, y) = exp (b(t)y + c(t)) ,

where b and c are defined as

b(t) = −β
2

2λ
(1 − exp(−λ(T − t))) , c(t) = λ

∫ T

t

φ (b(u)) du,

We recall that φ is the log moment generating function of L1.

Setting µ = 0 in (2.2) corresponds to an expected logreturn of (β− 1
2
)y of the risky asset

St. If we, for instance, specify the stationary distribution of Y to be inverse Gaussian, then
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the logreturns will be approxmiately normal inverse Gaussian distributed (see Barndorff-
Nielsen and Shephard [3]), and choosing this to be symmetric corresponds to β = 1

2
, that

is, with µ = 0 we have zero expected logreturn.
One can use the representation in (3.12) of H to extract a lower bound for the function,

which we now derive;

Proposition 3.4. Define

a(t) = − µ

2λ
(exp(λ(T − t)) − 1) ,

b(t) = −β
2

2λ
(1 − exp(−λ(T − t))) ,

c(t) = −µβ(T − t) + λ

∫ T

t

φ (b(u)) du.

Then we have the following bounds for H(t, y)

(3.16) exp
(
a(t)y−1 + b(t)y + c(t)

)
≤ H(t, y) ≤ 1.

Proof. The upper bound of 1 is clear (which is reached for t = T ). Using (3.13), together
with the explicit representation of Yu in (2.5), its lower bound Yu ≥ y exp(−λ(u− t)) and
the fact that

−λ
∫ T

t

Yu du = YT − Yt − (LλT − Lλt),

it is straightforward to derive

(3.17) H(t, y) ≥ exp
(
a(t)y−1 + b(t)y − µβ(T − t)

)
·

· E
[
exp

(
−β

2

2λ

∫ T

t

(1 − exp(−λ(T − u))) dLλu

)]
,

which completes the proof. �

3.3. Utility optimization with a claim issued. Next, consider the HJB equation for
the value function (3.3) when the investor has issued a claim with payoff function g(s) at
time T :

Vt + max
π∈

�

{
α(y)πxVx +

1

2
σ2(y)π2x2Vxx + σ2(y)πxsVxs

}

+ LSV + LY V = 0, (t, x, y, s) ∈ [0, T ) × R × R+ × R+,

(3.18)

with terminal data

(3.19) V (T, x, y, s) = 1 − exp
(
−γ(x− f(s))

)
,

where LY is defined in (3.7) and

LSV = α(y)sVs +
1

2
σ2(y)s2Vss.
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From the first order condition we can derive the following expression for the optimal in-
vestment strategy π∗:

(3.20) π∗ = −α(y)Vx + σ2(y)sVxs

σ2(y)xVx
.

Inserting π∗ into the HJB equation (3.18) yields the integro-PDE

Vt −
α2(y)V 2

x

2σ2(y)Vxx
− σ2(y)s2V 2

xs

2Vxx
− α(y)sVxVxs

Vxx

+ LSV + LY V = 0, (t, x, y, s) ∈ [0, T ) × R × R+ × R+.

(3.21)

We now make the ansatz

(3.22) V (t, x, y) = 1 − exp
(
−γx + γΛ(γ)(t, y, s)

)
H(t, y),

where we recall that Λ(γ)(t, y, s) is the indifference price to be determined and H(t, y) solv-
ing (3.10)-(3.11). We can derive an integro-PDE for Λ(γ): after some simple manipulations,
plugging (3.22) into (3.21) and using the equation (3.10) for H, we derive the following
integro-PDE for Λ(γ) for (t, y, s) ∈ [0, T ) × R+ × R+;

Λ
(γ)
t +

1

2
σ2(y)s2Λ(γ)

ss − λyΛ(γ)
y

+ λ

∫ ∞

0

1

γ

{
exp

(
γ
(
Λ(γ)(t, y + z, s) − Λ(γ)(t, y, s)

))
− 1
} H(t, y + z)

H(t, y)
ν(dz) = 0.

(3.23)

Also, since (3.19) holds, Λ(γ) obeys the terminal condition

(3.24) Λ(γ)(T, y, s) = f(s), (y, s) ∈ R+ × R+.

Unfortunately, we are not able to provide any solution of (3.23)-(3.24), and therefore we
can not verify that V defined in (3.22) indeed is the value function and π∗ defined in (3.20)
is the optimal control of our optimization problem. Except for the exponential function in
the integral term of (3.23), the indifference price for general risk aversion γ follows a linear
Black & Scoles-type partial differential equation.

4. Identification of the candidate minimal entropy martingale measure

and the entropic price

The entropy price of the claim f(ST ) occurs as the zero risk aversion limit

Λ(t, y, s) := lim
γ→0

Λ(γ)(t, y, s).
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Taking formally this limit in (3.23), the following integro-PDE for Λ(t, y, s) appears for
(t, y, s) ∈ [0, T ) × R+ × R+,

Λt +
1

2
σ2(y)s2Λss − λyΛy

+ λ

∫ ∞

0

(Λ(t, y + z, s) − Λ(t, y, s))
H(t, y + z)

H(t, y)
ν(dz) = 0.

