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Abstract

Objectives: Indirect methods for the estimation of Refer-
ence Limits (RLs) use large data pools stored in modern
laboratory information’s systems. To avoid correlation be-
tween observations repeated results from each patient
should be excluded. Some data pools obtained are anony-
mized, and thereafter the data cannot be re-identified. The
effect of the procedure of data selection on the estimations is
not investigated yet.
Methods: We considered four parameters. Data sets were
enclosed from two sources: a university hospital and a
laboratory primarily reflecting a patient population from
medical practitioners. Four algorithms were used for data
selection, which generate first, last, all and non-repeated
values. RLs were estimated through these data sets and
compared.
Results: This study showed the broader reference range
estimated by indirect methods if using the whole data set
compared to first/last values or non-repeated values.
Conclusions: The use of all data without a filtering step
results in a significant bias whereas the choice of first or
last values has nearly no impact. The exclusion of repeated
measurements results in narrower RLs. This influence

confine the use of anonymous data sets where filtering is
impossible for the estimation of RLs by indirect methods.

Keywords: anonymized data; anonymous data sets; first/
last/all values, non-repeated/repeated populations; indi-
rect reference limits; pseudomized data.

Introduction

The interpretation of results of medical laboratory tests are
largely based on reference limits (RLs) and decision limits
[1]. The preselection process aims to identify healthy
individuals to select the reference population [2, 3]. As an
alternative, large data sets from laboratories consisting of a
mixture of non-diseased and diseased individuals can be
used to estimate RLs using indirect methods [4–6]. Until
now there exist numerous algorithms for the indirect esti-
mation of RLs published like Hofmann, Bhattacharya [7]
and more sophisticated algorithms like the truncated
minimum chi-square (TMC) [8] or the truncated maximum
likelihood (TML) [9, 10]. The main idea of the two last
approaches is to identify and separate the distribution of
the non-pathological results from the total laboratory data
sets. These methods are based on the following assump-
tions: First, non-pathological values can be modelled by a
distribution family. Second, the main part of the data set
contains only non-pathological values and third, the
overlap between the distributions of non-pathological and
pathological values is only partial. The TML method was
applied on different data sets and the results are published
[10–13].

Indirect methods for the estimation of RLs require
model assumptions. The most prominent one is that the
prevalence of pathological values in the used data set is
small. From a statistical point of view, the absence of a
correlation between observations needs to be ensured. This
leads to the requirement to include only one measurement
per individual and the exclusion of repeated results from
one patient [14]. As an option to ensure both conditions,
only results from patients without repeated measurements
(“non-repeated population”) could be included. The
medical rationale to exclude data from subjects who have

*Corresponding author: Thomas Streichert, Institute for Clinical
Chemistry, Faculty of Medicine, University of Cologne, Cologne,
Germany, Phone +49 221 478 4460, E-mail: thomas.streichert@uk-
koeln.de. https://orcid.org/0000-0002-6588-720X
Farhad Arzideh, Institute for Clinical Chemistry, Faculty of Medicine,
University of Cologne, Cologne, Germany; Universitätsklinikum
Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
Mustafa Özcürümez,UniversitätsklinikumKnappschaftskrankenhaus
Bochum GmbH, Bochum, Germany
Eike Albers, Institute for Clinical Chemistry, Faculty of Medicine,
University of Cologne, Cologne, Germany; MVZ Labor Dr. Quade &
Kollegen GmbH, Cologne, Germany
Rainer Haeckel, Bremer Zentrum für Laboratoriumsmedizin, Klinikum
BremenMitte, Bremen, Germany. https://orcid.org/0000-0001-8671-
962X

J Lab Med 2021; 45(2): 103–109

Open Access. © 2021 Farhad Arzideh et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/labmed-2020-0149
mailto:thomas.streichert@uk-koeln.de
mailto:thomas.streichert@uk-koeln.de
https://orcid.org/0000-0002-6588-720X
https://orcid.org/0000-0001-8671-962X
https://orcid.org/0000-0001-8671-962X


more than one measurement for the analyte of interest is
that these subjects are more likely to be diseased [14].

