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BY
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1. Introduction and summary.   We study asymptotic behavior of solutions of

(1.1) X'(t) = k-f [a(t-r) + c]x(r) dr, x(0) = X0, (' = fy

where k and x0 are real, c^O, and a(t) satisfies
(HI) a(t) £ C(0, oo) n L^O, 1). a(t) is nonnegative andnonincreasing, lim^,,, a(t)

=0,andO<a(0 + )^ao;
(H2) a(t) is convex downward; i.e., for 0<£<1 and 0<i1<r3<oo, ea(ti) +

( 1 - e)a(t3) = a(r2), where t2 = e^ + ( 1 - e)t3.
By a familiar theorem on Volterra equations, (1.1) has a unique solution in

C^O, oo). We define u(t) as the solution of (1.1) with k = 0, x0 = l, and we let
w(t)=P0 m(t) dr. It is easily checked that the solution of (1.1) is given by x0m(i)
+kw(t).

Treating (1.1) as a special case of a nonlinear equation, Levin proved in [5]
that if a(i)£C[0, oo), a(t)^a(0), and (-\)kam(t)^0 for 0<l<oo, k=0, 1, 2, 3,
then

(1.2) lim u(t) = 0
Í-KJO

and
(1.3).(i) If c+a(t) eZ,i(0, oo) (in particular, c=0), then

lim w(t) = (       a(t) dt \

(ii) If c>0, then lim^«, w(t)=0.
Levin also conjectured that

(1.4) If c = 0, a(t) £Z,!(0, oo), then lim^ „0^(0=0.
The present theorem shows that (HI) and (H2) together are nearly sufficient for

(1.2), (1.3), and (1.4); in particular, Levin's conjecture is proved. The theorem also
exhibits a class of kernels satisfying (HI) and (H2) but for which a different asymp-
totic behavior from (1.2), (1.3), and (1.4) can be established.
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More specifically, note that if a(t) is given by

/ x              / \      -st o /,    min {t,kt0}\ 2-n(a) a(0=2Ml-¿7—- '       ?o = —>0

(1.5) (b) 8tH,       0 < 3 = 2 8. = «(0) < 00
k = l

(c) Q = {& I 8k > 0} has no common divisor > 1,

then a(t) = ^=kh¡-t^f=k(hjljt0), (k-l)t0¿t^kt0. It follows that a(t) is con-
tinuous, and on each interval (k - l)t0 < / g kt0 it is linear with slope — 2?= < (8,/Fo)-
Then a(?) satisfies (HI) and (H2). When (1.5) holds, we may also have

(1.6) w = vXS + c) = jr0,      j = positive integer.

We will establish (1.2), (1.3), and (1.4) when a(t) satisfies (Hl), (H2), and
(H3) a(t) admits no representation (1.5) such that (1.6) holds.

Complementary to (H3) is
(H4) a(t) satisfies (1.5) and (1.6).

When (H4) holds, we define y = (3S+2c)/(S + c) and let

ux(t) = u(t) — 2y~1coswt

and
wx(t) = w(t) — 2(yw) '1 sin wt.

We prove

Theorem. Let cäO, and let a(t) satisfy (HI) and (H2). Then

lim«(i) = 0,    if (H3) holds,
(i)

lim ux(t) = 0,   i/(H4) holds.

(ii) If c + a(t) i Lx(0, co),

lim w(0 = 0,   i/(H3) holds,
(-»■CO

lim Wl(/) = 0,    i/(H4) Ao/<fr.
Í-.00

(iii) If c + a(t)e Lx(0, co),

lim w(0 = ( I** a(0 *)    ,   i/(H3) Ao/ds,

lim Wiír) = ( Í " a(0 í/í )    ,   if (H4) Ao/ífe.
t-»» \Jo /

Generalizations of the results in [5] to nonlinear versions of (1.1) are given by
Levin and Nohel in [7]. A result of Friedman (Theorem C of [3]) implies (1.2)
and (1.4) for c + a(t) = t'a, 0<a<l. Halanay [4] studied a nonlinear equation
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including (1.1) with k=0 when c + a(s— r)— e0e~ais~l] is a positive kernel on
{O^s^t, 0 = Tgi}forall/èOand somee0>0, «>0.

The Laplace transform argument of our proof resembles the proofs of the
"indirect abelian" theorems in [2, pp. 265-275]. Such theorems were used by
Levin and Nohel in [6] to find an asymptotic expansion as t -> oo of solutions of
an equation similar to (1.1) but where the kernel is, among other things, completely
monotonie on [0, oo).

Throughout the discussion S denotes the subset of the complex plane given by

S = {s I Re s = 0, s Í 0}.

