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In this paper, a unified nonlinear modeling and control scheme is presented. A self-structuring Takagi-Sugeno (T-S) fuzzy
model is used to approximate the unknown nonlinear plant based on I/O data collected on-line. Both the structure and the
parameters of the T-S fuzzy model are updated by an on-line clustering method and a recursive least squares estimation
(RLSE) algorithm. The rules of the fuzzy model can be added, replaced or deleted on-line to allow a more flexible and
compact model structure. The overall controller consists of an indirect adaptive controller and a supervisory controller. The
former is the dominant controller, which maintains the closed-loop stability when the fuzzy system is a good approximation
of the nonlinear plant. The latter is an auxiliary controller, which is activated when the tracking error reaches the boundary
of a predefined constraint set. It is proven that global stability of the closed-loop system is guaranteed in the sense that all
the closed-loop signals are bounded and simulation examples demonstrate the effectiveness of the proposed control scheme.
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1. Introduction

The control of complex nonlinear plants is always one of
the most challenging tasks in the control field, especially
when it is difficult to obtain the mathematical model of
the plant through conventional physical analysis methods
or there exist uncertainties in the plant. In recent decades,
fuzzy systems have become a powerful tool in nonlin-
ear identification and control due to their advantages in
dealing with uncertainties and capturing nonlinearities.
Fuzzy systems transfer human knowledge and experience
described by a linguistic language into mathematical de-
scriptions in order to utilize them. A fuzzy system consists
of a group of fuzzy rules which can either be built by ex-
perts or extracted from training data. This characteristic
makes them more flexible in the identification of nonlin-
ear plants. There are two main types of fuzzy systems:
Mamdani fuzzy systems and Takagi-Sugeno (T-S) fuzzy

systems. Both have been proven to be universal approxi-
mators (Hao, 1998; Hao and Shao, 1999), which provides
a strong support for their successful application in nonlin-
ear identification. Fuzzy systems can be used in both di-
rect and indirect control of nonlinear plants. In the former,
a fuzzy system is used to approximate an ideal control law,
while in the latter it is used to approximately represent an
unknown nonlinear plant, based on which the control law
is designed. In both cases, the first problem to be solved
is how to get such a fuzzy system. As we have mentioned,
it can be built by employing expert knowledge or from
data by using proper training algorithms. However, since
both expert knowledge and off-line data are limited and
cover only part of the truth of the real plant, the initial
fuzzy system obtained using the above methods may only
be a local model. When such a fuzzy system is used in a
closed-loop control system, it may not represent the non-
linear plant with acceptable accuracy when the parameters
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of the plant change due to internal or external uncertain-
ties or the plant moves into a new operating region not
covered by off-line training data. In such situations, the
fuzzy system needs to be updated on-line to regain good
approximation, that is, it should be an adaptive system. An
appropriate on-line learning algorithm plays an important
role in designing adaptive fuzzy systems.

In the literature, various adaptive fuzzy systems have
been proposed (Qi and Brdys, 2008; Park and Cho, 2004;
Chien and Yao, 2004). However, in most of them, only
the parameters of the fuzzy system are adjusted on-line
while the structure, including the number of fuzzy rules
and membership functions, is fixed and assumed to be cor-
rect. Due to the limited knowledge and data the designer
owns, the initial fuzzy rule number may be set too large
or too small. A large number of fuzzy rules can cover
more situations and operating regions the plant meets, but
it will cause more complex computations and make real-
time implementations very difficult and even impossible.
A small number of fuzzy rules requires fewer computa-
tions but may not be capable of approximating the plant
accurately when it enters new operating regions which are
not covered by the current membership functions.

Moreover, the parameters of the fuzzy system may be
unnecessarily tuned to try to compensate the error brought
by the incorrect structure, resulting in an even worse
model. The structure of a fuzzy system is usually iden-
tified through fuzzy clustering. Various clustering mech-
anisms can be applied to generate the fuzzy rule base, in-
cluding fuzzy C-means (Bezdek, 1974), Gustafson-Kessel
clustering (Gustafson and Kessel, 1979), subtractive clus-
tering (Chiu, 1994), etc. They are very useful in an off-line
or batch learning mode, when all I/O data are available.
However, not all of them are suitable for on-line cluster-
ing.

In (Angelov and Filev, 2004), an approach to on-line
identification of the T-S fuzzy model is proposed, which
is based on a novel learning algorithm that recursively up-
dates both the T-S model structure and parameters. The
model structure is identified through an on-line cluster-
ing algorithm which is developed from subtractive clus-
tering. It is pointed out that the learning could start with-
out a priori information and with only one data sample,
which potentially makes it very suitable for adaptive con-
trol. However, in (Angelov and Filev, 2004), this algo-
rithm is only applied to open-loop identification and not
to closed-loop control. In (Gao and Er, 2003), a self-
organizing fuzzy system is proposed for adaptive control
of nonlinear plants. Fuzzy rules can be generated on-line
and the self-structuring fuzzy system can be used to ap-
proximate either the nonlinear plant or the perfect control
law. However, it is assumed that a part function of the
nonlinear plant is known, which is not always true in re-
ality and requires the memory of all the past I/O data at
each step. Stability analysis considers only a closed-loop

system with a fixed structure. In (Phan and Gale, 2008),
a direct adaptive fuzzy control scheme is presented and a
self-structuring fuzzy system is employed to approximate
the ideal control law. Both the structure and parameters of
the fuzzy system can be tuned on-line, and the system is
shown to be stable when the structure changes.

