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ABSTRACT

An indirect radar reflectivity assimilation scheme has been developed within the Weather Research and

Forecasting model three-dimensional data assimilation system (WRF 3D-Var). This scheme, instead of as-

similating radar reflectivity directly, assimilates retrieved rainwater and estimated in-cloud water vapor. An

analysis is provided to show that the assimilation of the retrieved rainwater avoids the linearization error of

the Z–qr (reflectivity–rainwater) equation. A new observation operator is introduced to assimilate the esti-

mated in-cloud water vapor. The performance of the scheme is demonstrated by assimilating reflectivity

observations into the Rapid Update Cycle data assimilation and forecast system operating at Beijing Me-

teorology Bureau. Four heavy-rain-producing convective cases that occurred during summer 2009 in Beijing,

China, are studied using the newly developed system. Results show that on average the assimilation of re-

flectivity significantly improves the short-term precipitation forecast skill up to 7 h. A diagnosis of the analysis

fields of one case shows that the assimilation of reflectivity increases humidity, rainwater, and convective

available potential energy in the convective region. As a result, the analysis successfully promotes the de-

velopments of the convective system and thus improves the subsequent prediction of the location and in-

tensity of precipitation for this case.

1. Introduction

Radar reflectivity observations have been used to

provide initial conditions for high-resolution numerical

models through cloud analysis (e.g., Albers et al. 1996;

Zhang et al. 1998; Souto et al. 2003; Hu et al. 2006). In

cloud analysis schemes, the radar reflectivity observations

are used to adjust the atmospheric variables, such as cloud

condensates, hydrometeors, and in-cloud temperature

(e.g., Albers et al. 1996; Zhang et al. 1998; Hu et al.

2006). A real-time implementation and one-month pre-

cipitation verification showed that the incorporation of a

cloud analysis improved forecast of precipitation amount

and spatial distribution (Souto et al. 2003). Besides the

cloud analysis, other techniques such as Newtonian nudg-

ing and digital filters are also used to assimilate infor-

mation derived from radar reflectivity observations

(Michelson and Seaman 2000; Weygandt et al. 2008).

Radar reflectivity observations are also extensively

used in variational data assimilation systems and en-

sembleKalman filters (EnKF) to provide the best analysis

for the high-resolution convective forecast. The potential

of the EnKF’s application to the convective scale was

shown by assimilating simulated or real reflectivity ob-

servations (e.g., Dowell et al. 2004, 2011; Tong and Xue

2005, 2008; Xue et al. 2006; Jung et al. 2008; Aksoy et al.
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2009, 2010). In EnKF, radar reflectivity is efficient to

initialize both model hydrometeors and microphysics

parameters associatedwith amicrophysical scheme (Tong

andXue 2005, 2008; Jung et al. 2008). The three- and four-

dimensional variational (3D-Var and 4D-Var) radar

data assimilation systems have been developed and tested

in research communities and operational centers. These

systems include the Advanced Research and Prediction

System 3D-Var (Gao et al. 2004; Gao and Stensrud 2012),

the high-resolution radar data assimilation system at the

Naval Research Laboratory (Zhao and Jin 2008), and the

system using the 1D13D-Var method at Météo-France

(Caumont et al. 2010), the variational Doppler radar

analysis system (Sun and Crook 1997), Japan Meteoro-

logical Agency’s 4D-Var (Honda et al. 2005), and

Weather Research and Forecasting (WRF) 4D-Var

(Wang et al. 2011). These systems with differences in

data assimilation implementation and numerical model all

demonstrated potential impact of reflectivity observa-

tions in severe storm forecast (Sun 2005a). Although the

4D-Var and EnKF methods show great potential, these

approaches still suffer from unaffordable computer costs

for operational NWP at convection permitting–re-

solving scale. Thus, the 3D-Var and cloud analysis

methods are still widely used in research communities

and operational centers.

In the WRF (Skamarock et al. 2008) model’s three-

dimensional variational data assimilation system (WRF

3D-Var; Barker et al. 2004, 2012), Xiao et al. (2007) de-

veloped a direct radar reflectivity data assimilation scheme.

This approach uses model total water mixing ratio as the

moisture control variable and awarm-rain partition scheme

to split it into water vapor, cloud water, and rainwater.

The results from the study of a convective case reported

by Xiao and Sun (2007) showed while the quantitative

precipitation forecast (QPF) was improved by the as-

similation of both radial velocity and reflectivity, the

impact of reflectivity alone had mixed results.