Typical LIS data sets allow this filtering because they
usually contain the information about the individual, even if
they are pseudomized. On the other hand, some large data
pools obtained from LIS or hospital information systems are
anonymized, and thedata cannotbe re-identified. Thereby it
is not possible to filter for first or last values and to fulfil the
assumption of non-correlated data. The aim of this study
was to investigate the effect on the estimated RLs if filtering
for first or last values or if patients with repeated measure-
ments are excluded. The different filtering strategies were
applied to two real world data sets: University hospital data
containing a high percentage of patients with repeated
measurements and data from a laboratory analysingmainly
specimen from medical practitioners.

Data sets and methods

Data sets

To investigate the effect of filtering for first or last values or the exclu-
sion of patients with repeated measurements, we chose four represen-
tative parameters: alkaline phosphatase (AP), gamma-glutamyl-
transferase (GGT), sodium (NA) in plasma and thrombocytes in whole
blood. The first data set (C) is from the University Hospital Cologne and
includes 1,566,409 measurements for AP (2004–2018), 1,166,020 for
GGT (2014–2018), 2,176,200 for thrombocytes (2010–2018) and 2,093,722
for NA (2009–2017). The second data set (P) is from a laboratory in the
samegeographical regionprimarily reflecting apatient population from
medical practitioners. This data set consists of data from seven years
(2013–1/2020) and includes 651,579measurements for AP, 1,307,076 for
GGT, 1,356,691 for thrombocytes and 711,875 for NA. We have defined
two indexes (measures) for each data set to describe the incidence of
repeated measurements:

I1 = N1

N2
= number of measurements overall

number of patients overall

I2 = N2

N3
= number of patients overall
number of patients without repeated measurements

Where I1 delivers the average frequency ofmeasurements per patient, I2
gives the proportion of the total number of patients to the number of
patients without repeatedmeasurements. For I1=I2=1we have a data set
with only one measurement for each patient. Notice that I=I1 × I2 gives
the proportion of the total data to the data from patients without
repeated measurements. Values of I1 and I2 for AP, GGT, thrombocytes
andNA for thefirst data set (C)were: I1(AP)=4.8, I2(AP)=1.8, I1(GGT)=5.5,
I2(GGT)=1.9, I1(thrombocytes)=6.2, I2(thrombocytes)=2 and I1(NA)=6,
I2(NA)=2.3. In short, the average frequency ofmeasurements per patient
inUniversityHospital Colognewas 5–6 times (in the corresponding time
interval) and approximately 8–10% of the collected data in the corre-
sponding time interval come from “non-repeated” subpopulation.

The second data set (P) includes also patients with repeated
measurements but to a lower extent: I1(AP)=2.8, I2(AP)=1.6, I1(GGT)

=2.9, I2(GGT)=1.7, I1(thrombocytes)=2.7, I2(thrombocytes)=1.9 and
I1(NA)=2.8, I2(NA)=1.8. In short, the average frequency of measure-
ments per patient in this laboratory was 2–3 times (in the corre-
sponding time interval) and approximately 20–22% of the collected
data in the corresponding time interval come from “non-repeated”
subpopulation. Summarized, the average frequency of measurements
per patient (I1) in the University Hospital Cologne was twice as high as
in the laboratory (P) (5 vs. 2.5), and the proportion of the whole
collected data to the data from only “non-repeated” subpopulation in
the University Hospital Cologne was also twice as high as in the lab-
oratory (P) (10:1 vs. 5:1).

Analytical methods

In the first data set thrombocytes were analysed using EDTA-blood on
Sysmex-counters (Sysmex; Norderstedt). Platelet counts were carried
outwith the impedance-method on analysers of the XE- andXN-series.
NH4-Heparin-Plasmawas used for the analysis of sodium,AP andGGT
on Roche/Hitachi-Cobas-Systems (Roche, Penzberg): GGT with an
enzymatic colorimetric assay, AP with the IFCC-method (colorimetric
assay) and sodium by ISE.

In the second data set thrombocytes were counted in EDTA-blood
on Sysmex-analysers (Sysmex; Norderstedt) using the impedance-
method of the XN-series. NH4-Heparin-Plasma or Serum was used for
the analysis of sodium, AP and GGT on Siemens-ADVIA-Chemistry-Sys-
temsandSiemens-AtellicaCH-Systems (SiemensHealthcareDiagnostics;
Eschborn): GGT and AP with modified IFCC-methods (colorimetric as-
says) and Sodium by ISE.