We define

A(s) = lim  j   e~sta(t)dt,       seS.
T-.CO  Jo

Then A(s) is the Laplace transform of a(t); similarly let X(s) be the Laplace
transform of x(i). Taking Laplace transforms formally in (1.1), we obtain X(s)p(s)
=x0 + (k/s), where p(s) = (c¡s)+A(s)+s. In Lemma 5 we show that when (H3)
holds, p(s) t¿ 0 for s e S. Then

X(s) = (x0 + (kls))lp(s),       seS.

The complex inversion formula for Laplace transforms, together with contour
integration and some estimates on A(s), yields

(1.7) x(t) = lim ̂  [ f ' + r]eMX(h) dr,       t > 0,
£-.0 ¿IT   LJ-oo       Js    }

where for each e>0 the integrals are uniformly convergent in l = r>0. The
Riemann-Lebesgue theorem and other abelian arguments then yield our results.

When (H4) holds, we find that p(s) has exactly the two zeros s= ±ia> in S. A
formula similar to (1.7) but with principal values taken also at t= ±w is used in
this case.

§2 presents a sequence of lemmas concerning a(t) and A(s). The theorem is
proved in §3.

Much of the research presented here appeared in the author's Ph.D. thesis
(University of Wisconsin, 1968). The author wishes to thank his thesis director,
Professor J. J. Levin, for many suggestions used here. Most of this research was
done while the author held an NSF Graduate Fellowship.

2. The Laplace transform of a(t).

Lemma 1. Let <j>0, and let a(t) satisfy (HI). Then
(i) e-°'a(t) satisfies (HI),

(ii) Ifa(t) satisfies (H2), so does e~ata(t).

Proof, (i) Obvious.
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(ii) Since a(t) is continuous, it suffices to prove the convexity relation in (H2)
with e = l/2. Set ai=a(ti) and ¿>( = exp ( — atx), i=\,2,3. Then a¡, ¿¡^0, ax — a2^a2
-a3^0, b1-b2>b2-b3>0. Hence a1b1-a2b2=a1(b1-b2)-rb2(a1-a2)^a2(b2-b3)
+ b3(a2-a3) = a2b2-a3b3, and (ii) is proved.

We state without proof the following easy consequence of convexity :

Lemma 2. If a(t) satisfies (H2), then for any 8>0, the function a(t)-a(t+8) is
noninct-easing.

Lemma 3. Let a(t) satisfy (HI). Then
(i) A(s) is defined, finite, and continuous in S. A(s) is holomorphic in {Re j>0}.

(ii) For a+ireS, t^O,

\lmA(<j + ir)\<: a(t) sin \r\t dt

g a(t)dt,

and
/•ji/2|j|

(2.2) |Re^(a + zV)| g a(t)dt,

so that \A(o+ir)\ ->-0 as \r\ —>co, uniformly in 0ga<co.
(iii) Ifa(t) also satisfies (H2) and a + ire S, then

/•JI/2UI
\A(o + ir)\^—p.\ cos rte~"la(t)dt

*ï7ïJ.   e~"°w<*
(iAe case t = 0, t  1 = oo, j'j included); and ifr>0,

,T

nl2i

Proof, (i) For s = a+ir e S, t>0, F>0, define

(2.4) lim       a(r)sinTíífr+lim a(t) cos rt dt ^ 0.
r-»co Jo r-"»'J„/2i

A¿(F, s) = f  a(t)e~at cos rt

i/>(T,s)= i  a(í)e_í"sinTíÉ?/.

Since a(t) -*■ 0 as r -*■ oo, ^4(i) has a nonpositive abscissa of convergence (see e.g.
[8, Chapter II]) so that A(s) is holomorphic in {Re s>0} with

(2.5) [A(s)]* = A(s*) = lim [<f>(T, s) + i<f,(T, s)]

for Im s>0, *=complex conjugate.
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For any T'>0, <f> and tj> are continuous functions of s. (HI) and Lemma l(i)
show that e~ata(t) is nonnegative and nonincreasing on (0, oo). For s=a+ir, t>0,
3*i, Z2 = (« + i)7r/T! « = nonnegative integer,

/•(n + 3/2)ji/i/•(n + 3/2)ji/i
|^(r1,5)-^(7'a,i)| ^ c(0A

J(n+l/2)ii/x

and similarly for </<. Since a(t) -*■ 0 as I -» oo, ̂ (r, ä) and ^(r, j) converge as r-»- oo,
uniformly in any set of the form

S n {a+lT | 0   <   T0   ^   T   g   Ti   <   00}

to continuous functions <f>(s) and t/j(s). Comparing this with (2.5), we see that (i)
is proved.