In our paper, we consider indirect adaptive control
based on a self-structuring fuzzy system. The overall
controller consists of two parts: the Indirect Adaptive
Controller based on the Self-structuring Fuzzy System
(IACSFS) is the dominant controller, which maintains the
closed-loop stability when the fuzzy system is a good ap-
proximation of the nonlinear plant. A supervisory con-
troller is an auxiliary controller, which is activated when
the state reaches the boundary of a predefined constraint
set. The supervisory controller helps to generate useful
data and allows enough time for the fuzzy system to learn
and improve on-line. When the fuzzy system regains good
approximation through learning and the model based main
controller is capable of maintaining system stability, the
supervisory controller is idle. It is shown that the overall
adaptive control scheme with the IACSFS and the super-
visory controller guarantees global stability in the sense
that all the closed-loop signals are bounded.

2. Problem statement

Assume that an SISO nonlinear plant can be accurately
represented by the following discrete-time input-output
nonlinear dynamics described in the state-space form:

xj(k + 1) = xj+1(k), j = 1, 2, . . . , n − 1,

xn(k + 1) = f(x(k)) + g(x(k))u(k),
y(k) = xn(k),

(1)

where y ∈ R, u ∈ R are the plant output and in-

put, respectively, x(k) = [x1(k), x2(k), · · · , xn(k)]T Δ=
[y(k − n + 1), · · · , y(k)]T is the vector of past outputs
that can be measured (n is assumed to be known), and f
and g are unknown nonlinear functions which satisfy the
following assumption.

Assumption 1 (Wang, 1994). Functions fU (x), gU (x) and
gL(x) can be determined such that |f(x)| ≤ fU (x) < ∞
and 0 < gL(x) ≤ g(x)≤ gU (x) < ∞.

The control objective is to force the plant output to
track the reference yr(k) while all the closed-loop signals
remain bounded.

Assumption 2. The reference trajectory yr(k) satisfies

|yr(k)| ≤ Ur, ∀k > 0, (2)

where Ur is a known bound.
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3. Control algorithm based on a T-S fuzzy
model

3.1. Nonlinear plant representation with a T-S fuzzy
model. Since in (1) f and g are unknown functions, a
T-S fuzzy model is employed to represent the nonlinear
plant with the following N fuzzy rules:

Rule i : IF x1(k) is M i
1 and · · · and xn(k) is M i

n;
THEN ŷi(k + 1) = θi

0 + θi
1x1(k) + · · · + θi

nxn(k)
+θi

n+1u(k), (3)

where N is the number of rules and M i
j denotes both

a fuzzy set and its Gaussian membership grade

M i
j(xj(k)|ci

j , σ
i
j) = exp

{
− (xj(k) − ci

j)
2

2(σi
j)2

}
, (4)

i = 1, 2, . . . , N and j = 1, 2, . . . , n . The global T-S
fuzzy model is inferred as follows:

ŷ(k + 1) =
N∑

i=1

ω̄i(x(k)|c, σ)θiT [1 xT (k) u(k)]T

=
N∑

i=1

ω̄i(x(k)|c, σ)θiT
f [1 xT (k)]T

+
N∑

i=1

ω̄i(x(k)|c, σ)θi
gu(k)

= f̂(x(k)|c, σ, Θf ) + ĝ(x(k)|c, σ, Θg)u(k),
(5)

where

θi
f = [θi

0, θ
i
1, θ

i
2, . . . , θ

i
n]T ,

θi
g = θi

n+1,

θi = [θi
0, θ

i
1, θ

i
2, . . . , θ

i
n+1]

T ,

Θf =
[
θ1T

f , θ2T
f , . . . , θNT

f

]T
,

Θg =
[
θ1

g, θ
2
g , . . . , θN

g

]T
,

ω̄i(·) =
ωi(·)

N∑
i=1

ωi(·)
,

ωi(·) =
n∏

j=1

M i
j(·).

(6)

To proceed with control design and stability analysis,
first let us define

c∗, σ∗, Θ∗
f , Θ∗

g

= argmin
Θf∈OΘf

,Θg∈OΘg

c∈Oc,σ∈Oσ

[
sup

x∈X,u∈Uc

|f̂(x|c, σ, Θf )

+ ĝ(x|c, σ, Θg)u − (f(x) + g(x)u)|
]
,

(7)
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Fig. 1. Overall control structure.

where X, Uc, Oc, Oσ,OΘf
and OΘg are constraint sets for

x, u, c, σ, Θf and Θg, respectively, specified by the de-
signer. Then the T-S model (5) with the best parameters{
c∗, σ∗, Θ∗

f , Θ∗
g

}
is

ŷ(k + 1) = f̂(x(k)|c∗, σ∗, Θ∗
f)

+ ĝ(x(k)|c∗, σ∗, Θ∗
g)u(k).