Statistical methods

Firstly, for each data set four subsets were generated. (1) “All values”,
which contains all data, (2) “first values” containing only the first
value from each patient, (3) “last values” containing only the last
value from each patient and (4) “non-repeated subset” containing
only subjects who have only one measurement of the analyte of
interest. Four data sets were generated from the University Hospital
Cologne (C) data set and the data set from the laboratory (P: spec-
imen from medical practitioners) (after elimination of non-valid
values).

For C: All Values Population (all): n=1,539,813, First Values
Population (first): n=323,957, Last Values Population (last):
n=324,865, Non-repeated Population (nrep): n=177,694.

For P: All Values Population (all): n=651,579, First Values Popula-
tion (first): n=233,867, Last Values Population (last): n=233,867, Non-
repeated Population (nrep): n=149,246.

We display the distribution of each subset by grouped boxplots
after age (formale and female separately) to compare the trend lines of
quantiles of these subsetswith each other. Thewhiskers of the boxplot
are defined as 95/75/25 and 5%.

Secondly, after these summary statistics, the lower and upper
reference limits (lRL, uRL) using these four data sets are estimated and
compared with each other. To estimate RLs we have applied the TML
method of Arzideh et al. implemented in software R. The estimations
were performed for male and female adult subjects, separately
(age ≥18). To compare the estimated RLs through four data sets with
each other, we consider the permissible uncertainty (pU) of calculated
RLs. As discussed in [15, 16] to evaluate the clinical relevance of a
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possible difference between RLs obtained from different sub-
populations we use the pU to check if the reference limits can be
considered as comparable. For the lower RLs (lRL) we calculate pU(lRL)
through the “first” value data set and thereafter the lower (lRL1[first])
and upper (lRL2[first]) limits of uncertainty of them and check if
the estimated lRL through the other three data sets are within or
outside these limits. The sameprocedure has been applied for the upper
RLs.

In the third step, we consider the age-dependency of the RLs and
compare the performance of the above defined subsets, corre-
spondingly. The indirect method of Arzideh et al. was applied on pre-
defined age classes and the estimated lower and upper RLs (lRL, uRL)
were smoothed through some spline functions. The results of age-
dependent RLs for four data sets were compared.

Results

Alkaline phosphatase (AP)

Figure 1 shows the boxplots and thus the distribution of AP
values vs. age for female subjects for four data sets “all-”,
“first-”, “last-” and “non-repeated” populations for the data
set from the laboratory C. As the number of the data for non-
adults (defined as age <18) was not enough, we concentrated
us on the results of adults. As expected, the quantile lines
indicate an increasing trend with increasing age, especially
after 40 years old in all four data sets for female subjects. The
trend lines for “first-”, “last-” and “non-repeated” data sets
appear similar, whereas the data set “all-” shows large
quantile lines. Comparing the results of “all” subjects by two
data sets (the results for male subjects and for the data set
from the laboratory P are displayed in Supplemental Material
B, Figure B4) it is obvious that the data from the University
Hospital (C) contains more pathological values than the data
from the laboratory (P), as expected. This phenomenon is
vanished by comparing “first-”, “last-” and “non-repeated”
subpopulations from two sources. Additionally, the quantile
lines of “non-repeated” data sets are lower than from other
data sets, specially, for elder patients. For male subjects as
seen for female subjects, thedata set “all” indicates to contain
more pathological values, than the other three data sets,
especially in the case of data from theUniversityHospital (see
Supplemental Material, Figure B4).

The reference limitswere estimated through the indirect
method and are shown in Table 1. As age-dependency of AP
values for female subjects is reported in some publications
[17],wehaveconsideredandanalysed thedata for a younger
age group (18–39 years, Table 1). To compare the estimated
RLs through four data sets (first, last, all and non-repeated
values) with each other, the permissible uncertainty (pU) of
the estimated RLs via “first value” data set have been

calculated and checked whether the estimated RLs through
other data sets (“last”, “all” and “non-repeated” subsets) lay
in the corresponding intervals (see Table 2: lRL1(first) and
lRL2(first) for the lower RL and uRL1(first) and uRL2(first) for
the upper RL). For (C) the estimated RLs from “last” and
“non-repeated” values are equivalent to those estimated
from “first” values, but these are not equivalent with those
estimated from “all”values, as shown inTable 2. The same is
observed for the estimations for the younger age class
(18 ≤ age < 40) (data not shown). For (P) with specimen from
medical practitioners not only the estimated RLs from “last”
and “non-repeated” values are equivalent, but also relative
identical with those estimated from “first” values. Further-
more, estimated RLs through “all” values are also equiva-
lent (but not almost identical and always wider) with those
estimated from “first” values, as shown in Table 2.