(ii) Since Re^(<7+iV) and Im ,4(ct+i't) are respectively even and odd in t, we
may assume t > 0. Since for each T> 0 we have

(•Jt/21

\<j>(T,o+ít)\ -¿ a(t)e-út cos Ttt
Jo
fjl/2t

dt
pnl2i
Jo      a{t) dU

(2.2) holds. (2.1) is obtained similarly.
(iii) The case t=0 is trivial, and by symmetry of Re A(a+fr) and Im A(a + ir)

in t, we may assume t>0. Note first that since A(ÍT)=<f>(ÍT) — ii/)(h),

(2.6) V2\A(h)\ = |*(*r)| + hKfr)| = Kir)fKir).
But

Çnl2i n      /.2knli / n\ r    / 77\"1
<¿(¡V) = a(l) cos tí í/r-f- lim Y a í+t-   cos   t /|r  U

Jo n-.oo ¿—j J2(fc-l)n/T     \       ¿T/ l   \       ¿T/}

and
»      r-SIcnll

i/((ít) = lim T a(í) sin rt dt,
n-*00 fc= i J2(fc-l)n/i

so (2.6)' becomes

(2.7)

/•Jt/21

|\/2A(iT)\ -        a(t) eos tí ¿i

= lim Y   í jfl(í)sinTí + a(í + ^) eos Ít(í + ^|  ií/í.
»-» k = i J2(fc-i)B/t l. \      ¿t/ 1  \      ¿V JJ

We note that the right-hand side of (2.7) equals the left-hand side of (2.4) and
that both (2.3) for ct=0 and (2.4) will follow if we show that this right-hand side is
nonnegative. But for any integer k^\,

CL im sin T/+û('+£)cos Hi+£)]} *
=        sin rt [a(t+x0) - a(t+x{) - a(t+x2)+a(t+x3)] dt,
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where x¡ = 2(k— l)Trlr+j-¡rl2r,j=0, 1, 2, 3, and Lemma 2 with 8=7t/2t shows that
the integrand is nonnegative. For (2.3) with <r>0, we apply (2.3) with ct=0 to the
function b(t) = e~oia(t), which satisfies (HI) and (H2) by Lemma 1, and which
has Laplace transform B(s) = A(s + a). This completes the proof of Lemma 3.

Corollary 3.1. Let a(t) satisfy (HI). Then \sA(s)\ -> 0 as s -> 0, s e S.

Proof. We let s = a + ir. Applying (2.1) and (2.2) to the function b(t) = e-"ta(t),
we have

\sA(s)\ = \s\ \B(ir)\ g y/2\s\ f ' e-ota(t)dt,
Jo

when t^O and, trivially, also when t=0, <t>0. Thus if o-S: \r\, \sA(s)\ ¿2a j^ e~at
■a(t) dt = 2oA(<j), while if \r\ >a, we have \sA(s)\ Ú2\r\ J"*1*1 a(t) dt; one of these
estimates is valid for each s e S. But since a(t) -> 0 as t -> oo,

(2.8) i" a(t) dt = o(x)       (x -> oo).
Jo

It follows that |t| Jo"11 a(t) dt -» 0 as r -» 0; and (2.8) together with an elementary
abelian theorem for Laplace transforms [8, p. 182] gives oA(a)—>0 as a^0 + .
In view of our estimates for [í^(í)¡, the corollary is proved.

Corollary 3.2. Let a(t) satisfy (HI) and (H2), and suppose that a(t) £Fi(0, oo).
Then [s + A(s)]'1 -> 0 as s-> 0, s e S.

Proof. By Lemma 3(iii),

\A(s)\  =  \A(a + ir)\  ^ 2^2 JT'1' e"la^dt
f»/3|»|

^ m a(0 tfV,

where m~1=2\/2e"13. Then for sufficiently small |i|,

w! o(/)Aj     =0(1)       (|*|-»-0).

Lemma 4. Suppose a(t) satisfies (HI) ana (H2). FAen exactly one of the following
two cases holds:

I. F/fAer (i) a(0+) = 00 or (ii) a(0)=a(0+) < 00 and W > 0 /Aere ex/ste a« integer
k = k(r)>0 such that

(2.9) fl(g^).2g^-iv+^+a^ > 0

II. (i) There exists a positive number r0 and a sequence {8k}k=i such that (1.5)
holds.
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(ii) The numbers t0, t0, and S and the sequence {Sk} are determined uniquely by
(1.5). All positive t such that

(2.10) ai^^-Tni^-^) +afffl =0,       * = 1, 2,...
are integral multiples of t0.

(iii) 77ie Laplace transform of a(t) is given by

(2.11) A(s) = -+± 2 rf(exp [-**/„]-1),       s e S.
s    s   k=l K'o

Proof. First we note that a representation (1.5) implies (2.10) with t = t0, so
cases I and II exclude each other.