(8)

Next, let us define the modeling error as

w = f̂(x(k)|c∗, σ∗, Θ∗
f) + ĝ(x(k)|c∗, σ∗, Θ∗

g)u(k)

− [f(x(k)) + g(x(k))u(k)],
(9)

which is the minimum approximation error that can be
achieved with (7).

Assumption 3. The modeling error is negligible.

3.2. Model-based controller. If {c∗, σ∗, Θ∗
f , Θ∗

g} are
known, a certainty equivalent control law can be designed
based on the T-S fuzzy model (8):

uc(k|p∗) =
1

ĝ(x(k)|p∗g)
[
− f̂(x(k)|p∗f ) + v(k)

]
, (10)

where

p∗ Δ=
{
c∗, σ∗, Θ∗

f , Θ∗
g

}
,

p∗f
Δ=
{
c∗, σ∗, Θ∗

f

}
,

p∗g
Δ=
{
c∗, σ∗, Θ∗

g

}
,

and v(k) is a new input chosen as

v(k) = yr(k + 1) + kT e(k), (11)

where e(k) = yr(k) − y(k) and

e(k) = [e1(k), . . . , en−1(k), en(k)]T

Δ= [e(k − n + 1), . . . , e(k − 1), e(k)]T , (12)
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and the gains k = [kn, . . . , k1]
T ∈ R

n are chosen such
that the zeros of the polynomial (h(z) = zn + k1z

n−1 +
· · ·+kn = 0) lie inside the unit circle centered at the origin
of the Z plane. The choice of k determines the location
of the zeros of the characteristic equation so that it affects
the performance of the system response. In practice, k
should be selected carefully according to the required per-
formance specifications of the system.

The control law (10) applied to (1) results in linear,
with respect to the new input, plant dynamics:

y(k + 1) = v(k). (13)

It follows from (11) and (13) that the tracking error con-
verges to zero.

For unknown
{
c∗, σ∗, Θ∗

f , Θ∗
g

}
, the control law

can be designed with their estimated values, i.e.,{
ĉ, σ̂, Θ̂f , Θ̂g

}
:

uc(k|p̂) =
1

ĝ(x(k)|p̂g)

[
− f̂(x(k)|p̂f )

+ yr(k + 1) − kT e(k)
]
,

(14)

where

p̂
Δ=
{
ĉ, σ̂, Θ̂f , Θ̂g

}
,

p̂f
Δ=
{
ĉ, σ̂, Θ̂f

}
,

p̂g
Δ=
{
ĉ, σ̂, Θ̂g

}
.

To implement this control law, the following assumption
is made.

Assumption 4. |ĝ(x(k)|p̂g)| > εg, where εg is a small real
positive value.

Remark 1. The above assumption implies the relative de-
gree of the T-S fuzzy model (5) is equal to one. For a sys-
tem with a higher relative degree, feedback linearization
control cannot be defined explicitly because of a causality
problem, i.e., the current control depends on future out-
puts. However, this problem can solved by introducing
new states (augmenting x(k)) and expressing future out-
puts in terms of elements of x(k). For a detailed discus-
sion, refer to (Chen and Khalil, 1995).

Applying the control law (14) to (1), we have the fol-
lowing error dynamics after some mathematical manipu-
lations:

e(k + 1) = −kT e(k) + y(k + 1) − ŷ(k + 1)

= −kT e(k) + f(x(k)) + g(x(k))u(k)

− f̂(x(k)|p̂f ) − ĝ(x(k)|p̂f )u(k).

(15)

It can be clearly seen that now the boundedness of
e(k) cannot be guaranteed. In the following subsection, an

auxiliary controller called a supervisory controller us(k)
will be added to help achieve the boundedness of all
closed-loop signals. The control structure is shown in
Fig. 1.

3.3. Supervisory controller. Adding us(k) to the
adaptive feedback linearization controller in (14) gives the
overall supervised adaptive control law

u(k|p̂)
= uc(k|p̂) + us(k)

=
1

ĝ(x(k)|p̂g)

[
−f̂(x(k)|p̂f ) + yr(k + 1) − kT e(k)

]
+us(k). (16)

Applying (16) to (1) yields

e(k + 1) = −kT e(k) + [f̂(x(k)|p̂f ) − f(x(k))]
+ [ĝ(x(k)|p̂g) − g(x(k))]uc(k|p̂)
− g(x(k))us(k).

(17)

Let us define

φ(k) Δ= (f̂(x|p̂f ) − f(x))
+ (ĝ(x|p̂g) − g(x))uc(k|p̂).

(18)

Then (16) becomes

e(k + 1) = −kT e(k) + φ(k) − g(x)us(k), (19)

which can be rewritten in the following matrix form:

e(k + 1) = Ae(k) + b [φ(k) − g(x)us(k)] , (20)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−kn −kn−1 · · · · · · · · · · · · −k1

⎤
⎥⎥⎥⎥⎥⎦

b =
[
0 · · · 0 1

]T
. (21)

Since k = [kn, · · · , k1]
T is chosen such that all the

zeros of |zI − A| = zn + k1z
n−1 + · · · + kn = 0 lie

inside the unit circle centered at the origin of the Z plane,
the matrix A is stable. Therefore, there exists a unique
positive definite symmetric matrix P ∈ R

n×n which sat-
isfies the Lyapunov equation (Ogata, 1995)

AT PA − P = −Q, (22)

where Q ∈ R
n×n is an arbitrary positive definite matrix.

