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Abstract
Precision-based molecular phenotyping of heart failure must overcome limited access to cardiac tissue. Although epigenetic 
alterations have been found to underlie pathological cardiac gene dysregulation, the clinical utility of myocardial epigenomics 
remains narrow owing to limited clinical access to tissue. Therefore, the current study determined whether patient plasma 
confers indirect phenotypic, transcriptional, and/or epigenetic alterations to ex vivo cardiomyocytes to mirror the failing 
human myocardium. Neonatal rat ventricular myocytes (NRVMs) and single-origin human induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CMs) and were treated with blood plasma samples from patients with dilated cardiomyopathy 
(DCM) and donor subjects lacking history of cardiovascular disease. Following plasma treatments, NRVMs and hiPSC-CMs 
underwent significant hypertrophy relative to non-failing controls, as determined via automated high-content screening. 
Array-based DNA methylation analysis of plasma-treated hiPSC-CMs and cardiac biopsies uncovered robust, and conserved, 
alterations in cardiac DNA methylation, from which 100 sites were validated using an independent cohort. Among the CpG 
sites identified, hypo-methylation of the ATG  promoter was identified as a diagnostic marker of HF, wherein cg03800765 
methylation (AUC = 0.986, P < 0.0001) was found to out-perform circulating NT-proBNP levels in differentiating heart 
failure. Taken together, these findings support a novel approach of indirect epigenetic testing in human HF.

Keywords Precision medicine · Epigenetics · Heart failure · DNA methylation · Pilot study

Abbreviations
DCM  Dilated cardiomyopathy
DMP  Differentially methylated position
DEG  Differentially expressed gene
HF  Heart failure
hiPSC-CMs  Human-induced pluripotent stem cell 

derived cardiomyocytes
NRVMs  Neonatal rat ventricular myocytes

Introduction

Heart failure (HF) is a multifaceted clinical syndrome that 
is diagnosed based on clinical evidence of hemodynamic 
insufficiency. Patients with HF initially present with non-
specific symptoms of fatigue and exertional dyspnea, war-
ranting a broad diagnostic workup to identify the underlying 
cause(s). Despite its widespread use, the poor specificity 
of elevated circulating BNP or NT-proBNP levels limits its 
use as a diagnostic tool to “ruling-out” the presence of HF 
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[54]. Techniques to characterize the functional consequences 
of cardiac dysfunction, including non-invasive imaging and 
functional tests, provide some prognostic insights, but no 
molecular tests are yet available to diagnose HF. A new 
approach to diagnose HF and predict outcome is therefore 
needed, one which reflects the molecular foundations of its 
pathogenesis.

Although lifestyle and genetic factors have been shown to 
confer HF risk, their convergence onto epigenetic machin-
ery presents an opportunity for diagnostic testing. Genome-
wide association studies have uncovered thousands of causal 
genetic mutations [4], but the clinical value of these discov-
eries is limited by both the relative infrequency and pleiot-
ropy of monogenic cardiomyopathies [25]. Environmental 
and behavioral factors such as obesity [1], diabetes mellitus 
[18, 19], and hypertension [39] are far more prevalent risk 
factors for HF, though the synergistic effects of environmen-
tal exposures and the plethora of mediators remain largely 
unknown. Recent studies have therefore begun to study the 
molecular basis of gene-environment or epigenetic interac-
tions as underlying determinants of HF susceptibility and 
pathogenesis [42].

Unlike the direct epigenetic profiling of solid tumors, 
which has already shown promise in precision-based oncol-
ogy [52], diagnostic access to myocardial tissue remains 
comparably limited. Epigenetic modifications, whether 
directly to DNA via CpG methylation or to ancillary struc-
tures including histone proteins, have been linked to patho-
genesis of cardiovascular disease [12, 20, 26, 44, 49, 53]. 
Recent studies have uncovered robust differences in cardiac 
DNA methylation in patients with end-stage heart failure 

[11, 13, 28, 35], displaying both etiology-specific [36] and 
socioeconomically driven [37] effects on cardiac metabolic 
programs. Hence, DNA methylation may encode the com-
plex environmental exposures, including circulatory milieu, 
which lead to cardiac dysfunction.

Therefore, the current study employs a novel diagnos-
tic approach via indirect epigenetic testing to determine 
whether circulating factors are capable of driving epigenetic 
reprogramming of cardiomyocytes. The current study treated 
human inducible pluripotent stem cell-derived cardiomyo-
cytes (hiPSC-CMs) with plasma collected from patients with 
non-ischemic HF caused by dilated cardiomyopathy (DCM, 
n = 13) and healthy donors (n = 10) (Fig. 1). Genome-wide 
analysis of array-based CpG methylation identified 49 “indi-
rect” epigenomic markers of DCM, which were validated in 
a larger published cohort. Therefore, we offer preliminary 
evidence to support the feasibility of indirect epigenetic test-
ing of DCM using hiPSC-CMs.