Now suppose we are not in case I, so that (2.10) holds for some t = tj. Let J
denote the set of positive integers/' such that (2.10) holds when t = t1/j. Then
1 £Z. Also, J is a finite set; for (Hl), (H2), and (2.10) with k = 1, T = T1¡j,jeJ, show
that a(t) is linear with negative slope on [0, 2jtt¡t1] whenever,/£/. We lety"0 be the
largest jeJ, and set t0 = t1//0. Then for any integer />1, (2.10) does not hold
with r = T0lj.

By convexity, (2.10) with t = t0 shows that a(t) is linear on each interval
2(k-\)ir¡T0-¿f¿2k-n¡T0; we let -Xk be its slope there. By (HI) and (H2),

X1 ̂  A2 = A3 Z ■ ■ • è 0,    and    lim Xk = 0.
k-* co

We define l0 = 2WTo and èk = kt0(Xk-Xk+1)^0, k=l,2,3,.... Then on the
interval (k— \)t0fífíkt0, the function defined by the right-hand side of (1.5a) has
the value

CO

= xk(kt0-t)+ 2 Vo
i=k + l

=  f da(r) = a(t).
J CO

This proves (1.5a) and (1.5b).
For (1.5c), we note that if/> 1 divides all k in £2, then

■»-¿«-HTEñr
and as in the proof of (1.5a), a(t) is linear on 2j(k — l)TrlT0^t^2jkTr¡T0,k = l, 2,....
But then (2.10) holds with t = t0Ij, and we chose t0 so as to make this impossible.
This completes the proof that II(i) holds when I does not hold.

To prove (ii), suppose

d.5a') a(t) = p^-^LJ^,       t¿m.Mlí
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with corresponding (1.5b'), (1.5c'). Let k1<k2<k3< ■ ■ ■ be all the elements of Q,
and k[<k2< ■ ■ ■ all the elements of Q'. By (1.5a, a'), for each i

(2.12) kit0 = k'it'o = max {x | slope of a(t) has exactly i different values on (0, x)}.

In particular, t0lt'0=k'1lk1 =rational number, so t0lt'0=plq, where p and q are
relatively prime positive integers. Then for each i, by (2.12), kKp\q = k\ = integer.
By (1.5c), q=\, so by (1.5c') also/? = 1 and t0 = t0. By (1.5a, a'), r0 = r'0. By (1.5a'),
the slope — Xk of a(t) in [(k—\)tQ, kt0] is — Zjtk (8y//f0), so by the definition of 8k
in the proof of (i), S'k = (Xk- Xk+1)kt0 = 8k. (1.5b, b') give 8 = 8', and uniqueness is
proved.

Any t satisfying (2.10) leads, as in (i), to a representation (1.5') with r'0 = r/j.
By uniqueness jr0 =jr'0 = r, and (ii) is proved.

(iii) This follows from (1.5) by direct computation. This completes the proof of
Lemma 4.

Lemma 5. Let a(t) satisfy (HI) and (H2), and let c^O. Define

p(s) = (c/s)+A(s)+s,       seS.
Then

(i) p(s) has no zeros in S if (H3) holds. If (H4) holds p(s) has exactly the two
zeros s= ±iw in S.

(ii) When (li4) holds,

(2.13) \p(s)-y(s-iw)\ = o(\s-iw\)       (s->iw,seS),

where y = (38 + 2c)/(8 + c).

Proof, (i) First, (2.11) shows that/>(± to) = 0 when (H4) holds.
For s = ir^0,

ReA(ir)= lim  Y   f  " a^k~}^+ t\ cos rt dt.

But for each k, the integral in the sum is equal to
p«/aiti

[a(xQ + t)—a(xj — t) — a(x! + t) + a(x2 — i)] cos rt dt,
Jo

where Xj = [2(k-l)+j]TTl\r\, j=0, 1, 2. Lemma 2 with 8 = (w/|t|)-2/ shows that
the integrand is nonnegative. Furthermore, Lemma 4 shows that if a(t) is in case I
of Lemma 4 or in case II withyVo^ \r\,j=\,2,3,..., then there exists k such that
the integrand is positive at t = 0, and by continuity on an interval 0 g t < e ; for this
k the integral is positive. We conclude that Re A(ir)^0, and if Re A(h)=0, then
a(t) is in case II of Lemma 4 with r=jr0,j=integer.

By Lemma 1, if a>0, the function e~ota(t) satisfies (HI) and (H2). Thus for
<t>0 (by the preceding paragraph for t^O and trivially for t=0), Re A(a+ir)
=io° [e-ata(t)]cosrtdt^0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] INDIRECT ABELIAN THEOREMS 547

To apply these remarks, we suppose that/?(s) = 0, s = a+ir e S. Then

0 = Rep(s) = co-l(o2 + T2) + Re A(o + ít) + o-.