Consider the following Lyapunov candidate:

V (e) =
1
2

eT P e. (23)
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Using (22), the values of the Lyapunov function along the
tracking error trajectory (20) in the closed-loop system
satisfy

ΔV (e(k)) =
1
2

eT (k + 1)P e(k + 1) − 1
2

eT (k)Pe(k)

= −1
2

eT (k)Qe(k) + VS(k),

(24)

where VS(k) consists of all the elements on the right side
of (24) except − 1

2 eT (k)Qe(k).
To achieve ΔV (e(k)) ≤ 0 , we may make VS(k) ≤ 0

by properly designing us(k). Let ep(k + 1) be the predic-
tion of e(k+1) at k. We choose the supervisory controller
action us(k) as

us(k)

= ς(k)sgn(eT
p (k + 1)Pb)

1
gL(x)

(
gU (x)|uc(k|p̂)|

+ fU (x) + |yr(k + 1)| + |kT e(k)|
)
.

(25)

The first term in (25) is activated by the variable ς(k)
if the tracking error is outside the desired accuracy ball.
Let ς denote a desired tracking error bound. We have
ς(k) = 1 if ‖e(k)‖ > E and ς(k) = 0 if ‖e(k)‖ ≤ E
for all k. All the other elements in (25) can be determined
as well. Therefore, us(k) can be implemented. We pro-
ceed to show in the following subsection that closed-loop
boundedness can be guaranteed with the supervisory con-
troller (25).

3.4. Closed-loop stability. Before we proceed with
stability analysis, we make the following assumption.

Assumption 5. The sign of eT
p (k+1)Pb is the same as that

of eT (k + 1)Pb.

Meeting the above assumption requires prediction
accuracy not necessarily with respect to the value but with
respect to the sign only.

Lemma 1. If P is a positive definite symmetric matrix
and pnn is its (n, n)-th element, then pnn > 0.

Proof. See Appendix A. �

Theorem 1. Consider the nonlinear plant represented by
(1). If the supervisory controller is designed as in (25) and
Assumptions 1–5 are satisfied, then it can be guaranteed
that all the signals in the closed-loop system are bounded.

Proof. See Appendix B. �

4. On-line self-structuring algorithm for
model adaptation

In Section 3, a certainty equivalent controller and a su-
pervisory controller are designed, which are proven to be
able to guarantee the boundedness of all signals in the
closed-loop system. However, with only the non-adaptive
certainty equivalent controller and the supervisory con-
troller, the resulting tracking performance may not be sat-
isfactory. As introduced in Section 1, the model obtained
through off-line training may only cover a part of the truth
of the real plant dynamics because of the limitations of
expert knowledge and training data. Therefore, the model
needs to be updated on-line to provide an improved model
by using the latest on-line information. There are few ap-
proaches in the literature to vary the model structure in
the closed-loop system because they may cause instabil-
ity and there are, to the best of our knowledge, no com-
plete stability results on model structure adaptation in the
closed-loop fuzzy control system. However, the supervi-
sory controller can be considered as a kind of safeguard to
maintain boundedness in the closed-loop system while up-
dating the model structure. In this section, we will present
how to update both the model structure and parameters
on-line under the protection of supervisory control.

In off-line identification of a T-S fuzzy model, the
model structure, including the number of fuzzy rules and
the parameters of membership functions, can be iden-
tified through well-established fuzzy clustering methods
such as fuzzy C-means (Bezdek, 1974), the G-K cluster-
ing method (Gustafson and Kessel, 1979) and the subtrac-
tive clustering method (Chiu, 1994). These methods are
successful when all the input-output data are available.
However, when the data are collected continuously on-
line, they cannot be applied directly. An approach to iden-
tify T-S fuzzy models on-line is proposed by (Angelov and
Filev, 2004), and is developed from a subtractive clus-
tering method. The authors illustrate the viability and
efficiency of the on-line identification method to gener-
ate effective T-S fuzzy models when used with a limited
amount of initial information through open-loop identifi-
cation simulation examples and suggest that this approach
is very promising in applications to on-line modeling and
control of complex processes.

The on-line identification procedure includes two
phases: on-line clustering and on-line parameter identi-
fication.

4.1. On-line clustering. In this approach, each com-
ing data point (z(k) = [xT (k − 1), y(k)]T ) is viewed as a
candidate prototype cluster center. The online clustering
procedure starts with the first data point as the focal point
of the first cluster. Its coordinates are used to form the
antecedent part the first fuzzy rule and its potential is set
to 1. From the second data point, the potential of new data
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points is calculated recursively using the potential func-
tion

Pk(z(k)) =

(
1 +

1
(k − 1)

k−1∑
m=1

n+1∑
j=1

(
dj

mk

)2
)−1

, (26)

where Pk(z(k)) denotes the potential of the data point
z(k) at time k; dj

mk = zj(m) − zj(k) denotes the projec-
tion of the distance between two data points, zj(m) and
zj(k), on the zj axis.