In this paper, we will show that one of the problems

with the direct reflectivity data assimilation inWRF 3D-

Var lies in the use of a linearized Z–qr (reflectivity–

rainwater) equation [see Eq. (3) in section 2] as the

observation operator and of the warm-rain partition

scheme. The WRF 3D-Var applies the incremental ap-

proach as proposed by Courtier et al. (1994) that requires

the linearization of the forward model. The logarithm

Z–qr equation has a high degree of nonlinearity especially

when qr is small (i.e., a ‘‘dry’’ first guess relative to ob-

servations), which can lead to large linearization errors.

(A detailed analysis will be given in section 2b). The

problem of ‘‘dry’’ first guess can affect the partition of

the microphysics because the switches that initiate the

warm-rain processes may never be turned on during the

minimization of the cost function. To circumvent the

problem, in some studies using WRF 3D-Var, physical

initialization (Yang et al. 2006) or cloud analysis pro-

cedures (Sugimoto et al. 2009) were carried out before

assimilating radar reflectivity.

In this paper, we present an indirect radar reflectivity

assimilation scheme in the framework of WRF 3D-Var.

This scheme, instead of directly assimilating radar

reflectivity, assimilates retrieved rainwater and water

vapor derived from radar reflectivity. It will be shown

that the assimilation of the retrieved rainwater elimi-

nates the observation operator necessary in the direct

assimilation of reflectivity and thus avoids the problem

caused by the linearization of the operator. Addition-

ally, the assumption that the in-cloud humidity is satu-

rated (Albers et al. 1996; Zhang et al. 1998) is used to

produce an estimate of the saturated water vapor ‘‘ob-

servations.’’ A new observation operator is introduced to

assimilate the estimated water vapor. The assimilation

of the estimated water vapor is expected to provide a

favorable environment that supports convection.

This scheme is tested in a Rapid Update Cycle data

assimilation and forecast system operating at Beijing

Meteorology Bureau (BMB) since 2008 (named BJ-

RUC; Chen et al. 2009) using four heavy-rain-producing

convective cases occurred in the Beijing region during

summer 2009. The paper is organized as follows: section

2 provides a description of theWRF 3D-Var, an analysis

of the linearization error of the Z–qr equation, and the

description of the methodology of the newly developed

WRF 3D-Var radar reflectivity assimilation scheme.

Experimental configuration is presented in section 3.

Results are described in section 4. A summary and con-

clusion are presented in the final section.

2. Methodology

a. WRF 3D-Var

The WRF 3D-Var adopts the incremental variational

formulation that is commonly used in operational systems.

The incremental approach minimizes a cost function de-

fined as a function of the analysis increment relative to the

background by using a linearized observation operator:

J5 Jb 1 Jo

5
1

2
vTv1

1

2
(d2H0

Uv)TR21(d2H0
Uv) , (1)

where Jb stands for the background term and Jo is the

observation term. Their specific forms in the incre-

mental formulation are represented in the second line of

Eq. (1). The term v is the control variable (CV) defined
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by v5U
21(x2 xb), where U is the decomposition of the

background error covariance B under the constraint

B5UU
T, x is the full analysis variable, and xb is the

background variable. The quantity d5 yo 2H(xb) is the

innovation vector that measures the departure of the ob-

servation yo from its counterpart computed from the

background xb, H
0 is the linearization of the nonlinear

observation operator H, and R is observation error

matrix. The new development described in this paper is

made with the CV option 5 in WRF 3D-Var, which uses

the streamfunction, unbalanced velocity potential, un-

balanced temperature, unbalanced surface pressure, and

pseudo–relative humidity as the control variables. The

word ‘‘unbalance’’ refers to the residual from the bal-

ance with the streamfunction. In this study, a new con-

trol variable, that is, rainwater mixing ratio, is added.

b. Validity of linearized Z–qr equation

Since the incremental formulation is used in theWRF

3D-Var system, the linearized Z–qr equation is em-

ployed as the observation operator to assimilate radar

reflectivity in a direct method. In this section, the val-

idity of the linearized Z–qr equation is analyzed to de-

termine the error characteristics of the linearization.

The nonlinear Z–qr relation (Sun and Crook 1997) is

Z5 c11 c2 log10(rqr) , (2)

where Z is the reflectivity (dBZ); c1 and c2 are constants

with the value of 43.1 and 17.5, respectively; r is the air

density (kg m23); and qr is the rainwater mixing ratio

(g kg21). Equation (2) is used as the nonlinear obser-

vation operator H to calculate the innovations.