Figure 1: Boxplots of AP-values vs. age for female subjects for the
clinical laboratory (C).
The "whiskers" of the boxplot are defined as 95/75/25 and 5%. Red
lines defined the lower/upper RLs used in the corresponding
laboratory (35–105 U/I). From above to the bottom: “all-”, “first-”,
“last-” and “non-repeated-” data sets. Y-axis in U/L, X-axis age in
years.
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Age-related continuous RLs: estimated splines for lower
RLs and upper RLs for four data sets, all/first/last/non-
repeated values for female and male subjects are shown in
Figure 2 (for data set C and data set P separately). As ex-
pected, and considered (in Figure 1), the estimated RLs for
AP by all four subsets indicate that the upper and lower RLs
increase by increasing age for female subjects, especially for
the age between 40 and 60 years. Additionally, the esti-
mated uRL from “first” and “non-repeated” populations are
comparable to those from literature. The estimated uRLs by
“all” values are overestimated. For male subjects the esti-
mated curves for upper and lower RLs through “first”, “last”
and “non-repeated” values are similar (see Figure A2, Sup-
plemental Material). In summary:

Thrombocytes: The estimated uRLs for female
subjects were higher than those for male subjects. The
estimated lRL and uRL indicate no considerable age trend
for female subjects. Though, the estimated lRL for male
subjects decreaseswith increasing age. This trend has been
reported in [18]. The estimated lRL and uRL from “all”
values are underestimated or overestimated correspond-
ingly and thereby seem to be not valid (see Table A1 and
Figure B1).

GGT: Generally, the estimated RLs from “all” values
were not equivalent with the estimations of the other data
sets (Table B4). The estimated continuous curves for uRLs
indicate considerable dynamic trends with increasing age
for female andmale subjects. While for female subjects the
upper RL increases with increasing age monotonically, for
male subjects the upper RL increases with increasing age
until 55–60 years and thereafter decreases. This phenom-
enon has been reported also in literature [19]. See Table A2
and Figure B2.

Sodium: The estimated lower RLs through “all”
values for all subpopulations were considerably lower
than those estimations from other data sets using data
from University Hospital but not for data from the labo-
ratory (P) (see Table A3 and Figure B3).

Discussion

Clinical decisions are affected by in vitro diagnostics in up
to 70% [20]. This decision is based on reference intervals,
so the reference interval is a vital part of the information
supplied by clinical laboratories to support interpretation

Table : Estimated RLs (lRL and uRL) for AP (U/L) values obtained from a hospital (C) and a laboratory (P) through data sets of all, first, last and
non-repeated values, for male and female adults subjects and for young population (age between  and  years).

Data specifications Male Female

Age, years Laboratory Data set lRL uRL n lRL uRL n

≥ Hospital (C) All . . , . . ,
First . . , . . ,
Last . . , . . ,
Non-rep. . . , . . ,
In use   –   –

Laboratory (P) All . . , . . ,
First . . , . . ,
Last . . , . . ,
Non-rep. . . , . . ,
In use   –   –

[, ] Hospital (C) All . . , . . ,
First . . , . . ,
Last . . , . . ,
Non-rep. . . , . . ,
In use   –   –

Laboratory (P) All . . ,  . ,
First  . , . . ,
Last  . , . . ,
Non-rep.  . , . . ,
In use   –   –

Estimated RLs through all values (bold rows) indicate most deviation from others. Used RLs in each laboratory are given, too. Non-rep.,
non-repeated.
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[14]. In conclusion, the quality of a laboratory test result is

affected by the quality of the reference interval.
The indirect methods for the estimation of reference

limits use data sets from patient archives usually stored in
laboratory information systems. These data-mining strate-
gies in general rely on large data sets of good quality. In
some cases, it is mandatory to pool the data from different
laboratories which is only possible if the prerequisites
described by Zierk et al. are fulfilled [21]. In the case of the
estimation of RIs the minimal information used by most
approaches is the measured, unit, method, identifier/pseu-
donym, gender, age and for somemethods the date and time
of analysis (to analyse and exclude drift effects) or theward.
Depending on local legal regulations the data often needs to
get anonymized as described by Holst et al. [22] sometimes
even before pooling of the data. Anonymization requires the
removal of identifiers or characteristics thus assuring that a
link between the data and the individual is impossible. But
for the estimation of RIs the information about the individ-
ual is needed to fulfil the assumption of analysing non-
correlated data. This is a prerequisite which also applies to
direct methods, where 120 results from different individuals
are used for the calculation. By filtering e.g. for first or last
values it is assured that only one result per individual con-
tributes to the estimated RLs. This strategy aims to prevent a
possible bias caused by repeated measurements and is
supported by a number of authors [14].