The potential of the new data point is recursively cal-
culated as follows:

Pk(z(k)) =
k − 1

(k − 1)(ϑk + 1) + σk − 2υk
, (27)

where

ϑk =
n+1∑
j=1

(
zj(k)

)2
,

σk =
k−1∑
m=1

n+1∑
j=1

(
zj(m)

)2
,

υk =
n+1∑
j=1

zj(k)βj
k,

βj
k =

k−1∑
m=1

zj(m).

In (27), the parameters ϑk and υk can be calculated
from the current data point z(k), while βj

k and σk are re-
cursively updated as

σk = σk−1 +
n+1∑
j=1

(
zj(k − 1)

)2
,

βj
k = βj

k−1 + zj(k − 1). (28)

The new data point influences the potential of the existing
cluster centers, which also need to be updated as

Pk(zl∗) =

(k − 1)Pk−1(zl∗)

k − 2 + Pk−1(zl∗) + (k − 1)Pk−1(zl∗)
n+1∑
j=1

(
dj

k(k−1)

)2

(29)

where Pk(zl∗) is the potential at time k of the cluster cen-
ter.

The potential of the new data point is compared with
the updated potential of the existing cluster centers to de-
termine whether to accept this new data point as a new
cluster center according to the following criterion.

IF the new data point potential is higher than the po-
tential of the existing centers AND the new data point is
close to an old center:

Pk(z(k)) >
N

max
i=1

{
Pk(zi∗)

}
Pk(z(k))
N

max
l=1

Pk(zl∗)
− δmin

r
≥ 1, (30)

where δmin is the shortest distance between the new data
point and all the existing cluster centers and is the radius
of the neighborhood,

THEN the new data point replaces it.
ELSE IF the potential of the new data point is higher

than the potential of the existing centers:

Pk(z(k)) >
N

max
i=1

{
Pk(zi∗)

}
, (31)

THEN it is added to the rule-base as a new rule cen-
ter, N=N+1.

ENDIF.
The above approach is used for adding on-line new

rules or replacing existing ones. However, there still re-
main some problems when applying this on-line approach
to closed-loop control.

1. Choice of r

In off-line identification, it is easy to know the data range
and normalize the data. In this case, the value of r is
usually chosen as r ∈ [0.3, 0.5]. In on-line training, the
data are collected continuously in time, so that we may
not know the range of all the data in advance. A possi-
ble solution is to collect some off-line data to estimate the
range of the data for on-line learning. Then it is updated
on-line with more data coming. In this case, the data are
not normalized and the value of is calculated as

r = roi ·
∥∥∥∥ k
max
m=1

{z(m)} − k
min
m=1

{z(m)}
∥∥∥∥ , (32)

where

k
max
m=1

{z(m)} Δ=
[

k
max
m=1

{x1(m − 1)}, . . . , k
max
m=1

{y(m)}
]

and
k

min
m=1

{z(m)} is defined similarly. Here roi is chosen

in the interval [0.3, 0.5]. Hence, as new data come, r is
adapted rather than fixed.

2. Completeness of the rule base

There is no stability problem in open-loop identification
while stability is an important issue in closed-loop con-
trol. In indirect control, where the controller is designed
based on the model, the quality of the model is essential.
For a fuzzy model, the completeness of its rule base is crit-
ical for its successful application to designing the model
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for a nonlinear plant and for the effectiveness of the cor-
responding controller designed based on this model. The
criterion (30)–(31) gives the condition for replacing an old
rule or generating a new rule; however, it does not guaran-
tee the completeness of the rule base. In open-loop identi-
fication, the identification procedure can go on with an in-
complete rule base, while in closed-loop systems, it may
cause a breakdown of the whole system. Therefore, we
add another criterion called ∈-completeness of fuzzy rules
for generating new rules, that is, for any input within the
operating region, there exists at least one rule such that the
matching degree (or firing strength) is no less than ∈. So
except for the criterion (30)–(31), the following criterion
is also used for rule generation:

IF ωi(·) <∈ , THEN a new cluster center is added.
The minimum value of∈ is usually selected as ∈min= 0.5.

3. Compactness of the rule base

Since the range of data is not fixed but adapted with the
growth of the data, the cluster centers that seem not close
at the starting stage may become close to each other when
the range of the data is enlarged. Therefore, during the
procedure of rule base evolution, some redundant rules
need to be deleted. However, the criterion (30)–(31) does
not give the condition when to delete a rule. To provide a
more compact rule base, we use the following criterion to
delete a rule:

IF dij
k /dmax

k < η AND Pk(z∗i ) < Pk(z∗j ), THEN z∗i
is deleted from the group of cluster centers, and so is its
corresponding rule,
where dij

k is the distance between two cluster centers z∗i
and z∗j at time k, dmax

k is the maximum distance between
any two cluster centers, and 0 < η ≤ 1 is a constant
chosen by the designer.