Methods

Ethics statement

Human studies were approved by the ethics committee and 
medical faculty at the Heidelberg University Hospital (Hei-
delberg, Germany; appl. no. S-390/2011). Informed consent 
was obtained for the procurement of left ventricular assist 
device core biopsies, and a waiver of consent was granted 
for tissue samples received from non-failing hearts of organ 
donors. Control blood samples were obtained according to 

Fig. 1  Graphical overview. Human inducible pluripotent stem cells 
(iPSC-CMs) were treated with plasma from either DCM (n = 13) or 
healthy (n = 10) subjects for 48  h. Samples were then analyzed for 
cell size using InCell Analyzer and submitted for methylation analy-

sis with the  Illumina™ Beadchip HumanMethylation450k (m450k) 
Array platform. Data were then cleaned and analyzed in comparison 
to m450k analysis of human cardiac biopsies from explanted hearts of 
DCM patients (n = 7) and non-failing donor controls (n = 3)
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the protected health information 45 C.F.R. 164.514 e2 (Bios-
erve) and the BCI informed consent F-641-5 (Biochain). 
Patient health information was acquired at time of tissue 
acquisition, and all human RNA-sequencing and DNA meth-
ylation array data are available upon request.

Patient samples

All samples were obtained from and authorized by the 
Heidelberg University Hospital Biobank (Heidelberg, Ger-
many). Biopsies were selected according to age and gen-
der matching with reduced systolic left ventricular ejection 
fraction (LVEF) and dilatation (Supplemental Table 1). 
Exclusion criteria included evidence of coronary artery dis-
ease or other clinically relevant cardiac conditions. Human 
myocardial biopsies were obtained from patients with DCM 
(n = 7) or from non-failing donor hearts (n = 3), as described 
previously [41].

Differentiation of human induced pluripotent stem 
cells into cardiomyocytes

To determine whether cardiomyocytes exhibit differences 
in DNA methylation in vitro, hiPSC-CMs were differenti-
ated using an established protocol [29, 41]. Briefly, hiPSCs 
were harvested from Matrigel (BD Bioscience; 354,277) 
coated 6-well plates (Corning) and cultured with Essen-
tial  8™ medium (Thermo Fisher Scientific; A1517001) 
and ROCK inhibitor (Tocris; 1254). The hiPSCs were cul-
tured for 3 days or until achieving a confluence of 70–90%. 
The medium was then replaced by RPMI1640 (Thermo 
Fisher Scientific; 21875-034), insulin-free B27 Supple-
ment (Thermo Fisher Scientific; A1895601) and 10 μM 
CHIR99021 (Tocris; 4423) for 24 h. The next day (Day 1), 
the medium was changed to RPMI1640 and insulin-free 
B27 Supplement. 24 h later (Day 2), cells were treated with 
5 μM IWP2 (Tocris, 3533) in RPMI1640 with B27 Sup-
plement minus insulin. On Day 5, the medium was again 
changed to RPMI1640 plus insulin-free B27 Supplement. 
After Day 7 the medium was changed every two days with 
RPMI1640 with B27 Supplement (Thermo Fisher Scientific; 
17,504,044) until day 15. To enrich cardiomyocytes, meta-
bolic stress was induced using 4 mM lactate as described by 
Tohyama et al. [48].

Quality of isolation, and purity of hiPSC-CMs were 
assessed using cardiac troponin (cTNT) positivity versus 
negative control after maturation (Supplemental Fig. S1A) 
and after plasma treatment (Supplemental Fig. S1B). Briefly, 

hiPSC-CM were fixed, washed and were incubated with the 
primary antibody (Troponin T, Cardiac Isoform Ab-1 (Clone 
13–11)) (Thermo Fischer Scientific; MS-295-P1) over night 
and incubated with the secondary antibody (Alexa 488 Goat 
anti- Ms. IgG1; Thermo Fisher Scientific A21121). Negative 
control is missing the first antibody (Troponin T) to show 
specificity of antibody binding. Quantification is performed 
using an automated high-throughput algorithm with  InCell® 
microscope (Supplemental Fig. S1C).

