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It is well known that the Helstrom bound can be improved by generalizing the form of a coherent
state. Thus, designing a quantum measurement achieving the improved Helstrom bound is important
for novel quantum communication. In the present article, we analytically show that the improved
Helstrom bound can be achieved by a projective measurement composed of orthogonal non-standard
Schrödinger cat states. Moreover, we numerically show that the improved Helstrom bound can be
nearly achieved by an indirect measurement based on the Jaynes-Cummings model. As the Jaynes-
Cummings model describes an interaction between a light and a two-level atom, we emphasize that
the indirect measurement considered in this article has potential to be experimentally implemented.

I. INTRODUCTION

Over several decades, optical communication has been widely used for transmitting and receiving important data
among distinct parties. The key feature of the optical communication is to discriminate a message encoded in a light
with maximal success probability. Unfortunately, the statistical and physical feature of a light is limited, therefore
maximal success probability with conventional measurements could not surpass the shot noise limit (equivalently,
the standard quantum limit)[1]. For this reason, large amount of research effort has been contributed to design an
unconventional quantum measurement surpassing the shot noise limit in quantum communication[2].

It is well known that, if one bit message is encoded in one of binary standard coherent states (S-CS), a quan-
tum measurement achieving the Helstrom bound[3] is described by a projective measurement composed of orthog-
onal Schrödinger cat states[4, 5]. However, the unitary operator for controlling the Schrödinger cat states is not
Gaussian[5], which makes it difficult to implement the projective measurement via linear optics[6]. Thus, the previous
unconventional measurements took the experimental form including displacement operation and detection of photon
numbers[7, 8] instead of implementing optimal projective measurements.

In 1973, Dolinar proposed an unconventional measurement with electric feedback, which can achieve the Helstrom
bound between binary coherent states[9]. Based on the Dolinar’s idea, many researchers have proposed unconventional
measurements for discriminating N -ary coherent states[10–13] with success probability surpassing the shot noise limit,
namely Dolinar-like receivers. Unfortunately, it was also shown that there is a family of N -ary coherent states, with
which any Dolinar-like receivers cannot achieve the Helstrom bound[14]. Thus, it is important and even necessary to
consider a new structure of unconventional measurements which beyonds the traditional design including displacement
operation, photon number detection, and electric feedback.

Recently, some indirect measurements for novel quantum communication have been proposed[15–20]. Surprisingly,
it was shown that an indirect measurement via an interaction between a coherent state and an N -level atom is
possible to nearly achieve the Helstrom bound[18–20], even without electric feedback. Moreover, even if sequential
observers perform a quantum communication, the maximal success probability among the sequential observers can
nearly achieves the Helstrom bound[19].

It should be noted that, not only the methodology for designing an unconventional measurement, the research for
finding a suitable optical light also has been performed[22–28]. In this topic, the main purpose was to investigate how
much the Helstrom bound can be improved by changing the form of an (ideal or noisy) optical state. For example, the
Helstrom bound is known to be improved by squeezing operation on a coherent state[6]. Likewise, a phase-diffused
coherent state[24], a thermal optical state[25], and a single rail qubit[26] were considered as an information carrier.
Recently, it was shown that the generalization of binary coherent states can increase the Helstrom bound[28]. This
result implies that the non-standard coherent state (NS-CS) can enhance the capability of quantum communication.
Especially, if binary (modified) Susskind-Glogower coherent states (mSG-CS) are considered [29], Helstrom bound can
be equal to one without large mean photon number. Therefore, concerning binary coherent states, finding the optimal
structure of the unconventional measurement is important for implenting the enhanced quantum communication.
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In the present article, we propose an optimal measurement for the quantum communication between binary NS-CS
in a mathematical manner. We analytically show that the projective measurement can achieve the Helstrom bound
and illustrate our result by a projective measurement composed of orthogonal non-standard Schrödinger cat states.
Although the projective measurement takes the simple form, it is not yet clear how to implement this projective
measurement experimentally, except for the case of Glauber-Sudarshan coherent states (GS-CS)[30].[56]

To concern the technical or experimental feasibility, we also numerically show that the indirect measurement based
on the Jaynes-Cummings model[31] can nearly achieve the Helstrom bound between binary NS-CS. This implies
that the indirect measurement can perform the quantum communication enhanced by the binary NS-CS. Whereas
Dolinar-like receivers need real-time electric feedback, our indirect measurement does not. In other words, it is
possibly easier to implement our indirect measurement than Dolinar-like receivers. As the experimental implentation
of ultrastrong Jaynes-Cummings model is still actively studied[32], the indirect measurement considered in this article
can be expected to be implemented in the near future.