Therefore a=0 and a(t) is in case II with t=/V0,/'=integer. But then, using (2.11),

0 = Im p(s) = -(c + 8)lJr0+JT0;

i.e., c+S=(/t0)2 = t2, so that (H4) holds and s= ±/a>. This proves (i).
(ii) By (2.11),

K0-*+— +JI('-<") = [p2 ¿(exp[-í/cío]-l)j-p(í-i«»).

On the left-hand side we expand s, oj2¡s, and 8/s2 in Taylor series about it»; on the
right we rearrange terms. Then

,„ ...   p(s)-y(s-iw) + 0(\s-ia>\2) = s~2 y j- (exp [-skt0]-\+skt0-i(okt0)
(2.14) i=i«o

(s -* ¡£U, j £ S).

For Re s ̂ 0,

|(exp [-skt0] - 1 + s&/0- iojkt0)lkt0| ^ |exp [-skt0] -11¡kt0 + \s-m\

^ 2/fcfo+|i-ia»|.
On the other hand, the power series expansion of exp (—skt0) about s=i'o> yields
for k\s—ia>\ = 1

| (exp [—skt0] - 1 + skt0 - iwkt0)jkt0 \ = 2 i('-í»x-*í¿r//i
1=2

lkt0

2 ^+2/0"+2)!
y=o

= k\s—icu

= (exp [l0]A;/io)|j-i«J

Using these two estimates, we have for Re s = 0

(2.15)
2 it1 (exp [-skt0] -l+skt0- icükto)

¡Cm l  kto

exp [?q]„.    t,    1 n(S) CO r. CO

ae^c]|i_H2 2/csfc+|i-i«»i   2  s*+f 2  **
'0 lc=l fc = n(s) + l 'Ofc = n(s) + l

Ik,

where m(s) is the greatest integer such that n(s)\s — ia>\ ̂  1.
By (1.5a), a(t)3ï2?_i 3k[l -(min {r, kt0})¡kt0] for m=l,2, 3.Since

8fc(l-r/fa0)i****o**/2,fJo

we have 2 J"io a(i) A £r0 2™-i ¿V Hence

(2.16)        |s-i«,| J Afífc árén «(OA-^o
jcTí to«W Jo

as Is—iw\ ->0,
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since a(t) -*■ 0. Also, since 2 8fc<oo,

S     8* + ,l«-f  I     2     8klkú(l+2lt0)     J     Sk^0      as|j-fo|-*0.
fc-n(5) + l f0|A      ""I fc = n(s) + l fc = n(s) + l

Combining this with (2.14), (2.15), and (2.16), we have (2.13), and Lemma 5 is
proved.

3. Proof of theorem.   Integrating (1.1), we obtain

X(t) = X0 + kt-\  f(t-r)x(r)dr,
Jo

where 0^f(t)=J'0 [a(r) + c] drfí¡\ a(r) dr + c + [a(l) + c]t. By a standard result on
Volterra equations [1, §7.6], x(t) satisfies an inequality

|x(0| ^ Bié*,       b, B, > 0.

Substituting in (1.1), we have

|x'(0| S k + Bjé* f  [a(-r) + c]öY + [a(l) + c] f Bxé" dr g B2ebt.
Jo Jo

Taking Laplace transforms in (1.1), we obtain X(s)p(s) = x0+(k/s), Rcs>b,
with p(s) = c/s + A(s)+s, as in Lemma 5. By Lemma 5(i),

(3.1) X(s) = (x0 + kls)lp(s),       Res>b,

and (3.1) defines X(s) as a function holomorphic in {Re s>0} and continuous in
5" (for H3) or in S- {± iw} (for H4). Also note that by (2.5) we have [X(s)]* = X(s*) ;
and by Lemma 3(ii), X(a+ir) -> 0 as \r\ ->- oo, uniformly in 0^(r<oo.

(i) We set x0= 1, k = 0, X= U in (3.1). Then

TJ( ,      1     (c/s) + A(s) .
U^=S-e+sA(s) + s2'       * = °+»eS'

For any <r = 0 and sufficiently large F>0, the second term is in Fj{(—oo, — R)
u (R, oo)} as a function of r, by Lemma 3(ii) ; and integration by parts shows that
for any F>0

fí"B+F]e"i(CT+íV)"lí/T

converges uniformly for t^T. Then the exponential bound on u(t) and u(t) e C
justify the inversion formula

(3.2) 2rru(t) = eat f   eMU(o + ir) dr,       a> b,t> 0.
J —  CO

If c + a(t) gFj(0, oo), A(s) has limit A(0)=^ a(t) dt at ^=0, so U(s) is continuous
with U(0)=l¡A(0). If c + a(t) ¿Lj.(0, oo), Corollaries 3.1 (if c>0) and 3.2 (if c = 0)
show that U(s) -> 0 as s -> 0, s e S, and again U(s) is continuous at s = 0.
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Thus if (H3) holds, Cauchy's theorem and the fact that t/(<j + it)-»■ 0 as |t|
-> oo uniformly in a yield

(3.3) 2771/(1) =   C   eMU(ir) dr.
J — CO

The Riemann-Lebesgue theorem for finite intervals and the uniform convergence
of the integral in (3.3) yield u(t) -*■ 0 as t -> oo.