The linearized formulation of Eq. (2) is

dZ5
c2dqr

q
r
ln(10)

. (3)

Equation (3) was used as the observation operatorH0 to

assimilate the reflectivity in Xiao and Sun (2007). It is

seen that Eq. (3) is invalid when there is no rainwater in

the first guess. This may cause the difficulty in conver-

gence of a cost function because of a large gradient

wherever the rainwater is very small (Sun and Crook

1997). In the following analysis, it is shown that the

linearized Eq. (3) has large discrepancy from its non-

linear form, especially when the background is too dry

compared with observations.

Assuming an increment of rainwater dqr is added to

the background rainwater qr, the resulting reflectivity

can be obtained from Eq. (2):

Znew5 c1 1 c2 log10[r(qr 1 dqr)] . (4)

The perturbation of the reflectivity caused by dqr is

dZ
n
5Znew2Z5 c2 log10[(qr 1 dq

r
)/q

r
] (5)

with dqr/qr 5 k. The linear approximation error (LE) is

the difference between Eqs. (5) and (3):

LE5 dZ2 dZ
n
5

c2k

ln(10)
2 c2 log10(11k) . (6)

Equation (6) is called the LE--k relation, which shows

that the validity of the linear Z–qr equation only de-

pends on the ratio k of the rainwater increment to the

basic-state rainwater. The numerical solution of Eq. (6)

is shown in Fig. 1. It is seen that a difference between the

linear (dashed line) and nonlinear (red curve) solutions

is that the former is physically truncated at k521.0 but

the latter is not. Figure 1 also reveals that the larger the

absolute k is, the less valid is the tangent-linear assump-

tion. For example, if the background qr is 0.1 g kg21, and

the increment dqr is 0.5 or 20.1 g kg21, the corre-

sponding k is 5 or21, resulting in a linear approximation

error larger than 20 dBZ (Fig. 1). In these cases, the

linearized observation operator is not an acceptable

approximation to the nonlinear one. It is common that

convective forecasts have displacement errors, which

means it is typical for k to be close to21 or larger than 5

(especially when the background is too dry in compari-

son with observations), causing significant linearization

errors. Figure 1 also shows that LE is always larger than

0.0, meaning dZ always overestimates dZn. Conversely,

when fitting an innovation of radar reflectivity with the

linearized Z–qr equation, for the same background rain-

water qr, an underestimated increment of rainwater dqr
(dry bias) is obtained relative to the increment derived

from the nonlinear Z–qr equation. For example, if there

FIG. 1. Linear perturbation dZ, nonlinear difference dZn, and the

LE--k relation.
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is an innovation of 10.0 dBZ, the k from the nonlinear

relation is 2.73, whereas from the linearized relation is 1.32.

c. Assimilating retrieved rainwater and water vapor

The above analysis clearly indicates that the lineari-

zation of the Z–qr relation results in significant errors in

certain circumstances. It implies that when the model

forecast has a large deviation from the observation, the

optimal solution derived from the linearized and non-

linear observation operators can be very different. To

handle this problem, we suggest assimilating the retrieved

rainwater from radar reflectivity instead of directly as-

similating the reflectivity. The rainwater is retrieved from

the radar reflectivity before the data assimilation, thereby

eliminating the reflectivity observation operators re-

quired in the direct assimilation avoiding the problem

caused by the linearization of the operator. Given a re-

flectivity observation, the rainwater retrieval is calcu-

lated by using Eq. (2). The air density r is derived from

first guess. Equation (3) is used to specify the error of

rainwater given the reflectivity error obtained from the

radar preprocessing and quality control procedure (Sun

2005b; Lim and Sun 2010). It is noted that the empirical

Z–R relationship like Eq. (2) may cause large bias in

retrieved rainwater content, especially for strong con-

vective region where large amount of hail–graupel exist.

To reduce this error in nonlinear observation operator,

rainwater retrieval is calculated only when the reflectivity

is smaller than 55 dBZ in this study.

In this paper, the assumption that the in-cloudhumidity

is saturated, which is commonly used in cloud analysis

schemes (Albers et al. 1996; Zhang et al. 1998), is used to

produce an estimate of the saturated water vapor obser-

vation. The assimilation of the estimated water vapor is

expected to provide a favorable environment that sup-

ports convection.