Isolation of neonatal rat ventricular cardiomyocytes 
(NRVMs)

Heart pieces of 1- to 2-day-old Wistar rats were digested 
by a mix of collagenase (CellSystems Biotechnologie Ver-
triebs GmbH) and pancreatin (Sigma-Aldrich) and incu-
bated at 37 °C for 20 min. The supernatant containing the 
NRVMs was sequentially collected. NRVMs were pelleted 
by centrifugation and re-suspended in a salt balanced solu-
tion. NRVMs were finally purified using a discontinuous 
Percoll gradient (GE Healthcare). Cells were re-suspended 
in DMEM (Sigma-Aldrich) with supplements and plated on 
collagen (Sigma-Aldrich) coated cell culture plates (Greiner 
Bio-One) [40].

Cardiomyocyte plasma treatments

For cell size and perinuclear atrial natriuretic peptide 
(ANP) staining measurements, hiPSC-CMs were plated in 
octuplets on 96-well black µClear plates (Greiner Bio-One) 
with Matrigel (BD Bioscience) coating and NRVMs were 
plated on collagen. For DNA isolation, cells were plated on 
12-well plates. After 24-h starvation with FCS-free medium, 
NRVMs and hiPSC-CMs were treated for 48 h with 5% 
patient plasma from DCM or non-failing control (CON) 
subjects instead, or with fetal calve serum (FCS) or FCS-
free medium (“starve”).

Cardiomyocyte immunofluorescence staining

Cardiomyocytes were fixed with paraformaldehyde (Sigma-
Aldrich) after 48-h treatment. Antibodies against cardiac 
α-actinin (Sigma-Aldrich) and ANP (Peninsula Lab) were 
used sequentially overnight at 4 °C. Secondary antibodies 
(Thermo Fisher Scientific) were incubated for 1 h at room 
temperature. Nuclei were stained with DAPI (Thermo 
Fisher Scientific). Histological imaging and analyses were 
performed using an InCell Analyzer 2200 (GE Healthcare), 
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where cell size and perinuclear ANP intensity could be 
measured using the automated HTS approach, which has 
been developed and validated by the InCell investigator soft-
ware (GE Healthcare). Cell sorting results for troponin is 
shown in Supplemental Fig. 1A. As a proxy of stable purity 
after treatment of hiPSC-CMs, viable cells were quantified 
using the same HTS approach by counting all DAPI + cells 
and actinin overlay (see Supplemental Fig. 1B–C). Repro-
ducibility of cell size measurements in different hiPSC-CM 
cell lines is shown in Supplemental Fig. 2A.

HumanMethylation450k BeadChip (m450k) Array

Epigenome-wide DNA methylation studies were performed 
using the  Illumina® Beadchip HumanMethylation450k 
(m450k) array platform, as previously described [36]. For 
each assay, 500 ng DNA was bisulfite-treated before amplifi-
cation, hybridization, and imaging standard to the  Illumina® 
protocol. Briefly, frozen biopsies were disrupted using the 
TissueRuptor (Qiagen). DNA isolation of disrupted biop-
sies or pelleted NRVMs and hiPSC-CMs was done using the 
QIAamp DNA Blood and Tissue Kit (Qiagen) according to 
the manufacturer’s protocol. DNA integrity was monitored 
by gel electrophoresis. Array intensity data generated via 
 iScan® were preprocessed and normalized using quantile 
normalization to adjust for technical differences in Type I/II 
array designs [23]. Total (methylated + unmethylated) signal 
intensity for each probe was weighed against the background 
signal via negative control probes to provide a statistical (P 
value) detection threshold (Supplemental Fig. S3). Possi-
ble confounding of differential methylation via overlapping 
SNPs was evaluated using MethylToSNP (0.99.0), removing 
1494 CpG probes from the analysis of cardiac biopsy sam-
ples (Supplemental Fig. S4); no SNPs were detected among 
iPSC-CMs.

RNA‑sequencing

RNA sequencing analysis was performed as previously 
outlined [36], with detailed methods available as an online 
supplement. Briefly, RNA was isolated from iPSC-CMs 
using Qiazole™ reagent (Qiagen Inc., Hilden, Germany) 
and validated via fragment analysis (Agilent) to ensure 
RNA quality. Sample B2 was removed (RIN = 2.5) and was 
identified owing to RNA Integrity Numbers (RINs) which 
were 9.2 ± 1.5, with all samples achieving RINs > 7 (Sup-
plemental Table 2). Samples were then submitted for paired-
end 100 bp RNA sequencing which was performed at BGI 
Tech Solutions (Hong Kong, CN), where high-throughput 
next-generation RNA-sequencing was performed using the 
 DNBSEQ™ G400 platform. Prior to alignment, adapters 
and low-quality (PHRED < 20, or 1% sequencing error rate) 

sequences were trimmed from reads files using trimgalore 
(0.5.0).