On the other hand, if (H4) holds, we set

(3.4) U¿s) = U(s)-2s¡y(s2+ oj2).

Since 2s/y(s2 + co2) is the Laplace transform of 2y~1 cos ait, (3.2) holds with ux
and E/i in place of u and U. Using Cauchy's theorem as before, we have for
0 < p < ai,

r p-io-p       r-a-p i"co    -i

2tm1(t) = + + ItPU&T) dr
LJ-oo J-(ù+p J(0 + pJ

+i[L+hYu^ds> t>o>
where C* is the semicircle {±to + pei8, -»r/2£0gir/2}. Since i/i(s*) = [i71(s)]*,
this may also be written

(3.5) imjt) =\{a "+ P   1 Re^C^v)}^* f    Re {esf£/i(s)} <fe,     r > 0.
LJo Ja + pi I JCf

Note that

Ux(s) = -rx- -r-U-T + 0(1)       (s -* fe», s £ 5)./>(J)     y(s—ia>)      K '      v y

Writing /»(s) = y(s - itu) + [/»(s) - y(s - itu)], we find that

(3.6)    U,(s) = P{S)7ÁS ~Jw) L , ^     71 • v» <<     ■ J + 0(1)   (s^iœ,seS).
y(s-tw)2     ly + (p(s)-y(s-iw))l(s-iw)\ '

Thus, for seC;, (2.13) yields estU1(s) = o(P~1), (p -> 0). Since |Cfl+1 = -np, we may
let p -> 0 in (3.5) and obtain for 0 < r¡ < a>

ITU
r  /»00-7Ï /»CO     "I r pat — B /*û) + ïïT

(I) = + Re^'C/iOV^í/T + lim + \Ke{eMU1(h)} dr.

Treating the first term as for (H3) (3.4 and integration by parts show that J2+n
converges uniformly), we have

irtti(r) = lim [ Í    * + f    "1 {[Re U^h)] cos rt - [Im U^fr)] sin rt} dr + o(l),
(■7 J\ e-*° LJra-n      Jffl + sJ

(t -»■ oo), 0 < 1? < CU.

For real A define
CO       cj oo       (J

S(A) - 2 Ï7 (sin kto^-ktoX),       C(X) = 2 rf (cos *'oA-1).
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Note that

(3.8) C(X) = C(-X) á 0,       XS(X) = -XS(-X) ^ 0,
and C(X+jw) = C(X), for any integer/ By (2.14),

p(ir)-iy(r-w) = [- C(r) + iS(r-w)]jr2 + 0(\r-w\2) (x-^ tu).

(2.15) and the argument following it show that

(3.9) |C(À)| + |S(A)| =o(X),       A-*0.

Using these facts in (3.6) one computes

(3.10) Re U1(ir) = ^—0^-^ + 0(1)       (r->W),

and

(3.11) ImU1(ir) = R(r-w) + o{j^^j + 0(l)        (t-*.),

S(X)[y + S(X)¡w2X]

where

R(X) = yX2w2[(y + S(X)I Xw2)2 + C2(X)IX2w*]

Now let t = t*=2-n\w in (3.7). Since sin ri* = sin (r — w)t* = 0(r—w), (r-> w), we
see from (3.9) and (3.11) that with t=t* the second term in the integrand in (3.7)
is bounded on (w—-q, w + v). It follows from (3.7) and (3.10) that

C(t) cos rt* dr
w)2r2[y2 + 0(l)](3.12) H.[r-+rir£

e-0  Ua-v      Jco + eJ  VT —

exists and is finite.  But by the choice of t*, the integrand in (3.12) is   £
C(r)/2(r — w)2y2w2 for |t — ü>| sufficiently small. Since C(t)^0 we conclude

(3.13) C(r)l(r -wfeL^w-^w + T)).

In view of (3.10), (3.11), and (3.13), an application of the Riemann-Lebesgue
theorem to (3.7) yields

r pco-e       /»ío + í?"I
(3.14) -rrUx(t) = lim + \R(r -w) sin rtdr + o(l),        t-+co.

e-*0 LJta-Ji       Jtû + eJ

Note that F(- A)= -R(X). The change of variables A = r-w in (3.14) shows that
to complete the proof of (i) we need only show that

(3.15) r(t) = lim f [sin (o> +A)r-sin (w-A)/]Ä(A) ¿A = o(l)       (/-*»).
«-»0 Je

A trigonometric identity and |(sin Ar)/A| ̂  / permit us to write

(3.16) r(t) = 2 cos (at) f " F(A) sin Ar dX.
Jo
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To prove (3.15), note first that

\S'(X)\ = ¿ 28.2 Sfc(cosÂ:ioA-l)
)c = i

Similarly, |C'(A)| ^8. Straightforward computations and estimates then show that
\R'(X)\ÚMIX2 for some constant M<oo, 0<A<t>. Also note that |AF(A)|g
K1\S(X)IX\^K2,K1,K2<co.