The present article is organized as follows. In Section 2, we briefly introduce the binary quantum communication
enhanced by NS-CS. In Section 3, we provide the structure of the optimal meaurement for the binary quantum
communication, and numerically show that the optimal quantum communication is nearly performed by an indirect
measurement based on the Jaynes-Cummings model. Finally, in Section 4, we propose the conclusion of the present
article.

II. PRELIMINARIES: ENHANCED BINARY QUANTUM COMMUNICATION

In principle, quantum communication between a sender and an observer can be described as the problem of quantum
state discriminaton[6]. The main purpose of the quantum state discrimination is to establish the optimal strategy for
discriminating several quantum states with maximal success probability. So far, several quantum state discrimination
strategies have been proposed such as minimum error discrimination[33–35], unambiguous discrimination[36–39] and
fixed rate of inconclusive result[40, 41], as well as suitable measurements for possible implementation[42–44]. However,
unambiguous discrimination can be realized only in the ideal case[45], and fixed rate of inconclusive result is not
theoretically well developed. For these reasons, the experimental implementation of the quantum communication
have been mainly focused on the minimum error discrimination.

Throughout this article, we consider the situation that a sender encodes one bit message x ∈ {0, 1} into a pure
state |ψx〉 in a Hilbert space H and send it to an observer. In minimum error discrimination, the observer performs
a measurement described by a positive-operator-valued-measure (POVM) {M0,M1}, where My is a POVM element
corresponding to a measurement outcome y ∈ {0, 1}. The minimum error discrimination is to minimize the following
error probability,

Pe(|ψ0〉, |ψ1〉|q0, q1) = q0〈ψ0|M1|ψ0〉+ q1〈ψ1|M0|ψ1〉, (1)

where qx is the prior probability that |ψx〉 is prepared. This minimization problem is equivalent to maximize the
following success probability,

Ps(|ψ0〉, |ψ1〉|q0, q1) = q0〈ψ0|M0|ψ0〉+ q1〈ψ1|M1|ψ1〉. (2)

The maximal success probability in Eq. (2) is called the Helstrom bound[3], which is analytically given by,

Phel(|ψ0〉, |ψ1〉|q0, q1) := max
{M0,M1}

Ps(|ψ0〉, |ψ1〉|q0, q1)

=
1 +

√
1− 4q0q1|〈ψ0|ψ1〉|2

2
. (3)

For the case that the prior probabilities {q0, q1} are fixed, the Helstrom bound in Eq. (3) is determined by inner
product of |ψ0〉 and |ψ1〉. Choosing suitable optical states, quantum communication can be enhanced by improving
the Helstrom bound. In the present article, we consider generalized coherent states for possible improvement of the
Helstrom bound.

Definition 1[28]. If a pure state takes the form:

|α,~h〉 :=
∑

n∈Z+∪{0}

αnhn(|α|2)|n〉, (4)
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then the pure state is a generalized coherent state. Here, Z+ is the set of positive integers, {|n〉|n ∈ Z+ ∪ {0}} is an
orthonormal basis of a Hilbert space H, α is a complex number with |α| < R (R can be whether a finite positive

number or infinite), and ~h := (h0, h1, h2, · · · ) is a tuple of real-valued functions hn : [0, R2]→ R such that∑
n∈Z+∪{0}

un {hn(u)}2 = 1, (5)

∑
n∈Z+∪{0}

nun {hn(u)}2 is a strictly increasing function of u, (6)

∫ R2

0

duw(u)un {hn(u)}2 = 1, for a function w : [0, R2]→ R+. (7)

Here, Eq. (5) is for the normalization of Eq. (4), Eq. (6) is for the consistent definitions of mean photon number in
quantum theory and statistical theory, and Eq. (7) is for the resolution of an identity operator.

It is noted that a Glauber-Sudarshan coherent state (GS-CS) is a special case of Definition 1.

Definition 2[28]. If every real-valued function hn(u) takes the form:

hn(u) =
1√
n!
e−

u
2 , ∀n ∈ Z+ ∪ {0} (8)

then |α,~h〉 is so called GS-CS or standard coherent state (S-CS). Otherwise, |α,~h〉 is so called non-standard coherent
state (NS-CS).