4.2. On-line parameter adaptation. The parameters
of the Gaussian membership functions (4) are updated as
follows:

σ̂i
j(k) =

roi√
8
·
(

k
max
m=1

{xj(m)} − k
min
m=1

{xj(m)}
)

ĉi
j(k) = zi∗

j , i = 1, . . . , N ; j = 1, . . . , n.

(33)

For a fixed number of rules and membership parame-
ters, the estimation of consequent parameters can be trans-
formed into a least squares problem by reducing the over-
all T-S model (5) to the following form:

y(k + 1) = ΨT
k Θ, (34)

where Ψk =
[
ω̄1xT

e (k), . . . , ω̄NxT
e (k)

]T
, xe(k) =[

1, xT (k), u(k)
]T

, Θ =
[
θ1T , θ2T , . . . , θNT

]T
, θi =[

θi
0, . . . , θ

i
n, θi

n+1

]T
.

Define the following objective function:

JG =
K∑

k=1

[y(k + 1) − ΨT
k Θ]2, (35)

where K is the number of training data. The rule con-
sequent parameter Θ can be estimated by the Recursive
Least Squares Estimation (RLSE) algorithm (Angelov and
Filev, 2004):

Θ̂k+1 = Θ̂k + Ck+1Ψk

(
y(k + 1) − ΨT

k Θ̂k

)
, (36)

Ck+1 = Ck − CkΨkΨT
k Ck

1 + ΨT
k CkΨk

, (37)

where Θ̂0 =
[
θ̂1T
0 , θ̂2T

0 , . . . , θ̂NT
0

]T
and C0 = ΩI . Here

Ω is a positive large number chosen by the designer. Large
Ω can speed up parameter convergence, but too large a
value may cause instability. It needs to be chosen properly
during the parameter estimation.

The optimization problem with the objective function
(35) is globally optimal, but it does not guarantee locally
adequate behavior of local affine models that form the
overall T-S fuzzy model. To obtain locally interpretable
models, which means that local models of the T-S fuzzy
model can represent local behavior of the plant in the op-
erating regions defined by the rule premises, the following
locally weighted objective function is used:

JL,i(θ
i) = (y − XT θi)T W i(y − XT θi), (38)

where y = [y(1), y(2), · · · , y(K)]T ,

X =

⎡
⎢⎣

xT
e (1)

...
xT

e (K)

⎤
⎥⎦ ,

W i =

⎡
⎢⎣

ω̄i(x(1)) 0
. . .

0 ω̄i(x(K))

⎤
⎥⎦ .

(39)

The solution θi∗ that solves the weighted least
squares estimation problem expressed by the objective
function (38) can be obtained by applying a weighted
pseudo-inversion:

θi∗ =
(
XT W iX

)−1
XT W iy, i = 1, · · · , N. (40)

Alternatively, a weighted RLSE (wRLSE) algorithm
can be applied to estimate θi∗:

θ̂i
k+1

= θ̂i
k +

ω̄i(x(k))si
kxe(k)[y(k + 1) − xT

e (k)θ̂i
k]

1 + ω̄i(x(k))xT
e (k)si

kxe(k)
,

(41)
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si
k+1 = si

k − ω̄i(x(k))si
kxe

T (k)xe(k)si
k

1 + ω̄i(x(k))xT
e (k)si

kxe(k)
(42)

with the initial conditions θ̂i
0 = 0 and si

0 = ΩI, i =
1, 2, . . . , N .

When a rule is deleted from the rule base, its cor-
responding membership functions and parameters are
deleted as well. When a new rule is added to the rule
base, its membership parameters are calculated from (33)
while its consequent parameters are set to zero. When a
new rule replaces an old rule, its membership parameters
are calculated from the new cluster center while its conse-
quent parameters are inherited from the old one.

Remark 2. Since stability analysis with the supervisory
controller in Section 3 does not depend on the number and
parameters of fuzzy rules, it will guarantee closed-loop
stability when the T-S fuzzy model is updated with the
on-line self-structuring algorithm. However, the supervi-
sory controller is a kind of high gain controller which may
bring undesired transient phenomena and hinder tracking
error convergence. So it can only be viewed as a safe-
guard strategy rather than a main controller and should
be switched off when the closed-loop system remains
bounded. The switching policy used in Section 3 is a kind
of hard switch. However, as such, it may cause chattering
phenomena around the error boundary. Here, we modify
the hard switch policy into a soft switch policy by using a
ridge function as follows:

ς(k) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ‖e(k)‖ < E1,

1
2

+
1
2

sin

[
π

E2 − E1(
‖e(k)‖ − E1 + E2

2

)]
, E1 ≤ ‖e(k)‖ ≤ E2,

1, ‖e(k)‖ > E2,

(43)

where E1 and E2 define the error boundaries beyond
which the supervisory controller is fully switched off or
on. When ‖e(k)‖ remains within [E1, E2], the supervi-
sory controller is softly switched on to a certain degree
according to the value of the ridge function.

5. Simulation example

In this example, the proposed modeling and control algo-
rithm is applied to control a pendulum, which is a relative-
degree-two system described by

q̈(t) + q̇(t) + sin(q(t)) = u(t). (44)
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Fig. 2. Plant tracking response and the tracking error.
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Fig. 3. Control inputs.