Now let e>0 be given; pick p.>0 so that (M+K2)<p.e¡3, and pick F>0 so that
(M+K2)lr¡T¿el3 and |*iS(A)/A| ^eßp. for 0< A<M/F. Then for t^T, integration
by parts yields

I f F(A)sinA/íft| ¿ (M+K2)(-^+-) g 2s/3,
\Jitit I V?-*    M

while
I  cult i       I  cult

R(X) sin Ai dX   £ [AF(A) sin Ai]/A dX   ^ e/3.
I Jo I Jo

These estimates, together with (3.16), prove (3.15) and complete the proof of (i).
(ii) We set x0=0, jfc-1, X= Win (3.1). Note that W(a+ir) = 0(r-z), |t| -*oo,

so W(o> + ir) gFí{(—oo, F) u (F, oo)} for F sufficiently large and 0^a<oo.
If (H3) holds, we use Cauchy's theorem as in (i) to obtain, for each e > 0 suffi-

ciently small,

(3.17) 2ttw(í) = Í     '-h rie^^/Oí/T+l í   estW(s)ds,

where DE is the semicircle {ee'e, — tt/2 ^ 8 ̂  77/2}. Corollaries 3.1 and 3.2 show that
W(eeie) = o(\¡e), (e->0), uniformly in -77/2^0^77/2. Since |A,|=£77, we may let
e -> 0 in (3.17) and obtain

2ttw(í) = lim Í     S + í "le"«»'(it) dr, t > 0.

Now the symmetry of W(ir) in t and the Riemann-Lebesgue theorem imply that
for A>0,

(3.18) rrw(t) = lim f   Re {eM W(ir)} dr + o(l)       {t-*- 00).
e-0 Js

Next we derive a formula similar to (3.18) for wx(t) in the (H4) case. Define

Wx(s) = W(s)-2/y(s2 + w2).

Note that 2/y(s2 + w2) is the Laplace transform of 2(yw)~x sin wt. Note also that
W1(s)=Ul(s)ls = (Ux(s)lw) + 0(\), (s^w,se S). Continuing as with Uy{s) in (i)
and using Wx(ir) eL^w+y, 00), we obtain

m»1(t) = lim P " Re {¿«W^ir)} dr
£-»0 Je

U'm-p       ca + l'\
+ \ Re {«"*£/!(!>)} </t+o(1),

a-n       Ja+pi
t -> 00, 0   <  7]   <   CO.
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Since W^s)— W(s) is bounded on (0, a> — 77), we may replace W1 by VV in the
first term above. By (3.7) and conclusion (i) of the theorem, the second term is
o(l), (t -> 00). Thus for 0 < A < cu,

(3.19) ttu'íÍO = 'im f  Re{elt,0'l(iT)}</T-|-o(l)       (/->»).
£^0 J£

Now set A=l when (H3) holds, A = w/2 when (H4) holds. By (3.18) and (3.19)
we can complete the proof by showing that

(3.20) lim (lim   f   Re {eM W(ir)} dr) = 0.
Í-CO     \£-O0    Je /

If c>0, W(h) is continuous on [0, A], by Corollary 3.1, so that (3.20) holds.
It remains to prove (3.20) with c = 0.

For 0<t^ A, define
c 71/21

dt
/•u/21

(a) «^(/t) = a(t) cos t/

(b) </>2(ir) = lim a(t) cos tí dt
T^x  J,i/2t(3.21)

(C)     ¿(it) = M'r) + <f>2(ir)

(d)   tfj(h) = lim       a(i) sin ti í/í.
r-.« Jo

As in the proof of Lemma 3,

(3.22) Re A(h) = <j>(h)   and    Im A(ir) = -</>(h).

Lemma 3 gives some useful facts about these functions. In addition, since
0^a(t) i , <f>2(h)^0, so that (2.4) implies

(3.23) ¿(¡t) = |<¿2(/t)|,       0 < t S A.

Also, (2.1), (3.22), and 0^a(t) j yield

0 ú <l>(ir) ú        a(t) s\n Tt dt
Jo

/»JI/4T

â 4 fl(l) cos tI dt

f".1/2l

^4 (7(1) COS TÍ </7,

i.e.,

(3.24) 0 á ft/T) ¿ 4<tS1(/T),       0 < t á A.