Bioinformatics

All coding scripts used in the current study are available as 
an online supplement via GitHub data repository: https:// 
github. com/ mepep in/ Indir ect. Epige nomics. Differential 
methylation analysis was performed as previously described 
[36]. Differential methylation analysis was completed by fit-
ting probe-wise linear models to the normalized log-ratios, 
followed by an empirical Bayesian shrinkage of probe-wise 
sample variance via Minfi (1.40.0) within the R (4.1.2) sta-
tistical computing environment [43].

For RNA-sequencing analysis, alignment of reads to the 
hg19 genome was accomplished using STAR (v2.7.9a), 
yielding ~ 95% uniquely mapped reads for all samples. Raw 
counts were generated using Samtools [21], with differen-
tial gene expression performed using DESeq2 [22] (1.34.0) 
within the R (4.1.2) computing environment [38]. Dispersion 
estimates were determined via maximum-likelihood, which 
were shrunken according to an empirical Bayes approach 
to provide normalized count data for genes proportional to 
both the dispersion and sample size. Differential expres-
sion was then determined from normalized read counts 
via  Log2(fold-change) using the Wald test followed by 
Bonferroni-adjusted P value for each aligned and annotated 
gene. From this, 2077 genes were found to be differentially 
expressed at P < 0.05.

Statistical analysis

For all pairwise comparisons, the Shapiro–Wilk test for 
normality was performed to determine the most appropriate 
statistical test. Statistical comparisons were achieved using 
two-tailed t tests between DCM and CON in the cell size 
and ANP intensity as well as qPCR experiments. All data 
are reported as mean ± standard deviation unless otherwise 
specified.

Results

DCM patients’ plasma increases cardiomyocyte size 
and perinuclear ANP

To determine whether 48-h exposure to human plasma 
impacts cardiomyocyte morphology in accordance with 
the patients’ diagnosis of HF, cell size was quantified using 
the  InCell™ automated high-content screening (HTS) assay 

https://github.com/mepepin/Indirect.Epigenomics
https://github.com/mepepin/Indirect.Epigenomics
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Fig. 2  DCM patients’ plasma increases cardiomyocyte size. After 
48  h of treatment with 5% plasma from dilated cardiomyopathy 
(DCM, n = 13) or healthy control (CON, n = 10) subjects, cell size 
was measured for A NRVMs and B hiPSC-CMs. C Representa-
tive immunocytochemistry-based quantification of atrial natriuretic 
peptide (ANP) performed in DCM plasma-treated (DCM) relative 
to control plasma-treated hiPSC-CMs co-stained for α-Actinin and 

DAPI (n = 4). Starvation vs. FCS is represented as a mean value of 
each well count with each approximately 1300 cells counted per 
well. In contrast, CTR vs. DCM is represented as a mean value of 
octuplets with each well counting approximately 1300 cells, hence a 
mean of a mean of 8 wells (a mean of 8 means, derived from approx. 
1300 cells each). Student’s t-test reporting mean ± S.E.M. (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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for NRVMs (Fig. 2A) and iPSC-CMs (Fig. 2B). In both 
NRVMs and hiPSC-CMs, exposure to plasma from DCM 
patients conferred a 22% (P = 0.004) and 27% (P < 0.001) 
increase in cell size, respectively. Cardiomyocyte hypertro-
phy was reproducible, seen in repeated experiments with 
hiPSC-CMs from two additional independent cell lines 
(Suppl. Figure 2A). To determine whether exposure to 
plasma from DCM patients could reproduce pathological 
hallmarks of cardiac stress, an HTS approach was used to 
quantify both ANP abundance and its subcellular distribu-
tion within hiPSC-CMs. Immunohistochemical staining 
demonstrated greater abundance of perinuclear ANP stain-
ing in the hiPSC-CMs treated with DCM plasma relative 
to CON plasma (Fig. 2D), though neither ANP abundance 
nor cell size correlated with circulating NT-proBNP levels 
(Suppl. Figure 2B–C).