Remark 1. The tuple ~h determines both the explicit form of NS-CS and the Mandel parameter Q
~h
M (u),

Q
~h
M :=

(∆n)2

〈n〉
− 1, (9)

where 〈n〉 is mean photon number and ∆n is standard deviation of the photon number. It is well known that the
Mandel parameter is directly related with physical properties[28]: Optical spin coherent state (OS-CS)[49], Barut-
Girardello CS (BG-CS)[50] and modified Susskind-Glogower coherent state (mSG-CS)[29, 51] has negative Mandel

parameter (Q
~h
M < 0). This implies that OS-CS, BG-CS and mSG-CS are sub-Poissoninan. Meanwhile, Perelomov

coherent state (P-CS) has negative Mandel parameter (Q
~h
M > 0). This implies that P-CS is super-Poissonian. As

sub-Poissonianity of NS-CS can improve the Helstrom bound[28], we mainly focus on the sub-Poissonian NS-CS.

III. OPTIMAL MEASUREMENT FOR BINARY QUANTUM COMMUNICATION

In this section, we propose two kinds of measurements for binary quantum communication with NS-CS. First,
we analytically show that an optimal measurement for discriminating NS-CS is described by a projective measure-
ment composed of orthogonal non-standard Schrödinger cat states. Moreover, we numerically show that an indirect
measurement based on Jaynes-Cummings model is a nearly optimal measurement for discriminating NS-CS.

A. On-off Keying (OOK) and Binary Phase Shift Keying (BPSK) signals

On-off keying (OOK) and binary phase shift keying (BPSK) signals are well known information carrier in quantum
communication[2, 6]. In OOK signal

|αx,~h〉 ∈ {|α,~h〉, |0,~h〉 ∈ H|α ∈ R}, (10)

one bit message is encoded depending on the existence of a coherent state. Whereas, in BPSK signal

|αx,~h〉 ∈ {|α,~h〉, | − α,~h〉 ∈ H|α ∈ R}, (11)

one bit message is encoded in a phase of a coherent state. Based on NS-CS, the Helstrom bounds of OOK and BPSK
signals are given by

Phel(|α,~h〉, |0,~h〉|q0, q1) =
1 +

√
1− 4q0q1 {h0(α2)}2

2
, (12)
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and

Phel(|α,~h〉, | − α,~h〉|q0, q1) =
1 +

√
1− 4q0q1

[∑
n∈Z+∪{0}(−α2)n {hn(α2)}2

]2
2

, (13)

respectively. We consider BPSK signal instead of OOK signal, since the Helstrom bound of the BPSK signal is larger
than that of the OOK signal. We numerically show this in Fig.2 of Section 3.

In the next section, we propose the optimal measurement for discriminating BPSK signal composed of NS-CS.

B. Optimal Projective Measurement with Non-Standard Schrödinger Cat States

It is known that the optimal measurement for discriminating binary GS-CS can be described by a projective
measurement composed of two orthogonal Schrödinger cat state [4]. Here, the optimal measurement is described by
a projective measurement composed of two orthogonal Schrödinger cat states

|C±〉 := N (±)
α0,α1

(|α0〉 ± |α1〉), (14)

where N (±)
α0,α1 is the normalization constant. Here, we define two orthogonal non-standard Schrödinger cat states

|C±,~h〉 := N (±)

α0,α1,~h
(|α0,~h〉 ± |α1,~h〉), (15)

where ~h is a tuple of real-valued functions defined in Definition 1. The following theorem show that the optimal
measurement for discriminating NS-CS states in Eq. (4) is described by a projective measurement composed of the
states in Eq. (15).

Theorem 1. Let us consider a projective measurement defined by

Πy = |πy〉〈πy|, y ∈ {0, 1}, (16)

where the orthonormal vectors |π0〉 and |π1〉
|π0〉 := cos(ξ)|C+〉+ eiζ sin(ξ)|C−〉, (17)

and

|π1〉 := sin(ξ)|C+〉 − eiζ cos(ξ)|C−〉, (18)

respectively. For arbitrary α0 and α1 ∈ R and prior probabilities q0 and q1, there exist ξ and ζ that the maximal
success probability Ps(|α0〉, |α1〉|q0, q1) with respect to the projective measurement composed of |π0〉 and |π1〉 equals
to the Helstrom bound.