To assimilate retrieved rainwater andwater vapor, the

following two additional terms are added into Eq. (1):

Jqr5
1

2
(qr2 qbr )

T
B
21
qr (qr2qbr )1

1

2
(qr2 qor )

T
R
21
qr (qr2 qor )

(7)

and

Jqy5
1

2
(q

y
2 qoy )

T
R
21
qy (qy 2qoy ) , (8)

where qr and qy represent the rainwater and water vapor

of the atmospheric state, respectively; qor and qoy are the

retrieved rainwater and water vapor from radar reflec-

tivity observations; and Rqr and Rqy are the observation

error variance of rainwater and water vapor, respectively.

The rainwater is introduced as the new control variable,

so that there is a background term in Eq. (7). The

background term for qy is the same as in the standard

WRF 3D-Var without radar data assimilation, so it is not

written in Eq. (8). The quantities qbr and Bqr are the

background rainwater and background error matrix of

rainwater, respectively. The specification of Bqr will be

described in the next section.

In the following, the retrieval and assimilation of the

water vapor will be described. The in-cloud relative

humidity assumed to be 100%where radar reflectivity is

higher than a threshold above cloud base, so that the

estimated water vapor, used as the ‘‘observation’’ qoy in

Eq. (8), equals to the saturation water vapor that is cal-

culated based on the pressure and temperature of the

background. In this paper the threshold is set to 30 dBZ.

The error of the water vapor observation is specified by

the relative humidity error with a constant value of 20%.

It is noted that there are two sources of uncertainties in

the current retrievalmethod. The first is the identification

of ‘‘cloud’’ region, and the second is the calculation of

saturated water vapor, whose accuracy depends on the

quality of pressure and temperature fields in first guess.

It is pointed out that the background error modeling of

relative humidity also plays an import role in saturated

water vapor assimilation.

It is straightforward to convert Eq. (7) into its in-

cremental form as represented in the second line of Eq.

(1) because qr is a model variable as well as a control

variable. For the new observation term of qy given by

Eq. (8), the nonlinear observation operatorH is defined

by

q
y
5 rh3 q

s
, (9)

where qy , rh, and qs stand for specific humidity, relative

humidity, and saturated specific humidity of water va-

por, respectively. Equation (9) links the water vapor to

the control variable rh and then to the control variables

temperature and pressure through Eqs. (11) and (12)

below. It is physically reasonable that the perturbation

in humidity affects pressure and temperature under the

condition that moisture is close to saturation, where ther-

mal processes take place by phase conversions between

water vapor and cloud condensates (Bannister 2008).

The linear observation operator H0 of Eq. (9) is

dq
y
5 drh3q

s
1 rh3 dq

s
, (10)

where

qs 5
«e

s

p2 (12 «)e
s

, (11)
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es 5 c1 exp

�

c2T

T1 c3

�

, (12)

« 5 0.622, c1 5 6.112, c2 5 17.67, and c3 5 243.5.

Using Eqs. (11) and (12), Eq. (10) can be rewritten as

dq
y
5 q

s
3 drh1 rh3

�

›qs
›p

dp1
›qs
›es

›es
›T

dT

�

. (13)

By neglecting the contribution of pressure perturbation

on saturated water vapor variation in Eq. (13), the final

linearized observation operator is simplified as

dq
y
’ q

s
3 drh1 c4qydT , and c45

c2c3

(T1 c3)
2
. (14)

Note that c4 is always larger than 0, so that when the

saturation water vapor is assimilated, positive relative

humidity and temperature increments will be obtained.

Note that a similar function has been applied in cloud

analysis schemes (Zhang et al. 1998), in which the back-

ground moisture (if it is undersaturated) is increased and

latent heat is added wherever cloud exists.

3. Experimental configuration

a. BJ-RUC system

TheBJ-RUC system (Fan et al. 2008; Chen et al. 2009)

includes the WRF 3D-Var system (version 3.3) and the

WRFmodel (version 3.3.1). It has been run in operation

at BMB since June 2008 (Chen et al. 2009). The model

physics options in BJ-RUC include the Rapid Radiative

Transfer Model longwave radiation, Goddard short-

wave radiation, Yonsei University PBL schemes, and

WRF single-moment six-classes microphysics (WSM6).