(4.1)

The terminal condition Λ(T, y, s) = f(s) yields the Feynman-Kac representation

(4.2) Λ(t, y, s) = E

[
f
(
S̃T

) ∣∣ Ỹt = y, S̃t = s
]
,

where the stochastic processes S̃ and Ỹ are given by

dS̃t = σ
(
Ỹt

)
S̃t dB̃t,(4.3)

dỸt = −λỸtdt+ dL̃λt,(4.4)

and L̃t is a pure jump Markov process with jump measure

(4.5) ν̃(ω, dz, dt) =
H(t, Ỹt(ω) + z)

H(t, Ỹt(ω))
ν(dz)dt.

Observe that the state-dependent jump measure ν̃(dz) becomes deterministic when µ = 0:
indeed, from Cor. 3.3 we find that

ν̃(ω, dz, dt) = eb(t)zν(dz) dt,

where b(t) is given in Cor. 3.3.
Introduce the notation

(4.6) δ(y, z, t) :=
H(t, y + z)

H(t, y)
.

Our interest is now to identify (formally) a candidate for a martingale measure Q such
that the representation (4.2) can be rewritten in terms of the original processes St and Yt.
Since Bt and Lt are independent, we proceed in two step. By the Girsanov theorem for
Brownian motion, we see that

(4.7) Z ′
T = exp

(
−
∫ T

0

α(Yt)

σ(Yt)
dBt −

∫ T

0

1

2

α2(Yt)

σ2(Yt)
dt

)

is a density candidate to change from the dynamics of St to the dynamics of S̃t. In a second

step we look for a probability that causes the dynamic change from Yt to Ỹt. Using the
Girsanov theorem for random measures (see Jacod and Shiryaev [12]), we get the following
density candidate

(4.8) Z ′′
T = exp

(∫ T

0

∫ ∞

0

ln δ(Yt, z, t)N(dz, dt) +

∫ T

0

∫ ∞

0

(1 − δ(Yt, z, t)) ν(dz)dt

)
.
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Now, since Z ′
T and Z ′′

T are orthogonal, a natural candidate for the density of the minimal
entropy martingale measure is

(4.9) ZT := Z ′
T · Z ′′

T .

5. Verification of the candidate minimal entropy martingale measure

In this section, we want to prove that our candidate ZT in (4.9) is indeed the den-
sity process of the minimal entropy martingale measure. To this end, we need to verify
that ZT is a martingale (not only a local martingale) defining a probability measure with
finite relative entropy, which moreover is minimal among all probability measures of fi-
nite relative entropy. We will do this by verifying the sufficient conditions developed by
Rheinländer [16].

The main result in this paper is the following theorem:

Theorem 5.1. Suppose we have

(5.1) E

[
exp

(∫ T

0

α2(Ys)

σ2(Ys)
ds

)]
<∞.

Then Zt as defined in (4.9) is the minimal entropy martingale measure density process.

Proof. Referring to the results in [16], it is enough to verify the following four statements

i): The density candidate ZT can be written as

(5.2) ZT = exp

(
c+

∫ T

0

ηtdSt

)
,

for a constant c and some adapted process ηt.
ii): The process Zt is a true martingale.
iii): The measure induced by Zt, denoted by QME has finite entropy.
iv): We have

∫ T

0

η2
t d[S]t ∈ Lexp(P ),

where [S]t is the quadratic variation process of St and Lexp(P ) is the Orlicz space
generated by the Young function exp(·).

i) We want to write ZT as in (5.2). Since we have

dSt

St
= α(Yt)dt+ σ(Yt)dBt,

we get

(5.3) ln(Z ′
T ) = −

∫ T

0

α(Yt)

σ2(Yt)
S−1

t dSt +
1

2

∫ T

0

α2(Yt)

σ2(Yt)
dt.
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Now, substituting in (5.3) for 1
2

α2(Yt)
σ2(Yt)

the expression we get from the integro-PDE (3.10),

we end up with

ln(ZT ) = ln(Z ′
T ) + ln(Z ′′

T ) = −
∫ T

0

α(Yt)

σ(Yt)
S−1

t dSt +

∫ T

0

(
Ht(t, Yt)

H(t, Yt)
− λYt

Hy(t, Yt)

H(t, Yt)

)
dt

+

∫ T

0

∫ ∞

0

(lnH(t, Yt + z) − lnH(t, Yt))N(dz, dt).

(5.4)

Since H ∈ C1,1 from Prop. 3.1, we can apply Itô’s formula on g(t, Yt) = lnH(t, Yt) to derive

g(T, YT ) =g(0, Y0) +

∫ T

0

(
Ht(t, Yt)

H(t, Yt)
− λYt

Hy(t, Yt)

H(t, Yt)

)
dt

+

∫ T

0

∫ ∞

0

(lnH(t, Yt + z) − lnH(t, Yt))N(dz, dt).