DNA methylation changes in cardiac biopsies

The  Illumina® Beadchip HumanMethylation450k array 
was used to quantify CpG methylation intensity of DNA 
isolated from biopsies of DCM (n = 7) and non-failing con-
trol hearts (CON, n = 3). Unsupervised multi-dimensional 
scaling (MDS) of the 10,000 most-variable CpG probes 
revealed a marked separation in cardiac DNA methylation 
signature between DCM and CON samples (Fig. 3A). Dif-
ferential quantification of DCM and CON identified 84,024 
differentially methylated CpG sites (DMPs) (P < 0.05), 
with the most robust alterations seen in cg02459042 (NXN, 
63.6% hyper-methylated, P = 1.3 ×  10–8) (Fig. 3B). Because 
DNA methylation is known to regulate gene expression 
in a site-dependent manner [3, 17], DMP distribution was 
performed according to where plotted onto both annotated 
gene regions (promoter, 5’UTR, gene body, and 3’UTR) as 
well as according to their distance from CpG Islands (CGIs) 
(Fig. 3C); the resulting distribution revealed that, although 
the greatest overall number of DMPs were located within 
gene bodies, a disproportionate percentage of DMPs were 
found within "North Shore”-associated CpG sites within the 
proximal promoter of adjacent genes (Fig. 3C–D). Neverthe-
less, strong heart failure-associated signatures of differential 
methylation were seen throughout the annotated genomic 
regions (Fig. 3E). Taken together, these findings support pre-
viously published evidence of robust epigenomic shifting in 
end-stage human heart failure [13, 28, 35–37].

DNA methylation changes detected in the indirect 
cardiomyocyte test

To determine whether circulating factors are sufficient to 
trigger alterations in cardiac DNA methylation reminis-
cent of failing hearts, hiPSC-CMs were exposed to plasma 
obtained from patients with DCM or age-matched healthy 
control (CON) subjects. Unlike in cardiac biopsies, unsu-
pervised clustering failed to differentiate between iPSCs 
exposed to DCM plasma (n = 13) and those with CON 
plasma (n = 10) (Fig. 4A). Nevertheless, a robust signature 
of differential methylation was seen between DCM and CON 
plasma treated hiPSC-CMs, with 28,381 DMPs (P < 0.05) 
detected. Of these, five DMPs achieved genome-wide signif-
icance (Fig. 4B): cg03800765 (ATG7, 32.4%, P = 8.6 ×  10–6), 
cg14156314 (C9orf140, – 0.7%, P = 4.1 ×  10–6), cg18502522 
(SCAMP2, –  24.5%, 2.2 ×  10–6), cg07561469 (CCNF, 
– 31.1%, P = 1.2 ×  10–6), and cg05274755 (NPAS3, – 19.0%, 
P = 1.3 ×  10–7). Furthermore, the highest proportion of 
DMPs relative to the m450k array were associated with 
promoter-associated CGIs, stressing a potential regulatory 
influence on adjacent coding regions (Fig. 4C). Among 
the CGI-associated DMPs, most were found within the 
promoter of adjacent coding regions (Fig. 4D), although 
robust differences in methylation were seen across genomic 
regions, as visualized via heatmap and hierarchical cluster-
ing (Fig. 4E). Taken together, these observations support 
that, although a global shift in DNA methylation does not 
distinguish between hiPSC-CMs treated with DCM versus 
CON plasma, robust alterations in DNA methylation still 
occur within promoter-associated CGIs.

Common epigenetic changes detected in cardiac 
biopsies and by the indirect approach

To identify “indirect” epigenetic loci in plasma-treated 
iPSC-CMs, we compared DMPs found in both myocardial 
and iPSC-CM analyses (Fig. 5A). Albeit a minority of co-
methylated CpG sites, 389 concordant DMCs (coDMCs) 
associated with 426 genes were found between cardiac biop-
sies and iPSC-CMs. Gene set enrichment revealed dispro-
portionate differential methylation proximal to genes associ-
ated with “Apoptosis” (P = 0.007, 9 DMCs), “Myogenesis” 
(P = 0.01, 10 DMCs), “Epithelial-Mesenchymal Transition” 
(P = 0.01, 10 DMCs), and “Heme Metabolism” (P = 0.01, 10 
DMCs) pathways (Fig. 5B).



Basic Research in Cardiology           (2023) 118:9  

1 3

Page 7 of 16     9 

V

V

V

o

o

o

o

o

o

o

V

V

V

V

V

V

V

V

V

o

o

o

o

o

o

o

V

V

V
Group

DCM
CON

0

Methylation
(Z-score)

A

C D

E

B

Fig. 3  Cardiac DNA methylation in cardiac biopsies. A Multidimen-
sional scaling (MDS) of top-10,000 CpG probes within the  Illumina® 
HumanMethylation450k array performed on cardiac left ventricle 
samples from patients with end-stage heart failure (DCM) or non-fail-
ing donor control hearts (CON). The two principal components that 
account from the largest variance in DNA methylation were used to 
generate a scatterplot, flanked by density plots of each principal com-
ponent. B Volcano plot illustrating the robustness of CpG methylation 
differences, plotting (–  log10[P value]) as a function of percent differ-
ence in methylation (%) in DCM vs. CON, probes exceeding P < 0.05 