Descriptions of the above physical process schemes can

be found in the WRF technical report by Skamarock

et al. (2008). BJ-RUC employs a one-way, two-domain

nested grid. Themodel domains and the six radar station

locations are shown in Fig. 2. The outer model domain

covers China’s mainland, and the inner domain covers

Beijing and its surrounding region. The horizontal grid

resolutions of the outer and inner domains are 9 and

3 km, respectively. There are 38 full eta levels in the

vertical.

The procedure of BJ-RUC is as follows. The BJ-RUC

employs a 3-hourly partial cycling strategy. First, two 72-h

forecasts for the outer domain are made at 0000 and

1200 UTC each day. The initial and boundary fields are

interpolated from National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS) 18 3

18 analyses and forecasts for these two runs, which then

provide the boundary conditions for the inner domain.

The 3-hourly rapid update cycling is run in this inner do-

main. The 3-h forecast of the inner domain initiated from

the GFS analysis at 0000 UTC provides the first guess for

the 0300 UTC 3D-Var analysis. Then, the 3-h WRF fore-

cast from the current analysis provides the first guess for

the next analysis. A 12-h forecast is made starting from

each analysis.

The conventional data, such as radiosondes, synops,

and aircraft reports, as well as global positioning system

precipitable water have been ingested into BJ-RUC

since 2008. Preliminary tests for the assimilation of radar

observations suggested that the radar reflectivity

FIG. 2. Model domains superposed with topography (m) for (a) outer and inner domains (D01 and D02), and (b) inner domain

(D02). The black dots show the locations of the six radar stations. The thick black outlined irregular area in (b) shows the border of

Beijing city.
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assimilation using the direct scheme developed by Xiao

et al. (2007) had insignificant impact (S. Fan 2011, un-

published manuscript), which motivated us to develop

the new scheme presented in this paper. The indirect

assimilation of reflectivity observations described in this

study will be implemented in the BJ-RUC data assimi-

lation system to further improve the very short-term (0–

6 h) precipitation forecast. The radial wind assimilation

scheme used in this paper was developed by Xiao et al.

(2005). Readers can refer to that paper for details.

The so-calledNationalMeteorological Center (NMC)

method (Parrish and Derber 1992) was used to generate

the background error statistics using the utility packages

in the WRF 3D-Var system. The NMCmethod was first

tested for research purposes (Fang et al. 2006) and then

employed in the operational BJ-RUC system. A set of

cold start forecasts over the inner domain were initiated

fromNCEPGFS 18 3 18 final (FNL) analysis at 0000 and

1200 UTC every day during August 2008. The differ-

ences between the 24- and 12-h forecasts valid at same

times were used to calculate the domain-averaged back-

ground error statistics (except for rainwatermixing ratio).

By some trial-and-error experiments we found the re-

scaling factor of 0.5 for variance scale and length scale

produced improved analysis and forecast. For the rain-

water, only the horizontal correlation is considered, and

the variance is set to 4.0 g kg21 and the length scale is set

to 10.5 km.

b. Convective cases

The four warm season convective cases that are se-

lected for this study are summarized in Table 1. The first

two are locally developed convective systems within the

Beijing region (the border is marked by bold black in

Fig. 2a); the other two are convective systems moved

into Beijing. Sun et al. (2005) showed that heavy rainfall

in Beijing took place in a favorite synoptic environment

that associated with low-level vortex and midlevel low

pressure systems. Figure 3 shows the geopotential height

at 500 hPa, and wind vector and relative humidity at

750 hPa from GFS FNL analyses at 0600 UTC (1400

local time) for the four cases. For the 14 June case, it is

seen that there was a low pressure system (marked by ‘‘L’’

in Fig. 3a) at 500 hPa and an associated cyclonic vortex

system (marked by ‘‘D’’ in Fig. 3a) at 750 hPa northeast

to Beijing. Beijing is located in a convergence region

forced by the flows in front of two trough systems at

750 hPa (lines A–B and A2–B2 in Fig. 3a), which are

related to the low-level vortex system at 750 hPa. As for

the 11 July case, there is a low pressure system and an

associated cyclonic vortex system (marked by ‘‘L’’ and

‘‘D’’ in Fig. 3b) at 750 hPa northwest to Beijing. The

convective system took place in front of the trough as-

sociated with the low-level vortex system (Fig. 3b). A

horizontal wind shear (line E–F in Fig. 3b) may also

contribute to the initiation of the convective system. For

the 22 and 23 July cases, there are two low pressure

systems at 500 hPa and two associated vortex systems at

750 hPa (Figs. 3 and 4). For the 22 July case, the con-

vective systemwas initiated in front of a trough at 750 hPa

(Fig. 3c). The low pressure and vortex systems in up-

stream of Beijing on 22 July (‘‘L2’’ and ‘‘D2’’ in Fig. 3c)

moved rapidly and reached north of Beijing on 23 July

(‘‘L2’’ and ‘‘D2’’ in Fig. 3d), which results in a heavy

precipitation event in Beijing. In addition, for the four

cases, Beijing is located in or close to the region where

relative humidity values are larger than 70%. To sum-

marize, the convective systems of the four cases are ini-

tiated in front of trough systems that are associated with

low-level vortex systems.