The choice of A insures that W(h) is continuous on (0, A]. Using (3.22) and our
assumption c = 0, we compute

m W/r)-r) ¿(/t)_
1 ; " t|/1(,V) + /t|2       t|,4(/t) + /t|2
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Defining y(t) = lime^0 ff Re {eMW(h)} dr, we have

,.      ..     T fA i/>(iV) í/t f a   cos tí í/t       f a sin Tí     é(ir)dT    1ko = hm y£ cos tí tMOV)+/t|2-J£ R(7^T7^+J£ — pèr^J'
By Corollary 3.2, the middle integrand is continuous on [0, A]. Since |sin tí/t| ^ í

for í > 0 and
!*(»>)!      _ |0(fr)| ^.

M(lT) + lV| |^(it) + i(t-0(|t))|   =  ''

Corollary (3.2) also shows that the third integrand is continuous in [0, A] for each t.
Therefore

.,     ..     rA        t    >p(iT)dr        fA   cos TÍ dr
y(t) = hm      cos tí   . .;. '—r-r»-      , ... .—m(325) £-oJe t|^(it) + it|2    Jo   M(it) + it|2

rAshw   ¿(it)Jt        r>0L
•/: T        |í4(!t) + |t|2

But for 0< t<7t/3í we have cos tí > 1/2 and i/i(iV)^0; hence the existence of the
limit in (3.25) shows that

(3.26) <A(iV)/t I A(ir) + it |2 e Z_i(0, A).

Applying the Riemann-Lebesgue theorem to the first two integrals in (3.25), we
obtain

/-. «m / x      fA sin tí    ¿(it) í/t        ...        . .
(3.27) -y(t) = jo -—^2-^ + 0(1)       (t-.oo).

Another consequence of (3.26), together with (3.23), is

(3.28) ¿2(it)/t|^(it) + it|2 e Z-!(0, A).

We rewrite (3.27) as

y(t) = r«*«*+ rg^^r^-^-y-r)»^
(3 29) J° T       ¿1(iT)      J0 T ¿i(it)|,4(it)-|-It|2

(i-^oo)
= Ji(0+J2(0 + o(l)       (i->co).

Then

Now, (3.23) and (3.24) show that ¡(^(i^ + ̂ ir))^^ and ^(i^/a^iV)! are
bounded on (0, A). Since a(t) ^Z,i(0, oo), (3.21a) gives

1     í*ü/3t
(3.31) ¿i(iV) ^ ± a(t)dt^ co,   asT-^0,

so that |t/¿i(i't)| is also bounded. Then by (3.26), (3.28), and Corollary 3.2, the
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coefficient of sin rt in (3.30) is in F^O, A). Using the Riemann-Lebesgue theorem
once more, we have

(3.32) Um y2(t) = 0.
f->00

Finally, to treat y^t), we note that for r > 0

d Cl2x
— ̂ (iv) = _ ta(t) sin tí dt ¿ 0.

Thus by (3.31), ll<f>i(ir) j 0 as r j 0; in particular, 1/<£i(/'t) is of bounded variation
on [0, A], and a familiar theorem concerning the kernel (sin rt)jr [8, p. 64] yields
Vi(0 -> 0 as t -> oo. Combining this with (3.29) and (3.32), we have (3.20), and
(ii) is proved.

(iii) A proof similar to that for (ii) can be obtained by considering W2(s)
= W(s)- \¡A(G)s. We obtain (iii) from (i) as done in the proof of Theorem 2(i)
of [5].

By the definition of w(t), we have u(t) = w'(t), where the asymptotic behavior of
u(t) is given by conclusion (i). (1.1) for w becomes

(3.33) u(t) -1 = -Ç a(t- r)w(r) dr,
Jo

since c+a(t) gF^O, oo) implies c=0.
When (H3) holds, Levin's proof of Theorem 2(i) in [5] applies word for word to

give w(t) -> (J" a(t) dt)"1 as t -» co.
If (H4) holds, we use A(iw) = - ia> (from Lemma 5) and a(t) e F^O, oo) to

compute

f   ,      . 2sino)T(/T      -2 f   , , .   , ,      ., _,
-      a(t-r)-5- = -r—       a(r) Sin [w(t-r)] dr

Jo •i<" i<o Jo

- Im í^}^ \a(íw)- r a(r)e-im dr\\

2 cos wt     ,1N       . .-3— + o(l)       (*-*«>).

Then by (3.33) and conclusion (i),

Jo a(t - r>j(r) Jr = 1 + o(\)       (t-> co),

and H»i(/) -> 0 as / -> oo. The proof of (iii) can now be completed by the method
of Theorem 2(i) of [5], which gives w^t) -* (j^ a(t) dt )_1 as / -> oo. This completes
the proof of the theorem.
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