and |methylation %|> 5 highlighted in yellow. Labelled are the 10 
most-robustly hyper-methylated and hypo-methylated CpG probes by 
% methylation. C Distribution of differential methylation via three-
dimensional contour plot of differentially methylated CpG probes 
(DMPs)* categorized according to their presence within genomic 
(Promoter, 5’ UTR, Body, Exon–Intron boundary, or 3’ UTR) and 
CpG (Shelf, Shore, and Island) regions. Bar graph depicting the num-
ber of DMPs within each genomic region. D proportional distribution 
of CpG Island-associated DMPs. E Heatmap and hierarchical cluster-
ing of DMPs according to each genomic region. *P < 0.05
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Fig. 4  DNA methylation changes detected in the indirect cardiomyo-
cyte test. A MDS plot of top-10,000 CpG probes within the  Illumina® 
HumanMethylation450k array performed on inducible pluripotent 
stem cell (iPSC)-derived cardiomyocytes exposed to plasma from 
patients with end-stage heart failure (DCM; n = 13) relative to plasma 
from healthy (CON; n = 10) patients. B Volcano plot illustrating the 
robustness of CpG methylation differences, plotting (-  log10[P value]) 
as a function of percent difference in methylation (%) in DCM vs. 
CON, probes P < 0.05 and |methylation %|> 5 are highlighted in yel-
low. Labelled are the 10 most-robustly hyper-methylated and hypo-

methylated CpG probes by % methylation. C Distribution of differ-
ential methylation via three-dimensional contour plot of differentially 
methylated CpG probes (DMPs)* categorized according to their pres-
ence within genomic (Promoter, 5’ UTR, Body, Exon–Intron bound-
ary, or 3’ UTR) and CpG (Shelf, Shore, and Island) regions. Bar 
graph depicting the number of DMPs within each genomic region. 
D proportional distribution of CpG Island-associated DMPs. E Heat-
map and hierarchical clustering of DMPs according to each genomic 
region. *DMPs defined via P < 0.05
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To validate DNA methylation differences observed in 
our cohort of human cardiac biopsies, the overlapping 389 
coDMCs were compared those of a testing cohort of car-
diac and blood samples from DCM (n = 41) and non-failing 
(n = 31) control subjects from Meder et al. [28] (Fig. 5C); 
100 DMCs were validated in cardiac biopsies (25.7% over-
lap, P < 0.043), and 115 DMCs were also seen in blood 
(29.6%, P < 0.01). Examination of the top 5 most robustly 
differentially methylated CpGs in iPSC-CMs that were 
validated uncovered CpG island-associated CpGs located 
at – or near – the promoter regions for ATG7 (cg03800765, 
– 32.4%, P = 9.0 ×  10–6), DZIP1L (cg09151521, 30.7%, 
P = 0.007), ZNF397OS (cg26141063, – 29.3%, P = 0.005), 
TGFBR3 (cg17074213, – 28.4%, P = 0.004), and POL2A 
(cg21257117, 25%, P = 0.005) (Fig. 5D). Plotting of each 
DMC revealed equivalent degrees of differential methyla-
tion at these sites between cardiac biopsies and iPSC-CMs 
(Fig. 5E).

To determine whether any of these CpG sites of iPSC-
CMs are associated with differences in transcriptional 
activity, next-generation RNA-sequencing analysis was 
performed on the samples submitted for DNA methylation 
analysis. Among the 2,077 differentially expressed genes 
(DEGs), 49 were accompanied by proximal differential 
methylation (Table 1, Fig. 5C). Therefore, although the 
exposure of hiPSC-CMs to human plasma does not com-
prehensively recapitulate the transcriptional alterations seen 
in the failing myocardium, the indirect measurement of CpG 
methylation permits a differentiation between DCM and 
CON biopsies and impacts pathways known to contribute 
to cardiac dysfunction.

ATG7 as a putative epigenetic biomarker of DCM 
in iPSC‑CMs

To better understand the transcriptional potential of 
single-site CpG methylation on associated gene expres-
sion, the most robustly differentially methylated CpG was 
taken as a use-case scenario (Fig. 6A), which displayed 
a strong correlation (spearman ρ = 0.61, P = 0.0026) 
between methylation at cg03800765 and expression of the 
adjacent gene ATG7. Area under the receiver operating 
characteristics (ROC) curves (AUCs) were computed for 
cg03800765 methylation intensity or ATG7 expression for 
each dataset (Fig. 6B), revealing markedly higher AUCs 
for cardiac biopsy (AUC = 1.0, P = 0.0167) and iPSC-CM 

(AUC = 0.986, P < 0.0001) methylation relative to circu-
lating cells (AUC = 0.789, P < 0.0001), iPSC-CM mRNA 
(AUC = 0.639, P = 0.264), and circulating NT-proBNP 
levels (AUC = 0.75, P = 0.05).