Proof. From Eqs. (16) and (18), maximal success probability is derived by

Pdir(|α0,~h〉, |α1,~h〉|q0, q1) = q0|〈π0|α0,~h〉|2 + q1|〈π1|α1,~h〉|2

=
1

2
+

(q0 − q1)〈α0,~h|α1,~h〉2

2
cos(2ξ) +

√
1− 〈α0,~h|α1,~h〉2

2
cos(ζ) sin(2ξ)

≤ 1

2
+

(q0 − q1)〈α0,~h|α1,~h〉2

2
cos(2ξ) +

√
1− 〈α0,~h|α1,~h〉2

2
sin(2ξ). (19)

Since α0, α1 ∈ R are considered, 〈α0,~h|α1,~h〉 ∈ R holds. Moreover, if ζ = 0, the inequality Eq. (19) becomes an
equality.

Suppose that ξ takes the form:

ξ =
1

2
arctan


√

1− 〈α0,~h|α1,~h〉2

(q0 − q1)〈α0,~h|α1,~h〉

 . (20)

Then, Eq. (19) also takes the form equal to the Helstrom bound.

Remark 2. The optimal projective measurement proposed in Theorem 1 requires technical capability for im-
plementing the non-standard Schrödinger cat states, whose experimental realization is still unknown. In the next
section, we propose another near-optimal measurement, which can be possibly implemented in a near future.
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FIG. 1: Schematic of an indirect measurement. Here, |b〉 is the state of the auxiliary system H̃, U is the unitary operator on

H⊗ H̃, and {P0,P1} is a projective measurement on H̃.

C. Optimal Indirect Measurement with Jaynes-Cummings Model

1. Success Probability of Indirect Measurement

Recently, minimum error discrimination between binary pure states can be realized by an indirect measurement[17].
This result is important because a rank-1 projective measurement is difficult to realize in some quantum systems
including various continuous variable quantum lights. In other word, the indirect measurement needs to be considered
for performing quantum state discrimination in such quantum systems.

According to a mathematical framework[52], an indirect measurement performed on a Hilbert space H is described
by

Ξ := {H̃, σ,P, U}, (21)

where H̃ is the auxiliary Hilbert space, σ = |b〉〈b| is the initial auxiliary state on H̃, P = {P0,P1} with

Py = |πy〉〈πy|, |πy〉 ∈ H̃, (22)

is the projective measurement performed on H̃. and U is the unitary operator defined on a composite Hilbert space

H⊗ H̃. Fig.1 illustrates the indirect measurement consist of σ, P on H̃ and U on H⊗ H̃.
For a pure state |ψ〉 ∈ H, U satisfies the following relation[53, 54]

U(|ψ〉 ⊗ |b〉) =
∑
y

Ky|ψ〉 ⊗ |πy〉, (23)

where Ky is a Kraus operator. From Eq. (23), the physical interpretation of Ky is obtained by

Ky = 〈πy|U |b〉H̃. (24)

By using Eq. (24), success probability for discriminating NS-CS via the indirect measurement can be rewritten as

Ps(|α0,~h〉, |α1,~h〉|q0, q1) = q0〈α0,~h|K†0K0|α0,~h〉+ q1〈α1,~h|K†1K1|α1,~h〉. (25)

2. Indirect Measurement with Jaynes-Cummings Model

An indirect measurement considered in the present article uses a two-level atom as an auxiliary quantum system

H̃. We denote H̃ = span{|g〉, |e〉} where |g〉 is the ground state and |e〉 is the excited state of the two-level atom. The

initial state of the two-level atom in H̃ is defined by

σ := |g〉〈g|. (26)

Each projector in Eq. (22) is constructed by orthonormal vectors:

|π0〉 := cos(θ)|g〉+ eiφ sin(θ)|e〉, (27)
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and

|π1〉 := sin(θ)|g〉 − eiφ cos(θ)|e〉. (28)

In this article, we design the unitary operator U in Eq. (21) using Jaynes-Cummings model[31]. In Jaynes-
Cummings model, an interaction between a light and a two-level atom is described by a Hamiltonian on the composite

Hilbert space H⊗ H̃

H(t) := H0 +Hint(t), (29)

where H0 and Hint are free Hamiltonian and interaction Hamiltonian defined by

H0 := ~ωL(a†a⊗ IH̃) +
1

2
~ω0(IH ⊗ σz), (30)

and

Hint(t) := ~Ω(t)(a⊗ σ+ + a† ⊗ σ−), (31)

respectively. Here, ωL is a light frequency, ω0 is a transition frequency of the two-level atom, and Ω(t) is a time-
dependent interaction parameter. a is an annihilation operator and a† is a creation operator such that

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉. (32)

The Pauli operators are based on the ground and excited states of H̃ as

σz := |e〉〈e| − |g〉〈g|, σ+ := |e〉〈g|, σ− = |g〉〈e|. (33)

While the light and the two-level atom are resonating (ωL = ω0), Eq. (29) is simplified by the interaction picture
on the basis of H0:

H̃int(t) = ~Ω(t)(a⊗ σ+ + a† ⊗ σ−). (34)

To evaluate U in Eq. (21), consider a time-dependent unitary operator Ũ(t) as a solution of the time-dependent
Schrödinger equation:

i~
dŨ(t)

dt
= H̃int(t)Ũ . (35)

The solution of the time-dependent Schrödinger equation is analytically given by [21]

Ũ(t) := exp
{
−iΦ̃(t)(a⊗ σ+ + a† ⊗ σ−)

}
. (36)

Here, Φ̃(t) is a time-dependent parameter:

Φ̃(t) :=

∫ t

0

Ω(τ)dτ. (37)

Finally, given that the interaction time is T , the unitary operator U in Eq. (21) is defined by

U := Ũ(T ). (38)

From Eqs. (26), (27), (28) and (38) together with Eq. (24), the Kraus operators of the indirect measurement in
Eq. (24) can be rewritten as [21]

K0 := cos(θ) cos{Φ|a|} − ie−iφ sin(θ)
∑

k∈∈Z+∪{0}

(−1)k

(2k + 1)!
Φ2k+1a|a|2k, (39)

and

K1 := sin(θ) cos{Φ|a|}+ ie−iφ cos(θ)
∑

k∈∈Z+∪{0}

(−1)k

(2k + 1)!
Φ2k+1a|a|2k, (40)
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FIG. 2: The Helstrom bounds between binary signals. Here, solid red lines show BPSK signal and solid black lines show OOK
signal. (a) shows OS-CS with nj = 3, (b) shows BG-CS with χ = 1/2, and (c) shows mSG-CS, respectively.

where Φ is a parameter defined by

Φ := Φ̃(T ), (41)

and |a| :=
√
a†a.

From Eqs. (39) and (40) together with Eq. (25), the success probability that the indirect measurement discriminates
the binary pure states is rewritten by

Ps(|α0〉, |α1〉|q0, q1) = q0

∑
n∈Z+∪{0}

|F0(n)|2 + q1

∑
n∈Z+∪{0}

|F1(n)|2, (42)

where Fy : Z+ ∪ {0} → R+ is a real-valued function defined by

F0(n) :=
∣∣αn0hn(|α0|2) cos(θ) cos(Φ

√
n)− iαn+1

0 hn+1(|α0|2)e−iφ sin(θ) sin(Φ
√
n+ 1)

∣∣2 , (43)

and

F1(n) :=
∣∣αn1hn(|α1|2) sin(θ) cos(Φ

√
n) + iαn+1

1 hn+1(|α1|2)e−iφ cos(θ) sin(Φ
√
n+ 1)

∣∣2 . (44)

By using Eq. (43) and Eq. (44), the optimal success probability of the indirect measurement is described by

Pind(|α0,~h〉, |α1,~h〉|q0, q1) := max
(θ,φ,Φ)∈R3

q0

∑
n∈Z+∪{0}

|F0(n)|2 + q1

∑
n∈Z+∪{0}

|F1(n)|2
 . (45)

Since Eq. (42) is nonlinear, evaluating Eq. (45) becomes a nonlinear optimization problem. This implies that
analytically finding the optimal parameters (θ, φ,Φ) is difficult. Fortunately, the optimization problem for evaluating
Eq. (45) is not constrained. Therefore, we can consider the Powell method or the steepest ascent method to numerically
obtain the maximal success probability.
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3. Numerical Investigation of Optimal Success Probability

Here, we numerically investigate the optimal success probability for discriminating NS-CS for the case of an opti-
cal spin coherent state (OS-CS), a Barut-Girardello coherent state (BG-CS)[50] and a modified Susskind-Glogower
coherent state (mSG-CS)[29].

• In OS-CS, hn(u) in Eq. (4) is expressed by[49]

hn(u) = λn(1 + u)−
nj
2 , λn =

√
nj !

n!(nj − n)!
, (46)

where nj is a positive integer. For n > nj , every hn(u) equals to zero.