Defining the output y(t) = q(t) and using Eu-
ler’s rule, the above equation can be transformed into a
discrete-time form

y(k + 1) = (2 − T )y(k) + (T − 1)y(k − 1)

− T 2 sin(y(k − 1)) + T 2u(k − 1),
(45)

where T denotes the sampling interval.
To define the certainty equivalent control uc(k), the

following transform is performed by using the method de-
scribed in (Chen and Khalil, 1995). Firstly, we obtain
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the following input-output relationship including u(k)
from (45):

y(k + 2) = (2 − T )y(k + 1) + (T − 1)y(k)

− T 2 sin(y(k)) + T 2u(k).
(46)

Replacing y(k + 1) in (46) by (45) yields

y(k + 2) = f(y(k − 1), y(k), u(k − 1)) + gu(k), (47)

where g = T 2,

f(y(k − 1), y(k), u(k − 1))
= (2 − T )[(2 − T )y(k) + (T − 1)y(k − 1)

− T 2 sin(y(k − 1)) + T 2u(k − 1)]

+ (T − 1)y(k) − T 2 sin(y(k)).

(48)

Now the function f depends on past inputs and out-
puts, and thus the control uc(k) can be defined in terms
of f and g. Since f is unknown, a T-S fuzzy model f̂ is
employed to approximate it.

Initial conditions are chosen as y(k − 1) = y(k) =
π/2 and u(k−1) = 0. The sampling interval is T = 0.1 s.
The desired trajectory is formed by two sine waves:

yref(t) =
{

sin(0.5t), 0 ≤ t < 20,
8 sin(t), t ≥ 20.

(49)

The certainty equivalent control law gains in (14) are
chosen as k = [0.04,−0.4]T while the boundary param-
eters for calculating the supervisory control signal us(k)
by (25) are selected as E1 = 5, E2 = 50,

P =
[

44.9206 −8.8401
−8.8401 85.7339

]
. (50)

To obtain the supervisory control signal, we have to
determine the bounds fU (x), gL and gU . For this system,
we get gL = gU = T 2,

|f(y(k − 1), y(k), u(k − 1))|
= |(T 2 − 3T + 3)y(k) + (2 − T )(T − 1)y(k − 1)

− (2 − T )T 2 sin(y(k − 1)) − T 2 sin(y(k))

+ (2 − T )T 2u(k − 1)|
≤ |T 2 − 3T + 3||y(k)| + |(2 − T )(T − 1)||y(k − 1)|

+ (3 − T )T 2 + |(2 − T )T 2||u(k − 1)|
= fU (x).

(51)

The term sgn(eT
p (k + 1)Pb) used in (25) determines the

direction of the supervisory controller. If the sampling in-
terval T is chosen small enough, it is reasonable to obtain
sgn(eT

p (k + 1)Pb) by using sgn(eT (k)Pb).
The parameters for updating model are chosen as

roi = 0.5, η = 0.25, Q = 103. The initial T-S model
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Fig. 4. On-line fuzzy rule evolution.

0 200 400
−2

−1

0

1

2

3

k

R
ul

e 
1

0 200 400
−4

−2

0

2

4

6

k

R
ul

e 
2

0 200 400

−5

0

5

k

R
ul

e 
3

θ̂1
1

θ̂1
3

θ̂1
0

θ̂1
2

θ̂2
1

θ̂2
3

θ̂2
0

θ̂2
2

θ̂3
1

θ̂3
3

θ̂3
0 θ̂3

2

Fig. 5. Parameter adaptation by RLSE.

has only one rule with all its consequent parameters set to
zero and its membership parameters chosen as σ̂1

j (0) = 1
and ĉ1

j(0) = 0, j = 1, 2, 3.
Figure 2 shows the plant tracking response and the

tracking error. The control inputs are illustrated in Fig.
3. During the initial 20 s, the number of rules evolves
from 1 to 2. At t = 20 s, the reference signal has a sud-
den change, which leads to an increase in the values of
control inputs in Fig. 3 and also indicates that the plant
enters a certain new operating region. This new operat-
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Fig. 6. Parameter adaptation by wRLSE.

ing region brings new information that is not covered by
the current rules. Hence, a new rule is generated, which
can be clearly seen in Fig. 4. The adaptations of con-
sequent parameters by RLSE and wRLSE are shown in
Figs. 5 and 6, respectively. Comparing those two figures,
it can be observed that the parameters of all the rules are
adjusted to compensate for the error by standard RLSE in
Fig. 5 while mainly the parameters of Rule 3 are adapted.
The reason is that with standard RLSE data are used to
adjust all the rules without distinguishing which operat-
ing region they belong to. On the contrary, with wRLSE
data are weighted by the firing strength of each rule so that
they contribute differently to the parameter adaptations of
different rules. At 20 s, when the plant enters a new op-
erating region which is governed by Rule 3, the coming
data contribute most to the adjustment of the parameters
of Rule 3 in Fig. 6.