To identify putative upstream signaling that could be 
impacted by ATG7 methylation at cg03800765, motif 
enrichment was performed using the MEME suite for CpG 
site-specific motif discovery at this DMC locus (± 10 BP). 
This approach identified CREB1 as a likely upstream tran-
scriptional regulator (Fig. 6C), consistent with published 
evidence [32]. Downstream scanning of all DMCs for 
CREB1 response elements in DCM plasma-treated iPSC-
CMs identified 117 overlapping DMCs; of these, 46 (39%) 
were located within the proximal promoter of adjacent genes 
(Fig. 6D). Taken together, these observations suggest that 
epigenetic competition of CREB1 binding may influence 
ATG7 expression in DCM.

Discussion

As a molecular readout for gene-environment interactions, 
epigenomic profiling offers potential for precision-based 
clinical diagnostics [7, 9, 24, 47, 52, 56]. For conditions 
in which tissue is difficult to access, including cardiovas-
cular and neurologic diseases, clinical decision-making is 
forced to rely on indirect measurements, though no epige-
netic biomarkers have yet been identified for diagnostic or 
prognostic purposes. Myocardial epigenetics has mostly 
been studied using biopsies from end-stage failing or 
post-mortem “healthy” hearts [5, 14, 31, 49, 51], thereby 
missing the early stages of HF in which manifestations of 
cardiac dysfunction may be reversible. In this study, we 
demonstrate the usefulness of routinely acquired blood 
plasma to circumvent these problems via indirect epige-
netic testing of DCM patients.

Indirect model of epigenetic testing

Although genetic heterogeneity is known to confound DNA 
methylation analyses, the hiPSC-CMs used in this study 
were generated from a single healthy adult of European 
ancestry, thereby circumventing genetic confounding. Treat-
ment of iPSC-CMs with patient plasma induced both cel-
lular hypertrophy and perinuclear ANP accumulation, both 
of which reflect properties of failing myocardium. Similarly, 
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DNA methylation analysis identified 389 concordant DMPs 
(Fig. 5A), enriching pathways known to be disrupted in 
HF (Fig. 5B); among these, 100 DMPs (25.7%) were vali-
dated in a larger independent cohort of DCM (n = 41) [28]. 
Although we identify many promising candidates (Table 1), 
cg03800765 methylation exhibited superior diagnostic per-
formance to both circulating NT-proBNP levels and ATG7 
expression in our cohort (Fig. 6B). Therefore, although 
future studies are needed to establish its clinical usefulness, 
we provide the conceptual basis for indirect epigenetic test-
ing in HF.

Circulating factors in heart failure

Despite the robust phenotypic and epigenetic consequences 
that were observed following plasma treatments, it remains 
unknown which circulating factor(s) is/are ultimately 
responsible. Their identification could enable direct meas-
urement of plasma; however, we hypothesize that cardio-
myocyte phenotype is dictated by a circulatory milieu that 
converges onto epigenetic machinery. Cytokines have been 
found to predict cardiac functional improvement on mechan-
ical circulatory support [8]. MicroRNAs have been impli-
cated as mediators of circulating cardiovascular risk [10]. 
Cardiac exosomes have also emerged as possible molecu-
lar vehicles that facilitate crosstalk between the heart and 
end-organ tissues [16]. A recent study by Mentowski et al. 
demonstrated that engineered exosomes can stimulate car-
diomyocyte hypertrophy [30]. Therefore, the indirect testing 

of cardiomyocyte epigenetics may permit a collective assess-
ment of these factors and potentially influence myocardial 
disease fate. Therefore, we hypothesize that the measure-
ment of epigenetic consequences may be superior in predict-
ing cardiovascular disease.

DNA methylation as a proxy of HF diagnosis 
and outcome

Our analysis uncovered robust differential methylation 
cg03800765 in both iPSC-CMs (– 32.4%, P = 9.0 ×  10–6) and 
cardiac biopsies (– 25.2%, P = 0.004), a CpG site located 
within a promoter-associated CpG island upstream of ATG7. 
Although methylation at this site was negatively correlated 
with ATG7 expression (P = 0.0026), only cg03800765 
methylation was significantly predictive of patient diag-
nosis with HF in iPSC-CMs (P < 0.0001), cardiac biopsies 
(P = 0.0167), and circulating cells (P < 0.0001); by contrast, 
ATG7 expression failed to provide any diagnostic benefit 
(P = 0.264). Furthermore, cg03800765 methylation in iPSC-
CMs out-performed circulating NT-proBNP levels as a 
diagnostic marker, underscoring its potential usefulness via 
indirect epigenetic testing (Fig. 6B). Although larger clini-
cal cohorts are needed to evaluate the potential of indirect 
epigenetics to predict HF risk, cg03800765 is a promising 
candidate.