c. Radar data and experimental setup

The preprocessing and quality control of Doppler

radar data are the same as that described in Sun (2005b).

The data are thinned to 3-km resolution. The available

period of radar data for each case is listed in Table 1. An

hourly radar quantitative precipitation estimate (QPE)

that is produced operationally at BMB is taken as the

observation for verifying the model forecasts.

Four numerical experiments (Table 2) are conducted

to examine the impact of radar observations on analysis

and precipitation forecast for each of the four cases. In

the control experiment (CON), only the conventional

observations are assimilated. The experiment CRW(CRV)

assimilates radar retrieved rainwater and water vapor

(radar radial velocity) observations in addition to the

conventional observations. The experiment ALL assim-

ilates all observations used in the above experiments. In

TABLE 1. Descriptions of the four convective cases.

Date Lifetime (UTC) Description

Radar data available

period (UTC)

14 Jun 0530–1200 Local convection 0600–1200

11 Jul 0230–1800 Local convection 0300–1200

22 Jul 0430–1500 Convective systems moved from north of Beijing city 0600–1200

23 Jul 0330–1700 Squall line moved from northwest of Beijing city 0300–1200
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the experiments CRV and ALL, we only assimilate the

radial velocity where the reflectivity has values larger

than or equal to 15 dBZ.

4. Results

a. Single reflectivity observation test

Before conducting the real data experiments, a single

reflectivity observation assimilation test is carried out

to estimate the spread of observation information by

background error statistics and the response of the new

observation operators. The first guess is interpolated

from GFS final analysis at 0600 UTC 22 July 2009. The

single reflectivity observation is assumed at (39.98N,

116.08E; 20th model level). The innovation (observation

minus background) of the single reflectivity is assigned

to 10 dBZ, which is about 1.0 g kg21when converted to

rainwater. The error of the single reflectivity is set to

10 dBZ.

Figure 4 shows the responses of the 3D-Var analysis

increment at the 20thmodel level (approximate 700 hPa).

First of all, the rainwater mixing ratio and water vapor

mixing ratio have positive analysis increments centered at

FIG. 3. Horizontal distribution of relative humidity (shaded;%), wind vectors (m s21) at 750 hPa and geopotential height (red contours)

at 500 hPa from NCEP FNL analyses at 0600 UTC for case (a) 14 Jun, (b) 11 Jul, (c) 22 Jul, and (d) 23 Jul. ‘‘L’’ and ‘‘L2’’ represent low

pressure systems at 500 hPa. ‘‘D’’ and ‘‘D2’’ represent the low-level vortex systems at 750 hPa. ‘‘BJ’’ indicates the location of Beijing

region. The dark red line represents a trough line or convergence line. The blue rectangles show the domain on which diagnosis for case

23 Jul is conducted in section 4b.
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the observation location (Figs. 4a,b). The maximum

values of rainwater and water vapor mixing ratio are

0.73 and 1.2 g kg21, respectively. The positive incre-

ment arises because the two variables are underestimated

in the first guess. The water vapor spreads broader than

the rainwater since the length scale of the water vapor is

larger than the rainwater. The temperature increment is

a result of the water vapor assimilation (Fig. 4c), as in-

dicated by Eq. (14). However, the maximum of potential

temperature increment is about 0.041 K, which is pretty

small. One reason of the small temperature increment is

that the current domain-averaged background error sta-

tistics (CV5) tends to underestimate temperature uncer-

tainties in rain regions. Through thewind and temperature

statistical relation in the background error covariance, the

wind response is obtained (Fig. 4d). Although the single

reflectivity observation has a small impact on wind and

temperature variables, the indirect assimilation scheme is

capable of producing a multivariate analysis.

b. Results of the Beijing cases

We first examine the average forecast skill of the

hourly accumulated precipitation from the four cases.