6. Conclusion

This paper presented an indirect adaptive fuzzy control
scheme for a class of SISO nonlinear systems. A T-S
fuzzy model was employed as a dynamical model of non-
linear system dynamics. The T-S model is self-structuring
in that both the number and the parameters of rules can
be adjusted on-line. The number of fuzzy rules can be
added, replaced or deleted automatically to provide a flex-
ible structure and computational efficiency. The overall
controller consists of a T-S fuzzy model based feedback
linearization controller and a Lyapunov based supervisory
controller. The supervisory controller is appended to the
fuzzy controller to force the tracking error to be within

a bounded set. The stability of the system is established
using the Lyapunov approach. Tracking control of a pen-
dulum with relative-degree-two demonstrates the validity
and effectiveness of the proposed on-line modeling and
control scheme.

Discarding the assumption about the zero modeling
error will be considered in the future research. In fact,
in the simulation exercise, the modeling error exists at
least due to the discretization error and the proposed con-
troller has managed to overcome it. An obvious way to
approach the problem is to apply a robust parameter esti-
mation method. The controller ability to handle the mod-
eling error would open a way to consider not affine in con-
trol plant dynamics by linearizing a nonlinear control de-
pendent term in these dynamics.
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Appendix A

Proof. (Proof of Lemma 1). Choosing an n×1 vector v =[
0 · · · 0 1

]T
. Since P is a positive definite symmetric

matrix, we have

vT Pv > 0, (52)

Substituting v =
[
0 · · · 0 1

]T
into (43) gives pnn > 0.

�

Appendix B

Proof. (Proof of Theorem 1). The following notation is
used for analysis simplicity:

α1
Δ=

1
2
pnng2(x),

α2
Δ= − (eT (k)ΛT Pb + φ(k)pnn

)
g(x),

α3
Δ=

1
2
pnnφ2(k) + eT (k)ΛT Pbφ(k).

(53)

Then VS(k) in (23) becomes

Vs(k) = α1u
2
s(k) + α2us(k) + α3. (54)

Consider

Δ = α2
2 − 4α1α3

= g2(x)
(
eT (k)AT Pb

)2 ≥ 0. (55)

Hence, the equation VS(k) = 0 has two real roots:

λ1(k) =
φ(k)
g(x)

, (56)

λ2(k) =
2eT (k)AT Pb

pnng(x)
+

φ(k)
g(x)

. (57)

Define

λmin(k) = min {λ1(k), λ2(k)} ,

λmax(k) = max {λ1(k), λ2(k)} .

With Lemma 1 and Assumption 1, pnn > 0 and g2(x) >
0, we have α1 > 0. Then the necessary and sufficient
condition for VS(k) ≤ 0 is

λmin(k) ≤ us(k) ≤ λmax(k). (58)

Define

Υ(k) =
1

gL(x)
(
∣∣fU (x)

∣∣+ |yr(k + 1)| + ∣∣kT e(k)
∣∣

+ gU (x) |uc(k)|).
(59)

With (14), (18) and (56) , we have

λ1(k) =
1

g(x)
(−f(x) + yr(k + 1) − kT e(k|p̂)

− g(x)uc(k|p̂)).
(60)

Comparing (60) with (59) and with Assumption 1, we
have

− Υ(k) ≤ λ1(k) ≤ Υ(k). (61)
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Let us now consider λ2(k). With (17), the following
holds:

eT (k)AT Pb

= [e(k + 1) − bφ(k) + bg(x)us(k)]T Pb

= eT (k + 1)Pb − pnnφ(k) + pnng(x)us(k).
(62)

Substituting (62) into (57) yields

λ2(k) = 2
eT (k + 1)Pb

pnng(x)
− λ1(k) + 2us(k). (63)

With (59) and Assumption 5, the supervisory controller
(25) can be written as

us(k) = ςsgn(eT (k + 1)Pb)Υ(k). (64)

The following two cases are considered when ς = 1.

1. If sgn(eT (k + 1)Pb) = 1, then us(k) = Υ(k) in (64).
With Assumption 1 and (61), the following relationship
holds:

λ1(k) ≤ us(k)

λ2(k) = 2
eT (k + 1)Pb

pnng(x)
+ (us(k) − λ1(k)) + us(k)

≥ us(k).

(65)

Hence, us(k) satisfies λ1(k) ≤ us(k) ≤ λ2(k).

2. If sgn(eT (k + 1)Pb) = −1, then us(k) = −Υ(k) in
(64) . With Assumption 1 and (61), the following relation-
ship holds:

λ1(k) ≥ us(k)

λ2(k) = 2
eT (k + 1)Pb

pnng(x)
+ (us(k) − λ1(k)) + us(k)

≤ us(k).
(66)

Hence, us(k) satisfies λ1(k) ≤ us(k) ≤ λ2(k).
Therefore, with the supervisory controller us(k) de-

signed in (25), the inequality λmin(k) ≤ us(k) ≤
λmax(k) always holds and is implied. Hence, from (24)
we have

ΔV (e(k)) ≤ −1
2

eT (k)Qe(k) + VS(k) ≤ 0, (67)

and the boundedness of e(k) has now been proven. Since
the reference trajectory is bounded with Assumption 2,
x(k) is bounded. With bounded e(k), u(k) are bounded
as well. Hence all the closed-loop signals are bounded.
The proof of Theorem 1 has now been completed. �
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