(5.5)

Finally, substitution of (5.5) in (5.4) yields

ZT = exp

(
− lnH(0, y)−

∫ T

0

α(Yt)

σ2(Yt)
S−1

t dSt

)

=
exp

(
−
∫ T

0
α(Yt)
σ(Yt)

dBt −
∫ T

0
α2(Yt)
σ2(Yt)

dt
)

E

[
exp

(
−
∫ T

0
α2(Yt)
2σ2(Yt)

dt
)] ,

(5.6)

such that ηt is given by − α(Yt)
σ2(Yt)

S−1
t .

ii) By assumption (5.1) and the Novikov condition, we know that Z ′
t is a true martingale.

We denote its corresponding probability measure by Q′ and remind that Yt has the same
dynamics under P and Q′. So we get

E[ZT ] =
E

[
Z ′

T exp
(
−
∫ T

0
α2(Yt)
2σ2(Yt)

dt
)]

E

[
exp

(
−
∫ T

0
α2(Yt)
2σ2(Yt)

dt
)] =

EQ′

[
exp

(
−
∫ T

0
α2(Yt)
2σ2(Yt)

dt
)]

E

[
exp

(
−
∫ T

0
α2(Yt)
2σ2(Yt)

dt
)] = 1.(5.7)

This shows that Zt is a martingale.

iii) Using the same arguments as in ii), we see that

E [ZT | lnZT |] = EQ′

[
exp

(
−
∫ T

0

α2(Yt)

2σ2(Yt)
dt

)
|
(∫ T

0

α(Yt)

σ(Yt)
dBt +

∫ T

0

α2(Yt)

σ2(Yt)
dt

)
|
]

= EQ′

[
exp

(
−
∫ T

0

α2(Yt)

2σ2(Yt)
dt

)
|
∫ T

0

α(Yt)

σ(Yt)
dB̃t|

]
<∞,

(5.8)

where B̃t is the Brownian motion under Q′.
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iv) Since we have

exp

(∫ T

0

η2
t d[S]t

)
= exp

(∫ T

0

α2(Yt)

σ2(Yt)
dt

)
,

we get by assumption (5.1) that
∫ T

0
η2

t d[S]t ∈ Lexp(P ). �

Theorem 5.1 proves that under assumption (5.1) the candidate derived in Section 3
and 4 by applying the dynamic programming method actually is the density process of the
MEMM. The remaining task is to provide sufficient conditions such that assumption (5.1) is
fullfilled in our model. The following Proposition gives a sufficient condition depending on
the Lévy measure of L1, and determines an exact constant c in the exponential integrability
condition (2.8):

Proposition 5.2. If

(5.9)

∫ ∞

0

{
exp

(
β2

λ
(1 − exp(−λT )) z

)
− 1

}
ν(dz) <∞,

then ZT is the density process of the minimal entropy martingale measure.

Proof. We have
α2(Yt)

σ2(Yt)
=
µ2

Yt
+ 2µβ + β2Yt ≤ C + β2Yt

for a constant C. This is because Yt ≥ y exp(−λT ). But this gives

E

[
exp

(∫ T

0

α2(Yt)

σ2(Yt)
dt

)]
≤ C ′

E

[
exp

(
β2

∫ T

0

Ytdt

)]

= C ′
E

[
exp

(
β2

λ

(
y(1 − exp(−λT )) +

∫ t

0

(1 − exp(−λ(T − t))) dLλt

))]

= C ′′ exp

(
λ

∫ T

0

∫ ∞

0

(exp(f(t)z) − 1) ν(dz)dt

)
,

(5.10)

where C ′, C ′′ are constants and f(t) = β2

λ
(1 − exp(−λ(T − t)). �

With the verification of the candidate density, we have identified the minimal entropy
martingale measure. An implication of this is that we rigorously can state from arbitrage
theory that the Feynman-Kac representation of Λ(t, y, s) in (4.2) is the minimal entropy
price of the claim f(ST ), and moreover, that this pricing function must solve the integro-
type Black & Scholes equation (4.1).

We consider some examples of the process Lt that are relevant in finance, and state
sufficient conditions for the density of the minimal entropy martingale measure. If we
choose the stationary distribution of Yt to be an inverse Gaussian law with parameters δ
and γ, that is Yy ∼ IG(δ, γ), the Lévy measure of L becomes

ν(dz) =
δ

2
√

2π
z−3/2(1 + γz) exp

(
−1

2
γz

)
dz.
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Hence, the exponential integrability condition in Prop. 5.2 is satisfied whenever

β2 (1 − exp(−λT )) <
1

2
γ2λ.

When Yt ∼ IG(δ, γ), the logreturns of St will be approximately normal inverse Gaussian
distributed, a family of laws that has been successfully fitted to logreturns of stock prices
(see e.g., Barndorff-Nielsen [2] and Rydberg [18]).

Another popular distribution in finance is the variance gamma law (see Madan and
Seneta [13]). If the stationary distribution of Yt is a gamma law with parameters δ and α,
that is Yt ∼ Γ(δ, α), the marginal distribution of the logreturns of St is approximately a
variance gamma law. The Lévy measure of L becomes

ν(dz) = δα exp(−αz) dz,
for which the integrability condition in Prop. 5.2 is satisfied whenever

β2 (1 − exp(−λT )) < αλ.
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