The neighborhood-based fractions skill score (FSS) is

FIG. 4. Increments from the single observation test for (a) rainwater mixing ratio (interval is 0.1; g kg21), (b) water vapor mixing ratio

(interval is 0.2; g kg21), (c) potential temperature (interval is 0.05; K), and (d) wind vectors (m s21).

TABLE 2. List of experiments.

Expt Description

CON Conventional observation

CRV Conventional observation 1 radial velocity

CRW Conventional observation 1 retrieved

rainwater 1 derived water vapor

ALL Conventional observation 1 radial

velocity 1 retrieved rainwater 1 derived

water vapor
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used for the verification. The FSS is defined by the for-

mulation (Roberts and Lean 2008)

FSS5 12

1

N
�
N

(P
f
2P

o
)2

1

N

�

�
N

P2
f 1 �

N

P2
o

� , (15)

where Pf and Po are the forecasted and observed frac-

tional coverage of an elementary area by rainfall that

exceeds a given threshold value, andN gives the number

of grid points in the verification domain. If a precip-

itation prediction is perfect, which means Pf is equal to

Po, then FSS is 1.0.

There are a total of 16 analyses and forecasts from the

four cases. Radar observations are assimilated in 14 of

the 16 analyses, because radar data were not collected at

0300 UTC 14 June 2009 and 0300 UTC 22 July 2009.

Therefore, only the 14 forecasts are included in the fol-

lowing FSS evaluation.

Figures 5a and 5b show the averaged FSS of the four

experiments. When compared with experiment CON

all the radar data assimilation experiments improve the

FSS up to 7 h for the thresholds of 5.0 and 10 mm h21.

The experiment CRWhasmore positive impact than the

experiment CRV in the first 5 h. The experiment ALL

produces the best skill in the first 6 h. After a 7-h fore-

cast, the impact of radar data assimilation is neutral.

When forecasts for each convective case are examined,

it is found that CRW shows consistent improvement over

CRV in the first 5–6 h while CRV produces a slightly

degraded FSS than CON in the first 5 h for the case on

July 11 for both thresholds (figures not shown).

Next we conduct a detailed examination for the case

of 23 July. This case took place in a typical synoptic

environment for Beijing heavy rainfall events as described

in section 3b. It produced a large amount of precipitation,

resulting in a local flood in Beijing. The FSS for this

case, shown in Figs. 5a and 6b, suggest that CRW

produces better forecasts than CON in the first 6 h and

CRV improves the forecast skill over CON up to 12 h

for the thresholds of 5 and 10 mm h21.When reflectivity

(retrieved rainwater and derived water vapor) is as-

similated together with the radial velocity in ALL, the

FIG. 5. Averaged FSS of the four experiments for thresholds of

(a) 5 mm h21 and (b) 10 mm h21.

FIG. 6. Averaged FSS of the 23 Jul case for thresholds of

(a) 5 mm h21 and (b) 10 mm h21.
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precipitation forecast is slightly improved over CRV in

the first 5 h for both thresholds.

By examining precipitation patterns subjectively, we

have found that the experiments CRW andALL produce

precipitation patterns that are closest to the observations.

Figure 7 shows the hourly radar QPE and precipitation

forecasts at 0900 and 1000 UTC from the four experi-

ments for the case of 23 July. It is seen that the experiment

CON produces a weak and broken precipitation band

and misses the intense precipitation in the Beijing cen-

tral district at 0900 UTC. CRV has slightly improved

forecasts. The experiments CRW and ALL give the best

precipitation forecasts of the major convective system

over Beijing in both the location and intensity, suggesting

that the indirect reflectivity assimilation method is effec-

tive to correct the location error in the background field.

A diagnosis of the analysis fields of the 23 July case is

carried out to assess reasons leading to the improved

forecast. This is done by comparing the analyses from

different experiments. Figure 8 shows the analyses of

the experiments CON, CRV, CRW, and ALL for the

23 July case from the second cycle at 0600 UTC 23 July

2009. From the analyses of the wind and relative humidity

at 750 hPa and the geopotential height at 500 hPa (Figs.