If only anonymized data is available such an upstream

filtering step is made impossible. We tested for the effect

using two realworld data sets: University hospital data and

data from a laboratory analysing specimen from medical

practitioners. In our approach the data set “all” reflects

the anonymized data and the “first-”, “last-” and “non-
repeated” data sets represent pseudomized data where

filtering for first or last values or the exclusion of patients

with repeated measurements was applied. In these data

sets we observed a considerable difference in the pro-

portion of patients with multiple measurements, in the

case of the university hospital data set only 8–10% of the

collected data in the corresponding time interval come

from the “non-repeated” subpopulation. In the general

practitioner’s laboratory approximately 20–22% of the

collected data in the corresponding time interval come

from the “non-repeated” subpopulation. This difference

and the fact, that the results from the practitioner´s lab-

oratory reflect a “healthier” subpopulation supports the

view of some authors to prefer data from outpatients [23].

However, one can argue against this approach, that one

may has excluded some healthy subjects, with some high/

low values, and thereby the estimated standard deviation

may be underestimated.
Our results for four representative analytes, thrombo-

cytes, AP, GGT and sodium show the significant impact on
the indirect estimation of reference intervals if using the
whole dataset instead of first, last results or results from
patients without repeated measurements. Typically, the
analysis of the whole data set leads to wider RIs and thus to
a lower quality of the estimated RI. This is especially true
for data from large hospitalswhere the number of repetitive
measurements is high.

In conclusion, the results clearly show the influence of
the different filtering strategies which lead to non-identical

Table : Comparison of permissible uncertainty (pU) of estimated RLs (lRL and uRL) for AP values obtained from a hospital (C) and a laboratory
(P) through “first” data set with estimated RLs through “all”, “last” and “non-repeated” data sets (U/L).

Male Female

Laboratory Data lRL uRL lRL uRL

lRL lRL
(first)

lRL
(first)

uRL uRL
(first)

uRL
(first)

lRL lRL
(first)

lRL
(first)

uRL uRL
(first)

uRL
(first)

Hospital (C) First . . . . . . . . . . . .
All . . . . . . . . . . . .
Last . . .  . . . . . . . .
Nrep . . . . . . . . . . . .

Laboratory
(P)

First . . . . . . . . . . . .
All . . . . . . . . . . . .
Last . . . . . . . . . . . .
Nnrep . . . . . . . . . . . .

lRL(first) and lRL(first): lower and upper limits of pU of estimated lRL through the “first” value data set, correspondingly. uRL(first) and
uRL(first): lower and upper limits of pU of estimated uRL through the “first” value data set, correspondingly (only results for age ≥ years are
shown). Bold raw(s)/values indicate(s) non-equivalent estimations as those by first values. Nrep, non-repeated.
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reference limit estimations even from a clinical view.
Especially the use of all data without a filtering step results
in a significant bias whereas the choice of first or last
values has nearly no impact. The exclusion of repeated
measurements results in narrower RLs. This influence
confines the use of anonymous data sets where filtering
is impossible for the estimation of RLs by indirect
methods.

Conclusions

In conclusion, the results clearly show the influence of the
different filtering strategies which lead to non-identical

reference limit estimations even from a clinical view.
Especially the use of all data without a filtering step results
in a significant bias whereas the choice of first or last
values has nearly no impact. The exclusion of repeated
measurements results in narrower RLs. For the estimation
of RLs by indirect methods the inevitable filtering steps
must be carried out before anonymisation.
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Figure 2: Comparing of estimated age-dependent lower/upper RLs for AP values through all (black), first (blue), last (green) and non-repeated
(red) subpopulations for adult.
Left: female and right: for male subjects. Above via data from UKK (Hospital C) and bottom via data from laboratory (P).
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