• In BG-CS, hn(u) in Eq. (4) is expressed by[50]

hn(u) =
λn√
NBG(u)

, λn =

√
Γ(2χ)

n!Γ(2χ+ n)
. (47)

Here, χ is a real number such that χ ≥ 1/2, Γ(·) is a Gamma function, and NBG(u) is a normalization function
defined by

NBG(u) := Γ(2χ)u
1
2−χI2χ−1(2

√
u), (48)

where Iν(·) is a modified Bessel function.

• In mSG-CS, hn(u) in Eq. (4) is expressed by[29]

hn(u) =

√
n+ 1

NmSG(u)

1

u
n+1
2

Jn+1(2
√
u). (49)

Here, Jn(·) is a first kind of Bessel function, and NmSG(u) is a normalization function defined by

NmSG(u) :=
1

u

[
2u{J0(2

√
u)}2 −

√
uJ0(2

√
u)J1(2

√
u) + 2u{J1(2

√
u)}2

]
. (50)

In Fig.2, the Helstrom bounds between binary signals are illustrated. Here, solid red lines show BPSK signal and solid
black lines show OOK signal. Fig.2(a) shows OS-CS with nj = 3, Fig.2(b) shows BG-CS with χ = 1/2, and Fig.2(c)
shows mSG-CS, respectively. According to Fig.2, the values of solid red lines are larger than those of the solid black
lines, which means the quantum communication can be enhanced by the BPSK signals rather than OOK signals.

Therefore, we focus on the optimal implementation of the quantum communication with BPSK signal. In Fig.3,
the graphs in the left column depict optimal success probabilities for discriminating BPSK composed of one of three
NS-CS. The graphs in the right column depict difference between an optimal success probability and the Helstrom
bound defined by

δ(|α0,~h〉, |α1,~h〉|q0, q1) (51)

:= 100× Phel(|α0,~h〉, |α1,~h〉|q0, q1)− Pind(|α0,~h〉, |α1,~h〉|q0, q1)

Phel(|α0,~h〉, |α1,~h〉|q0, q1)
,

where the factor 100 is to normalize in percentage. Fig.3(a) shows OS-CS with nj = 3, Fig.3(b) shows BG-CS with
χ = 1/2, and Fig.3(c) shows mSG-CS. For the graphs in the left column of Fig.3, solid red line depicts the Helstrom
bound between binary NS-CS, dashed red line depicts the Helstrom bound between binary S-CS, and dashed blue
line depicts the shot noise limit of S-CS[2, 48]. Black points are numerical values of Eq. (45).

• According to Fig.3, the optimal success probability of the indirect measurement in Eq. (45) nearly achieves the
Helstrom bound if the mean photon number satisfies 0 < 〈n〉 < 0.6. Fig.3 also shows that difference between
Eq. (45) and the Helstrom bound is less than 10−5% if 〈n〉 is small enough.

• If 〈n〉 is large, the difference between Eq. (45) and the Helstrom bound increases. Nevertheless, the difference
is less than 0.1% in region of 0 < 〈n〉 < 0.6.

This implies that the indirect measurement based on Jaynes-Cummings model can perform the optimal quantum
communication enhanced by sub-Poissonianity of NS-CS. Because Jaynes-Cummings model describes the interaction
between the light and the two-level atom, our scheme has potential to be implemented in the near future.
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FIG. 3: (Left) Optimal success probabilities for discriminating BPSK composed of one of three NS-CS, (Right) percentages of
difference between an optimal success probability and the Helstrom bound. (a) shows OS-CS with nj = 3, (b) shows BG-CS
with χ = 1/2, and (c) shows mSG-CS. Also, in the left graphs, solid red line depicts the Helstrom bound between binary
NS-CS, dashed red line depicts the Helstrom bound between binary S-CS, and dashed blue line depicts the shot noise limit of
S-CS[2, 48].

IV. CONCLUSIONS

In the present article, we proposed optimal strategies for quantum communication enhanced by non-standard
coherent states.

• We have analytically shown that optimal measurement for the enhanced quantum communication is described
by a projective measurement composed of orthogonal non-standard Schrödinger cat states.

• We have numerically shown that an indirect measurement based on the Jaynes-Cummings model performs the
near-optimal quantum-enhanced communication. Since the Jaynes-Cummings model describes the interaction
between the light and the two-level atom, it can be realized in the future.

The success probability for discriminating the BPSK signal can be larger than that of the OOK signal and this
justifies the reason of concerning BPSK signal instead of OOK signal. As Jaynes-Cummings model is known to
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be suitable in the field of quantum computation [55], our result provides a useful reference in the field of quantum
computation and communication.
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