Autophagy and ATG7

The genomic region adjacent to cg03800765 encodes the 
ubiquitin-like modifier-activating enzyme ATG7, a pro-
tein involved in phagolysosome formation and mitophagy 
[6]. Autophagy is essential to maintaining the regenerative 
potential of hematopoietic progenitor cells, and controls 
metabolic activity via epigenetic regulation, the dysregula-
tion of which leads to heart failure [15, 33, 34]. Although 
no studies have yet explored the consequences of disrupted 
cardiac ATG7 expression, familial ATG5 mutations are asso-
ciated with severe cardiac hypertrophy leading to dilated 
cardiomyopathy by 10 months [55]. In mice, ATG7−/− or 
ATG5−/− leads to cardiomyopathy characterized by inhibited 
autophagy and induced mesenchymal transition and apop-
tosis [45, 46, 50, 57]. Conversely, in vivo overexpression 
ATG7 in mice improves autophagic capacity that ameliorates 

Fig. 5  Concordant epigenetic signature of iPSC-CMs and cardiac 
biopsies. A Hierarchical clustering and heatmap visualization of 
389 concordantly methylated DMPs (coDMPs)* in both cardiac tis-
sue (red) and iPSCs (blue) treated with plasma from DCM (cyan) 
or healthy (grey) subjects. RNA-sequencing  log2Fold-Change plot-
ted alongside DNA methylation B Gene-set enrichment analysis of 
the 426 proximal genes associated with at least one of the coDMCs, 
using the KEGG 2020 molecular signatures database with statistical 
enrichment calculated using enrichR. C Venn diagram illustrating the 
shared DMCs between the 389 coDMPs, m450k analysis of cardiac 
biopsies for DCM vs. CON (n = 41), and m450k analysis of buffy 
coat for DCM vs. CON (n = 31). D Top 5 most differentially-methyl-
ated CpG sites in iPSC-CMs that could be validated using the Meder 
et al. dataset. E bar plot of the top 5 most robust DMCs that were pre-
sent in the validation datasets. Each dot represents methylation levels 
of 1 well of approx. 1 million hiPSC-CMs treated with plasma, or of 
the available amount of myocardial tissue from patients. *P < 0.01

◂
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desmin-related cardiomyopathy [2]. Therefore, the differ-
ential methylation of ATG7 may represent a phenotypically 
pertinent observation. However, it remains to be shown 
whether perturbation of the ATG7 promoter methylation 
indeed causes alterations in gene expression.

Limitations

Although the current study and analysis provide novel 
insights into the diagnostic potential of indirect epig-
enomic testing, some limitations must be considered. 
First, DCM etiology and medication history in our cohort 
could not be standardized with control subjects owing to 
limited supply of clinical data and tissue, respectively 
(see Suppl. Table 1). Although the current descriptive 
study uncovers an indirect epigenetic signature in iPSC-
CMs following treatment with plasma of HF patients, 
future studies should consider early, etiology-specific 
signatures of DNA methylation in larger cohorts to under-
stand its diagnostic, and possibly predictive, potential in 
human heart failure. Different etiologies of HF (e.g. HF 
with preserved ejection fraction) are possibly marked by 
a more systemic dysregulation of circulating metabolic 
factors, and thus might be even more suitable for indirect 
testing. Lastly, incorporation of other epigenetic marks, 
including histone modifications that are thought to be 
more signal responsive [27], may further improve the 
clinical precision of epigenetic testing.

Conclusion

In the current study, we provide the first evidence that cir-
culating factors drive indirect epigenomic alterations of 
iPSC-CMs and may therefore be useful for diagnostic test-
ing. Diagnostic screening of cardiac biopsies is unfeasible, 
whereas development and standardization of indirect epig-
enomic testing using blood plasma or serum may circumvent 
this limitation.
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Fig. 6  ATG7 as an indirect candidate biomarker of CREB1 activ-
ity in plasma-treated iPSCs. A Scatterplot correlation between CpG 
methylation of iPSC-CMs treated with plasma from DCM (cyan) 
control (grey) patients at cg03800765 and RNA-sequencing based 
gene expression of ATG7 (normalized counts). Also illustrated is the 
negative linear trend (blue line, R = 0.61, P = 0.0026) with 95% con-
fidence region (gray). B Location of the CpG site cg03800765 in a 
CpG island adjacent to the ATG7 gene, demonstrating overlap with 
the CREB1 motif (MEME suite). C Putative downstream DMCs 
overlapping CREB1 response element
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