8a,c,e,g) and the rainwater analyses at 750 hPa (black

contours in Fig. 8h), it is seen that the rainfall event oc-

curred in the region ahead of a trough systemwith a high

relative humidity. Relative to CON (Fig. 8a), the as-

similation of radial velocity (CRV and ALL; Figs. 8b,c)

increases the low-level southwest jet from 10 to 12 m s21

to transport the moisture to support the convective sys-

tem. The indirect reflectivity assimilation increases the

relative humidity in the convective region, which can be

seen by comparing CRW (Fig. 8e) or ALL (Fig. 8g) with

CON (Fig. 8a) or CRV (Fig. 8c). As a result, the con-

vective available energy is increased as seen by com-

paring CRW (Fig. 8f) or ALL (Fig. 8h) with CON

(Fig. 8b) or CRV (Fig. 8d). The rainwater analyses from

CON and CRV (Figs. 8b,d) show that the convective

system occurs in these two experiments but evidently is

not as strong and extensive as that in CRW (Fig. 8f) and

ALL (Fig. 8h). The above analysis shows that the assim-

ilation of reflectivity data increases the relative humidity,

rainwater, and convective available potential energy in

the convective region. These analysis adjustments through

radar data assimilation provide a favorable environment

for the development and maintenance of the convective

system.

5. Summary and conclusions

In this study, an indirect radar reflectivity assimilation

scheme is developed within the WRF 3D-Var system.

The scheme assimilates retrieved rainwater and water

vapor derived from radar reflectivity. The correspond-

ing observation operators for rainwater and saturated

water vapor are developed and incorporated into the

WRF 3D-Var. The validity analysis of the linearized

Z–qr (reflectivity–rainwater) equation shows that it can

produce a dry bias in rainwater analysis and results in

significant linearized errors in certain circumstances.

The moisture field which plays an important role in the

improvement of the precipitation is also changed through

this scheme.

The scheme is first tested by a single reflectivity ob-

servation experiment and then data assimilation exper-

iments with real data. The results show that a single

reflectivity observation produces the multivariate anal-

ysis in the indirect assimilation scheme. Four heavy-

rain-producing convective cases occurred in the Beijing

region during summer 2009 are studied with observed

radar data using the operational system BJ-RUC. The

results show that, on average, the assimilation of

reflectivity data improves the QPF skill up to 7 h as mea-

sured by the fractions skill score. The case that occurred

on 23 July is selected to examine how the reflectivity as-

similation adjusts the analysis and hence improves the

forecast. It is shown that the assimilation of reflectivity

data increases the moisture, rainwater, and CAPE in the

initial fields. The analysis can successfully promote the

developments of the convection in the region covered by

radar observations and improve the subsequent forecasts

of the location and intensity of the convective systems.

Further work will focus on development of a more so-

phisticated method to estimate the in-cloud humidity

from radar reflectivity.

It is worth noting that for microphysical variables

the current study only considers the analysis and ini-

tialization of rainwater. The indirect method pre-

sented in this study can be extended to the analysis and

initialization of other hydrometeor variables such as

snow and hail. Gao and Stensrud (2012) presented

a method for the reflectivity assimilation to include the

analyses of ice hydrometeors in which empirical re-

lations between reflectivity and snow and between

reflectivity and hail were used for these hydrometeors.

We plan to apply these similar relations to retrieve the

snow and hail in our indirect assimilation scheme and

add the assimilation of these microphysical fields in

our future study. In addition, dual-polarization radar

measurements can be used to identify hydrometeor

types (Marzano et al. 2006) because the dual-polarization

radar measurements of precipitation are sensitive to

the hydrometeor properties such as shape, orienta-

tion, size, phase state, and fall behavior (Lim et al.

2005).
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FIG. 7. Hourly accumulated precipitation (mm) for the case on at (left) 0900 UTC

23 Jul and (right) 1000UTC from (a),(b) radarQPE, and the experiments (c),(d) CON,

(e),(f) CRV, (g),(h) CRW, and (i),(j) ALL. The forecast starting time is 0600 UTC

23 Jul 2009. The city center of Beijing is marked by a black dot and circle in (c).

APRIL 2013 WANG ET AL . 899



FIG. 8. (left)Horizontal distribution of relative humidity (shaded;%), superposedwith wind vectors

and speeds (blue contour; m s21) at 750 hPa and geopotential height (red contours) at 500 hPa of

analyses from the experiments (a) CON, (c) CRV, (e) CRW, and (g) ALL. (right) Horizontal dis-

tribution of maximum convection available potential energy (shaded; J kg21) and rainwater mixing

ration (black contours; g kg21) from experiments (b) CON, (d) CRV, (f) CRW, and (h) ALL. The

valid time is 0600 UTC 23 Jul 2009.
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